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PREFACE 

These notes originated at the Second Algebraic Geometry Summer Seminar 
held at the University of Utah during August 1991. The seminar was the 
continuation of the First Summer Seminar held in 1987 whose notes appeared 
in [CKM88). 

The aim of the First Summer Seminar was to give an introduction to three 
dimensional birational geometry, especially to Mori's Program ( also called the 
Minimal Model Program). We are very happy to note that in the last few years 
this program has become much better known among algebraic geometers. This 
was refl.ected in the number of participants. In 1987 there were 16 participants 
for an introductory seminar; in 1991 there were 30 for a more advanced one. 

Because of these changes, instead of starting at the beginning, the Second 
Summer Seminar concentrated on reviewing recent developments in higher 
dimensional birational geometry. We surveyed two of the most important 
recent directions. 

The first topic was the existence of fiips in dimension three, the final step 
in the three dimensional Minimal Model Program. In surface theory it is well 
known that repeated contraction of -1-curves yields a minimal surface. Simi
larly, starting with a threefold X, Mori's Program produces another threefold 
X', birational to X, which can reasonably be called minimal in analogy with 
the surface case. The required operations are however more compli.cated. One 
of them is called fl.ip. 

The existence of fiips was first proved by [Mori88). Recently a very different 
approach to a more general type of fl.ipping problem (still in dimension three) 
was found by [Shokurov91]. We owe special thanks to Miles Reid who pre
pared an English translation of [Shokurov91) in a very short time. Shokurov's 
article contains many new ideas, but unfortunately it is very difficult to un
derstand. Numerous parts required a truly joint effort of the participants and 
some details were understood only after several discussions with the author. 
Eventually we discovered an error in [ibid, 8.3]. Unfortunately, there was no 
opportunity to reconvene the seminar and study the new version {Shokurov92). 

The first part of the notes (Chapters 4-8) presents a new proof of log fiips 
using [Mori88). The third part (Chapters 16-21) presents a reworked version 
of [Shokurov91, 1-7). 



The second tapie (Chapters 9-15) is the Abundance Conjecture proposed 
in [Reid83]. It is a natural continuation of Mori's Program. Starting with the 
threefold X' produced above, the conjecture states that a suitable multiple 
of the canonical class determines a base point free linear system ( unless all 
such are empty). The pro of of this result was completed in the series of 
articles [Kawamata84,85,91b; Miyaoka87a,b,88a,b]. Again we succeeded in 
simplifying several of the steps and generalizing many intermediate results. 

A more detailed explanation of the results and an outline of the proofs is 
given in Chapter 1. 

ACKNOWLEDGEMENT. We are very grateful to S. Mori for his attention 
and help during and after the conference. He pointed out several mistakes in 
preliminary versions of the notes. 

Many errors and inaccuracies were pointed out to us by S. Kovacs and 
E. Szab6. We received long lists of comments, corrections and improvements 
from M. Reid and from V. V. Shokurov. They helped to improve these notes 
considerably. 

The seminar was made possible by a generous grant from the University of 
Utah to S. Mori. 

These notes were typeset by ÀMS- 'TEX, the 'TEX macro system of the 
Americal Mathematical Society. 

2 



CONTENTS 

Prerequisites ........................................................... 5 
Authors ............................................................... 7 

1. Log Flips and Abundance; an Overview - J. Kollar ................... 9 
2. Log Canonical Models - A. Grassi - J. Kollar ........................ 29 
3. Log Canonical Surface Singularities - V. Alexeev .................... .4 7 

LOG FLIPS I 

4. Termination of Canonical Flips - J. Kollar - K. Matsuki ............. 59 
5. Existence of Canonical Flips - A. Corti - J. Kollar .................. 69 
6. Crepant Descent - J. Kollar ......................................... 75 
7. Termination of Flips Near the Boundary - J. Kollar - K. Matsuki .... 89 
8. Log Canonical Flips - S. Keel - J. Kollar ............................. 95 

ABUNDANCE FOR THREEFOLDS 

9. Miyaoka's Theorems - N. Shepherd-Barron ....................... 103 
10. Chern Classes of Q-Sheaves - G. Megyesi .......................... 115 
11. Abundance for Log Surfaces - L.-Y. Fong - J. McKernan ........... 127 
12. Semi Log Canonical Surfaces - D. Abramovich - L.-Y. Fong -

J. Kollar - J. MCKernan ............................................ 139 
13. Abundance for Threefolds: v = 1 - J. Kollar - K. Matsuki -

J. McKernan ....................................................... 155 
14. Abundance for Threefolds: v = 2 - D. Abramovich - L.-Y. Fong -

K. Matsuki ........................................................ 159 
15. Log Elliptic Fiber Spaces - J. Kollar ............................... 165 

3 



LOG FLIPS II 

16. Adjunction of Log Divisors - A. Corti ............................. 171 
17. Adjunction and Discrepancies - J. Kollar .......................... 183 
18. Reduction to Special Flips - A. Grassi - J. Kollar ................. 193 
19. Complements on Log Surfaces - D. Morrison ...................... 207 
20. Covering Method and Easy Flips - J. Kollar ....................... 215 
21. Special Flips - J. Kollar ........................................... 223 
22. Index Two Special Flips - T. Luo ................................. 233 

23. Unirationality of Complete Intersections - K. Paranjape -
V. Srinivas ......................................................... 241 

References ......................................................... 248 
Index .............................................................. 255 

4 



PREREQUISITES 

In writing these notes we tried to keep the prerequisites to the rrùnimum. 
The reader is assumed to have a basic general knowledge of algebraic geometry. 
Sorne farrùliarity with higher dimensional techniques is necessary. We tried 
to rely only on Chapters 1-13 of [CKM88]. There are however two topics not 
adequately covered in [CKM88]. 

1. In [CKM88] the Cone Theorem and related results are proved only for 
the canonical divisor Kx instead of an arbitrary log terrrùnal divisor Kx + ~
The proofs in the more general log terminal case are essentially the same as 
the proofs given in [CKM88]. A reader who understands Chapters 9-13 of 
[CKM88] should have no problem with the more general log versions. However 
we usually refer to [KMM87] where the precise results are stated and proved. 

2. [CKM88, Chapter 6] collects the most important results on terrrùnal 
and canonical singularities in dimension three, mostly without proofs. The 
reader who is happy to accept these results does not need to know more. 
For those who want proofs, the list of prerequisites gets longer. The survey 
article [Reid87] presents a very readable and elementary overview with proofs. 
Unfortunately even [Reid87] relies on detailed properties of elliptic Gorenstein 
surface singularities [Laufer77; Reid75] which are by no means basic. We could 
not offer any significant improvements; thus there was no reason to reproduce 
the results. 

3. The first proof of the existence of log fl.ips (Chapters 4-8) uses the very 
difficult results of [Mori88]. We need however only the statements and none 
of the techniques. 

4. In Chapter 9 we discuss the abundance problem only for regular three
folds. The irregular case was solved earlier using the ideas of Iitaka's program 
which are not related to the methods discussed here. 

No other result from higher dimensional birational geometry is used with
out proof. 

We also need some other results which are not part of basic algebraic ge
ometry. 

Naturally we need Hironaka's resolution of singularities. 
Simultaneous resolution of fiat deformations of Du Val singularities ( = ra

tional double points) is an important result [Brieskorn71] which is not treated 
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in textbooks. 
ln Chapters 9-10 we use several properties of stable vector bundles. Also 

in Chapter 9 we need some properties of foliations in positive characteristic. 
In ail cases we state the results we use and give precise references. 

Finally there are occasional uses of a few other tapies: mixed Hodge 
structures, Lefschetz type theorems, relative duality and the existence of the 
Hilbert scheme. 
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1. LOG FLIPS AND ABONDANCE: AN OVERVIEW 

JANOS KOLLAR 

The aim of these notes is to present two of the most important recent direc
tions of three dimensional algebraic geometry. We generalize the following two 
theorems from surfaces to threefolds. (For the surface case, see for example, 
[BPV84,VI.1.l,V.12.1,VII.5.2].): 

1.1 Theorem. Let X be a smooth projective surface. Then there is a bira
tional morphism X - X' to another smooth projective surface X', where X' 
satisfi.es exactly one of the following conditions: 

(1.1.1) Kx, is nef, i.e. C · Kx, ~ 0 for every curve CC X'; 
(1.1.2) X' is JP'1 -bundle over a smooth curve D; 
(1.1.3) X' ~ JP'2 . 

1.2 Theorem. Let Y be a smooth projective surface. Assume that Ky is 
nef. Then lmK y I is base point free for some m > O. 

The approach to the higher dimensional version of (1.1) is called Mori's 
program or the Minimal Model Program, initiated in [Mori82]. (See [KMM87; 
Kollar90; Kollar91] for introductions.) Its general features have been well 
understood for a few years and they were presented in [CKM88,1-13] in a 
fairly elementary way. The major remaining open problem was to prove the 
existence of flips. This was finally doue in [Mori88]. Recently a new proof ( of 
a more general result) was given in [Shokurov91]; we present two proofs of 
this result. The first one (Chapters 4-8) is short, but relies on [Mori88]. The 
approach of [Shokurov91] is presented in Chapters 16-22. 

The higher dimensional version of (1.2) is called the Abundance Conjecture 
[Reid83, 4.6]. In dimension three it is now a theorem; proved in the second 
part ( Chapters 9-15). 

Before giving a detailed outline of the three dimensional proofs, I give a 
very short sketch of the surface case and discuss the new f eatures of the three 
dimensional case. 

The proof of (1.1) is relatively easy ( cf. [BPV84,III.4.l,VI.2.4], [CKM88,3]). 
One proves that if X does not satisfy any of the conditions (1.1.1-3) then it 

S.M.F. 
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J. KOLLÂR 

con tains a smooth rational curve C C X such that C · K x = - l. C can be 
contracted by a morphism p: X -+ X 1 and X 1 is again smooth. We repeat 
this as many times as necessary. At every step the second Betti number drops 
by one, and therefore eventually the procedure must stop. 

In dimension three, life is more complicated. The very first step X -+ X 1 

was analyzed in [Mori82]. He showed that in some cases X 1 is necessarily 
singular. At first sight this seems a major trouble; however, the techniques to 
handle the singularities that occur have been worked out. The big problem 
is that in subsequent steps we may arrive at a situation when the contraction 
forced upon us by the program is of the following type: 

Small Extremal Contraction. f : X -+ Z is a proper birational morphism 
between threefolds such that the exceptional set of f is a curve C C X and 
Kx is negative on C. 

ln this case Z has "very bad" singularities. This makes it necessary to find 
a new type of birational transformation, the flip. 

Flips. Let f : ( C C X) -+ ( P E Z) be a proper birational morphism such that 
f : (X - C) -+ (Z - P) is an isomorphism. Assume that Kx is negative on 
C. The flip of f is a proper birational morphism J+ : ( c+ C x+) -+ ( P E Z) 
such that J+ : x+ - c+ -+ Z -Pis an isomorphism, and Kx+ is positive on 
c+. This gives the following diagram: 

C C X -~~ c+ C x+ 
f "-,,_ ,/ j+ 

z 

(Frequently the birational map </> = (J+)-1 of: X --~ x+ is also called the 
flip.) 

Informally, we take Cout of X and replace it with another curve c+. The 
main point is that the canonical class becomes positive near c+. Aside from 
the sign restriction on K, the flip might seem to be a symmetric operation; 
however, the negativity of Kx · C is crucial. 

The existence of flips was the main open problem of three dimensional 
birational geometry for six years, until it was finally settled by [Mori88]. 

The first and third parts of these notes present a generalized version of 
flips. We look at perturbations of Kx of the form Kx + L biBi where the 
Bi are effective and O ~ bi ~ l. There are further strong restrictions on 
the singularities of X and of the Bi which are not important for the general 
picture. Instead of requiring that Kx · C be negative, we require that (Kx + 
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FIJPS AND ABUNDANCE 

I: b;B;) • C be negative. This generalization gives us considerable flexibility 
in certain problems which is crucial in many applications. 

The proofs of [Mori88] and of [Shokurov91] proceed along very different 
lines. The technical heart of [Mori88] is a method to understand the structure 
of X along C. Once we understand the structure sufficiently well, it is not 
too hard to construct the flip. This approach was further developed into a 
fairly complete structure theory of all possible pairs C C X [Kollar-Mori92]. 
In particular, this method gives a very good description of x+ in all cases. 

[Shokurov91] has a more general situation where a complete description 
may very well be intractable. Thus he concentrates on trying to prove the 
existence of fl.ips. His method is to have various results to the effect that if 
certain fl.ips exist then some more general fl.ips also exist. There are about five 
main types of reductions, each applied several times. This has the consequence 
that we know very little about x+. 

At the end of the program we obtain the following theorems. First we state 
the original version of [Mori88], then the generalized version of [Shokurov91]. 

1.3 Theorem. (Existence of minimal models) Let X be a smooth projective 
threefold. Then there is a birational map X --+ X' to another projective 
threefold X' (with terminal singularities), where X' satisfi.es exactly one of 
the following conditions: 

(1.3.1) Kx, is nef, i.e. C · Kx, ~ 0 for every curve CC X'; 
(1.3.2) There is a morphism p: X'-+ Z' onto a lower dimensional variety 

Z' such that Kx, is negative on the fi.bers off. 

1.4 Theorem. (Existence of log minimal models) Let X be a smooth projec
tive threefold. Let D = I: d;D; where the Di are different irreducible divisors, 
Supp D bas only normal crossings and O :S d; :S 1. 

Then there is a birational map cp: X --+ X' to another projective threefold 
X' such that (X',D' = cp*(D)) is log terminal (see (2.13)), and X' satisfi.es 
exactly one of the following conditions: 

(1.4.1) Kx, + D' is nef, i.e. C · (Kx, + D') ~ 0 for every curve CC X'. 
(1.4.2) There is a morphism p: X'-+ Z' onto a lower dimensional variety 

Z' such that Kx, + D' is negative on the fi.bers of p. 

A lot of work has been done on the structure of X' in the second case of (1.3) 
and (1.4), especially when D = 0. Sorne of the most important contributions 
are [Sarkisov81,82; Miyaoka-Mori86; lskovskikh87; Kawamata9la; Alexeev92; 
Corti92]. We do not say much about this direction, except for some very 
special examples in Chapter 23. 

The second part of these notes concerns the following generalization of 
(1.2) conjectured in [Reid83,4.6] and proved in a series of articles [Kawa
mata84,85,91b; Miyaoka87a,b,88a,b]. 
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J. KOLLÂR 

1.5 Theorem. Let Y be a projective threefold with terminal singularities 
such that Ky is nef. Then lmK y I is base point free for some m > O. 

In order to see the difficulties of the proof, we recall the main steps of the 
two dimensional argument. By Riemann-Roch we have 

o 2 ( m(m - 1) 2 
h (Oy(mKy)) + h (Oy(mKy)) ~ x Oy(mKy)) = 2 Ky+ x(Oy). 

If K} > 0 then h O ( Oy ( mK y)) -t oo, and therefore we have lots of sections. 
This corresponds to the case when lmK y I gives a birational morphism for 
m~ 1. 

Thus assume that K} = O. Here we are in trouble since we only get 
h0 (0y(mKy)) ~ x(Oy) - l. In the elliptic surface case we have to prove 
that bath h0 (0y(mKy)) and h 1(0y(mKy)) go to infinity, but they cancel 
each other out. 

We have two different cases. 

Irregular surfaces. We use the Albanese morphism Y -t Alb(Y) to get some 
information. Subvarieties of Abelian varieties are rather special, hence we can 
expect that analyzing the morphism gives us all necessary information. This 
part can be generalized rather successfully to higher dimensions, and it leads 
to several general conjectures of Iitaka, most of which were proved by Ueno, 
Fujita, Viehweg, Kawamata, Kolla,r and others. See [Mori87] for a survey. 

Regular surfaces. In this case x( Oy) ~ 1, 

Therefore we can find an effective divisor D E 12K y 1- If we expect that 2K y is 
trivial (i.e., K3 or Enriques surfaces) then D = 0 and we are done. Otherwise 
we expect that Y is an elliptic surface and D is supported on fi.bers of the 
elliptic fibration. We need to show that (some multiple of) D moves in a 
pencil. There are two problems here. First, D can be very singular. Second, 
it is not at all obvious that D moves, even if it is smooth. This part is rather 
delicate even for surfaces. 

The three dimensional version proceeds along the same main lines. The 
irregular case has been treated earlier by the methods of the Iitaka conjectures 
mentioned above [Viehweg80]. We do not deal with this part. Thus we are 
left with the regular case. 

First we look at Riemann-Roch. Because of the singularities, the pre
cise form is not easy to work out. It was done by Barlow-Fletcher-Reid 
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FIJPS AND ABUNDANCE 

[Reid87,10.3]: 

h0 (0y(mKy)) + h2 (0y(mKy)) 2:x(Oy(mKy)) 

m(m -1)(2m - l)K3 mK (Y) 
y+- y·Cz 

6 12 
+ x(Oy) + l(Y, m), 

where l(Y, m) is a periodic fonction of m, depending only on the singularities 
of Y. 

If Kf > 0 then general methods of the Base Point Free Theorem give the 
result (see, e.g., [CKM88,9.3]). The next main step, due to [Miyaoka87a,b], is 
to show that Ky · c2 (Y) 2: O. After further difficulties, we can at least show 
that if Ky is nef then JmKyj-/=- 0 for some m > 0 [Miyaoka88a]. 

A further step was taken by [Miyaoka88b] who settled the problem com
pletely in the case when we expect Y to be a pencil of K3-surfaces. The 
arguments are analogous to the elliptic surface case, but technically much 
more involved. 

The elliptic threefold case was first studied by [Matsuki90], using the ideas 
of [Miyaoka88b]. He was able to achieve only partial results. Finally, this 
method was further developed in [Kawamata91b]. He improved Matsuki's 
argument at a decisive point. In general, one needs to deal with the possibility 
that DE JmKyj is badly singular. Kawamata considers a log minimal model 
for K + red D. While we get more complicated threefold singularities, the 
resulting member of JmKI becomes much better, which is crucial. 

Before we give a detailed outline of the proofs, we need to discuss a little 
about the relevant singularities. 

SINGULARITIES 

Singularities enter into the program already at the first step [Mori82] and 
[Reid80,83], and understanding them is an indispensable initial part of three 
dimensional birational geometry. See [Reid87] for a general introduction. 

The following observations lead to the correct classes of singularities. 

(1.6.1}. Our main interest is in studying the canonical class Kx and in being 
able to compute its intersection numbers with curves. Thus we need Kx to be 
Cartier or at least (Ql-Cartier (i.e., a multiple of Kx is Cartier). Frequently we 
may even restrict ourselves to the case when every Weil divisor is (Ql-Cartier. 

(1.6.2}. Let X be a normal variety such that Kx is (Ql-Cartier. Let f: Y - X 
be a proper birational morphism. We can write 
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j. KOLLÂR 

where E C Y are exceptional divisors, a(E, X) E Q and= denotes numerical 
equivalence. 

a(E, X) is called the discrepancy of E with respect to X. f(E) C X is 
called the center of E on X and is denoted by Centerx(E). A divisor E is 
called exceptional if dimCenterx(E)::; dimX - 2. 

If f' : Y' --t X is another proper birational morphism and E' C Y' is 
the birational transform (2.4.1) of Eon Y' then a(E,X) = a(E',X) and 
Centerx(E) = Centerx(E'). In this sense a(E, X) and Centerx(E) depend 
only on the divisor E but not on Y. This is the reason why Y is suppressed in 
the notation. A more invariant description is obtained by considering the rank 
one discrete valuation of the fonction field C(X) corresponding to a divisor. 
Thus we obtain a fonction 

a( ,X): {divisors of C(X) with nonempty center on X} --t Q. 

(If Xis proper then every divisor has a nonempty center.) 
(1.6.3) It turns out to be very natural to measure the singularities of a 

variety X by the behavior of the discrepancy fonction. The most important 
measure is given by 

discrep(X) = inf { a(E, X)IE exceptional, Centerx(E) =/= 0} E lR U {-oo }. 
E 

The following is clear by considering the blow up of a codimension two 
subvariety: 

1.7 Claim. If Xis smooth then discrep(X) = 1. 

This property is close to characterizing smooth varieties. The precise state
ment is the following. 

1.8 Conjecture. Let X be a normal variety such that Kx is Q-Cartier. 
Then X is· smooth iff 

a(E, X)~ dimX - dim(Centerx(E)) - 1 for every E. 

This is true if dimX::; 3 (cf. (17.1.2)). 
For arbitrary varieties the following result limits the possibilities: 

1.9 Proposition. {CKM88,6.3} Let X be a normal variety such that Kx is 
Q-Cartier. Then one of the following holds: 

(1.9.1) discrep(X) E [-1, 1] and the inf is a minimum; 
(1.9.2) discrep(X) = -oo. 

For most singular varieties we have (1.9.2) and the first case should be 
considered very special. In general, the larger discrep(X), the milder the 
singularities of X. 
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FIJPS AND ABUNDANCE 

There are four classes that deserve special attention: 

1.10 Definition. Let X be a normal variety such that Kx is Q-Cartier. We 
say that 

! terminal 

canonical 
X has 

log terminal 

log canonical 

singularities if discrep(X) ! > 0, 

2: 0, 

> -1, 

2: -1. 

In dimension two these classes correspond to well-known classes of singu
larities: 

1.11 Theorem. Let OEX be a (germ of a) normal surface singularity over 
C. Then Xis 

terminal {::} smooth; 

canonical {::} C2 / (fi.nite subgroup of SL(2, C)); 

log terminal{::} C2 / (fi.nite subgroup of GL(2, C)); 
log canonical {::} simple elliptic, cusp, smooth or a quotient of these 

All of these classes occupy an important place in the theory: 

(1.12.1). Terminal singularities are the smallest class in which Mori's program 
can work, even if we start with smooth and projective varieties. 

(1.12.2). Canonical singularities are precisely those that appear on the canon
ical models of smooth varieties of general type. [Reid80] 

(1.12.3). Log terminal singularities are precisely those that 
canonical models of smooth varieties of nongeneral type. 
Nakayama88] 

appear on the 
[Kawamata85; 

Log canonical singularities appear naturally in a different context: 

1.13 Conjecture. Let X be a proper and normal variety such that Kx is 
Q-Cartier. 

(1.13.1) If X has log canonical singularities then 

Hi(X, C)----+ Hi(X, Ox) is surjective for every i. 

(1.13.2) Log canonical is the largest class where the above surjectivity holds. 

(More precisely, there is a local version of the above surjectivity involving 
De Rham complexes [DuBois81; Steenbrink83], and this local version should 
characterize log canonical singularities.) 

Both directions are true if X has isolated singularities [Ishii85]. 
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J. KOLLÂR 

Next we introduce the "perturbations" of K which are crucial in the sequel. 
Instead of concentrating on Kx we consider pairs (X, D), where Xis a normal 
variety and D = "I:, di Di is a divisor such that Di distinct and O ::; di ::; 1. 
Such a divisor is called a boundary. There are at least three reasons to consider 
these: 

(1.14.1) Flexibility. By choosing D appropriately, we are able to analyze sit
uations when Kx is small (e.g., Kx = 0). 

(1.14.2) Open varieties. Let X be a smooth variety and let X C X be a 
compactification such that D = X - X is a divisor with normal crossings. 
Hi(.X, 0~) are basic cohomological invariants of .X, but they depend on X, 
not only on X. [Grothendieck66] discovered that the groups 

Hi(X, O~(log D)) 

depend only on X, not on the completion X. The simplest one is 

H 0 (X,w_x(D)) or more generally H 0 (X, (w_x(D))&,m). 

Thus if we want to study properties that reflect the choice of X, it is natural 
to consider the divisor Kx + D. 

(1.14.3) Fiber spaces. The simplest example is Kodaira's canonical bundle 
formula for elliptic surfaces [BPV84,V.12.1]. Let f : S ---+ C be a minimal 
elliptic surface. Let miFi = f*(ci) be the multiple fi.bers. Then 

Ks = f* Kc + f*(f*Ks1c) + :~::)mi - l)Fi 

= f* [Kc + (f*Ks1c) + L (1 -~J [ci]]. 

Thus the study of K s can be reduced to the study of a divisor of the form 
K c + D where D has rational coefficients. The same happens in general for 
fi.ber spaces f : X ---+ Y where the general fi.ber has trivial canonical class. 

The notion of discrepancy is again the fondamental measure of the singu
larities of (X, D). 

1.15 Definition. Let X be a normal variety and D = "I:, diDi a Q-divisor (not 
necessarily effective) such that Kx + D is Q-Cartier. Let f : Y ---+ X be a 
proper birational morphism. Then we can write 

Ky= f*(Kx + D) + La(E,X,D)E 
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where E C Y are distinct prime divisors and a(E, X, D) E Q. The right hand 
sicle is not unique because we allow nonexceptional divisors too. In order 
to make it unique we adopt the convention that a nonexceptional divisor F 
appears in the sum iff F = Di for some i, and then with the coefficient 
a(F,X,D) = -di. 

We frequently write a(E, D) if no confusion is likely. 
As explained in (1.6.2), a(E, X, D) depends only on the divisor E but not 

on Y. Thus we obtain a fonction 

a( , X, D) : { divisors of C(X) with nonempty center on X} -t Q. 

a(E, X, D) is called the discrepancy of E with respect to (X, D). We define 
as in (1.6.3) 

discrep(X,D) = inf{a(E,X,D)IE is exceptional, Centerx(E) =J 0}. 
E 

We also use the notation logdiscrep(X, D) = 1 + discrep(X, D). 

1.16 Definition. Let X be a normal variety. Let D = I: di Di be an effective 
Q-divisor such that Kx +Dis Q-Cartier. We say that 

(X,D) or Kx + D 1s ! terminal 

canonical 

purely log terminal 

log canonical 

if discrep(X) ! > 0, 

2: 0, 

> -1, 

2: -1. 

We say that (X, D) is Kawamata log terminal if (X, D) is purely log ter
minal and di < 1 for every i. 

1.17 Remark. If D = 0 then these definitions agree with (1.10). One should 
note that if D =J 0 then the terminal and canonical conditions on a log variety 
(X, D) are not preserved under extrema! contractions in general. 

The divisors K + D that appear in the context of (1.14.3) are Kawamata 
log terminal, but the divisors appearing in (1.14.2) are not. Arbitrary log 
canonical singularities form a too large class; for instance, they need not be 
rational. 

Kawamata log terminal seems to be the largest class where the proofs of 
[CKM88,9-13] go through with only minor modifications (see [KMM87]). 

Thus the need arises for a suitable class between Kawamata log terminal 
and log canonical. There eau be two different objectives in defining such a 
class. 
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( 1.18.1) Minimalist. Take the smallest class that is necessary in order for 
the Minimal Model Program to work starting with a pair (X, D) where Xis 
smooth and Dis a boundary whose components are smooth and have normal 
crossings only. 

(1.18.2} Maximalist. Take the largest class where all the relevant theorems 
still hold. 

There are several proposed definitions (2.13). However, in my opinion none 
of them satisfies any of the above objectives fully. The lack of a good class 
leads to technical diffi.culties la ter. 

DESCRIPTION OF THE CHAPTERS 

We start with two introductory chapters: Chapter 2 gives the precise defi
nitions and basic properties of log terminal threefolds and their log canonical 
models. Many of the results are rather technical and are used only toward 
the end of the notes. The reader should skip (2.16-35) at the first reading 
and refer back only as necessary. 

Chapter 3 gives the folklore classification of log canonical surface singu
larities (X, B) with reduced (possibly empty) boundary B. This was first 
written clown in [Kawamata88]. Here we present an elementary proof, due to 
Alexeev, which works in any characteristic and generalizes well to fractional 
coefficients. 

LOG FLIPS I. 

The aim of the first major part of the notes (Chapters 4-8) is to give our 
first proof of the existence and termination of log flips. This proof relies on 
[Mori88], but is otherwise fairly short. 

Chapter 4 deals with flops and flips on threefolds with terminal singulari
ties. First we prove the existence of flops due to [Reid83] and the termination 
of flops and flips. The arguments are taken from [Kawamata88, Kollar89, 
Matsuki91, Kawamata91c] with several improvements. The main result is the 
following: 

1.19=4.15 Theorem. (Termination of flips for canonical 3-folds) Let X be a 
normal three dimensional Q-factorial variety and D an effective Q-divisor such 
that (X, D) is canonical. Then any sequence of flips for (X, D) terminates, 
i.e., there is no infinite sequence 

(Xo, Do) --+ (X1, D1) --+ (X2, D2) --+ 

<Po '\. / <Pci <P1 '\. / <Pi <P2 '\. 
Zo 
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where Xi+1 = (Xi)+ is a Kxi+Di-fl.ip of Xi and Di is the birational transform 
of Do= D. 

Chapter 5 shows that log flips exist in the special case when (X, D) is 
terminal or canonical ( 4.9). This is the point where [Mori88] is used. 

Chapter 6 presents the so called Backtracking Method of flipping (6.4) 
which is used several times to construct flips. The first two applications are 
the Crepant Descent Theorems (6.10-11). These are based on earlier cases 
worked out in [Kawamata88, Kollar89, Kawamata91c]. The main idea is the 
following. We want to flip f: X --t Z. Assume that we can find a birational 
morphism h: X' --t X such that Kx, = h* Kx. Then we are able to construct 
the flip of g by constructing various flips on X'. In many cases, X' exists and 
its singularities are simpler than the singularities of X. The main application 
is the following: 

1.20=6.15 Theorem. Assume that three dimensional terminal fl.ips exist. 
Let (X, B) be a log terminal Q-factorial threefold. Then log fl.ips exist, and 
any sequence of them is fini te. 

Chapter 7 discusses the question of termination of log flips in a special case. 
The arguments are taken from [Shokurov91] with several improvements. 

Finally, in Chapter 8 we strengthen the previous results by proving that 
flips exist if (X, D) is log canonical (as opposed to log terminal). The tech
niques are independent of the previous chapters. At the end we extend the 
method to prove the following log canonical version of (1.5): 

1.21=8.4 Theorem. Let X be a proper threefold. Assume that Kx +Dis 
log canonical, nef and big. Then m(Kx + D) is base point free for suitable 
m > O. Thus 

00 

L H 0 (X, O(s(Kx + D))) is finitely generated. 
s=O 

ABUNDANCE 

While the general abundance problem can be formulated only for minimal 
models, some of its most difficult aspects were originally conjectured in a form 
not involving the notion of minimal models. This approach is based on the 
following: 

1.22 Definition. A variety xn is called uniruled if there exists a variety yn-l 
and a dominant rational map Y x lP'1 --+ X. (Equivalently, there is a rational 
curve through every point of X.) 
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1.23 Theorem. {Miyaoka-Mori86} Let X' be as in (1.3). Then 
(1.23.1) If Kx, is nef (1.3.1) then X' is not uniruled. 
(1.23.2) If X' is as in (1.3.2) then X' is uniruled. 

The first important part of abundance is the following old question, which 
from the new point of view is a combination of (1.3) and (1.5): 

1.24 Conjecture. Let X be a smooth projective variety. Then X satisfi.es 
exactly one of the following conditions: 

(1.24.1) X is uniruled; or 
(1.24.2) h0 (X, O(mKx )) > 0 for some m > O. 

It is in this form that the first substantial result was achieved: 

1.25 Theorem. {Viehweg80,Satz I} Let X be a smooth projective threefold 
over <C. Assume that h1 (0x) > O. Then exactly one of the following holds: 

(1.25.1) X is uniruled. 
(1.25.2) X is birational to a smooth variety X' such that mKx, ~ 0 for 

some m > O. 
(1.25.3) h0 (X, O(mKx )) ~ 2 for some m > O. 

As already mentioned, the proof relies on the (by now) usual techniques of 
the Iitaka conjectures, and we do not present it. We, however, use this result 
to concentrate on regular threefolds only. 

While (1.24) eau be stated without minimal models, its proof in dimension 
three requires the theory of minimal models. There are two major steps. The 
first one is the generic semipositivity of Oi- [Miyaoka87a,b,88a]. To be precise: 

1.26=9.0.1 Theorem. Let xn be a smooth projective variety and assume 
that X is not uniruled. Let H be sufti.ciently ample on X and let C be the 
complete intersection of (n - 1) general members of IHI. Then Oi-lC does 
not have any quotients of negative degree. 

The original proof of Miyaoka is very technical and complicated. In Chapter 
9 we give a simpler proof due to Shepherd-Barron. 

This result implies that various Chern numbers are nonnegative (in partic
ular -c1(X)c2(X) ~ 0), which is exactly what we need in the Riemann
Roch formula. However, even if the linear term is positive, we are not 
clone sin ce there is no vanishing result for the h 2 ( 0 x ( mK x)) term. In 
the case when X is a pencil of surfaces with trivial canonical class, bath 
h0 (0x(mKx)) and h2 (0x(mKx)) go to infinity. The way out is to observe 
that if h2 (0x(mKx)) f- 0 then we obtain a nontrivial extension 

O-+ Ox((l - m)Kx)-+ E-+ Ox -+ O. 
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Analyzing the stability of E leads to the necessary result. This part relies on 
the results of [Donaldson85). We finally achieve the first major step toward 
abundance. 

1.27=9.0.6 Theorem. (1.24) is true in dimension three. 

The next three chapters are preliminary in nature. Chapter 10 deals with 
the theory of Chern classes applied to Q-bundles. Q-bundles are locally the 
quotients of vector bundles by finite groups; one can expect that most of the 
relevant results go through. [Kawamata91b) sketches the analytic approach, 
we present an algebraic one. The Bogomolov inequality for stable Q-sheaves 
(10.11) and an improved Bogomolov-Miyaoka-Yau intquality for log surfaces 
(10.14) are due to Megyesi. 

Chapter 11 proves abundance for log canonical surfaces. This was settled 
by [Kawamata79; Sakai83; Fujita84) (in fact their results are more general). 
We present only those results needed in subsequent chapters. Our proofs are 
adapted from three dimensional methods. 

For later applications we also need to consider certain nonnormal surfaces 
with so called semi log canonical singularities. These are considered in Chap
ter 12. The key results (given in section 12.3) describe some special features 
of normal surfaces that were used in [Shokurov91, 6.9) for different purposes. 
The main ideas seem to apply in all dimensions. We also prove a version of 
(1.13) for semi log canonical surfaces. 

With these preparations behind us, the threefold case is not that hard. 
First we <livide the problem into four parts using the following notion. 

1.28 Definition. Let L be a nef line bundle on a proper variety X. (I.e. 
L-C ~ 0 for every curve CC X.) We define its numerical Kodaira dimension 
by 

v(L) = max{kl L · · · L is not zero in H 2 k (X, Q).} -.....--
k-factors 

Clearly O ~ v(L) ~ dimX. 

Two of the cases are easy to dispense with: 

1.29 Theorem. Let X be a projective n-fold with terminal singularities. 
Assume that Kx is nef and let DE lmKxl-

(1.29.1) If v(Kx) = 0 then D = 0 hence mKx ~ O. 
(1.29.2) If v(Kx) = n then by {CKM88,9.3}, lrKxl is base point free for 

some r > 1. 

In dimension three we are left with two cases: v = 1, 2. The first case was 
treated by [Miyaoka88b), the second by [Kawamata91bl, who also simplified 
the proof in the first case. 
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Let D E lmKxl- The argument of Kawamata starts by replacing (X, D) 
with another model (X',D') such that Kx, + redD' is log terminal. The 
origins of this procedure can be traced to the double projection method of 
G. Fano. By the results of Chapter 16, red D' is semi log canonical. In bath 
cases we perform some further modifications to simplify the model. 

Chapter 13 considers the case v(Kx) = 1. Here we find a model (X",D") 
such that every connected component of D" is irreducible and red D" is semi 
log canonical (13.3.1-2). The crucial property of D" is that (1.13.1) holds 
for semi log canonical surfaces. Once this is established, the argument of 
(Miyaoka88b] improved by (Kawamata9lb] shows that D" moves in a pencil. 

Chapter 14 considers the case v(Kx) = 2. Our arguments are different 
from the one given in (Kawamata91b]. By choosing a suitable model (X", D") 
a crucial Todd class computation becomes rather easy (14.3). Furthermore, 
we can lift sections of 0( nK X") ID" to X" directly. These results however 
only give a pencil in lmKxl while we expect a morphism onto a surface. 

The remaining problem was settled earlier by (Kawamata85] in a general 
form. His argument relies on a very technical generalization of the Base Point 
Free Theorem. In Chapter 15 we present a shorter geometric argument, which 
is however probably restricted to dimension three. 

LOG FLIPS II. 

In the third major part (Chapters 16-22) we return to Shokurov's proof 
of log flips. This approach does not use [Mori88], and our presentation is 
self-contained (assuming of course [CKM88]). This proof also uses (7.1). Fur
thermore at the present it does not yield termination of a sequence of log flips, 
so that (6.11) is also needed to complete this approach to prove (1.4). 

Let S C X be a Weil divisor. In Chapter 16 we define the different Diff of 
a divisor in a variety. Diff s(O) essentially measures the failure of the adjunc
tion formula Ks = (Kx + S)IS in the presence of singularities. (Shokurov91] 
considers this under some restrictive assumptions; the general case was discov
ered and worked out by Corti. We also classify three dimensional log terminal 
singularities (X, B) where B is "large". 

Then we want to use the different to relate properties of X to properties of 
S. This is clone in Chapter 17. The main result for the present applications 
is the following, called "inversion of adjunction". 

1.30=17.6 Theorem. Let X be normal and S C X an irreducible divisor. 
Let B = :2:: biBi be an effective Q-divisor such that bi < 1 for every i, and 
assume that K x + S + B is Q-Cartier. Then K x + S + B is purely log terminal 
in a neighborhood of S iff Ks + Diff(B) is Kawamata log terminal. 
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In [Shokurov91] this was proved in dimension three by a rather elaborate 
argument. The proof in Chapter 17 works in ail dimensions and is fairly short. 

Chapter 18 contains the first two reduction steps. {1.30) allows us to sim
plify the proofs of Shokurov considerably while generalizing various parts to 
higher dimensions. The conclusion is the following result ( still restricted to 
dimension three): 

1.31=18.9 Theorem. Assume that the fl.ip exists for every small contraction 
g : (U, K + S) -+ V such that S is reduced, irreducible and bas negative 
intersection with C (these are called special fl.ips). 

Then the fl.ip exists for any small contraction f : (X, K + D) -+ Z such 
that K + D is Kawamata log terminal. 

During the proof of (1.31) we encounter one of the major discoveries of 
[Shokurov88,91]. Let me describe a similar phenomenon where the complete 
result is known. (See [Alexeev89) for a more difficult example.) 

Let D2 = {discrep(X)I Xis a log canonical surface}. 

1.32 Theorem. (Shokurov, unpublished) Notation as above. Then 
(1.32.1) Any increasing subsequence of D2 is fi.nite; 
(1.32.2) The accumulation points of D 2 are exactly 

-1 and 
1 1 1 

- 1 + 2' -1 + 3' -1 + 4' ... 

Shokurov's observation is that similar results hold in many different con
texts. See (18.16) for the precise conjectures. 

Chapter 19 considers complements on surfaces. The notion of a complement 
is another one of the major new inventions of [Shokurov91]. The main result 
(19.4) says that in many situations we can replace the boundary ~ biBi with 
another divisor ~ b~B: such that 

b~ E ~N for every i, where n E {1, 2, 3, 4, 6}. 
n 

Sorne other important technical results are also proved. 
Unfortunately the fl.ips required in (1.31) are still very hard to construct, 

and we need several preparatory results, presented in Chapter 20. We prove 
that the fl.ip off: (X, K + B)-+ Z exists if B has at least two reduced com-
ponents intersecting the contracted curve C (20.7). This is used repeatedly 
in the next two chapters. 

The special fl.ips g : (U, K + S) -+ V of (1.31) are studied in Chapters 
21-22. In this case we have Ks = (K + S)IS, and therefore glS : S -+ S' 
is a Ks-negative contraction. Furthermore, by the results of Chapter 16, S 
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has only log terminal singularities. Thus we are in the situation of Chapter 
19 and we can analyze gin terms of the properties of the surface S. By the 
results of Chapter 19 mentioned above we can find a reduced divisor B and 
an integer n E {1, 2, 3, 4, 6} such that 

C · ( K + S + ¾ B) = 0 and K + S + ¾ B is log canonical. 

Different values of n present different levels of difliculty for flipping. Every
thing is easy if n = l (21.4). The cases where n = 3, 4, 6 are reduced to the 
n = 2 case in (21.10). 

The really hard part is the n = 2 case. This is where [Shokurov91] contains 
an error ([ibid,8.3] is false). A new version ([Shokurov92]) was completed in 
February '92. In Chapter 22 we restrict ourselves to presenting the main 
line of the arguments. Hopefully this helps the reader to study the complete 
version. 

Chapter 23 is independent of the rest of the notes. It reviews the proof of 
an old theorem of [Morin40] and [Predonzan49] saysing that complete inter
sections in lPn of very low degree are unirational. This was done independently 
by [Ramero90]. 

FURTHER DEVELOPMENTS 

Several of the participants have continued to work on the problems dis
cussed in these notes. Alexeev proved that S2 ( fano) and hence S 3 (local) and 
S~(local) satisfy the ascending chain condition ( cf. Chapter 18). Fong, Keel, 
Matsuki and McKernan proved several results about log abundance for three
folds. Szab6 is doing some foundational work which should clarify the various 
different flavors of log terminal given in (2.13). 

FLOWCHARTS 

The following diagrams exhibit the logical structure of the proofs of the 
principal results. The arrows indicate only the main lines of the arguments. 
There are many other occasional references to other parts. 

24 



FIJPS AND ABUNDANCE 

FLOPS AND EASY FLIPS 

1 Existence of Terminal Flops: 4.81 

JJ, 

( Crepant Descent ) 
6.10 

j Termination of Flops: 4.111 

JJ, 

1 Canonical Flops: 6.14 I 

JJ, 

1 Easy Flips: 20. 71 { 
1 Covering Methods: Ch. 20 1 

1 Complements on Surfaces: Ch. 19 I 

LOG MINIMAL MODEL PROGRAM I 

1 Mori88 I 

JJ-

1 Existence of Canonical Flips: 5.41 

JJ, 

( Crepant. Descent) {:::: { 1 Termination of Flips:4.101 

6. l l I Existence of Flops: 4.8 , 

JJ, 

1 LC Flips: 8.11 {:::: 1 Log Terminal Flips: 6.151 

JJ, 

Minimal Models 
Log Terminal Case 

25 

{:::: 1 Termination of Flips: 7.11 
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ABUNDANCE FOR THREEFOLDS 

{ 
1 v = 0 =} mK ~ 0: 1.29.11 

1 v > 0 =} lmKI =/- 0: 9.0.61 ::::} 
- 1 v = 3 ::::} lmKI is free: 1.29.21 

JJ, 

(pick D E lmKI) 
JJ, 

( construct (X', D')) ~ 
log canonical: 13.2 

Minimal Model Program 
Log Terminal Case 

,/ 

(v = 1) (v = 2) 
Q-Chern N umbers 

Ch. 10 

JJ, JJ, JJ, 

( D' deforms ) 
Ch. 13 

( lift sections from ) 
nKx, ID' : 14.4 

~ 
( compute x(mKx1 )) 

using R-R: 14.3 

1f 1f 
j Surface Abundance: Chs. 11,12 I 

m stands for a sufficiently large and divisible natural number. 

If K is nef then v = v(X) is defined in (1.28). 
(For threefolds we have four cases: v E {0, 1, 2, 3}.) 
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LOG FLIPS Il 

1 Different and Adjunction: Ch. 16 I 

-U-

1 Inversion of Adjunction: Ch. 17 I 

-li-

1 Ascending Chain Condition: 18.25 I 
-U-

1 Reduction to Special Flips: 18.91 {= 1 Termination of Flips: 7.11 

-li-

( Subd_ivison by index) 1 j 
{= Complements on Surfaces: Ch. 19 

n - 1,2,3,4,6 

-li-

( Backtrac~ing Method ) {= 

6.4-5, 21.6-9 

/ l "" 
n = 3,4,6 

21.10 
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2. LOG CANONICAL MODELS 

ANTONELLA GRASS! and JANOS KOLLAR 

In the following we consider normal algebraic schemes or normal complex 
analytic spaces. All the propositions are stated in terms of the algebraic case, 
although the proofs work for the analytic case with minor modifications. 

BASIC DEFINITIONS 

2.1 Definition. 
(2.1.1) f : Y --+ X denotes a map; f : Y - X a morphism, that is, 

a map everywhere defined. We try to be very systematic about using dash 
arrows for maps and solid arrows for morphisms. 

(2.1.2) A modification f : Y --+ X is a birational map. 
(2.1.3) A proper morphism f: Y - Xis a contraction if f*Oy = Ox. 
(2.1.4) Let f : Y - X be a contraction with dim Y = dimX. f is a 

birational contraction (or blow down) if Xis viewed as constructed from 
Y; extraction ( or blow up) if Y is viewed as constructed from X. 

(2.1.5) A modification of a proper morphism f : X - Z into a proper 
morphism g : Y - Z is a commutative diagram 

X 
q, 

--+ y 

f ",. /g 
z 

where cf>: X --+ Y is a modification. 
(2.1.6) A birational contraction is small if it is an isomorphism in codi

mension one. Equivalently, the exceptional set has codimension 2 2. (The 
literature is rather inconsistent about the definiton of small morphism. All 
definitions that we know of agree in dimension three but not in higher dimen
sions.) 

2. 2 De finition. In the following X is an n-dimensional normal variety: 

S.M.F . 
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(2.2.1) D = L, di Di with Di distinct prime Weil divisors, di E IR ( or E Q) 
is called an JR-divisor (Q-divisor). 

(2.2.2) An IR ( or Q)-Cartier divisor D is an lR ( or Q)-linear combination 
of Cartier divisors which need not to be irreducible or reduced. The index of 
Dis the smallest natural number m such that mD is Cartier. The index of 
Xis the index of Kx (if it makes sense). 

(2.2.3) Let D = "f:,diDi be an JR-divisor as in (2.2.1). Set 

SuppD = U{SuppDi such that di =fa O}. 

(2.2.4) An JR-divisor as in (2.2.1) is a subboundary if di ~ l for all i and 
a boundary if O ~ di ~ l for all i. 

(2.2.5) For r E lR let LT _J = max{ t E Z such that t ~ r} and r r 7 = -L-r _J, 
(These are pronounced round down resp. round up.) Let { r} = r - LT _J denote 
the fractional part of r. 

(2.2.6) Assume that D = L, di Di such that ail the Dï's are distinct. Let 
LD_J = L,Ldi_JDi and {D} = "f:,{di}Di, If D is a boundary, LD_J is the 
reduced part of D; {D} is the fractional part of D. 

Warning: If Dis Q-linearly equivalent to D', it does not follow that LD_J 
is linearly equivalent to LD' _J, 

2.3 Definition. Let (X, Dx) be a normal variety X together with a boundary 
D x. (X, D x) is a called a log variety with log canonical divisor K x + D x. 
If there is no danger of confusion we will denote this simply by (X, D). 

We think of Kx + Dx as a mixed object: Kx is a linear equivalence class, 
while Dx is a fixed Weil divisor. 

2.4 Definition. 
(2.4.1) Let f : X --+ Y be a map which is a morphism in codimension 

1 and let D be a Weil divisor on X. We denote the image of D as Weil 
divisor by f*(D). This extends by linearity to the set of all JR-Weil divisors. 
If fis birational then f*(D) is called the birational, (or proper, or strict) 
transform of D. This notation will frequently be used when f = g- 1 , in 
which case the notation g-; 1 (D) = (g- 1 )*(D) looks slightly unusual. 

(2.4.2) A log morphism f : (Y, Dy) -+ (X, Dx) is a morphism f : Y -+ X 
such that f*(Dy) C Dx. 

2.5 Definition-Proposition. (cf. (1.15)) 
(2.5.1) Let Kx + Dx be an JR-Cartier divisor on a normal variety X, and 

f : Y -+ X any extraction. Choose representatives of Kx and Ky such that 
f* ( K x) and Ky coïncide on the smooth locus of Y. Then 

Ky+ J:; 1(Dx) = f*(Kx + Dx) + L a(Ei, Dx )Ei, 

30 



FIJPS AND ABUNDANCE 

for some real numbers a( Ei, D x); where the { E;} are the exceptional divisors. 
(2.5.2) The number a(Ei, Dx) does not depend on the choices made. lt 

is called the discrepancy of E; with respect to (X, D). When there is no 
danger of confusion we write a(Ei) for a(E;, 0). 

(2.5.3) 1 + a(Ei, Dx) is the log discrepancy (denoted by ae(E;, Dx )). 
(2.5.4) In general we define the discrepancy of any divisor F of the fonction 

field C(X) with center on X (see also (1.6)). If c(F) is the coefficient of Fin 
D x, then we set by definition the discrepancy of F to be a( F, D x) = -c( F), 
while the log discrepancy is ae(F,Dx) = 1 + a(F,Dx) = 1- c(F). 

The log discrepancy behaves better in certain formulas ( cf. e.g. (20.3) ). 

2.6 Remark. We will sometimes need the notion of discrepancy in cases where 
X is not normal. Instead of trying to work out the most general case, we 
restrict ourselves to the following special situation: 

(2.6.1) X is reduced, equidimensional and if P E X is a codimension one 
point then P is either smooth or two smooth branches of X intersect transver
sally at P. 

If X and Y both satisfy (2.6.1) then we say that l : Y -+ X is birational if 
(2.6.2) l and 1-1 are isomorphisms at the generic points of X and Y and 

also at codimension one singular points of X and Y. 
In this situation one can define discrepancies exactly as in (2.5). 

2. 7 Definition. Let l: X--+ Y be any modification. Let {Fi} be the excep
tional divisors of 1-1 . 

If Kx + Dx is R-Cartier, let :F = {f(Fi)} be a sequence of real numbers 
such that 1 ~ l(F;) ~ min{l, -a(F;, Dx )}. The :F-birational transform 
of D x is defined as 

We always assume that Ky+ (Dx):F,Y is R-Cartier. Thus a(F;, (Dx):F,Y) = 
- l(F;). We will frequently write D.r,Y instead of (Dx ):F,Y· If l(F;) = 1 for 
every i or Kx + Dx is not R-Cartier then set 

Note that Ky=/- (Kx)y. 

2.8 Remark. The most important case of the :F-birational transform is given 
by the special choice l(F;) = 1. It turns out that in many cases the choice of 
:F does not matter (cf. (2.22.1)). The freedom in our definition is sometimes 
convenient in intermediate steps of the proofs. 
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2.9 Definition. f: Y ---t Xis a log resolution of the log variety (X, D) if Y 
is smooth and the irreducible components of Supp( Dy) are non singular and 
cross normally. 

It may be more natural to require only that Supp( Dy) is locally analyt
ically a normal crossing divisor (i.e. irreducible components are allowed to 
selfintersect). Our stronger requirement makes statements and proofs simpler. 

2.10 De finition. Let D x be a boundary on a normal variety X. 
Kx +Dx is log canonical (le) (or (X,D) is log canonical) if Kx +Dx 

is IR.-Cartier and a( E, D x) :2'.: -1 for all divisors E of C( X) with center on X 
(or equivalently aR.(E,Dx) :2'.: 0). 

It is suffi.dent to check the above condition in (2.10) for one log resolution 
[CKM88, 6.5]. 

The following proposition allows us to consider only {()!-Cartier divisors: 

2.11 Proposition. Let D = "5:diDi be an IR.-Cartier divisor on X. Then for 
every E > 0, there is a {()!-Cartier divisor D' = E di Di such that 

(2.11.1) ldi - dil < E for all i 
(2.11.2) IfC is a curve and D ·CE Q, then D • C = D' • C. 
(2.11.3) Assume in addition that K +Dis IR.-Cartier. Let F be a divisor of 

C(X) with center on X. If F bas rational discrepancy, then a(F, D) = a(F, D') 

Proof. By definition the Di are Cartier divisors. (2.11.2) and (2.11.3) give 
a system of (possibly infinitely many) rational linear equations in E RDi, 
considered as real vector space with Q structure. We can replace (2.11.1) by 
a system of rational inequalities. These systems define a nonempty rational 
polyhedron, whose vertices have rational coordinates. Any vertex will do as 
{da. □ 

2.12 Corollary. A le IR.-divisor can be replaced with a le Q-divisor without 
changing rational intersection numbers and rational discrepancies. □ 

The following are variants of the notion of log terminal that have been 
introduced in the literature. Let (X, D) be a log variety. If every coefficient 
in D is < 1 then the natural notion is (2.13.5), which was already defined in 
(1.16). If we allow some coefficients to be 1, then the natural notion seems to 
be log canonical. This however seems too general for most theorems to hold. 
This leads to a slew of variants, four of which are introduced below. We feel 
that the only way to understand these is to see them used in proofs. 

2.13 Definition. Let (X,D) be a log variety. 
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(2.13.1) (X, D) is log terminal (lt) if there exists a log resolution f : 
Y -t X where all the f-exceptional divisors have positive log discrepancies 
(ac(E;, D) > 0). 

(2.13.2) (X, D) is purely log terminal (plt) if the log discrepancy of 
every exceptional divisor of C(X) with center on X is strictly positive. 

(2.13.3) (X,D) is divisorial log terminal (dit) if there exists a log reso
lution such that the exceptional locus consists of divisors with strictly positive 
log discrepancies. 

(2.13.4) (X, D) is weakly Kawamata log terminal (wklt) if there ex
ists a log resolution f : Y -t X such that all the log discrepancies of the 
exceptional divisors with center on X are positive and there exists an f- anti 
ample divisor whose support coïncides with that of the exceptional locus of 
f. 

(2.13.5) (X, D) is Kawamata log terminal (kit) if every divisor of C(X) 
having center on X has positive log discrepancy. (Note that the singularities 
that we call klt are called "log terminal" in [KMM87, 0-2-10).) 

2.14 Example. Let X be a smooth surface and D an irreducible curve with a 
node. The identity map is not a log resolution and (X, D) has log canonical 
but not log terminal singularities. 

Let X be a smooth surface and D a divisor consisting of 2 reduced irre
ducible smooth curves intersecting transversely: then (X, D) is log terminal 
but not plt. 

In bath cases the exceptional divisor obtained by blowing up the singular 
point of D has log discrepancy O. 

The analogs of minimal models are the various versions of log minimal 
models (cf. (1.3-4)). 

2.15 Definition. 
(2.15.1) g : (Y, Dy) -t Z is a relative log minimal model or is g log 

terminal if J( y+ Dy is g-nef and log terminal. (Y, Dy) is a log minimal 
mode! if J( y + Dy is nef and log terminal. 

(2.15.2) g: (Y,Dy) - Z is a relative log canonical model if Ky+ Dy 
is g-ample and log canonical. (Y, Dy) is a log canonical model if I( y + Dy 
is ample and log canonical. 

(2.15.3) g : (Y, Dy) -t Z is a relative weak log canonical model if 
J( y + Dy is g-nef and log canonical. 

Questions of uniqueness are discussed in (2.22). 
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BASIC TECHNICAL RESULTS 

We advise the reader to skip this part at the first reading and to refer back 
to it only as necessary. 

2.16 Proposition. 
(2.16.1) By de.inition klt ===} plt ===} lt and wklt ===} dlt ===} lt. 
(2.16.2) Let (X, D) be Q-factorial and log terminal. Let f : Y --t X 

be the log resolution whose existence is assumed in the de.inition. If f is 
projective then (X, D) is also wldt. (The assumption of projectivity might 
not be necessary.) 

(2.16.3) (X, Dx) is plt iff it is lt and Lf;1 (D)_J is smooth. 
(2.16.4) Wklt singularities are always rational. 

Proof. (2.16.2) Let f: Y --t X be a log resolution and Han f-ample divisor 
on Y. Then H + E = J*(f*(H)), for some effective divisor E whose support 
coïncides with that of the exceptional locus off. E is also f-anti ample. 

(2.16.3) Consider f: Y --t X and let Ky+ J; 1 (D)+ L hiHi = f*(Kx+D) 
where hi = -a(Hi, D) < 1 for every i since (X, D) is lt. Let v be any divisor 
of C(X) == C(Y). Apply (4.12.1.2) with 

E = Lf;1 (D)_J and H = L hiHi + {J; 1(D)}. 

By assumption E is smooth, so centery(v) is contained in at most one com
ponent of E. Thus (4.12.1.2) implies that 

unless vis one of the components of L/; 1 (D)_J. Thus (X, D) is plt. 
(2.16.4)_is proved in [KMM87, 1-3-6]; we will not need it. □ 

The following proposition is a consequence of the definitions and of (2.11): 

2.17 Proposition. Let X be a variety. 
(2.17.1) The set of boundaries D for which K +Dis log canonical (nef, or 

numerically ample) is convex. 
(2.17.2) The set of boundaries D with support in a .inite union UDi for 

which K +Dis log canonical is a rational convex polyhedron in :E~Di. 
(2.17.3) If D' ~ D are such that K + D is log canonical (respectively 

log terminal) and K + D' is JR.-Cartier, then K + D' is also log canonical 
(respectively log terminal). Moreover, a(Ei, D) ~ a(Ei, D'). 

(2.17.4) Let Kx +D = Kx + L diDi be a log terminal divisor. Then there 
exists a positive number E such that K + D' is log terminal for al] JR.-Cartier 
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divisors I< + D' = I< + "L.d~Di such that d~ :s; min{l,di + E}. In addition if 
I< + D is plt, then I< + D' is plt. 

(2.17.5) If I<x + D is plt and I<x + D + D' is le, then I< + D + tD' is plt 
for all t E [O, l]. □ 

2.18 Proposition. Let g : Y - Z be birational. Set Dz = g*(Dy) and 
assume that I<z + Dz is R-Cartier. If g: (Y, Dy) - Z is a relative weak log 
canonical model, then 

l<y +Dy= g*(I<z + Dz) - L c(Ei)Ei with c(Ei) 2:'. 0, Vi. 

If c( Ei) = 0 for every i then ( I< z, D z) is le. Conversely, if ( I< z, D z) is le and 
LDy _J contains the exceptional divisor of g then c(Ei) = 0 for every i. 

Proof. This follows from (2.19), which is sometimes called "Kodaira Lemma". 
(Others attribute it to Zariski.) D 

2.19 Lemma. Let f : Y - X be a proper birational morphism. Assume 
that Y is normal. Let Fi C Y be the f-exceptional divisors. Let L be a line 
bundle on X; let M be an f-nef line bundle on Y, and let G C Y be an 
effective divisor such that none of the Fi is a component of G. Assume that 

Then 
(2.19.1) fi 2:'. 0 for every i. 
(2.19.2) fi > 0 if M is not numerically !-trivial on some Fj such that 

f(Fi) = f(Fj ). 

Proof. The proof is taken from [Kollar91, 5.2.5.3] with some changes. See also 
[Shokurov91, 1.1]. 

If f is not projective, by the Chow Lemma there is a birational projective 
morphism f' : Y' - Y - X. If (2.19) holds for f' then it also holds for f. 
Thus assume that f is projective. 

Fix an Fi. By cutting with dimf(Fi) general hypersurfaces in X we may 
assume that f(Fi) is zero dimensional. Let S C Y be the intersection of 
dim Y - 2 general hypersurfaces containing a general point of Fi. Let Ej = 
S n Fj; this is either an irreducible curve or empty. By assumption Ei is 
nonempty. M' = (M + G)IS is f-nef, thus 

0 = J* LIU Ej = (M' + L fiFi)I U Ej = (M' + L fjEj)I U Ej, 

where the second sum runs only over those Ej which are nonempty. By 
assumption M is nef on UEj, thus everything is implied by the following 
abstract linear algebra result (cf. [Artin62]). 
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2.19.3 Lemma. Let Q( , ) be an inner product on ]Rn with basis {E;}. 
Assume that for every i =f. j we have Q(Ei,Ei) < 0, Q(Ei,Ej)?: 0 and Q is 
negative defi.nite. Then 

(2.19.3.1) Let F = I:: aiEi be such that Q(F, Ei) ?: O. Then ai ::; 0 for 
every i and strict inequality holds unless F = O. 

(2.19.3.2) The matrix (Q(Ei, Ej))-1 has only negative entries. 

Proof. Let F = F+ - F- where 

F+ = L aiEi and F- = L -aiEi. 
i:a;>O i:a;$0 

Assume that F+ =f. O. Then for some j, O!j > 0 and Q(Ej,F+) < 0 since Q is 
negative definite. Thus Q(Ej, F) = Q(Ej, F+) - Q(Ej, F-) < O. 

Each column of the inverse satisfies the assumptions of the first part, thus 
they have only negative entries. □ 

2.20 Proposition. Let g: Y-+ Z be a morphism: 
(2.20.1) The set of boundaries D for which g is a relative log canonical 

mode] forms a convex subset in the set of all boundaries. 
(2.20.2) The set of rational boundaries is dense in the set of all boundaries 

D for which g is a relative log canonical model. 
(2.20.3) If g : Y -+ Z is a relative log canonical mode], then g is projective. 

Proof. This follows from (2.11) and (2.17). D 

2. 21 De finition. Let g : Y -+ Z be a modification of the proper morphism 
f: X-+ Z. Choose :Fas in (2.7). We obtain a diagram 

(X,Dx) _'!.+ (Y,D.r,Y) 

f'\. /g 
z 

(2.21.1) g : (Y,D.r,Y) -+ Z is a weak log canonical model (with re
spect to :F) of f : X -+ Z if g is a relative weak log canonical model and 
a(Gi,D.r,Y) ?: a(Gi,Dx) for all divisors Gi C X that are 4>-exceptional. 
Note .that by (2.7) if Fi is a 4>- 1-exceptional divisor then a(Fi,D.r,Y) ::; 
max{-1,a(Fi,Dx)}, thus the inequality is reversed. 

(2.21.2) g : (Y, D.r,Y) -+ Z is called a log terminal model of f : X -+ Z 
(with respect to :F) if gis also a relative log minimal model (2.15.1). 

(2.21.3) g : (Y, D.r,Y) -+ Z is called a log canonical model off : X -+ Z 
(with respect to :F) if gis also a relative log canonical model (2.15.2). 
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(2.21.4) If f(Fi) = 1 for every i then we drop :F from the notation and call 
g : (Y, Dy) --+ Z a weak log canonical model etc. 

2.21.5 Remark. It follows from (2.23.3) that weak log canonical models off 
can be described in the following more invariant way. <p: (X, Dx) --+ (Y, Dy) 
is a weak log canonical model of f iff 

(2.21.5.1) (Y,Dy)--+ Z is a relative weak log canonical model (2.15), 
(2.21.5.2) a(E, Dy) 2:'.: a(E, Dx) for every divisor E of C(X), and 
(2.21.5.3) a(E,Dy) = max{-1,a(E,Dx)} for every exceptional divisor of 

g : Y --+ Z. (If f is not birational, we consider every divisor E C Y to be 
exceptional.) 

One of our eventual main aims is to show that log terminal or log canonical 
models exist under various assumptions. Here we do not address the question 
of existence; rather, we consider basic properties of log models assuming that 
they exist. 

2.22 Theorem. 
(2.22.1) A log canonical model for f : X --+ Z is unique; in particular it 

does not depend on the choice of :F. 
(2.22.2) If g : Y --+ Z is a weak log canonical mode] and gc : yc --+ Z a 

log canonical model then there is a unique morphism p : Y --+ yc such that 
g = po gc. 

(2.22.3) Let g : Y --+ Z be a weak log canonical model. Then a log canonical 
model gc : yc --+ Z exists iff some multiple of Ky + Dy is g-free, and then 
yc / Z is given as the image of Y/ Z under m( Ky + Dy) for sui table m > O. 

2.22.4 Remark. (2.19) implies that if g : Y --+ Z is the log canonical model 
of (X,D) and E C Y is a g-exceptional divisor then a(E,D) < -1. For such 
divisors the coefficient in :Fis -1, which explains why Y is independent of :F. 

The proof relies on the following variant of [Shokurov91, 1.5.5-6]. 

2.23 Theorem. Let g : Y --+ Z be a weak log canonical model off : X --+ Z 
as in (2.21). Let W be a normal scheme, proper and birational over both X 
and Y such that the following diagram is commutative: 

w 
f ,/ ",. g 

X 
<I> y --+ 

f ",. ,/ g 

z 
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Let {Ei,Fi,Gi} C W be al] the exceptional divisors such that {Ei} are bath 
g and J-exceptional, {Fi} are J exceptional but not g-exceptional and {Gi} 
are g exceptional but not J exceptional, for every i. Set: 

J; 1 (Dx) = LdiDi + LgiGi 

g; 1 (D;:,Y) = LdiDi + LfiFi. 

Note that the li 's are the coefficients defi.ning D;:,Y. 
(2.23.1) There exists a Zariski decomposition: 

Kw+J; 1(Dx)+ LliFi+ LEi 

= g*(Ky + D;:,Y) + L[a(Ei,D:F,Y) + l]Ei + L[a(Gi,D:F,Y) + gi]Gi, 

where a(Ei, D;:,Y) + 1 2: 0 and a(Gi, D;:,Y) + gi 2'. O. 
(2.23.2) If Kx + Dx is log canonical, then there exists a (Zariski-type) 

decomposition: 

Kw + J; 1(Dx) + LliFi + LEi 

= f*(Kx + Dx) + L[a(Fi, Dx) + li]Fi + L[a(Ei, Dx) + l]Ei 

where a(Fi,Dx) + fi 2'. 0 and a(Ei,Dx) + 1 2: O. 
(2.23.3) Let B be a divisor of C(X). Then 

a(B,D;:,Y) 2: a(B,Dx). 

Furthermore if Ky+ D;:,Y is g-ample (i.e. g is a log canonical model) and </> 

is nota morphism at the generic point of Centerx(B) then 

a(B, D;:,Y) > a(B, Dx ). 

Proof. The displayed formulas in (2.23.1-2) are formai equalities. The inequal
ities a( Ei, D :F, y)+ 1 2: 0 and a( Ei, D x) + 1 2: 0 follow from the definition of le. 
a(Gi, D;:,Y) + gi 2'. 0 follows from the definition (2.21) and a(Fi, Dx) + li 2'. 0 
from the definition (2.7). 

(2.23.3) We may assume that B is a divisor on W. From (2.23.1-2) we 
obtain 

f*(Kx +Dx) 

(2.23.4) = g*(Ky + D;:,Y) + L[a(Gi,D:F,Y) + gi]Gi 

+ I::[- fi - a(Fi, Dx)]Fi + L[a(Ei, D;:,Y) - a(Ei, Dx))Ei. 
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Here I:[a(Gi, D;:-,y) + gi]Gi is effective and f;*(K y + D;:-,Y) is ]-nef. The 
first part follows from ( 2 .19). 

Assume that <pis nota morphism at the generic point of Centerx(B). Then 

thus g*(Ky + D;:-,Y) is not numerically trivial on J-1(i(B)). Thus again 
(2.19) applies. D 

2.24 Corollary. Let g : Y - Z be a log model of the proper morphism 
f : X -t Z. Then: 

(2.24.1) If Kx + Dx is log canonical, and g: Y - Z is the log canonical 
model off, then <p- 1 does not contract any divisor. 

(2.24.2) If 9i : (Yi, Di) - Z (i = 1, 2) are weak log canonical models off 
then g2 is a weak log canonical model of g1 . 

(2.24.3) If f: X - Z is a weak log canonical model, then the modifi.cation 
<p to the log canonical mode] is a morphism. 

(2.24.4) Assume that Kx + Dx is log canonical, f: X - Z is birational 
and fis small or -(Kx+Dx) is f-nef. Then g: Y - Z is a small contraction. 

Proof. Let Fi be an exceptional divisor of <p-1. If Kx + Dx is log canonical, 
then by (2.23.2) - fi - a(Fi, Dx) ~ 0, while g : Y - Z relative log canonical 
model implies - fi - a(Fi, Dx) > O. This proves (2.24.1) and also (2.24.4) for 
f small. 

If -(Kx + Dx) is f-nef, then let L C Y be a g-exceptional divisor. By 
the above, <JJ-;1(L) is a divisor. Restrict both sides of (2.23.4) to g:;1(L). The 
left hand side is negative, the right hand sicle is big + effective. Again a 
contradiction. 

(2.24.2) Let 'l/; : Y1 --+ Y2 be the induced map. If E 1 C Y1 is 'l/;-exceptional 
then by (2.21) 

a(E1,D1) = max{-l,a(E1,Dx)} ~ max{-1,a(E1,D2)}. 

Similarly, if E 2 C Y2 is 'l/;-1-exceptional then by (2.21) 

By assumption (Yi, Di) are le thus all discrepancies are at least -1. Therefore 

These together imply that g2 is a weak log canonical model of g1. 
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(2.24.3) Take a common resolution as in (2.23); we have: 

g*(Ky + DF,Y) =f*(Kx + Dx) - I)(a(Gi, DF,Y) + 9i]Gi 

- I:[(a(Ei, DF,Y) - a(Ei, Dx )]Ei, 

Using (2.19) and (2.23.3) we obtain that a(Ei,DF,Y) - a(Dx,Ei) = 0 and 
a(Gi,DF,Y) + 9i = 0 for every index i and thus g*(Ky + DF,Y) = f*(Kx + 
I} x). If <p is not a morphism, then there exists a curve C C W w hich is 
f-exceptional but not g-exceptional. Then Ky + DF,Y g-ample implies 

which is a contradiction. □ 

Proof of (2.22}. Assume that we have two log canonical models Y1 and Y2 . By 
(2.24.2-3) there are morphisms Y1 --. Y2 and Y2 --. Y1; these must be inverses 
of each other. (2.22.2) is the same as (2.24.3). Finally (2.22.3) clearly follows 
from (2.22.2). □ 

2.25 Corollary. (2.25.1) Let X1 --. Z be a modifi.cation off: X--. Z as in 
tbe diagram: 

X 

f '\, 

T 
---t 

z 

If no divisorial component Gi C X is contracted by T, tben a log model for 
fi is also a log model for f: X--. Z. 

(2.25.2) Notation as in (2.23). If Kx + Dx is log canonical, r(Kx + Dx) 
is Cartier for some r E N and g : Y --. Z is tbe log canonical model, tben 

Proof. (2.25.1) follows from the definition. 
(2.25.2) Without loss of generality we can assume that r(K y+ Dy) is also 

Cartier. Let W be as in (2.23). Ky+ Dy is g-ample, thus 

Y= Proj EBn~og*Oy(nr(Ky + Dy)) 

= Proj EBn>o(gfJLOw(g*(nr(K y+ Dy))) 

= Proj EBn>oU fLOw(g*(nr(K y+ Dy))) 

= Proj EBn~o(f fLOw(f*(nr(Kx + Dx ))). 
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I<x + Dx is log canonical and thus, by (2.24.1) {Fi}= 0. The result follows 
from (2.23.1-2). D 

We will frequently need various versions of the Minimal Model Program. 
Next we describe a general variant whose steps do not exist in complete gen
erality but which provides the right framework in all cases that we use later. 

2. 26 Minimal M odel Program. Let (X, E) be a scheme X ( over a base scheme 
S which we suppress in the notation) together with an R-Cartier divisor E 
(not necessarily effective). By the E-Minimal Model Program (E-MMP 
for short) we mean a sequence 

90 91 92 
(Xo,Eo) ---. (X1,E1) ---. (X2,E2) ---. · · · 

constructed as follows. 
(2.26.1) (X0 , Eo) = (X, E); 
(2.26.2) Assume that (Xi, Ei) is already constructed. If Ei is nef, we stop. 
(2.26.3) If Ei is not nef then assume that there is a contraction fi : Xi -+ Zi 

such that -Ei is fi-ample and p(Xï/Zi) = l. If fi(Ei) is R-Cartier (this 
happens usually when the exceptional set of fi is an irreducible Q-Cartier 
divisor) then set 9i = fi and (Xi+l, Ei+1) = (Zi, fï(Ei)). (We are stuck if fi 
does not exist.) 

(2.26.4) If fï(Ei) is not R-Cartier, then we try to find a diagram 

Yi 
--¼ 

z. 
' 

with the following properties 
(2.26.4.1) f;+ is a small morphism, 
(2.26.4.2) E;+1 is ft-ample, 
(2.26.4.3) E;+1 = (gi)*(Ei)-

(Xi+l, E;+l) 

,/ ft 

Such a diagram is called the generalized opposite or generalized flip 
of fi with respect to E;. If f; itself is small then the diagram is called the 
opposite or flip of f; with respect to E;, or an E;-flip, or an E-flip. (We 
are stuck again if the flip does not exist.) 

(2.26.5) Further terminology: 
(2.26.5.1) The modification described in (2.26.4) has collected various labels 

since it was first introduced. The name "flip" has been traditionally used to 
describe the above situation when E = I<x while "log flip" is reserved for 
the case of a log divisor E = I<x + Bx. If I<x; is f;-trivial, then the flip of 
f; with respect to the divisor E; is called the E-flop or Ei-fl.op. 

(2.26.5.2) x+, f+ and <P are also called the "flip of f ". 
(2.26.5.3) The birational transform of Ei is often denoted by E;. 
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2.27 Proposition. Let f : X -+ Z be a small birational contraction such 
that -(Kx + Dx) is f-ample; then the log canonical mode] off is the Bip 
with respect to Kx + Dx and conversely. 

A B.ip or log canonical mode] of f is also a log canonical mode] of Z for 
Kz + f(D). Therefore the discrepancies do not decrease under Bips. 

Proof. This follows from (2.24.2), (2.24.4) and (2.23). □ 

The inequality between the discrepancies is also implied by the following 
more general result which will be useful in many situations: 

2.28 Proposition. Let f : X -+ Z and g : Y -+ Z be proper birational 
morphisms between varieties. Let D C Z be a divisor and let Ex (resp. Ey) 
be f (resp. g)-exceptional divisors. (Not necessarily effective.) Assume that 

(2.28.1.1) -(Kx + J; 1(D) +Ex) is R-Cartier and f-nef; 
(2.28.1.2) Ky+ g:; 1 (D) + Ey is R-Cartier and g-nef; 
Let B be any divisor of C(Z) and let b E Centerz(B) be the generic point. 

Then 
(2.28.2.1) a(B, Y,g:; 1(D) + Ey) ~ a(B,X,J;1 (D) + Ex); and 
(2.28.2.2) equality holds iff Kx + J; 1 (D) + Ex is numerically trivial on 

J-1 (b) and Ky+ g:; 1 (D) + Ey is numerically trivial on g- 1 (b) 

Proof. Let W be a normal variety such that there are proper birational mor
phisms J : W -+ X and g : W -+ Y. Then 

M = g*(Ky + g:; 1(D) + Ey) + ]*(-(Kx + J;1(D) +Ex)) 

is nef on W/Z. Furthermore it is supported on the exceptional locus. Thus by 
(2.19) M = -F where Fis an effective divisor supported on the exceptional 
locus of W -+ Z. Therefore 

a(B, Y,g-; 1 (D) + Ey) = a(B, W,g*(Ky + g-; 1 (D) + Ey) - Kw) 

~ a(B, W,g*(Ky + g-; 1 (D) + Ey) - Kw + F) 

= a(B, W, J*(Kx + J; 1(D) +Ex) - K w) 

= a(B,X,J;1 (D) + Ex), 

and strict inequality holds iff Centerw(B) C Supp F. Thus (2.28.2.1) is clear 
and (2.28.2.2) follows from (2.19.2). □ 

2.28.3 Remark. (2.28.3.1) We will frequently use the above result in the spe
cial case when f or g is an isomorphism. If f : X -+ Z = Y is an extremal 
divisorial contraction then the result says that discrepancies increase for di
visors whose center is contained in the exceptional divisor off. 

(2.28.3.2) It is easy to see that (2.28) also holds if X, Y, Z satisfy (2.6.1) 
and f and g are birational in the sense of (2.6.2). 
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2.29 Proposition. 
(2.29.1) Let (X, Dx) be klt and f: X - Z a small birational contraction. 

Assume tbat g : Y - Z is a weak log canonical mode], as in (2.23.3). Tben 
the B.ip off exists. 

(2.29.2) Let g : Y - Z be a weak log canonical mode] off : X - Z. 
Assume tbat p(X/Z) = 1 and either X is Q-factorial or gis projective. If g 
is small tben gis the B.ip off: X - Z. 

Proof. (29.1) If (X,Dx) is klt then gis small by (2.24.4) and the Base Point 
Free Theorem [KMM87, 3-3-1] applies: thus the fl.ip exists. 

(2.29.2) Up to a constant multiple, Ky+ Dy is the only relative divisor on 
Y. Thus Ky + Dy is ample and the fl.ip exists. □ 

Shokurov introduces a systematic method of decreasing the coefficients of 
D while preserving the intersection numbers with the exceptional curves of f 
and preserving rationality under an extra condition. 

2. 30 De finition. Let f : X - S be a contraction and K + D a log divisor 
on X. We say that D is an LSEPD ( =Locally ( over S) the Support of an 
Effective Principal Divisor) divisor if the following holds: for every s E S 
there is an open neighborhood s E Us C Sand a regular fonction hs E O(Us) 
such that 

I.e., Supp(f* hs = 0) contains every component of D which has coefficient 1 
and Supp(f* hs = 0) is contained in the support of D. 

2.31 Remark. 
(2.31.1) Let f : Y - S be a small contraction such that p(Y/S) = 1, 

R 1 f*()y = 0 and Y is Q-factorial. A reduced boundary Dis LSEPD if and 
only if 

either all the components of D are numerically zero with respect to f, 
or at least one component is f-positive and one f-negative. 

h 
(2.31.2) Let X ---+ Z -. S be proper morphism. Let Dx (resp. Dz) be 

divisors on X (resp. Z). Then 
(2.31.2.1) Dx LSEPD => h*(Dx) LSEPD; 
(2.31.2.2) Dz LSEPD => h*(Dz) LSEPD; 
(2.31.2.3) Assume that x+ - Z is the opposite of X - Z. Then Dx 

LSEPD => D_t LSEPD. 

N ext we prove some results which allow us to change D without changing 
the log fl.ip. 
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2.32 Proposition. Let f : X --+ Z be a small morphism. 
(2.32.1) If p(X/Z) = 1 and R 1 f*Ox = 0, then the opposite off with 

respect to E does not depend on the choice of E = L eiEi. In particular we 
are free to increase or decrease the coefficients of E as long as -E remains 
f-ample .. 

(2.32.2) Let f : (X, D) --+ Z be log terminal, with D LSEPD. Then there 
exists a divisor D' such that Kx + D' is klt and D' is f- equivalent to D. 

Proof. (2.32.1) If E and aE' (a> 0) are numerically equivalent over Z then 
the opposite with respect to E is the same as the opposite with respect to E'. 

(2.32.2) If Dis LSEPD and K + D lt then there exists a positive number 
E such that D - E(j o h = 0) is effective, Kx + D - E(j o h = 0) is lt and 
LD - E(j Oh = 0)_J = 0. D 

2.33 Proposition. Let f : X --+ Z be a small morphism with Z affine. 
Assume that Kx + dD + D' is le (resp. plt) where Dis a Weil divisor. Let 
n E N. Then there is a reduced divisor ÎJ such that 

(2.33.1) ÎJ ~ nD (hence Kx + dD + D' = Kx + !D + D'); 

(2.33.2) Kx + !b + D' is also le (resp. plt). 

Proof. Let D be a general element of the linear system lnf(D)I on Z. Since Z 
is affine, D is reduced. Let ÎJ be the birational transform of D. ÎJ ~ nD since 
f is small. Let g : Y --+ X be any log resolution with exceptional divisors Ei. 
Then 

where ei 2: O. Thus 

( d - ') ( ') d aEi,-D+D =aEi,dD+D +-ei. □ 
n n 

We will use the following two special cases: 

2.34 Corollary. Let f : X --+ Z be a small morphism where Z is affine. 
Assume that Kx + D is le (resp. plt). Then 

(2.34.1) There is a divisor D such that Kx + D = Kx + D, LD_J = 0 and 
Kx +Dis le (resp. plt). 

(2.34.2) Assume that Dis a Weil divisor. There is a Weil divisor ÎJ such 
1 - 1 - · that Kx + D = Kx + 2D and Kx + 2D 1s le (resp. plt). □ 

The following result will be needed in Chapters 5 and 18. 
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2.35 Proposition. Let (X, B) be le and let f : X --+ Y be proper and 
birational. Tben tbere are only fi.nitely many f-extremal rays if one of the 
following conditions are satisfi.ed: 

(2.35.1) (X, B) is plt and LB_J does not contain any exceptional divisors; 
(2.35.2) (X, B) is lt outside LB_J and Bis LSEPD witb respect to f. 

Proof. (see (KMM87,4-2-4]) Assume (2.35.2). The problem is local on Y so by 
shrinking Y we may assume that there is an effective principal divisor M C Y 
such that 

SuppLB_J C Supp f* MC Supp B. 

Thus (X, B - Ej* M) is klt for O < E ~ 1 and has the same extremal rays as 
(X, B). Therefore (2.35.1) implies (2.35.2). 

Let Ox(l) be f-ample. Choose H E JOx(-l)J such that Supp H and 
SuppLB_j do not have common irreducible components. Thus (X, B + EH) is 
still plt for O < E ~ 1. By the cone theorem (KMM87,4-2-1] if Mis f-ample 
then there are only finitely many ( J( + B + EH)-extremal rays R such that 
R · (B +EH+ M)::; O. Choose M = E(-H) to conclude. □ 
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3. CLASSIFICATION OF LOG CANONICAL SURFACE 

SINGULARITIES: ARITHMETICAL PROOF 

VALERY ALEXEEV 

(3.0.0). Notation. Let (X, P) be a germ of a normal surface singularity and 
B = I: biBi a forma! sum of irreducible Weil divisors, passing through P, 
with rational coefficients O :S bi :S 1. Since X is normal, we can assume that 
Pis the only singularity of X. Also, we have a well defined linear equivalence 
class of canonical Weil divisors Kx. 

We use the usual definitions for log canonical, log terminal and purely log 
terminal (2.13). 

(3.0.1}. If B = 0 and the characteristic of the base field is 0, log terminal 
singularities of surfaces are the same as quotient singularities [Kawamata84] 
and were classified by [Brieskorn68]. [Iliev86] contains an arithmetical proof. 

In the case B is reduced, i.e. all the bi = I, [Kawamata88] classified all log 
canonical and log terminal singularities ( the latter turn out to be also purely 
log terminal with one trivial exception: when X is nonsingular and B consists 
of two normally crossing nonsingular curves). This classification is given in 
Fig.3. The notation is explained in (3.1). 

The proof of [Kawamata88] is slightly tricky and uses the log canonical 
cover of (X, P). Arithmetical proofs were given in [Sakai87] for the case 
bi = 0 and by S. Nakamura in an appendix to [Kobayashi90]. 

(3.0.2). Here we suggest a purely arithmetical and quite elementary approach 
for the classification. The idea is the following: let f : Y -+ X be the minimal 
resolution of the singularity (X, P) ( a priori not a good resolution of (X, P)). 

Let J; 1C C Y denote the birational transform of a curve C C X. Write 

S.M.F. 
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Then for any j = 1, ... , n, by the adjunction formula, we have 

2pa(Ej) = Ej(Ky + Ej) + 2 = 
= Ej(f*(Kx + B) + :EakEk - :Er:1Bi - LEk) + 2 = 

k kij 

= Ej(LakEk - Lf;1Bi - LEk) + 2 
k#j 

Therefore we get the following system of n linear equations in n variables 

n 

n 

L akEk · Ej = -cj, 
k=l 

L(ak - l)Ek · Ej = -dj, 
k=l 

where dj = 2 - 2pa(Ej) + EJ - I: /;1 Bi· Ej. 

(3.0.3). Now our strategy is very simple: salve the system (*), find the ak 
and check the conditions ak 2: O. 

(3.0.4). Sorne of the formulas for the coefficients ak are contained in [Alex
eev89, 4.7,4.8]. Note also that in the log terminal case with B = 0, our 
treatment.has some intersections with [Iliev86]. However, our proof is more 
explicit and direct. 

J. Kollar points out that the present proof works in any characteristic. This 
follows from the fact that the system ( *) has a unique solution independent 
of the characteristic of the base field. 

3.1. Solution of(*)· 

(3.1.0). First, note that (*) does have a unique solution since by [Mumford61] 
the matrix ( Ek · Ej) is negative definite. 

(3.1.1). The weighted dual graph r of the resolution f : Y -t X is the fol
lowing: each curve Ej corresponds to a vertex Vj. Two vertices vii and Vj 2 

are connected by an edge of weight m if the corresponding curves intersect: 
Eh· Eh= m. Each vertex Vj has a positive weight ni= -EJ. 
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Since the resolution f is minimal, we have dj = 2 - 2pa(Ej) + EJ -
I: J:;1 BiEj ~ 0 for all j. 

(3.1.2). By (2.19.3) every coefficient of the inverse matrix of (Ek · Ej) is 
strictly negative. Therefore, ( **) implies that either all dj = 0, and then for 
all k, ak - 1 = 0 or at least one dj < 0, and for all k, ak - 1 < O. The 
former happens only if all Pa(Ej) = 0, EJ = -2 and Ej · I:J:;1Bi = O. Such 
singularities (and the corresponding graphs) are called Du Val singularities 
(resp. Du Val graphs). 

The following result is easy. 

(3.1.3). Lemma. (cf. {Alexeev89,3.2(ii-iii)J) Let r be a weighted graph 
corresponding to a minimal resolution, in particular such that all dj ~ O. Let 
r' C r, r' -/- r be a subgraph in the sense that all the vertices of r' are at 
the same time vertices of r with the same weight nj, the weights of edges of 
r' and Pa of vertices in r' do not exceed the corresponding weights and Pa in 
r, and Ej • I: J:; 1 Bi in r' do not exceed the corresponding Ej • I: J:; 1 Bi in 
r. 

Then the corresponding coefficients satisfy ak ~ a~ and if r is not a Du 
Val graph, then ak < a~. 

Proof. Compare the corresponding systems ( **) of linear equations and use 
(3.1.2). □ 

(3.1.4-)- Suppose that r' = {vi} and Pa(E1) = 1. Then in (*) c1 = 2 -
2pa(E1) - 0 = 0 and ai = O. If E1 is a smooth elliptic curve, this is Case 4 
of Fig.3. If E 1 is a rational curve with a node then after a single blow up we 
are in Case 5 of Fig.3. If E 1 is a rational curve with a cusp it is easy to show 
that after two blow ups one gets a log discrepancy a3 = -1, so this is not a 
log canonical singularity. 

(3.1.5). Suppose that r' = {v1,v2,--. ,vz} is a circle of smooth rational 
curves. Then in (*) Cj = 2 - 0 - 2 = 0 and all aj = O. This is Case 5 
of Figure 3. Note that all the curves Ej should intersect normally: if a circle 
contains two or three vertices and two corresponding curves have a common 
tangent, or three curves intersect at one point, then two or one blow ups give 
a log discrepancy a; = -1. 

(3.1.6). Now (3.1.2-5) imply that: 

(3.1.6.1). The graph of a log canonical singularity does not contain a vertex 
Vj with Pa(Ej) > 1 or an edge of weight > 2. 
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(3.1.6.2). If r =far' as in (3.1.4) or (3.1.5), then r contains only vertices that 
correspond to smooth rational curves, all edges are simple, i.e. of weight 1, 
and r is a tree. 

From now on we always assume that we are in this final case. 

(3.1. 7). For any subgraph r' Cr, we define b..' = b..(r') as the absolute value 
of the determinant of the submatrix (Ek · Ej), made up by the columns and 
rows corresponding to the vertices of r'. 

Note that if r' is a disjoint union of graphs r 1 and r 2 , then b..' = b..1 • b..2 . 

We set b..(0) = 1 by definition. 

The following lemmas are easy exercises. 

3.1.8 Lemma. Let r be a graph with simple edges, va vertex ofr of weight 
n, and v1 , ••• , v8 the vertices adjacent to v. Then 

b..(r) = n. b..(r - v) - L b..(r - V - v;). 
i 

3.1.9 Lemma. Let r be a tree with simple edges, Vji, vh two vertices of r. 
Then the (j1 ,h) cofactor of the matrix (Ek · Ej) is 

A· · = (-l)ii+i2 M- · = -(-l)nb..(r- (path from J1J2 J1J2 to 

Note that since r is a tree there is a unique (shortest) path joining Vj 1 and 
vh. 

(3.1.10). The previous lemma gives the solution of(*): 

l n 

aj = b..(r) ~ b..(r - (path from 

Ck = 2- (Lf; 1B; + I:E1)Ek. 
l-:;fk 

v· J to 

Here O:: J;1 B; + ~l# Et)Ek is the number of connections of the vertex Vk 
with adjacent vertices (among ~ J; 1 B; and the other E1). Therefore, q = 0 
if and only if vk has exactly 2 neighbours, Ck = l if it has 1 neighbour and 
ck < 0 if if has ~ 3 neighbours. By ( * * * ), aj is a sum of Ck with positive 
coefficients. We are interested in the cases when aj ~ 0, therefore we call 
vertices with Ck = l (resp. Ck < 0) bonus (resp. penalty) vertices. 

N ow our aim is to simplify the use of the formulas ( * * *). 
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{3.1.11). We need the following well known description of weighted chains. 
Every weighted chain with positive integer weights (from the left to right) 
n 1 , ... , ns 2: 2 corresponds in unique way to the pair(~, q), where ~ = ~(r) 
and 1 ~ q < ~ is an integer coprime to ~ defined by: 

Let us show how ta get this description. Let v be the end vertex of the 
chain r. Then by (3.1.8), ~ = ~(r) can be expressed in terms of q = ~(f-v) 
and ~(r- v - v1 ), then ~(r - v) can be expressed in terms of ~(r- v - v1 ) 

and ~(r - v - v1 - v2 ) and so on, the last determinant will be ~(0) = 1. 
One can easily see that this procedure is nothing other than the Euclidean 
algorithm for finding the greatest common divisor, so (~, q) = 1, and one gets 
the given formula. 

3.1.12 Lemma. Suppose that a graph r contains a subgraph r' such that 
r' is a chain with weights nj 2: 2 and the interior vertices of this chain have 
no other neighbors in r or :Z::: Bj. Let vh be one of the middle vertices, ah 
the corresponding log discrepancy of r. Then the graph of the fonction aj at 
the vertex vh is concave up if ah 2: 0 and is concave down if aj1 ~ O. 

Proof. Note that from ( *) 

so that 

The rest is obvious. □ 

3.1.13 Lemma. Let r be a tree with simple edges and all weights nj 2: 2 
( all these conditions hold in our situation). Then all the log discrepancies of 
r are nonnegative (resp. positive) if and only if the same holds for all vertices 
with at least 3 neighbours and for all vertices neighbouring E J;1 Bi, 

Proof. Indeed, if r' C r is a subchain such that each middle vertex has exactly 
2 neighbours and one of this middle vertices has ah ~ 0 (resp. aj < 0), then 
by (3.1.12) the same holds for the ends off'. 

51 



V. ALEXEEV 

Moreover, we can exclude the vertices with exactly 1 neighbour, because 
from ( *) we have 

(3.1.14)- We explain the notation of Fig.3. We consider a minimal resolution 
f : Y ---+ X (with the exception of Case 5). o denotes an exceptional curve 
of f, • denotes (local branches of) Bi. Long empty avals denote any chain 
(~, q), attached at an end. 

3.2. The case B = 0. We first consider several simple possibilities for the 
graph r 
(3.2.1). Let r be a chain. Then by (3.1.13) r corresponds to a log terminal 
singularity, because none of the vertices has ~ 3 neighbours. 

(3.1.10) gives the formula for the log discrepancies. Let Vj be a vertex 
of r, 80 that r - Vj = r 1 - r2 is a disjoint union of two chains (r 1 or r2 
could be empty), let ~ 1 , ~ 2 be the corresponding ( absolu te values of) the 
determinants (~(0) = 1 by definition). In our situation we have only 2 bonus 
vertices, namely the ends of the chain r. Therefore 

1 ~1~2 ( 1 1 ) 
Uj = ~ (~1 + ~2) = ~ ~l + ~2 · 

This is Case 1 of Fig.3. 

(3.2.2). Let r be a graph having a single fork at a vertex Vj and suppose 
that r - Vj = r 1 + r2 + r3, and ~i = ~(ri) for i = 1, 2, 3. In order for r to 
correspond to a log terminal (resp. log canonical) singularity one should have 
aj > 0 (resp. ai ~ 0). In this situation we have 3 bonus vertices, namely the 
simple ends of r1, r2, r3 and 1 penalty vertex which is Vj itself. Therefore, 
by (3.1.10) one has 

So this is a log terminal singularity in the cases 

(3.2.2.1). 
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(~1,~2,~3) = (2,3,3) 

(~1,~2,~3) = (2,3,4) 

(~1,~2,~3) = (2,3,5) 

and a log canonical (but not log terminal) singularity in the cases 

(3.2.2.5). 

{3.2.2.6). 

{3.2.2. 7). 

(~1,~2,~3) = (2,3,6) 

(~1,~2,~3) = (2,4,4) 

(~1,~2,~3) = (3,3,3) 
This gives Cases 2 and 6 of Fig.3. 

(3.2.3). Now let r be a graph with a single fork at the vertex Vj and suppose 
that r - Vj = r1 + r2 + f3 + f4, ~i = ~(ri) for i = 1, ... ,4. 

Then 

ai= ~1~2~3~4 ( _!_ + _!_ + _!_ + _!_ _ 2) 
~ ~1 ~2 ~3 ~4 

and gives a log canonical singularity only if 

(3.2.3.1) (~1, ~2, ~3, ~4) = (2, 2, 2, 2) 

This is Case 8 of Fig.3. 

{3.2.4). In the case of graph r with a single fork at a vertex Vj, breaking up 
r into N ~ 5 subgraphs we get a non-log canonical singularity, because 

for ~i ~ 2 and N ~ 5. 

( 3. 2. 5). N ow suppose that we are in the situation of Fig. l of a graph r with at 
least 2 forks, one of them at the vertex V j. Suppose that r- V j = r 1 + r 2 + r 3' 
and let ~1, ~2, ~3, ~A, ~B be the corresponding determinants. Then by 
(3.1.10), 

. _ ~1~2~3 (_!_ _!_ 1 - (~A - l)(~B - 1) _ ) 
aJ - ~ ~1 + 6-2 + ~3 1 · 

This is nonnegative ( actually, equal to zero) only in the case 

By ( 3.1.10), this is also the sufficient condition for r to give a log canonical 
singularity. This is Case 7. 
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Fig.1 

A 

A 
B 

A 
3 

(3.2.6). Using (3.1.10) one can easily show that in the graphs of Fig.2 the 
marked vertices have negative log discrepancies, hence these graphs define 
non-log canonical singularities. 

I 
Fig.2 

3.2.7 Lemma. Ifr corresponds to a log terminal (log canonical) singularity 
then r is one of the graphs listed in (3.2.1-2.5). 

1st proof. (3.2.5) gives the general rule for what happens to a log discrepancy 
when we add an additional fork: the term, denote it by T, that corresponds 
to the part of the graph after the new fork is changed to a number 

with the corresponding ~A, ~B ~ l. The other terms don't change. 
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Therefore, starting from (3.2.3), (3.2.4) or (3.2.6), adding a fork always 
gives a negative log discrepancy. 

2nd proof. By (3.1.3) the subgraph r' C r also defines a log canonical singu
larity. Therefore r cannot have subgraphs as in (3.2.4) or (3.2.6). □ 

(3.2.8). Note that Case 8 is essentially a subcase of 7. 

3.3. The case B =/- 0. 

(3.3.1). In addition to the restrictions of (3.2) we have to consider additional 
penalties for the connections with /*-l B. Now it is an easy excercise to get 
the remaining Cases of Fig.3. 

(3.3.2). From Fig.3 one can see that the minimal resolution is a good resolu
tion for I( +B. Note that in Case 9 with a chain containing a single vertex v1 , 

the curves corresponding to the black vertices do not intersect E 1 . Otherwise, 
a single blow up gives a log discrepancy a2 = -1. 

(3.3.3). Note that in the Case 9 of Fig.3 all the discrepancies are zero because 
we have neither bonuses nor penalties. 

(3.3.4). The index of a rational singularity, i.e. the least natural number N 
such that NI( x is a Cartier divisor, is at the same time the least common 
denominator of all the log discrepancies a j. One can easily see that in the 
Cases 6-8 indices are 2,3,4 or 6. 

3.4. Final remarks. 

(3.4.1). Note that the only restriction on the unmarked weights on Fig.3 is 
that the quadratic form of the whole graph r should be negative definite. 
This is essential only in Cases 6-8 (where at least one weight should be > 2), 
and also in Case 5 ( where either all weights are at least two and at least one 
at least three; or there are two vertices, one of them has weight one and the 
other has weight at least five). 

An easy case by case check shows that in Cases 1-3 and 6-10 any ( con
tractible) graph defines a rational singularity, so by [Artin66) a configuration 
can be contracted to a normal singular point. In cases 4-5 if the quadratic 
form is negative definite, then a configuration can be contracted in the ana
lytic situation. In the algebraic situation this is a necessary condition (but 
not sufficient). 
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(3.4-2). Our method allows one in principle to classify log terminal or log 
canonical surface singularities (X, K + B) when B may have fractional coef
ficients with denominators 2, 3, ... , if this should turn out to be necessary. 
There will be a large number of new cases. 
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K+B is log terminal, B is reduced 

(1) 

(A A A ) = 
1' 2' 3 

A 
(2,2,n) 

(2) 
(2,3,3) 

(2,3,4) 

A 

2 (2,3,5) 

(3) 

Fig.3, beginning 
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K+B is log canonical but not log terminal, B is reduced 

(4) (5) 

(A 1 , A 2 , A 3 
A 

1 
(3,3,3) 

(6) 

(2,4,4) 

(2,3,6) 
A 

2 

(7) (8) 

2 2 

(9) -•---..... c ___ ~~-~•-
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4. TERMINATION OF CANONICAL FLIPS 

JANOS KOLLAR and KENJI MATSUKI 

The aim of this chapter is to study flops and fl.ips for terminal and canonical 
threefolds. First we prove the basic fini te generation theorem of [Reid83]. The 
second main result is termination of fl.ips (and flops) for canonical pairs (X, D) 
(4.10). We start with some general results that hold for arbitrary schemes. 

4.1 Definition. Let X be a normal scheme. A small modification of X is 
a proper birational morphism f : Y -+ X such that Y is normal and the 
exceptional set off has codimension ~ 2. We usually exclude the trivial case 
y ~X. 

The following proposition relates projective small modifications to the di
visor class group Weil(X) (cf. (16.3.1)). 

4.2 Proposition. {Kawamata88,3.l} Let X be a normal scheme and let D be 
a Weil divisor on X (not necessarily effective). The following two statements 
are equivalent: 

(4.2.1) I::'=o Ox(mD) is a fi.nitely generated Ox-algebra. 
( 4.2.2) There is a small modifi.cation f : Y -+ X such that D', the birational 

transform of D on Y, is Q-Cartier and f-ample. 
Furthermore f is nontrivial iff no positive multiple of D is Cartier. 

Proof. Assume that f : Y -+ X exists. Let C C Y be the exceptional set. 
First we daim that 

( 4.2.3) 

It is always true that f*Oy(mD') C Ox(mD). Let CC Y be the exceptional 
set off. Lets: Ox-+ Ox(mD) be a section. We can pull it back to a section 

S.M.F. 
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Since Chas codimension ~ 2, this extends to a sections : Oy - Oy(mD'). 
This proves (4.2.3). Then (4.2.1) follows since D' is f-ample, and hence 

(X) 

is finitely generated. 
Replacing D by rD for some r > 0 we may assume that Ox(D) generates 

I: Ox(mD). Let 
(X) 

Y= Projx Z::: Ox(mD), 
m=O 

and let D' be the birational transform of Don Y (hence Oy(D') = Oy(l)). 
Let C C Y be the exceptional set and assume that it con tains a divisor E. 
For m ~ 1 we have an exact sequence 

since R 1 f*Oy(mD') = O. Therefore for m ~ 1 

This is impossible since Ox(mD) is refl.exive and 

Finally, assume that mD is Cartier. Then mD' and f*(mD) are two Q
Cartier divisors on Y which agree outside a set of codimension two. Thus 
mD' = f*(mD). Since Dis !-ample and f*Oy = Ox, this is possible only if 
Y~X. □ 

.4, 3 Remark. ( 4.3.1) If X is affine, then one can always find an ideal sheaf 
I C Ox which is isomorphic to Ox(D) (as a sheaf), and then the m th symbolic 
power of I is by definition J(m) ~ Ox(mD). For this reason the algebra 
I::'=o Ox(mD) is called the symbolic power algebra of D. 

( 4.3.2) The equivalent statements of ( 4.2) are both false in general. However 
it is not easy to corne up with nice examples (see e.g. [Cutkosky88]). 

4.4 Definition. Let D be a Weil divisor on X. We say that finite generation 
holds for D on X if the equivalent conditions of ( 4.2) are satisfied. 
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4.5 Corollary. Let X be a normal scbeme and assume tbat rankz Pic(X -
Sing X)/ Pic(X) = 1. Tben X bas at most two small projective modifi.cations. 

Proof. Let fï : Y; ---* X be a small modification and let D~ be an fi-ample 
divisor. Let Di= f*(DD. Then by (4.2) 

00 

Y;= Projx L Ox(jDi)-
i=O 

If nD1 ~ mD2 for some n, m > 0 then since Proj is unchanged on truncating 
a graded ring 

00 00 

Projx L Ox(jD1) ~ Projx L Ox(jnD1) 
j=O j=O 

00 00 

~ Projx L Ox(jmD2) ~ Projx L Ox(jD2). 
j=O j=O 

Therefore the two possible modifications correspond to the positive and neg
ative parts of Z. □ 

4.6 Proposition. {Kawamata88,3.2} Let X and Z be normal, irreducible 
scbemes and g : Z ---* X a fi.nite and surjective morpbism. Let E be a Weil 
divisor on X and Ez = g* E. Tben fi.nite generation bolds for E iff it bolds 
for Ez. 

Proof. ( Assume for simplicity that g is separable.) Suppose that fini te gen
eration holds for E. Let f : Y ---* X be a small modification such that the 
birational transform E' of E is f-ample. Let p: Yz---* Y be the normalization 
of Y xx Z. Then h: Yz---* Z is a small modification and p*(E') is h-ample. 
Also, p*(E') is the birational transform of Ez. Thus finite generation holds 
for Ez. 

Assume finite generation for Ez. Let q : U ---* Z ---* X be the Galois 
closure of Z over X and G the Galois group of U /X. Set Eu = q* E z. 
By the previous case fini te generation holds for Eu; thus there is a small 
modification fu : Yu ---* U such that the birational transform Eu of Eu is 
fu-ample. Clearly G acts on Yu. Take Y= Yu/G. Eu descends to a divisor 
Eu/ G on Y which is the birational transform of E. Thus fini te generation 
holds for E. □ 

4. 7 Theorem. {Reid83} Let X be a tbreefold witb terminal singularities. Let 
D C X be a Weil divisor. Tben 

00 

L Ox(mD) 
m=O 
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is a finitely generated Ox-algebra. 

Proof. The problem is local, thus we may assume that Ox(mKx) ~ Ox for 
some m > O. 

By ( 4.6) it is suffi.dent to prove ( 4. 7) for the index one caver of X. Thus we 
may assume that X is terminal with index one. By [Reid83] X is a cDV point; 
thus it can be viewed as a one parameter family g : X ---+ .6.( t) of surfaces 
with Du Val singularities. By [Brieskorn71] (see also [Artin74]) there is a base 
change t = sm such that the resulting threefold X'= X X~(t) .6.(s) admits a 
small resolution. That is, there is a small modification h : Y' ---+ X' such that 
Y' is smooth. By ( 4.6) it is suffi.dent to prove finite generation on X'. Let D 
be a Weil divisor on X' and let H be its birational transform on Y'. 

We apply the (K + EH)-MMP on Y'/ X' with some O < E ~ 1 (see (2.26)). 
The existence of flops is given by ( 4.8) while termination is proved in ( 4.11). 
Finally we obtain h+ : y+ ---+ X' such that H+ is h+-nef. By Base Point 
Freeness [KMM87,3-l-2], there is a morphism 

+ + p - q 1 
h :Y ---+Y---+X 

such that p( H+) is Q-Cartier and q-ample. Thus q : Y ---+ X' shows fini te 
generation for D. □ 

4.8 Theorem. {Reid83} Let f : Y ---+ X be a small modification between 
threefolds. Assume that Y has isolated cDV points only and Ky is numerically 
!-trivial. Let H be a divisor on Y such that His negative on Y/X. Then the 
flop j+ : y+ ---+ X off with respect to H exists and has isolated cDV points 
only. 

Proof. Avery simple proof, due to Mari, is given in [CKM88,16.8-9]. □ 

4.9 Definition. [Kawamata91c] Let (X,D) be a log variety. Assume that 
Kx + D i-s Q-Cartier (Kx need not be Q-Cartier). We say that (X, D) is 
terminal (resp. canonica0 if a(E, D) > O(resp. ~ 0) for every exceptional 
divisor of C(X) with center on X (cf. (1.6)). If D = 0, this coïncides with 
the usual definition of terminal (resp. canonical). 

4- 9.1 Exercise. Let (0 ES, L biBi) be the germ of a normal surface. Then 
(4.9.1.1) (S, L biBi) is terminal iff 

S is smooth and L bi multo Bi < l. 

Therefore if (X, D) is terminal (any dimension) then LD..J = 0 and Xis smooth 
in codimension two. 
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( 4.9.1.2) (S, ~ biBi) is canonical iff either 

Sis smooth and L bi multo Bi~ 1; or 

S is Du Val and L biBi = O. 

From (2.28) we see that terminal is preserved under flops and flips. It is 
however not preserved under extremal contractions. 

ln the rest of this section, flips are assumed to exist whenever they are 
mentioned. 

N ext we prove the termination of a sequence of flips for terminal 3-folds 
(X, D). The flop version was first proved by [Kawamata88] for a special case, 
then in general by [Kollar89]. Finally [Kawamata9lc] noticed that the right 
context is the more general form ( 4.10). 

Here we emphasise the analogy between [Kollar89] and [Shokurov91, 4.1) 
whose proof is presented in Chapter 7. Roughly speaking, the proofs consist 
of two major steps (the D = 0 case can be treated as a special case of (1)): 

(I) Show that there is a finite set of special discrete valuations associated to 
the flipped curves such that the cardinality of the set ( or some other invariant) 
drops if a flipped curve is contained in the boundary. This step shows that, 
after finitely many flips, no flipped curve is contained in the boundary. 

(II) Now use the finiteness of the Picard number of the irreducible compo
nents of the boundary to conclude that, after finitely many flips, no flipping 
curve can be contained in the boundary. 

4.10 Theorem. (Termination of 11.ips for canonical 3-folds) Let X be a nor
mal three dimensional Q-factorial scheme of fi.nite type over a fi.eld of char
acteristic zero and D an effective Q_-divisor. Assume that (X, D) is canonical 
and LD_J = 0. Then any sequence of 11.ips for (X, D) terminates, i.e., there is 
no infi.nite sequence 

(Xo, Do) --+ (Xi, D1) --+ (X2, D2) --+ 

</>o '\, / </>ci </>1 '\, / </>i </>2 '\, 
Zo 

where Xi+l = (Xi)+ is a (Kx; + Di)-11.ip of Xi for each i and Di is the 
birational transform of D0 = D. 

4.11 Corollary. (Termination of flops for terminal 3-folds) Let X be a nor
mal Q-factorial 3-fold with only terminal singularities and D an effective Q
Cartier divisor. Then any sequence of D-.iops terminates. 

Proof. For O < E ~ 1 the pair (X, ED) is terminal and any D-flop is a (Kx + 
ED)-flip. □ 
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The pro of of ( 4.10) is clone in several steps. 

4.12 Discrepancy Lemmas. 

4.12.1 Lemma. Let Y be a smooth variety with a (not necessarily effective) 
Q-divisor B = L biBi such tat L Bi has simple normal crossings. 

( 4.12.1.1) If li is a divisor of C(Y) then there are k, ni E N such that 

ni= 0 unless Centery(ll) C Bi and k + L ni ~ codim(Centery(ll), Y). 
(4.12.1.2) Let B = E + H = I:ejEj + LhkHk such that ej ~ l. Assume 

that 1 - hk ~ c for every k, where c is some fi.xed constant with l ~ c ~ O. 
Let li be a divisor of C(Y) such that 

#{jl Centery(ll) C Ej} < codim(Centery(ll), Y). 

Then ae(ll, Y, E + H) ~ c. 
( 4.12.1.3) Assume that (l-bk) + (l -bi) ~ 2 whenever Bk and B1 intersect. 

If li is a discrete valuation with small center on Y such that ae(ll, B) < 2 then 
li is obtained by blowing up the generic point of a subvariety W C Y such 
that codimy W = 2, only one of the Bk (say Bk0 ) contains W and bko > O. 

Proof. Let li be any discrete valuation of Y. Let Z 1 C Y1 = Y be the center 
of li on Y. Let Y2 be the blow up of Y1 along Z1. Let Z2 be the center of li 
on ½. Then Y2 is smooth at the generic point of Z2 and we can continue the 
blowing up procedure. After finitely many steps the center of li on Yk becomes 
a divisor. (This is a basic result of Zariski. See [Artin86, 5.2] for a simple 
self-contained proof.) Thus if we understand the behavior of log discrepancies 
under a single (smooth) blow up, then we understand them for all discrete 
valuations. 

With this in mind, ( 4.12.1.1-3) are easy computations. See [Kollar89,3.2] 
for details. □ 

4.12.2 Lemma. Let (X, D) be a log variety, where D = L djDj is an effec
tive Q-divisor on X. Assume that (X,D) is klt. 

(4.12.2.1) There is a fi.nite set of valuations {lli} such that if 

ae(ll, D) < min{2, 1 + logdiscrep(X, D)} and li rf. {lli} 

then li is obtained from blowing up the generic point of a subvariety W C 
D C X such that D and X are generic;illy smooth along W ( and thus only 
one of the Dj contains W) and dim W = dimX - 2. 
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( 4.12.2.2) There are only fi.nitely many exceptional divisors v such that 

aR(v, D) < min{l + logdiscrep(X, D), 2 - m~x{dj}}. 
J 

Proof. The second daim is a consequence of the first. To see the first, take 
a good resolution f : Y - X such that F = J; 1 (D) is smooth and let 
Ky+ L, hkHk = J*(Kx + D). (Thus Fis a summand of L, hkHk.) Then 
aR(v, D) = aR(v, L, hkHk) for every v. 

We want to change Y so that (4.12.1.3) is satisfied. Assume that it fails for 
a pair (k, l). Blow up Hk n Hz. Let H' be the new exceptional divisor. Then 

aR(H', D) = aR(Hk, D) + aR(Hz, D). 

Let c = min{l -dj,discrep(X,D) + l}. Then 

aR.(H', D) + aR.(Hk, D) ~ aR.(Hk, D) + aR-(Hz, D) + c. 

Repeating this procedure a finite number of times, we eau finally achieve that 
the assumption of ( 4.12.1.3) is satisfied. By a slight abuse of notation we 
assume that f : Y - X itself satisfies ( 4.12.1.3). 

Thus we obtain (4.12.2.1) except that (4.12.1.3) gives information about 
the centers on Y and not on X. 

Assume that v is a discrete valuation such that 

aR-(v, D) = aR.(v, L hkHk) < 2. 

By (4.12.1.3) all but finitely many of these are obtained by blowing up a 
smooth codimension one point on L, H k. If the center of v is contained in Hj 
and Hj is f-exceptional then 

ac(v, D) = 1 + ac(Hj, D) ~ 1 + logdiscrep(X, D). 

Therefore the center of v is contained in F. Among these v, there are only 
finitely many v whose center on X does not satisfy (4.12.2.1.1). (The excep
tions corne from the exceptional divisors of F - D, the singular locus of D 
and the singular locus of X.) D 

4 .12. 3 De finition. Let (X, D = L, d j D j) be a canonical pair. Assume that 
LD _J = 0. Fix an integer N E N such that ND is a Weil divisor (i.e. N dj E N 
for every j). Let d = max{ dj }. Let 

d (X D) = ~ # { discrete valuations v with small center on X } 
N ' _L.t such that aR.(v, D) < 2 - i/N · 

i=Nd 

This is a weighted version of the "difficulty" introduced by [Shokurov85] 
(see also [Kollar89]). dN(X, D) < oo by ( 4.12.2.2). 

Shokurov pointed out that even if (X, D) is not canonical, dN(X, D) < oo 
if d ~ 1 - logdiscrep(X, D). 
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4.12.4 Lemma. Let (X, D) be a canonical pair. Assume that LD_J = 0. 
Then dN(X, D) is fi.nite and nonincreasing under Bips. 

Proof. Let v be a discrete valuation with center of codimension 2:: 2 on Y 
such that ae(v, D) < 2. If v is obtained by blowing up a smooth codimension 
one point of Fj then ae(v, D) = 2 - dj ~ 2 - d. Thus finiteness follows from 
(4.12.2). 

(2.28) implies the second part. □ 

(4.13} Proof of (4.10). 

Let (X,D) be as in (4.10). Let D = "L,djFj, so Di= "L,diF]. Consider a 
sequence of (Kx+D)-flips. We prove termination by descending induction on 
the coefficients dj of D, combined with the strategy explained at the beginning 
of the chapter. As before set d = max{dj} (d = 0 if D = 0) and let G := 
L-d,=d Ft be the divisor consisting of the Fj with the biggest coefficient ( G = 
X if D = 0). We prove the following two statements: 

(I)a After some flips no flipped curve is contained in (the birational 
transform of) G. 

(II)a After some flips no flipping curve is contained in (the birational 
transform of) G. 

(Here by a fl,ipping curve we mean any component of a fi.ber of <Pi and by 
a fl,ipped curve any component of a fi.ber of </J;.) 

4.13.1 Subclaim. Suppose a flipped curve C is contained in Gi+i (the bira
tional transform of G on Xi+l = xt ). Let Ec be the divisor obtained from 
blowing up the generic point of C. Then there is a k( C) E N such that 

k(C) 
ae(Ec, Di) < ae(Ec, Di+i) = 2 - ~ ~ 2 - d. 

Proof. By ( 4.9.1) the generic point of C lies in the smooth locus of Xi+i • By 
explicit computation 

where mj is the multiplicity of Fj+1 along the generic point of C. Set k(C) = 
N"L,midi· If Cc G then k(C) 2:: Nd. By (2.23.3) 
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4.13.2 Claim. (I)a is true. 

Proof. If 'I/Ji : Xi --+ Xi+l is a fl.ip and a fl.ipped curve is contained in G then 
by (4.13.1) dN(Xi+1,Di+1) < dN(Xi,Di)- Since dN(, ) is nonnegative, this 
can happen only finitely many times. □ 

4.13.3 Claim. (II)a is true. 

Proof. By virtue of (I)a, we may assume that no fl.ipped curve is contained 
in Gi. This implies that the induced birational map '!pi : {Gi}1' - {Gi+iY 
is actually a morphism, and moreover contracts a curve whenever a fl.ipping 
curve is contained in Gi. ( { }1' denotes the normalization.) This cannot be 
repeated infinitely many times, and thus we have the daim (II)a. □ 

If D = 0 then ( 4.13.2) completes the proof. Otherwise after finitely many 
fl.ips neither the fl.ipping nor the fl.ipped curve is contained in the birational 
transform of G. In the Q-factorial case this implies that the birational trans
form of G is disjoint from the flipping curves. Indeed, assume that C intersects 
G but is not contained in it. Then the Q-factoriality of X implies that there 
exists a component G0 of G such that C · G0 > O. This in turn implies 
c+ · Gt < 0 and hence c+ C Gt C G+. 

Thus we may replace (X,D) by (X\ G,~d;<ddiFj) and use induction on 
the number of irreducible components of D. □ 

4.14 Remark. Szab6 observed that it is not too difficult to modify the above 
proof in case X is not Q-factorial. We cannot guarantee that G becomes 
disjoint from the fl.ipping curves. We need to modify the definition ( 4.12.3) 
by counting; only those discrete valuations v which are not obtained by blowing 
up the generic point of a curve in G. Once neither the fl.ipping nor the fl.ipped 
curves are contained in G, this definition is independent of further fl.ips. 

We also need a slight strengthening of ( 4.10): 

4.15 Theorem. Let X be a normal three dimensional Q-factorial scheme 
of fi.nite type over a fi.eld of characteristic zero and D an effective Q-divisor. 
Assume that (X, D) is canonical. Then any sequence of flips for (X, D) ter
minates. 

Proof. Let g : (X, D) --+ (X+, D+) be a fl.ip and let c+ be a flipped curve. 
Assume that c+ C LD+ _J. Then by (4.9.1) x+ is generically smooth along 
c+. Let E be the exceptional divisor obtained by blowing up the generic 
point of c+. Then O = a(E, n+) > a(E, D) 2:'.: 0 gives a contradiction. Thus 
c+ r:t. Ln+ _J. 

As in ( 4.13.3) we see that after finitely many steps no flipping curve can be 
contained in LD _J. Thus after fini tel y many fl.ips we can replace X by X\ LD _J 

and termination is reduced to (4.10). □ 
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4,15.1 Remark. Shokurov pointed out that the above proof of (4.15) works in 
positive characteristic as well. 
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5. EXISTENCE OF CANONICAL FLIPS 

ALESSIO CORTI and JANOS KOLLAR 

The aim of this chapter is to prove that if (X, D) is canonical and three 
dimensional then flips exist. Unfortunately, the proof assumes the existence 
of flips in the D = 0 case, which is a very diffi.cult result of [Mori88]. For 
technical reasons we need to consider pairs (X, D) which are slightly more 
general than terminal. 

5.1 Definition. We say that the pair (X, D) satisfies condition ( *) if the fol
lowing assumptions hold: 

(5.1.1) Xis a normal Q-factorial threefold and D = "f:,diDi is a Q-Cartier 
divisor; and 

(5.1.2) a(E, D) 2: 0 for every exceptional divisor E with equality holding 
only if E is obtained by blowing up ( the generic point of) a curve contained 
in LD_J. 

5.2 Proposition. Assume that (X,D) satisfi.es (*). If (X',D') is obtained 
from (X, D) by a sequence of D-flips or extremal contractions which do not 
con tract any components of D, then (X', D') also satisfi.es ( *). 

Proof. It is suffi.cient to consider one flip or contraction g : X --+ X'. Let 
C' C X' be the exceptional set of g-1 . If E is an exceptional divisor over 
X' such that Centerx, (E) <t., C' then a(E, D') = a(E, D). Thus assume that 
Centerx,(E) CC'. In this case, a(E, D') > a(E, D) by (2.23.3) and (2.28.3). 

The only case that needs attention is when g is a divisorial contraction 
and E the exceptional divisor of g (since E is not exceptional over X). If E 
is not a component of D then a(E, D) = O. Otherwise a(E, D) < 0, hence 
E C SuppD, which was excluded. D 

5.3 Lemma. Assume (X, D) satisfi.es ( * ). Then 
(5.3.1) X bas terminal singularities; 
(5.3.2) If x E LD_J then X and D are smooth at x. 

Proof. The first part is clear. 

S.M.F. 
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The second part can be clone by hand, but it is easier to use adjunc
tion. Assume that x E LD.J. Pick a component S C LD.J containing x. By 
(17.2) (S,Diff(D - S)) is terminal, and thus by (4.9.1) S is smooth. Let 
p : ( x', X') -+ ( x, X) be the index one cover in a neighborhood of x. The cov
ering is étale outside x and has degree equal to index(x E X). S is smooth, 
thus p-1(S) is a union of index(x E X) irreducible components intersecting 
at x'. p-1(S) is a Q-Cartier divisor on the cDV variety X', thus Cartier by 
(6.7.2). Therefore p-1(S) is S2 • Let i : U = p-1(S) - {x'} -+ p-1(S) be the 
injection. Since p-1(S) is S2 , i*Ou ~ Op-l(S)· This implies that p-1(S) is 
irreducible. Therefore index( x E X) = 1, X is a cDV point and S is Cartier. 
Hence X is also smooth. □ 

5.4 Theorem. Assume that (X, D) is canonical. Let f: X-+ Z be a small 
extrema] contraction such that -(Kx+D) is !-ample and p(X/Z) = 1. Then 
the B.ip off exists. 

Proof. The proof is in two steps. First we establish the result in the case when 
D is reduced and satisfies ( * ). Then we prove the general case by induction 
on the number of irreducible components of D. 

5.4.1 Step 1. (5.4) holds if D = "E,Di is reduced and satisfies (*)-

Let CC X be the exceptional curve. By shrinking Z, we may assume that 
C is connected. If C · Di ~ 0 then we can discard Di. If we discard all the 
Dj then C · Kx < O. Then the flip exists by [Mori88] ( the flips with respect 
to Kx + D and with respect to Kx coïncide, cf. (2.32.1)). 

If we assume that C · D1 < 0, then C C D1. Thus no other component 
of D intersects C by (5.3.2) and S = D1 is smooth along C. Consider the 
contraction J : s - f(S). Ks = K + s1s. Thus -Ks is (JIS)-ample. 
Therefore f I S is the contraction of a single -1-curve C and ( K + S) · C = -1. 

Suppose that S · C = -m, so that K · C = m - 1. Furthermore, 

Ox(K + S)®m ~ Ox(D), 

at least in a neighborhood of C. Using the natural section of Ox(S) we can 
construct a degree m cyclic cover p : xm -+ X ramified along S. Let zm be 
the normalization of Z in xm and fm : xm -+ zm the induced contraction 
of cm= p-1(C). By the ramification formula 

cm· Kxm =cm· p* ( Kx + m::;, l S) = C · Kx + m::;, 1 C · S = O. 

Therefore fm is a flopping contraction and the opposite (Xm)+ -+ zm exists 
by ( 4.8). Thus x+ = (Xm)+ /Zm is the flip off. □ 
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5.4.2 Step 2. We prove (5.4) by induction on the number of irreducible com
ponents of D = ~ diDi-

By (2.32.1) we may assume that LD.J = 0 and by (2.29) it is suffi.dent to 
construct a model 

</> - f 
X--+ X---+ Z 

such that Kx + </J*(D) is /-nef. 
(5.4.2.1) Let g : X' - X - Z be a log resolution of (X, D) such that 

Supp g,:; 1 (D) is smooth. By construction (X', r g,:; 1 (D)7) satisfies ( *)- We 
apply the (K + r g,:; 1 (D)7)-MMP to g: X' - Z. Note that gis birational on 
r g,:; 1 (D) 7 • Therefore we never have to contract a component of r g,:; 1 (D) 7 • 

Thus ail flips exist by Step 1, and the program terminates by (4.15). At the 
end we obtain 

(X', r g;1 (D)7) -~+ (Y, B) ~ Z, 

where B =~Bi= rh-:; 1 (D) 7 and Ky+ Bis h-nef and satisfies (*). 
(5.4.2.2) The aim is now to shrink B clown to h-:; 1 (J(D)). For notational 

simplicity we not distinguish D and J(D); this does not lead to any confusion. 
Assume that we already constructed 

such that K + Bi is hi-nef and satisfies (*). In (5.4.2.1) we constructed 
(Y, B) = (Y1 , B 1 ). 

(5.4.2.3) Our next goal is to construct (Yi+l, Bi+l ). For notational sim
plicity we drop the upper index j from the notation and write (Y, B) instead 
of (Yi, Bi) etc. 

By definition K +Bis h-nef. Consider the largest O ~ E ~ 1-di such that 
K + B - EBi is h-nef. If E = 1 - di then 

is h-nef and we can take yi+1 = yi. 
Otherwise we try to increase E as follows. Take O < r, ~ E. Then 

is not nef. We can apply the (K + B - (E + r,)Bi)-MMP. We successively 
construct the objects 
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By (2.35) for fixed 1J there are only finitely many (K +B- (E+17)Bj )-extrema! 
rays. Thus we may assume that if R generates a ( K + B - ( E + 77 )B j )-extrema! 
ray then 

Therefore, if Ci is a flipping curve, then 

(5.4.2.4) 

Set 

From (5.4.2.4) we conclude that 

Bi· Ci> 0 and (K + B') ·Ci< O. 

Thus the flip required is also a (K + B')-flip, which exists by induction since 
B' has one fewer irreducible components. After some flips and contractions we 
can increase the value of E to E1 2'. E + 77. N ext apply the ( K + B - ( E' + 17')B j) )
MMP, and so on. 

We daim that after finitely many steps we reach E = 1 - dj. As usual, the 
only question is the termination of flips. As was remarked above, every flip is 
a (K + B')-flip, and so termination follows from (4.15). In the end we obtain 

hj+l : (Yj+l' Bj+l) --t z. 

(5.4.2.5) If D has k components then iterating (5.4.2.3) we obtain 

hk+l: (Yk+l,Bk+l) --t Z such that Bk+l = (hk+1);1 (D). 

Thus we can take X= Xk+1 . D 

5.5 Remark. One can consider the (K + D)-MMP for terminal or canonical 
pairs. In general it can occur that an extrema! contraction creates a pair 
(X', D') which is not canonical. This can happen when we contract an irre
ducible component of D. There are some geometric conditions which ensure 
that this does not occur. 

The simplest case is when we do the relative MMP with respect to a mor
phism f : X --+ Y such that f is generically finite on every irreducible com
ponent of D. Another example is when D is reduced and every irreducible 
component has nonnegative Kodaira dimension. 

Assume that we avoid the above probkm and the (K +D)-MMP terminates 
with a pair (Xm, Dm) such that K + Dm is nef and satisfies ( * ). In general 
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xm is not unique in codimension one since we can always blow up a smooth 
curve inside the smooth locus of LDm _J to obtain another minimal model. In 
order to remedy the situation we introduce the following notion: 

5.6 Definition. We say that a pair (X', D') is a (K +(1-0)D')-minimal model 
if the following conditions are satisfied: 

(5.6.1) (X',D') is canonical; 
(5.6.2) (X',D') is terminal outside rD' 7 (equivalently, X' has terminal 

singularities); 
(5.6.3) K + (l - E)D' is nef for every O ::S E ~ 1. 

5. 7 Construction. Assume that (X, D) satisfies ( * ). The construction of (K + 
(1-0)D)-minimal models proceeds along the lines of the MMP. First we apply 
the ( K + D )-MMP. Thus eventually we o btain ( xm, Dm), unless we run into 
a forbidden contraction as in (5.5). 

If K + (l - E)Dm is nef for some O < E then we can take X' = xm. 
Otherwise, we choose E such that every (K + (1 - E)Dm)-extremal ray R has 
zero intersection with K + Dm and apply the (K + (l - E)Dm)-MMP. 

Assume that we need to flip a curve C C xm. Then 

and therefore (1 - E)Dm · C > 0 and K • C < O. Thus every such log flip is a 
K-flip. Hence they exist by [Mori88] and any sequence terminates. Of course 
again there is the possibility that we contract a component of D. 

These models have the same uniqueness property as ordinary minimal mod
els: 

5.8 Proposition. Assume that (X,D) satines(*) and let (Xi,Di) (i = 1,2) 
be two (K + (1 - O)D)-minimal models. Then the natural birational map 
X 1 --+ X 2 is an isomorphism in codimension one. 

Proof. Choose E so that K + (l - E)Di is nef for i = 1, 2. Then (Xi, (1-E)Di) 
are terminal. The rest of the proof is essentially the same as in [Kollar89,4.3]. 
We do not use this result in the rest of the notes. □ 

5. 9 Re mark. It is interesting to note that the ab ove notions can be used to 
unify flops, flips and inverses of flips. Consider pairs (X, D) with D reduced 
which are canonical and terminal outside D. The flops in this category are 
precisely the following: 

terminal flops (Dis a member of IOxl = 1- Kxl); 
terminal flips (Dis a member of 1- Kxl, [Kollar-Mori92, 1.7]); and 
inverses of terminal flips (Dis a member of 1-Kx 1, [Kollar-Mori92, Ch.3]). 
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The aim of this chapter is to develop a reduction method for log flips. 
The main results say that if f : Y --t X is a birational morphism such that 
Ky = J* Kx (i.e. f is crepant) then flipping on X can be reduced to flipping 
on Y. This method first appeared in [Kawamata88] and was further developed 
in [Kollar89] and [Kawamata91c]. First we outline the general method of 
doing this, called the Backtracking Method. Then we prove the two main 
applications in (6.10-11). 

We start with three auxiliary lemmas. 

6.1 Lemma. Let h: U --t Z beaprojectivemorphismsuch that h*Ou = Oz. 
Assume that p( U / Z) = 2. Then there are at most two normal and projective 
schemes Vj --t Z (j = 1, 2) giving nontrivial factorizations 

U--tVj--tZ 

such that U --t Vj bas connected fi.bers. 

Proof. Let Hj be ample on Vj/Z and let Mj be the pull-back of Hj to U. 
Then Mj is nef and trivial on the curves that are contained in the fibers of 
u --t Vj. 

{[D]ID ·Mi= O} c NE(U/Z) c JR.2 

is an extremal face which determines Vj. A convex cone in IR.2 has only two 
edges, thus there can be at most two contraction morphisms U --t Vj. □ 

6.2 Lemma. Let Y be a normal Q-factorial variety. Let q : Y --t X be 
a projective birational morphism such that p(Y / X) = 1. Let q' : Y' --t X 
be another projective birational morphism with a unique exceptional divisor 
E' C Y'. Assume that the composite birational map q-1 o q' : Y' --+ Y is an 
isomorphism at the generic point of E'. Then q-1 o q' is an isomorphism. 

Proof. Let H' be an effective, irreducible q'-ample divisor. Its birational trans
form H on Y is an irreducible and effective divisor which does not contain the 

S.M.F. 
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exceptional set of q. Sin ce p(Y / X) = 1, this implies that H is q-ample. Thus 
q-1 o q' is an isomorphism in codimension one and transforms the q' -ample 
divisor H' into the q-ample divisor H. This easily implies that q-1 o q' is an 
isomorphism. □ 

6.3 Lemma. Let g : Y ---t Z and g' : Y' ---t Z be proper birational morphisms. 
Let </> : Y --+ Y' be a Z-map, isomorphic in codimension one. Let H be a 
divisor on Y and let H' = </>(H). Assume that both H and H' are Q-Cartier. 
If-His g-ample and H' is g'-nef then g and g' are both small. 

Proof. Let F' C Y' be the closed subset where <1>- 1 is not an ismorphism. For 
m ~ 1, 1 - mHI is g-very ample, hence base point free. Thus </>* 1 - mHI is 
base point free outside F'. If g' : Y' - F' ---t Z is not an immersion then there 
is a proper curve C' C Y' such that g'(C') = point, C' intersects F' but is 
not contained in it. Thus C' · (-H') > 0, a contradiction. □ 

6.4 Backtracking Method. 
Let f : X ---t Z be a small contraction with p(X/Z) = 1 and let H be a 

Q-Cartier divisor on X such that -His f-ample. The aim of the method is 
to construct the opposite off with respect to H. 

Set X= X 0 • As a first step we construct a birational projective morphism 
q1 : Y1 ---t X 0 such that p(Yi/ X) = 1 and p(Yi/ Z) = 2. (The latter is 
automatic if X is Q-factorial.) If X 0 is Q-factorial, this implies that the 
exceptional set of q1 is an irreducible divisor. 

Assume that qi : Yï ---t Xi-l ---t Z is already constructed. By (6.1) there 
are at most two nontrivial factorizations 

fi---t VJ---t Z. 

Xi-l is one of them. The corresponding extremal ray is denoted by Qi- Let 
Ri be the other extremal ray and let ri : Ji ---t Xi be the corresponding 
contraction (provided it exists). If ri is a divisorial contraction, we stop. Our 
hope is that Xi is the opposite of X ---t Z. If ri is a small contraction then let 
qi+l : fi+i ---t Xi be the opposite (if it exists). 

We have to be a little more careful if Y1 ---t Z is small. (This never happens 
in most applications.) In this case we stop the method when the birational 
transform of -qi H becomes nef on Ji. If it becomes ample then Ji ---t Z is 
the flip of X 0 ---t Z. Otherwise -qiH should descend to Xi, thus Xi ---t Z is 
the required flip. 

In working with the method we always use the above notation. Also, if D 
is a divisor on X or on Y1 , its birational transform on Ji is denoted by Di. 
We usually write simply K instead of KY; or Kx if no confusion is likely. 
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Thus starting with qi : Yi ----+ Xo we define a unique chain of projective 
Z-schemes and morphisms: 

(Yi, Di) --+ (Y2, D2) --+ 

,/ qi ri "\. ,/ q2 r2 "\. 

Xo Xi X2 

The necessary steps for the success of this approach are the following: 
(6.4.1) The construction of qi : Yi ----+ X 0 (mostly easy). 
( 6.4.2) Pro of that the contractions ri exist ( easy). 
( 6.4.3) Proof that the opposites qi+l : Îi+l ----+ Xi exist ( this is the hardest). 
(6.4.4) Proof that eventually we get a divisorial contraction rj : Yj ----+ Xj 

( easy using Chapt ers 4 and 7). 
( 6.4.5) Pro of that X j ----+ Z is indeed the opposite of X ----+ Z ( easy). 

It is convenient to imagine the bactracking method by drawing a picture 
of the ample cones. By assumption there are natural isomorphism 

Ni(Yi) ~ Ni(Y2) ~ ... def Ni~ ]~.2. 

For each i, let Amp Y; C Ni be the closed cone generated by the relatively 
ample divisors of Y;/Z. The two edges of the cone Amp Y; correspond to the 
two contractions qi and ri: they are given by pull backs of ample divisors from 
X;-i and from X;. In particular, the cones Amp Y; and Amp Îi+i share a 
common edge corresponding to the pull back of ample divisors from Xi. Thus 
we obtain a subdivision of Ni into a collection of cones. 

AmpY 2 

AmpY 1 
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6.4.6 Lemma. Notation as above. All the cones Amp Y; are in one of the 
bal[ planes determined by the line JR[qi H]. In particular, all the cones Amp Y; 
are different, hence Y; and Yj are not isomorphic over Z if i =/. j. 
Proof. The shaded area represents those divisors F for which -F is ample on 
Y1. Thus if Y1 --+ Z is not small then by (6.3) the canes Amp Ym are disjoint 
from the shaded area. If Y1 --+ Z is small then we stop the method when 
qi H becomes nef. Thus in bath cases we stay in the halfplane containing 
AmpY1. D 

6.5 General Properties of the Backtracking Method. 

6.5.1. When applying the Backtracking Method, the choice of q1 : Y1 --+ X 0 

is our only freedom. ln some cases it is easy, in some other cases it is fairly 
hard to prove that a choice with very good properties exists. 

6.5.2 Claim. Notation as above. Assume that -D1 is relatively ample on 
Y1 / Z. Then the steps of the Backtracking Method are steps of the D 1 -MMP 
applied to (Y1, D1). 

Proof. We assumed the i = 1 case. By induction assume next that this holds 
for i. Thus Di · Ri < O. Then Di+l · Qi+l > O. If Y1 --+ Z is not small, then 
by (6.3) Di+l is not nef on Y;+l, thus Di+l · Ri+l < O. 

If Y1 --+ Z is small, then it can happen that Di+l is nef on Y;+1. This 
however was declared to be the last step of the method. □ 

6.5.2.1 Complement. Notation as above. Assume that Xo is Q-factorial and 
H = K + ~ where (Xo, ~) is klt. Let E1 C Y1 be the exceptional divisor. 

Then D1 = K + ~1 def qi(K + ~) + EE1 is klt and negative on Yi/Z for 
0 < E ~ 1. Therefore the steps of the backtracking method become the steps 
of the (K + ~1)-MMP. ln particular the contractions ri exist. 

6.5.3. In the general framework I cannot say anything about the existence 
of the opposites. ln the applications the crucial point is to show that the 
singularities of Y; are "simpler" than the singularities of X 0 • Thus we prove 
existence of flips by reduction to "simpler" singularities. Unfortunately the 
notions of "simplicity" used seem rather artificial and it is nàt clear how to 
generalize them to higher dimensions. 

6. 5.4- Termination of flips is again a problem. In the applications the results 
of Chapters 4 and 7 imply that eventually we get a divisorial contraction 
Tm : Ym--+ Xm. 

6.5.5 Proposition. Notation and assumptions as above. Assume further
more that X and Y1 are Q-factorial. Assume that eventually we get a diviso
rial contraction rm : Ym--+ Xm. Then Xm--+ Z is the opposite of X--+ Z. 

78 



FIJPS AND ABUNDANCE 

Proof. By ( 4.5), if Xis Q-factorial then Z has at most two small modifications, 
X and its opposite. Therefore it is suffi.cient to show that 

1/; : X -+ Z +- Xm 

is not an isomorphism. (Warning! It can easily happen that X and Xm are 
isomorphic as varieties, but they are not isomorphic over Z.) 

Assume the contrary. Then 

is also an isomorphism by (6.2). This is however impossible by (6.4.6). □ 

N ext we formulate the crepant descent theorems. First we collect properties 
of flops and terminal flips of threefolds that are needed during the proof of 
the descent theorems. The lists are complete in the sense that if (6.7) (resp. 
(6.9)) holds in dimension n then (6.10) (resp. (6.11)) also holds in dimension 
n. (Unfortunately, as Matsuki pointed out to me, (6.7.2) has no analog in 
dimension ~ 4.) 

6.6 Definition. Let (X,B) be a klt threefold. By (4.12.1) there are only 
finitely many exceptional divisors (i.e. valuations) with log discrepancy ~ 1. 
The number of these divisors is denoted by e(X, B). If B = 0, then we write 
e(X). Thus (X, B) is terminal ( 4.9) iff e(X, B) = O. 

6. 7 Proposition. Let Y be a threefold with terminal singularities. 
(6. 7.1) Flops exist and terminate with respect to any effective Cartier di-

v1sor. 
(6. 7.2) Let E be a Q-Cartier Weil divisor on Y. Then index(Y)E is Cartier. 
(6. 7.3) The index is unchanged under flops. 
(6. 7.4) {Reid80,83} Let X be a threefold with canonical singularities. Then 

there is a threefold with Q-factorial terminal singularities Y and a projective 
morphism f : Y ---+ X such that Ky = f* K x. 

Proof. (6.7.1) was proved in Chapter 4. 
(6.7.2) follows from the following local result (in the analytic topology): if 

D is Q-Cartier then index(O E Y)D is Cartier. To prove this let p : Y' ---+ Y 
be the index one cover. Then p*p* D = index(O E Y)D, thus it is suffi.cient 
to consider the index one case. An index one terminal singularity is a hyper
surface in C4 • Therefore Y' - { 0} is simply connected ( see e.g. [Milnor68]), 
and thus H 2 (Y' - {O}, Z) is torsion free. Therefore any Q-Cartier divisor is 
Cartier. 

f t+ 
Let X --+ Z +-- x+ be a fi.op. Then by the Base Point Free Theorem 

[KMM87,3-l-1] index(X) = index(Z) = index(X+) which proves (6.7.3). 
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(6.7.4) is the most diffi.cult. First, by [Reid80] (cf. [CKM88,6.19-25]) there 
is a morphism g' : Y' --* X such that Ky, = g'* Kx and Y' has only terminal 
singularities. Thus it is suffi.cient to prove the exsitence of a small morphism 
Y --* Y' such that Y is Q-factorial and terminal. (We could just resolve Y' 
and run the MMP. However, it is desirable to give a proof which uses less.) 

In order to prove this we first note the easy result that Weil(Y')/ Pic(Y') 
is finitely generated since Y' has rational singularities ( see (16.3.1) for the 
definition of Weil). Let D E Weil(Y')/ Pic(Y') be a nontorsion element. By 
( 4. 7) there is a small morphism Y{ --* Y' such that the birational transform 
D1 of D is torsion of order m1 in Weil(Y{)/ Pic(Y{). Since 

Weil(Y{) = Weil(Y') and Pic(Y{) :J (Pic(Y'), m1D 1), 

we see that 

rankz Weil(Y{)/ Pic(Y{) :s; rankz Weil(Y')/ Pic(Y') - 1. 

Therefore after finitely many steps we obtain a small projective morphism 
Y = Y~ --* Y' such that Y is Q-factorial. D 

6.8 Definition. Let (X, B) be an le threefold. Let H be a Cartier divisor on 
X. Let f : X --* Z be a small contraction such that K x + B is numerically 
!-trivial and -H is !-ample. The opposite off with respect to H is called 
an H-fl.op with respect to K + B or simply an H-flop. If (X, B) is klt then 
(X, B + EH) is klt for O < E ~ 1 and an H-flop is a (K + B + EH)-log flip. 

6.9 Proposition. Let (Y, D) be a terminal threefold. 
(6.9.1.1) H-flops exist and terminate with respect to any effective Cartier 

divisor H. 
(6.9.1.2) Terminal flips exist and terminate. 
(6.9.2) [Kawamata91c} Set r(Y,D) = (4rdiscrep(Y,D)-17)!. Let E be a 

Q-Cartier Weil divisor on Y. ( Assume for simplicity that Ky is Q-Cartier.) 
Then r(Y, D)E is Cartier. 

(6.9.3) Let (X, B) be a klt threefold. discrep(X, B) is nondecreasing under 
flops and flips. 

(6.9.4) [Kawamata91c} Let (X, B) be a klt threefold. Then there is a termi
nal threefold (Y, D) with Q-factorial singularities and a projective morphism 
f: Y - X such that f*D =Band Ky+ D = J*(Kx + B). 

Proof. (6.9.1.1) was proved in Chapter 4. 
(6.9.1.2) was proved in Chapters 4 and 5. 
(6.9.2) eau be proved as follows. Let y E Y be a singular point. Then 

y E Y is terminal. Let r be its index. By (6.7.2) rE is Cartier at y. We see 
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in (6.9.7) that there is an exceptional divisor Ey dominating y such that 

± 2: a(Ey, 0) 2: a(Ey, D) 2: discrep(Y, D). 
r 

Thus r <livides r(Y, D), and hence r(Y, D)E is Cartier at y. 
(6.9.3) is a special case of (2.28) and holds in all dimensions. 
Finally consider (6.9.4). Let ho : Vo - X be a log resolution such that: 
(6.9.5.1) If Vj is a discrete rank one valuation with log discrepancy at most 

one, then Ej = Centerv0 ( Vj) is a divisor; 
(6.9.5.2) UEj U (birational transform of B) has smooth support (i.e. differ

ent components are disjoint). 
We write 

Kv0 = h~(Kx + B) + E+ - E-, 

where E+, E- are effective Q-divisors without common components. By 
(6.9.5.2) SuppE- is smooth. Therefore Kv0 + E- is terminal. 

Apply the (Kv0 + E-)-minimal model program to Vo/X. Assume that 
r h; 

we have already constructed V0 _.:+ ½ --+ X and the birational transform 
Ei- = (ri)*E- such that 

(6.9.6.1) ri does not contract any irreducible components of E-; and 
(6.9.6.2) K V; + E; is terminal. 
Let Pi : ½ - Zi be the contraction of a ( K V; + E; )-extremal ray. If Pi is 

small, the flip exists by (6.9.1.2). Assume that Pi is divisorial with exceptional 
divisor Fi. 

K V;+ E; = h;(Kx + B) + (ri)*E+, 

and Fi C Supp(ri)*E+. Hence ri+l = Pi ori satisfi.es (6.9.6.1) and this implies 
(6.9.6.2) for i + 1. Thus eventually we obtain hm : Vm - X such that 

Kvm + E;;,_ = h:n(Kx + B) + (rm)*E+ is hm-nef. 

Therefore (rm)*E+ = 0. Set (Y, D) = (Vm, E;;,,). □ 

It is quite likely that one can prove (6.9.4) by explicit blow ups as is the 
case for (6.7.4). 

6.9.7 Lemma. (Kawamata in appendix to {Shokurov91}) Let (0 EX) be a 
three dimensional terminal singularity. Then 4/ index(X) 2:: discrep(X). 

Proof. Kawamata shows that in fact discrep(X) = 1/ index(X). However we 
need only this weaker version. 

The daim is clear if index(X) ~ 4. If index(X) 2:: 5 then X is of the form 
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Let k = ord f(s, t) and consider the weighted blow up W'--+ C4 /Zr(a, -a, 0, 1) 
given by weights 

wt(x, y, z, w) =(a+ ir, kr - ir - a, r, 1). 

Let X' C W' be the birational transform of X. Explicit computation yields 
that the unique exceptional divisor has discrepancy 1/r. □ 

6.9.8 Definition. (6.9.8.1) A morphism f: Y--+ Xis called crepant if Ky= 
J*Kx. 

(6.9.8.2) A log morphism f : (Y, Dy) --+ (X, Dx) is called log crepant if 
Ky+ Dy= f*(Kx + Dx). 

(6.9.8.3) Let (X, B) be a klt threefold. By (6.9.4) there is a terminal three
fold (Y, D) with Q-factorial singularities and a projective morphism f : Y --+ 

X such that f*D =Band Ky+ D = f*(Kx + B). Set r(X,B) = r(Y,D). 
By construction discrep(Y, D) is the minimum of the positive discrepancies of 
exceptional divisors over (X, B). Thus r(X, B) is well defined. 

A special case of (6.10) was proved in [Kawamata88], the general form is 
in [Kollar89]. (6.11) is a strengthening of [Kawamata91c] using the method 
of [Kollar89]. 

6.10 Theorem. (Crepant Descent of Flops) Let X be a tbreefold witb canon
ical singularities. Tben 

(6.10.1) There is a small projective morphism f : X --+ X such that X is 
Q-factorial. 

(6.10.2) If e(X) > 0 and Xis Q-factorial tben tbere is a morpbism q: X'--+ 
X sucb tbat p(X' / X) = 1 and Kx, = q* Kx. In particular, e(X') = e(X) - 1. 

(6.10.3) If Xis Q-factorial tben H-flops exist for any effective divisor H. 
(6.10.4) If Xis Q-factorial tben H-flops terminate for any effective divisor 

H. 
(6.10.5) Let D be a Q-Cartier Weil divisor on X. Tben mD is Cartier for 

some 

6.11 Theorem. (Crepant Descent of Flips) Let (X, B) be a tbreefold witb 
klt singularities. Tben 

(6.11.1) Tbere is a small projective morpbism f : (X, B) --+ (X, B) sucb 
tbat X is Q-factorial. 

(6.11.2) If e(X, B) > 0 and X is Q-factorial then tbere is a morpbism 
q: (X',B')--+ (X,B) such tbat (X',B') is Q-factorial and klt, p(X'/X) = 1 
and Kx, + B' = q*(Kx + B). In particular, e(X', B') = e(X, B) - 1. 

(6.11.3.1) If Xis Q-factorial tben H-flops exist for any effective divisor H. 
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(6.11.3.2) If X is Q-factorial then log fl.ips exist. 
(6.11.4.1) If Xis Q-factorial then H-.i.ops terminate for any effectîve divisor 

H. 
(6.11.4.2) If X is Q-factorial then log fl.ips terminate. 
(6.11.5) Let E be a Q-Cartier Weil divisor on X. Then mE is Cartier for 

some 

2e(X, B) ( 3 ) 2e(X, B) - 1 
1 ~ m ~ r(X, B) l d. (X B) og 1screp , 

6.12 Remark. The pro of of these two theorems are almost identical. However, 
the given formulation hides an essential difference. (6.10) can be formulated in 
a much stronger form by observing that once we choose a crepant Q-factorial 
terminalization f : Y -+ X then in the course of the proof we use only 
properties of threefolds which can be obtained from Y by a sequence of flops. 
This follows from the fact that e(X) is not changed under flops. In the course 
of the proof of (6.11) we may encounter a situation when e(X, B) drops under 
a flip and we need a new terminalization (Y', D') -+ (X+, B+) to continue. 
Y' is not obtainable from Y by a sequence of flops and flips. 

6.13 Proof of (6.10-11). Proof by induction on e(X, B). Let f : Y -+ X be 
as in (6.7.4) or (6.9.4). (jk) stands for (6.10.j) or (6.11.j) with the additional 
assumption that e(X, B) = k. 

Assume that e(X, B) = O. Then f : Y -+ X is small. Thus lo holds and if 
X is Q-factorial then f is an isomorphism. Thus 2o - 5o hold by (6.7,6.9). 

We assume that jk holds for every j and every k < e = e(X, B), and prove 

ie• 
Let p: (Y,D)-+ (X,B) be as in (6.7.4,6.9.4). Set (Yo,Do) = (Y,D) and 

Po = p. Let Eo C Yo be a po-exceptional divisor. Then K y 0 + Do + EEo is 
not Po-nef for any E > O. We apply the (Ky0 +Do+ EEo)-MMP on Yo/X. 
After some flops ( whose existence and termination is guaranteed by 30 and 
40 ) we get a divisorial contraction and obtain Y1 -+ X. Let E 1 C Y1 be an 
exceptional divisor. We apply the (Ky1 +D1 +EE1)-MMP on Yi/X to obtain 
l':! -+ X, and so on. If we proceed until we do not have any more exceptional 
divisors left then we obtain a small morphism Ye -+ X and Ye is Q-factorial. 
This gives le. If we stop at h : Ye-1 -+ X then we obtain 2e, We need to 
check that p(Ye-i/ X)= 1 (if Xis Q-factorial). Let SC Ye-1 be any divisor. 
Then h(S) is Q-Cartier. Hence S = h*(h(S)) + cEe-l for some constant c. 
Thus [Ee-1] generates N1 (Ye-i/ X). 

In order to prove 5e, first note that by le, it is suffi.dent to consider the 
Q-factorial case. If X is Q-factorial, let q : X' -+ X be given by 2e. Let 
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E C X' be the exceptional divisor. Let (1 - a) be the coefficient of E in B'. 
(Thus a 2:: logdiscrep(X, B).) Let p: E'-+ E be the normalization. Then by 
(16.5) 

KE' = p*(Kx, + E) - Diff(O) 

= p*(Kx, + B') + p*(aE) - p*(B' - (1 - a)E) - Diff(O) 

= p* ( aE) - ( effective Q-divisor). 

Pick a general x E q( E) and let x E U C X be an affine neighborhood. Let 
H CU be very ample and let H' C q- 1(U) be q-very ample. Then intersecting 
dimq(E) general members of IHI containing x and dimE-dimq(E)-1 general 
members of IH'I we obtain a surface B C X' such that A= B n Eisa curve 
contracted by q. Thus A has negative selfintersection in B. Hence 

ln our case dim E' = 2 and from surface classification we know that the 
minimal resolution of E' is a ruled surface. Thus E' is covered by rational 
curves C~ such that O > C~ · Ke, 2:: -3. (In higher dimensions one canuse 
[Miyaoka-Mori86].) 

Thus there are rational curves C>. = p(C~) C X' such that q(C>.) is a point 
and O > C>. • E 2:: -3logdiscrep(X,B)-1. Let D' be the birational transform 
of Don Y. By 5e-1 we can find m1 and m2 such that m 1 E and m2D' are 
Cartier. Thus 

(m1E · C>.)m2D' - (m2D' · C>.)m1E 

is Cartier and is numerically q-trivial. Therefore by the base point free the
orem [KMM87,3.l.2] it descends to a Cartier divisor on X. Thus (m1E · 
C>.)m2D is Cartier. 0 < -(m1E · C>.)m2 ~ 3logdiscrep(X, B)-1m1m2, which 
proves 5e. 

The proof of 3e and 4e relies on the Backtracking Method. 
Let f : X -+ Z be a small contraction which we want to flop or flip. The 

flop or flip off can be obtained as a sequence of flops or flips where the relative 
Picard number is one. Thus we only need to deal with the case p(X/Z) = l. 

Set (X0 , B 0 ) = (X, r,H) for some O < r, ~ 1 in case (6.10) and (X0 , B 0 ) = 
(X, B) in case (6.11). 2e gives q? : (Y1°, B?)-+ (X0 , B 0 ) such that K + B? = 
(qr)*(K + B 0 ). Let D? = K + Bf K + B? is klt. Hence by (6.5.2) and 
[KMM87,3-2-1] the contractions ri exist and the existence of the opposites 
follows from 3e-1 · 

The sequence of flips terminates by 4e-1• Thus eventually we get a divi
sorial contraction r~0 : Y~ 0 -+ X!0 • By (6.5.5) X!0 = X 1 is the flop (resp. 
flip) off. 

84 



FUPS AND ABUNDANCE 

In order to see 4e consider a sequence of flops (resp. fl.ips) 

(6.13.1) xo --+ xi --+ .... 

Our method of fl.ipping starts with a Yi0 --+ X 0 and produces a sequence of 
fl.ips 

yo --+ Y.o --+ ... --+ yo 
i 2 mo' 

ending finally with a contraction r?n 0 : Y~ 0 --+xi. We can take 

rO = qi . yO = yi --+ xi 
mo i · mo i 

as the starting point of the sequence of fl.ips constructing xi --+ X 2 • In this 
way the sequence of fl.ips ( 6.13.1) gives another sequence 

(6.13.2) yo --+ ... --+ yo = yi --+ ... --+ yi = yi2 --+ .... 
i mo i m1 

(6.13.2) is a sequence of fl.ips but when we go from Y~; to Yii+l the relevant 
divisor may change. Indeed, n:.n; is seminegative on Y~; --+ Xi+l while Di+i 
is numerically trivial on Y~; = Y/+1 --+ Xi+i. Therefore 

(6.13.3) 

where Ei is the exceptional divisor of q( Let c(Ei) be the coefficient of Ei in 
Bf. Then by (6.13.3) 

(6.13.4) 
j-i 

c(Ej) = c(Eo) - L Ci. 

i=O 

Choose N such that that N B 0 is a Weil divisor on X 0 • Then so are the 
birational transforms NBi on Xi for every i. By 5e there is a universal M(e) 
such that M ( e) ( N J{ + N Bi) is Cartier for every i. Thus 

M(e)N(K + Bf) = (qf )* M(e)(NK + N Bi) 

is a Cartier, hence a Weil divisor. Thus M(e)NB:.n; is also a Weil divisor. 
Comparing this with (6.13.3) we conclude that M(e)Nci is an integer. 

If Ci = 0 for i 2: N then the sequence of fl.ips starting with X N lifts to 
an infinite sequence of fl.ips starting with Y1N, which is impossible. Otherwise 
Ci 2: 1/(M(e)N) for infinitely many values of i, hence c(Ej) < 0 for some j. 

In case (6.10) this is impossible since c(Ej) is the coefficient of Ej in the 
effective divisor B{ = ry(qf )* Hj. . 

In case (6.11) this means that the discrepancy of Ej in Y/ --+ Xj is greater 
than O. Thus e(Xj, Bj) < e(X, B) and again we are done by induction. □ 

One of the main applications of (6.10) is the following generalization of 
( 4.7): 
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6.14 Theorem. {Kawamata88} Let X be a threefold with log terminal sin
gularities. Let D be a Weil divisor on X. Then 

00 

L Ox(mD) 
m=O 

is a fi.nitely generated Ox-algebra. 

Proof. By taking the index one cover as in ( 4. 7) it is sufficient to consider the 
case when Kx is Cartier and hence X has canonical singularities. 

Let p: X----+ X be given by (6.10.1). Let D be the birational transform of 
Don.X. 

We apply the (K + 1:D)-MMP on X/ X for some 0 < E ~ 1. The existence 
and termination of flops is given by (6.10.3-4). Finally we obtain p+ : _x+ -+ 

X such that iJ+ is p+-nef. By base point freeness [KMM87,3-1-2] there is a 
morphism 

+ -+ s q 
p :X -.Y-.X 

such that s(iJ+) is Q-Cartier and q-ample. Thus by ( 4.2) the exsitence of 
q : Y ----+ X proves fini te generation for D. □ 

The following strengthening of (6.11) is needed in Chapter 8. 

6.15 Proposition. Let (X, B) be a log terminal Q-factorial threefold. Then 
log Bips exist and any sequence of them is fi.nite. 

Proof. Let g : (X, B) ----+ Z be a small contraction such that -(K + B) is g
ample. Then -(K +(l-1:)B) is g-ample and (X, (l-1:)B) is klt for 0 < 1: ~ 1. 
Thus the flip exists by (6.11) (cf. (2.32.1)). 

The proof of termination works in the more general case when (X, B) is le 
and is klt outside LB_j. Let (Xo, Bo) = (X, B) and consider a sequence of log 
fl.ips 

g· g"!" 

(Xi,Bi) ~ Zi ~ (X;,Bt) = (Xi+i,Bi+i)-

Let ci c xi be the fl.ipping curve. By (7.1) ci n LBi_j = 0 for all but 
finitely many values of i. Thus by shifting the index i we may assume that 
ci n LBi..J = 0 for every i. We may as well replace xi by xi \ LBi..Ji hence we 
may assume that LBi_j = 0, which implies (cf. (2.13)) that (Xi,Bi) is klt for 
every i. Termination follows from (6.11). 0 

Finally we prove a result about partial resolutions of singularities of three
folds. 
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6.16 Theorem. Let (Z, B) be a threefold Z and a Q-divisor B = L, biBi 
where the Bi have no common components and O ~ bi ~ l. 

Let O ~ d ~ l be arbitrary. Then there is a proper birational morphism 

with the following properties: 
(6.16.1.1) (Z~t,p; 1 (B) +dE) is Q-factorial and log terminal where E is the 

reduced exceptional divisor of p; 
(6.16.1.2) logdiscrep(z~t ,p;1(B) + dE) :2: 1 - d and > 1 - d if LB.J = 0; 
(6.16.1.3) I< + p; 1(B) + dE is p-nef. 
Furthermore, there is a factorization 

such that 
(6.16.2.1) (z~c, q;1 (B) + dF) is log canonical, where Fis the reduced ex-

ceptional divisor of q; 
(6.16.2.2) logdiscrep(z~c,q;-1 (B) + dF) :2: 1 - d; 
(6.16.2.3) I< + q;- 1(B) + dF is q-ample. 

(6.16.3) For fi.xed d, q: z~c --+ Z is unique. 

Proof. Let f: X--+ Z be a log resolution such that J; 1 (B) is smooth. Let D 
be the reduced exceptional divisor. Apply the (f;1 (B) + dD)-MMP over Z. 
By (4.12.1) 

logdiscrep(X, f*- 1 (B) + dD) :2: 1 - d resp. ( > 1 - d if LB.J = 0). 

By (6.15) the program terminates with p : z~t --+ Z. 
In order to obtain z~c we need to apply base point freeness [KMM87,3-1-2] 

to I< + g;- 1 (B) + dE. We are clone if LB.J = 0 and d < l. In the general case 
the required base point freeness is proved in Chapter 8. 

Uniqueness follows from (2.22). □ 
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7. TERMINATION OF 3-FOLD LOG FLIPS 

NEAR THE REDUCED BOUNDARY 

JANOS KOLLAR and KENJI MATSUKI 

In this chapter we prove termination of a sequence of 3-fold log flips near 
the reduced part of the boundary. The role of this result is two fold. First, it 
completes the results about existence and termination of log flips proved in 
Chapters 4-6. Second, it is an essential part of the second proof of log flips. 
(7.1) is slightly more general than the original theorem in [Shokurov91,4.l]. 
Kawamata kindly informed us that Shokurov himself announced the theorem 
in this generalized form in a letter. 

As in Chapter 4, the proof consists of two major steps: 
(I) By considering a f inite set of special discrete valuations associated to 

the flipped curves, we show that after finitely many flips no flipped curve is 
contained in ( the birational transform of) the reduced part of the boundary. 

(II) Then, using the finiteness of the Picard number of the reduced part 
of the boundary, we show that after finitely many flips no flipping curve is 
contained in it. 

7.1 Theorem. Let X be a normal 3-fold and B an effective Q-di.visor such 
that (X, B) is log canonical. Assume that X is Q-factorial. Consider a se
quence of log flips starting from (X, B) = (Xo, Bo): 

(Xo, Bo) --+ (X1, B1) --+ (X2, B2) --+ 

<Po '\. ./ <Pci </>1 '\. ./ <Pi </>2 '\. 
Zo 

where <Pi : Xi -+ Zi is a contraction of an extremal ray Ri with (Kx; +Bi)• 
Ri < 0, and </>; : xt ( = Xi+1) -+ Zi is the log flip. Then after fi.nitely many 
fl.ips, all the fl.ipping curves (and thus all the flipped curves) are disjoint from 
LBi_J, 

Proof. The proof is given in several steps. 

S.M.F. 
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7.2 Definition. The notions of semi log category are explained in Chapter 16. 
Let (X, B) be semi log canonical (16.9). We say that a (not necessarily closed) 
point p E X is a maximally log canonical point of (X, B) if there is a divisor 
E dominating p such that a(E,X,B) = -1. 
For example, the maximally log canonical points of an slc surface (S, D) are 
the following: double curves of S; irreducible components of LD_J; closed 
points where (S, D) is not slt; and singular points of LD_J. 

7.2.1 Proposition. If X is a variety (any dimension) then the number of 
maximally log canonical points of (X, B) is fi.nite. 

Proof. Let/: Y - X be a log resolution of (X, B). (4.12.1) implies that the 
maximally log canonical points are the (general points of) f(Ei 1 n • • • n Eik) 
where Eii C Y are divisors with a( Eii, X, B) = -1. D 

7.2.2 Notation. Let S; = LB;_J and Di = Diffs;(B; - LBi_J). Note that by 
(16.9) (Si, D;) is semi log canonical. Furthermore let 1r; : sr - Si be the 
normalization of Si and let 1rt(K + D;) = K + Dr, Thus Dr= 1rt(D;) + 0; 
where ei C sr is the divisor of double curves. Set Ei = LDr _J. 

7.3 First Reduction Step. Alter fi.nitely many Bips, no Bipping curve con
tains a maximally log canonical point of X or of (Si, D;). 

Proof. If a maximally log canonical point of X is contained in a fl.ipping curve 
then after a flip the number of maximally log canonical points decreases by 
(2.28). Essentially by (16.9), a maximally log canonical point of (S;, Di) is 
also a maximally log canonical point of X. □ 

7.4 Second Reduction Step. Alter fi.nitely many B.ips no Bipping curve 
intersects 1r;(Ei). 

Proof. This is achieved by analyzing the sequence of pairs (sr, Dr). Let 
7Pi : sr--+ sr+i be the induced map. By (7.3) we may assume that no fl.ipping 
curve contains a maximally log canonical point of (Si, Di). In particular, 
Ei is smooth at the indeterminacies of 7Pi, thus it induces an isomorphism 
7Pi : Ei ~ Ei+l· Set E = E1 and let cri: E ~ Ei be the induced isomorphism. 

7.4.1 Claim. Under the above isomorphism 

where Hi is an effective Q-divisor and 

SuppHi = 1r;1 (1ri(E;) n Bipping curve). 
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Proof. Let Ti be the normalization of </>i(Sr). By construction we have mor
phisms 

(7.4.1.1) 
. pt 

S v p, r-,, ' (Sv)+ Sv i --+ .Li f-- i = i+1, 

-(Ksr + Dr) is Pi-ample and Ksr+i + Di+l is Pt-ample. If F is any divisor 
then by (2.28) 

(7.4.1.2) a(F,sr,Dr) :S a(F,Si+i,Di+1), 

and strict inequality holds if 'I/Ji is not an isomorphism at Centersr(F). 
The coefficient of the diff erent can be related to discrepancies as follows. 
Let Wi be a common good resolution of (sr, Dr) and ( sr+ 1, Dr+l). Let 

p E Ei be a point and let p' E Ei C Wi be the corresponding point of the 
birational transform. Since W is a good resolution, there is at most one 
exceptional curve F C Wi intersecting Ei at p' (by further blowing up we 
may assume that Fis exceptional over both sr and sr+l). By (17.2.3) the 
coefficient of pin DiffE;(Dr - Ei) is exactly -a(F,Sr,Dr). Thus (7.4.1.2) 
implies (7.4.1 ). □ 

7.4.2 Corollary. Notation as above. If a fiipping curve intersects 1ri(Ei) 
then it intersects it at a point of 

In order to use (7.4.1) we need two further results: 

7.4.3 Lemma. {Shokurov91, 4.2} Let O < bi :S 1, ni, l EN+ and kij, lj EN. 
Assume that 

(7.4.3.1) 

(7.4.3.2) 

n· -1 L k .. b. 
d · = - 1-- + ~ < 1 

J - ' nj i nj 

l- l ~ l·d· 
p= -z-+ ~T < i. 

j 

and 

Then there are m, mi E N such that 

m - 1 ~ mibi 
p=--+~--

m . m 
i 

Proof. If nj = l for all j with lj ~ l, then this is obvious. Otherwise, there 
exists a unique jo such that nj0 ~ 2 and lj0 ~ 1, for if there were 2 or more, 
then 

l-1 1(1 1) p>--+- -+- =1 - l l 2 2 . 
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Similarly we obtain lj0 = 1. Hence 

7.4.4 Lemma. Fix a sequence of numbers O < bi :S 1 and c > O. Then there 
are only fi.nitely many possible values m, mi E N such that 

Proof. It is easy to see that m :S c- 1 and mi :S c- 1b;1 . □ 

1.4-5 Proof of (1.4). Let B = E bjBj and let Dr= L; d}Dj. By (16.6.4), we 
can write d} in the form (7.4.3.1). Let p be any of the coefficients occurring in 
DiffE;(Dr - Ei)- Then by (16.6.4) pis of the form (7.4.3.2). Thus by (7.4.4) 
there are only finitely many possible values for p. By (7.4.1) 0'7 DiffE;(Dr-Ei) 
is a decreasing sequence of effective divisors on E which is strictly decreasing 
whenever the :flipping curve intersects rr;(E;). Since there are only finitely 
many possibilities for the coefficients, the sequence must stabilize. □ 

7 .5 Third Reduction Step. After fi.nitely many fl.ips no fl.ipped curve is 
contained in S;. 

Proof. By (7.3.2) we may assume that no flipping curve intersects 1ri(Ei)- We 
introduce another version of difficulty (cf. (4.12.3)): 

7.5.1 Definition. Fix a finite set of positive numbers b = {bj}, Let (S,D) 
be an slc surface. Assume first that S does not contain any maximally log 
canonical points (i.e. it is sklt). Let 

In general, if Z C S is the set of maximally log canonical points then let 
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7.5.2 Lemma. Let (S,D) be an slc surface. Then db(S,D) < oo. 

Proof. We may assume that S has no maximally log canonical points. Each of 
the summands in (7.5.1) is finite by (4.12.2). By (7.4.4) we have only finitely 
many nonzero summands. □ 

7.5.3 Lemma. Let 

be a flip. Assume that the flipping curve does not intersect 1ri(Ei), Let 
b = { bj} be the set of coeffi.cients of the irreducible components Bi. Then 

Furthermore, the inequality is strict if St contains a flipped curve. 

Proof. Let Ti = <Pi(Si)- By construction we have morphisms Si --+ Ti -
st = Si+l· Furthermore, -(Ks; + Di) is (Sï/Ti)-ample and K 8 + + Dt is 

(St /Ti)-ample. If E is any divisor then by (2.28) a(E, Si, Di) ~ a(È, St, Dt) 
which shows the first daim. 

Assume that <f>t is not an isomorphism. Let c+ be an exceptional curve 
of </>t. Then by (2.28) and (16.6.7) 

for some m, Tj EN. Thus db(Si, Di) > db(Si+l, Di+i)- □ 

Clearly (7.5.2) and (7.5.3) imply (7.5). □ 

7.6 Fourth Reduction Step. Assume that no 11.ipped curve is contained in 
St = LBt ...J. Then after .i.nitely many 11.ips no 11.ipping curve is contained in 
si= LBi...J-

Proof. Using the notation of (7.5.3) we obtain that Ti ~ st and Si ---t Ti 
contracts a curve. Thus the Picard number of Si decreases after a flip. This 
cannot be repeated infinitely many times. □ 

7. 7 Proof of (7.1). By (7.5) and (7.6) after finitely many steps neither a flip
ping nor a flipped curve can be contained in the reduced part of the boundary. 
As in ( 4.13.3) this implies that the flipping curves are disjoint from the re
duced part of the boundary. This completes the proof. □ 
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8. LOG CANONICAL FLIPS 

SEAN KEEL and JANOS KOLLAR 

The aim of this chapter is to prove the existence of log fl.ips in the log 
canonical case. In (8.4) we extend this to a general base point freeness result 
for log canonical threefolds. 

8.1 Theorem. Let (Y, Â) be log canonical and let g : Y -+ Z be a small 
contraction such that Ky + Â is g-negative. Then the B.ip of g exists. 

Proof. The problem is local on Z. Thus we may assume that Z is a neighbor
hood of a point O E Z which we shrink if necessary without further comments. 
As in (2.34) we may assume that LÂ_J = 0. This somewhat simplifies the ar
gument. 

Let Y'-+ Y be a log resolution of Y. Let Â 1 = Ây, (cf. (2.7)). Apply the 
log MMP to (Y', Â 1)-+ Z. During the program every occurring pair (Y/, ÂD 
is log terminal and Q-factorial. Log fl.ips exist and terminate by (6.15). Thus 
eventually the program stops with f : (X, Âx) ---+ Z such that Kx + Âx is 
f-nef, X is Q-factorial and (X, Âx) is log terminal. 

In general f is not an isomorphism over Z - O. If L C Z - 0 is a curve 
along which (Z, Âz) is not log terminal then fis not an isomorphism over L 
but gives a log terminal model. Therefore 

(8.1.1) 

for suitable mo > O. 
Let h : V -+ X be any resolution and let 

Since Y is le, ai ~ -1 for every i. Furthermore, by (2.23.3) X has the following 
property: 

(8.1.2) if f o h(Fi) = 0 E Z then ai > -l. 

S.M.F. 
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By (2.22.3) we need to show that Ox(n(Kx + ~x)) is generated by global 
sections for some n > O. The usual base point freeness theorem ([KMM87,3-
1-2]) does not apply, since (X, ~X) is not klt. 

Let 8 = L~X _J. We want to modify our model X to achieve that Kx+~x
E8 is f-nef for 1 > E > O. Let p E f(8) be a generic point. Then Spec Op,Z is 
a log canonical surface singularity and f : X --+ Z is a log terminal model of 
Spec Ov,z. From the list of Chapter 3 we see that 8 is negative semidefinite 
on general fi.bers of 8 --+ Z. This implies that a (Kx + ~x - E8)-extremal 
contraction never con tracts a component of 8. 

Let C = J-1(0) (with reduced structure). Choose 1 > E > O. Kx + 
~x - E8 is klt and if B C C is an irreducible component such that (Kx + 
~x - E8) · B < 0 then (Kx + ~x) · B = O. If B C C and B generates 
a (Kx + ~x - E8)-extremal ray then the fl.ip of B is a (Kx + ~x )-flop. 
Therefore condition (8.1.2) still holds after such a fl.ip and any sequence of 
such fl.ips is finite by (6.11). 

Thus ( up to renaming) we may assume that Kx + ~x is le, Kx + ~x - E8 
is klt and f-nef for 1 > E > O. By [KMM87,3-l-2] there is an m1 > 0 such 
that m1(Kx + ~x - E8) is f-base point free. Thus 

m1(Kx + ~x) = m1(Kx + ~x - E8) + m1E8 

is base point free outside Supp 8. Therefore it remains to prove base point 
freeness on 8 itself. 

To this end consider the exact sequence 

0--+ Ox(m1(Kx + ~x) - 8)--+ Ox(m1(Kx + ~x)) 
(8.1.3) 

--+ Oe(m1(Kx + ~x)l8)--+ O. 

Observe that 

m1(Kx + ~x) - 8 = Kx + (~x - 8) + (m1 - l)(Kx + ~x), 

and Kx + (~x - 8) is klt by our assumptions. Thus R 1 f*Ox(m1(Kx + 
~x) - 8) = 0 by [KMM87,1-2-6]. Therefore 

(8.1.4) f*Ox(m1(Kx + ~x))--+ f*Oe(m1(Kx + ~x)l8) 

is surjective. Thus it is suffi.dent to prove that Oe(m1(Kx + ~x)l8) 1s 
generated by global sections for suitable m1 > O. 

Let 8i be the irreducible components of 8. By (8.1.2) we see that Sing 8i 
and 8i n 8j (if:- j) are finite over Z. (Otherwise we would get a divisor with 
discrepancy ~ -1 lying over Sing 8i or 8i n8j.) By (8.1.1) mo(Kx + ~x )18 
is linearly equivalent to a (not necessarily effective) divisor D supported on 
the fi.ber over O E Z. It is also nef, thus by (8.1.5) m2mo(Kx+~x)l8 ~ 0 for 
some m2 > O. By (8.1.4) the constant section of Oe(mom1m2(Kx + ~x )18) 
lifts to a section of Ox(m0m1m2(Kx + ~x)) which is nowhere zero along 
8. D 
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8.1.5 Claim. Let l : 8 --+ C be a proper morphism with connected fi.bers 
from a surface to a smooth affine curve. Assume that e is normal at al] 
generic points of 1-1 (0). Let D be a (not necessarily effective) Q-Cartier 
divisor supported on 1-1 (0). Assume that Dis nef. Then mD ~ 0 for some 
m>O. 

Proof. Let Supp J-1 (0) = UCi and let D = E diCi. By adding a suitable 
multiple of 1-1 (0) to D we may assume that 

D+ ~[f-1 (0)] = Ld~Ci where d~ ~ 0, 

with equality holding for at least one index i. Since D is nef, this implies that 
d~ = 0 for every i. Thus bD ~ -a[J-1(0)]. □ 

We are now ready to put the termination of fl.ips in the following final form, 
due to Matsuki and Mori. 

8.2 Theorem. Let (X, B) be a log canonical threefold. Then any sequence 
of (K + B)-log ilips is .inite. 

Proof. The case when X is Q-factorial and log terminal was clone in (6.15). 
N ext assume that X is le and let 

(Xo, Bo) --+ (X1, B1) --+ (X2, B2) --+ 

(8.2.1) </>o '\. / </>ci </>1 '\. / </>i </>2 '\. 
Zo 

be a sequence of fl.ips. 
Let qo : (Yo, Do) --+ (Xo, Bo) be a Q-factorial log terminal model as in 

(8.2.2). K + Do = q0(K + Bo), thus K + Do is log terminal and not nef 
on Yo / Z0 • There is a sequence of divisorial contractions and fl.ips ( whose 
existence and termination is guaranteed by (6.15)) such that at the end we 
obtain (Y1, D 1) --+ Zo such that K + D1 is log terminal and relatively nef. By 
definition, (Yi, D1) --+ Zo is a weak log canonical model (2.21) of Y0 --+ Z0 • 

Thus by (2.22.3) there is a morphism q1 : Y1 --+ X1 such that K + D 1 = 
qi(K + B1). We can continue as before using Y1 --+ X 1 --+ Z1. This way a 
sequence of fl.ips on X lifts to a sequence of fl.ips and divisorial contractions 
on Yo. By (6.15) the sequence terminates on Y0 , hence the sequence of fl.ips 
(8.2.1) is also finite. □ 

8.2.2 Lemma. Let (X, B) be an le threefold. Then there is a projective 
morphism q : (Y, D) --+ (X, B) such that (Y, D) is Q-factorial, log terminal 
and K + D = q*(K + B). 

Proof. Let f : X' --+ X be a log resolution of (X, B) with reduced exceptional 
divisor E. Apply the (K + J; 1 (B) + E)-MMP on X'/ X. By (6.15) all 
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the steps exist and the program terminates with q : (Y, D) ---► (X, B) such 
that K + D is q-nef. Thus q : Y ---► X is a weak log canonical model of 
(X, B). Since (X, B) is le, it is its own log canonical model, hence by (2.22.3) 
K +D = q*(K +B). □ 

The method of ( 8.1) can be generalized to yield the fini te generation of 
log canonical rings for threefolds (X,~) of log general type. This is the 
"' = 3 part of the Abundance Conjecture for le threefolds. Most of the proof 
involves analysis of semi log canonical surfaces, therefore it should be read 
after Chapter 12. 

If (X,~) is klt then the result is a special case of base point freeness. 
[Kawamata91d] settled the le case under some technical assumptions. 

8.3 Definition. Let X be a proper and irreducible variety over a field. Let L 
be a line bundle on X. We say that L is big if there is an € > 0 such that 

(8.3.2) Let f : X ---► Z be a proper morphism; X irreducible. Let L be a 
line bundle on X. We say that Lis f-big if Lis big on the fi.ber off over the 
generic point of f (X). 

Thus if fis generically finite then every line bundle is /-big. 
(8.3.3) Let (X, B) be proper, irreducible and le. We say that it is of log 

general type if K + B is big. 

8.4 Theorem. Let X be an irreducible threefold and let ~ be an effective 
Q-divisor on X. Assume that K x + ~ is log canonical. Let f : X ---t Z 
be a proper morphism and assume that Kx + ~ is f-nef and f-big. Then 
m(Kx + ~) is f-base point free for suitable m > O. Thus 

00 

L f*Ox(s(Kx + ~)) is a finitely generated Oz-algebra. 
s=O 

Proof. The proof is similar to the proof of (8.1). As a first step we reduce 
the problem to abundance on L~_J. This was already done in [Kawamata91d]. 
Here we present another proof in the spirit of (8.1) which however uses more. 

First we take a log terminal model h: X'---► X to obtain (X',~'). As in 
(8.1), after some contractions and flips we obtain f" : (X'';~") ---t Z such 
that 

(8.4.1) (X",~") is le; and 
(8.4.2) Kx11 + ~" - EL~" _j is klt, /"-nef and /"-big for 1 ~ E > O. 
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(Here we can not exclude the possibility that we contract a component of 
L.6.' _J.) From now on we drop the " from our notation. Let 0 = L.6._J. As in 
the proof of (8.1) we obtain that 

(8.4.3) m 1 (K + .6.) is f-base point free outside Supp 0 for suitable m 1 > 0, 
and 

(8.4.4) f*Ox(m1(K + .6.)) - f*Oe(m1(K + .6.)l0) is surjective. 
Therefore (8.4) is implied by the following (just set S = 0 and .6. = 

Diffs(.6. - 0)): 

8.5 Theorem. Let S be a reduced surface and let .6. be a Q-Weil divisor on 
S. Let f : S - Z be a proper morphism; Z affine. Assume that K s + .6. is 
Q-Cartier, f-nef and semi log canonical. 

Then the linear system lm(Ks + .6.)I is base point free for suitable m > O. 

Proof. Most of the work is clone in Chapter 12 where this is established under 
the additional assumption that Z =point and ( K s + .6. )2 = O. We use the 
notation and terminology of Chapter 12. As in (12.4) we may assume that S 
is semismooth. 

Let D C S be the union of those double curves which are 
(i) either contained in at least one irreducible componet of S on which 

Ks + .6. is f-big; 
(ii) or proper over Z and contained in a nonproper component of S. 
Let p : S - S be the surface obtained by blowing up D. The connected 

components of S are as follows: 
(8.5.1) One (not necessarily connected) proper, smooth and semi log canon

ical surface (X, 0) such that K + 0 is f-big on every component; 
(8.5.2) One (not necessarily connected) proper semi log canonical surface 

(Y1,21) such that (K + 21)2 = O. 
(8.5.2) One (not necessarily connected) surface ½ whose irreducible com

ponents are not proper and the restricion of K + .6. is not f-big on any 
component. Clearly, ½ satisfies the assumptions of (12.4.7.1), where Bis the 
normalisation of f (½). 

Let Y = Y1 U Y2. Let Dx = p-1(D)I U Xi and Dy = p-1(D)IY. We can 
decompose D = D 1 U D 2 U D 3 where D 1 is the union of those curves whose 
preimages under p are both in X, D 3 is the union of those curves whose 
preimages under p are both in Y, and D 2 are the rest. Together with the 
morphism p these fit in the following diagram: 

Dx = D3c U D~ D} 

2 : 1 l bir ~ / bir 

Dl D2 
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where the arrows marked bir are birational. Finally let Cx = UL8i_J· 
By (12.1.1) and (12.4.7.1) abundance holds for (Yi,3i)- For the other 

components we use the following: 

8.6 Lemma. Let (X, 8) be an irreducible and log canonical surface and 
f : X --t Z a proper morphism; Z affine. Assume that K + 8 is f-nef and 
f-big. Let C = L8_J. Let m > 0 be such that m(K + 8) is Cartier and let 

Si E H 0 (C, O(m(Kx + 8)IC)) 

be sections without common zeros. Let x EX be an arbitrary point. 
Then there is an r > 0 and a section s E H 0 (X, O(rm(Kx + 8))) such 

that 
(8.6.1) s(x) =JO; 
(8.6.2) the image of s under the restriction map 

res: H 0 (X, O(rm(Kx + 8))) --t H 0 (C, O(rm(Kx + 8)IC)) 

is one of the sections sr. 
Proof. Let us prove first that k(K + 8) is base point free for some k > O. As 
before, we may assume that K + 8 - EC is kit and nef for 1 ~ E > O. Thus 
k( K + 8) is base point free outside C and we are reduced to establishing base 
point freeness for (C, (K + 8)IC). (K + 8)IC = Kc + Diff(8 - C), hence 
base point freeness holds by (12.2.11). Thus we obtain base point freeness for 
k(K + 8). This gives a factorisation 

h I I !' f: (X,8)--+ (X ,8)--+ Z, 

such that k(K +8') is an !'-ample Cartier divisor and k(K +8) = h*(k(K + 
8')). 

Assume first that h(x) = h(c) for some c E C. Choose Si such that si(c) =J 
O. As in (8.1.4) res is surjective, thus there is s E H 0 (X, O(m(Kx +8))) such 
that res(s) = Si. Since s pulls back from X', we conclude that s(x) =JO. 

If h( x) and h( C) are disjoint, choose r large enough so that in the following 
diagram the horizontal arrows are surjective (C(x) is the residue field of x E 
X): 

J;O(rm(K + 8')) ---t C(x') + J;O(rm(K + 8')1h(C)) 

1~ 1~ 
f*O(rm(K + 8)) C(x) + f*O(rm(K + 8)IC). 

Thus any of the srk can be lifted to a suitable s. □ 
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(8. 7) Proof of (8.5). By (12.1.1) and (12.4.7.1) O(m(Ky + 3)) is generated 
by normalised sections Œ i for sui table m > O. These restrict to normalized 
sections 

Thus Œ i ID} induces a normalised section 

Pi E H 0 (D2x, O(mp*(Ks + ~)ID'i )). 

On D}. we eau choose normalised sections 

which have no common zeros (if necessary we may replace m by 12m). By 
(12.2.11) Pi and p*rk extend to a normalised section 

sik E H 0(Cx, O(mp*(Ks + ~)ICx)), 

and we may assume that the sik have no common zeros (this may require 
several extensions for each pair (j, k) but we ignore this in the notation). 

Finally by (8.6) we can extend these to sections 

sjk E H 0 (X, O(mrp*(Ks + ~))) 

such that the sjk have no common zeros (we may assume that r does not 
depend on j, k ). By construction sjk and Œj glue together to sections of 
O(mr(Ks + ~)) without common zeros. □ 
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9. MIYAOKA'S THEOREMS ON THE 

GENERIC SEMINEGATIVITY OF Tx 

AND ON THE KODAIRA DIMENSION 

OF MINIMAL REGULAR THREEFOLDS. 

N.I. SHEPHERD-BARRON 

9.0 Introduction 

In this chapter the aim is to prove the following results of [Miyaoka87a,88a], 
concerning normal complex projective varieties X. 

9.0.1 Theorem. If X is not uniruled, then O_\. is generically semipositive 
(equivalently, Tx is generically seminegative). 

In recalling what this means, we use the following notation, which will be 
fixed throughout this chapter: 

X : a normal projective n-fold. 
Hi,,,. ,Hn-1,H: ample divisors on X. 
{Cthes : the complete family of curves of the form D1 n ... nDn-t, where 

Di E lmiHi I and mi ~ O. 
C : a geometric generic member of {Ct}. 
Then O_\. is generically semipositive if every torsion free quotient of 0.\-lc 

has nonnegative degree. 

This result follows immediately from the next result. 

9.0.2 Theorem. Assume that there is a subsheaf E C Tx such that c1 (E) • 
C > O. Then there is a saturated F C Tx such that c1(F) · C > 0 and there 
is a rational curve M through a generic point x of X such that 

(i) Mis smooth at x, 
(ii) TM(x) "-t F(x) and 
(iii) (H · M) ~ 2n(H · C)/(c1(F) · C). 

This result can be extended. Define a variety to be rationally chain con
nected if two general points on it can be joined by a chain of rational curves. 

S.M.F. 
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9.0.3 Theorem. Assume the hypotheses and notation of (9.0.2). Then the 
sheaf :F defi.nes a foliation on X whose leaves are compact and are rationally 
chain connected varieties. 

Remark. By abuse of language, we confuse the notions of foliation and inte
grable distribution, and we say that a foliation with singularities has compact 
leaves if the closure of each leaf is a projective variety that contains the leaf 
as a Zariski open subset. 

One of the main consequences of (9.0.1) concerns the second Chern class. 
Recall that X is minimal if it has only terminal singularities and Kx is nef. 

9.0.4 Theorem. Suppose that X is minimal and that p : Y -+ X is a 
resolution. Then c2(Y) · p* H1 · · · · · p* Hn-2 2'. O. 

Apart from (9.0.1) to prove (9.0.4) we need a consequence of Bogomolov's 
theorem on unstable vector bundles, which is proved in Chapter 10. 

9.0.5 Theorem. Suppose that fis a reflexive sheaf on Y. Put :F = (p*f) vv, 
and assume that :Fis generically semipositive and that c1 (:F)(= p*c1 (f)) is 
nef. Then c2(f) · p* H1 · · · · · p* Hn-2 2'. O. 

Then we deduce 

9.0.6 Theorem. If X is a minimal regular threefold, then t.(X) 2'. O. 

In the course of proving this, we shall assume the corresponding result for 
irregular threefolds. For this, we refer to [Ueno82] and [Viehweg80]. 

As we said above, all of these theorems are due to Miyaoka, and indeed 
our proofs of (9.0.4) and (9.0.6) follow his very closely ( except for a slightly 
slicker use of Donaldson's theorem [Donaldson85] on stable bundles with triv
ial Chern classes, which was suggested by conversations with Kollar and 
Kotschick). However, Miyaoka's proof of (9.0.2) uses his theory of defor
mations of morphisms along foliations [Miyaoka87a], whereas our proof seems 
to be considerably simpler. 

9.1 Foliations 

In this section we prove 

9.0.2(bis) Theorem. Assume that :F ~ Tx is a subsheaf such that :Fis a 
piece of the Harder-Narasimhan fi.ltration of Tx and µmin (:Fic) > O. (This 
notation is explained in (9.1.1).) 

Then through a geometric generic point x of X, there is a rational curve 
M such that 

(i) M is smooth at x, 
(ii) TM(x) Ç :F(x) and 
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(iii) (H · M) ~ 2n(H · C)/(c1 (:F) · C). 

To prove this we carry out the following steps: 
(1) Show that :F is closed under Lie bracket. (2) Reduce X modulo p. (3) 
Show that :F is closed under Lie bracket and taking pth powers, for p ~ O. 
( 4) Divide X by :F, giving a purely inseparable morphism p : X -+ Y = X/ :F. 
(5) Note that (p*c1 (Y) · C) > 0 for p ~ O. (6) Find rational curves on Y. (7) 
Pull them back to rational curves on X. (8) Lift back to characteristic zero, 
and check the conclusions of (9.0.2(bis)). 

9.1.1 Sorne facts about vector bundles 
We collect here, without proofs, some well known definitions and theorems 

about vector bundles. (See e.g. [Seshadri82, Part 1] for an introduction over 
curves and [Siu87, Chapter 1] for the higher dimensional properties.) 

Let g denote the genus of the curve C above. 
9.1.1.1 Suppose that Eisa vector bundle on C. Write µ(E) = deg(E)/rk(E). 

Then there is a unique filtration (the Harder-Narasimhan filtration or H.-N. 
filtration) of E 

0 = Eo C E1 C ... C Er = E 

such that if Yi= Eï/Ei-1, then Yi is a semistable vector bundle and 

µ(91) > · • • > µ(Çr)

Write µ(91) = µmax(E) and µ(Çr) = µmin(E). 
9.1.1.2 If A and B are vector bundles on C and µmin(A) > µmax(B), then 

Hom(A, B) = O. 
9.1.1.3 µ(A® B) =µ(A)+ µ(B) andµ(/\ 2 A)= 2µ(A). 
9.1.1.4 (char= 0) If A and B are semistable, then so are /\2 A and A@B. 
N.B. In characteristic p > 0, tensor bundles of semistable bundles can be 

unstable. 
9.1.1.5 For any vector bundle E on C, the tensor product E ® O(A) is 

generated by its sections if A E Pic C with deg A > 2g - 1 - µmin ( E). 
9.1.1.6 Given a general point x of IP'( E), there is a section C' of IP'( E) passing 

through x, where C' corresponds to a surjection E-+ C with CE PicC and 

degC = degE + (rkE -1) · '(2g - µmin(E))7. 

This follows immediately from (9.1.1.5), by considering the tautological linear 
system on a suitable IP'(E ® O(A). 

9.1.1.7 [Mehta-Ramanathan82] If Eisa torsion-free sheaf on X, then there 
is a unique filtration (the Harder-Narasimhan filtration) 

0 = Eo C ... C Er = E 
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whose graded pieces are torsion-free and which restricts to the Harder-
Narasimhan filtration of l'lc (cf. [ibid, Introduction and 6.1]). 

9.1.1.8 If X-+ Sis a family of varieties, where Sis a scheme of finite type 
over a field or excellent Dedekind domain, and l' is a torsion-free sheaf on X, 
fiat over S, then the points s E S such that l's is a stable (resp. semistable) 
torsion-free sheaf on Xs form an open subset of S. 

9.1.2 Foliations in positive characteristic 

AU we need is what follows. For most of the proofs, we refer to [Ekedahl87], 
see esp. [ibid,2.4,3.4,4.2]. 

9.1.2.1 Proposition. Given a normal variety X in char. p > 0, there is a 
one-to-one correspondence between 

(A) factorizations X ~ Y ~ x<1) of the geometric Frobenius morphism 
Fx: X-+ X(l), where degp = pr, and 

(B) saturated coherent subsheaves :F '-+ Tx such that rk:F = r, :Fis closed 
under Lie bracket and :F is closed under pth powers. □ 

Such an :Fis a 1-foliation. Write Y= X/:F. (Given :F, we have Oy = Of, 
the algebra of fonctions annihilated by :F. Given p, we get :F = ker dp.) If 
X is smooth, then Y is smooth if and only if :F is a subbundle of Tx. 

9.1.2.2 Proposition. Suppose that :F '-+ Tx is a saturated subsheaf Then 
:F is a 1-foliation if 

(i) Homou(/\2 :F, Tx/:F) = 0 and 
(ii) Homou(F*:F, Tx/:F) = 0, 
where F is the absolute Frobenius and U is the locus where both X is 

smooth and :F is a subbundle. □ 

9.1.2.3 Proposition. Suppose that :F '-+ Tx is a 1-foliation. Put Ç = 
Tx/:F, and let p: X-+ Y= X/:F be the quotient by :F. Then p*c1 (Y) = 
p · c1(:F) + c1(9). 

Proof. We have a factorization of Fx as in (9.1.2.l(A)) and exact sequences 

0 -+ :F -+ Tx -+ Ç -+ 0, 

0 -+ A-+ Ty -+ B -+ 0, 

say, where Ç ~ im(Tx -+ p*Ty) = p* A and B ~ im(Ty -+ a*T xcl)) = a* :;:< 1). 

(X and X(l) are conjugate k-varieties; if Z is a sheaf on X, then z(i) is its 
conjugate on X(l) .) So 
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since c1(Fxz<1)) = p · c1(Z) for any sheaf Z on X. 0 

9.1.3 Proof of (9.0.2(bis)) (first step) 
We suppose given 

0 ---+ F ---+ T x ---+ 9 ---+ 0 

such that Fis a term in the H.-N. filtration of Tx, and µmin(Flc) > 0 (so 
that in particular, ( c1 ( F) · C) > 0). 

9.1.3.1 Lemma. (char. = 0) Fis closed under Lie bracket. 

Proof. Suppose that A1 , ... , Am are the composition factors in the H.-N. 
filtration of Fic, with µ(A1) > ... > µ(Am)- Then the composition factors 
in the H.-N. filtration of f/ Fic are ail of the form Aï 0 Ai or /\ 2 Aï, so 
that µmin(/\ 2 Fe)= 2µmin(Flc). Hence µmin(/\ 2 Fe)> µmax(Qlc), so that 
Hom(/\2 Flc,9lc) = 0 and then Hom(/\2 F,9) = O. □ 

Now reduce modulo p. (This will hold until the end of (9.1.3).) 

9.1.3.2 Lemma. (char= p > 0) Fis closed under Lie bracket. 

Proof. Immediate from (9.1.3.1), by specialization. □ 

To prove that F is closed under pth powers, it would be enough to know 
that F* Fic is semistable. Unfortunately, this need not be true. However, the 
following result will suffice. 

9.1.3.3 Proposition. (char= p > 0) Suppose that & is a semistable vector 
bundle of rank r over a curve C of genus g, such that F* & = Ê, say, is unstable. 
Then 

µmax(Ê) - µmin(E) '.S (rr - 1)(2g + l)r/(r - 1). 

([Lange-Stuhler77] have already found such a bound when r = 2.) 

Proof. Recall first that F*& = Fêf(l)_ Suppose that 

O ---+ A ---+ Ê ---+ B ---+ O 

fits into the H.-N. filtration of Ê. So µmin(A) > µmax(B). Put lP\ = lP'(B), lF = 
lP'(Ê), lP' = 1P'(&(1)). Then we have a commutative diagram 

lP'1 lP' 
p 

lP' 

~1 1~ 
C 

Fe 
c(l) 
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where the square is Cartesian and t is the natural inclusion. 
Let Œ denote the composite JF1 ---+ C. 
By (9.1.2.2), there is a line subbundle 1t of Tp which is a foliation, such 

that lF = P/1t. Since the square is Cartesian, we see that 1t ---+ ir*Tc is an 
isomorphism. 

Now if 1tlll'i c......+ Tll'1 , then 1tlll'i is a nonsingular foliation on lF1, and lF1 
maps p-to-1 to its image in JF, giving a subscroll of lF that destabilizes [(l). 
Hence 1tlll'i c......+ Nll'i/W'' so that 

By (9.1.1.6), there is a section C' c......+ lF1 in general position such that 

Restricting © to C', we get TC' c......+ ( Oll'1 ( 1) 1 C') ® Av. Hence 

Therefore 

2 - 2g::; deg(B) + (rk(B) - 1)(2g + 1 - µmin(B)) - µmin(A), 

0::; rk(B) · (µ(B) - µmin(B) + 2g + 1) + µmin(B) - µmin(A), and 

µmin(A) - µmin(B) ::; r · (µmax(B) - µmin(B) + 2g + 1). 

Let 
µmax(È) = µ1 > µ2 > • • • > µm = µmin(È) 

be the slopes of the composition factors in the Harder-Narasimhan filtration 
of è, so that also µmin(B) = µm, 

Put Mi = µi - µm. Then we get 

which leads by descending induction on i to 

M1 ::; (rr - l)r(2g + 1)/(r - 1), 

as stated. □ 

9.1.3.4 Remark. This bound is clearly crude. Its virtue, however, is that it is 
independent of p. 
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9.1.3.5 Proposition. Fis p-closed if p » O. 

Proof. µ(F*Flc) = p · µ(Fic) ~ p. Then if p » 0, we have, by (9.1.3.3), 
µmin(F* Fic) > µmax(9lc), Hence Homox (F* F, Ç) = 0 for p » O. □ 

Now let p : X -+ Y = X/F be the quotient by F (p » 0). There is 
GE Pic Y such that p*G = pH, and Gis ample. By (9.1.2.3), 

Put (C • c1 (F)) = 1 . For all /3 with O < /3 < 1 , we have (C · p*c1(Y)) ~ /3 · p 
for p » O. Let f : C -+ Y be the composite. Then 

dimu1 Mor(C, Y) ~ /3 · p + n(I - g), 

so that for every b EN with /3 · p + n(I - g) - bn > 0 and for every subscheme 
B C C of length b, we can deform f nontrivially, keeping B fixed. 

Then by [Miyaoka-Mori86, Theorem 4], through a general point of f(C) 
there is a rational curve L such that 

G · L ~ 2deg(f*G)/(/3p- g). 

(N.B. [Miyaoka-Mori86, Theorem 4] is stated for morphisms f : C -+ X 
where X is projective and smooth. However, the proof given there carries 
over verbatim to the case where X is allowed to be singular, provided that 
f ( C) lies in the smooth locus of X.) 

Hence for any a with O <a< /3, we have 

L · G ~ 2n · deg(f*G)/ap = 2n(C · H), 

independently of p (provided that p » 0). 
Since p is purely inseparable, L pulls back to give a rational curve M 

through a general point x of X. □ 

9.1.3.6 Lemma. M-+ Lis purely inseparable. 

Proof. If not, then M -+ L is birational. Then 

p(M · H) = M · p*G = L · G ~ 2n(C · H)/a. 

This is absurd for p » O. □ 
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9.1.3.7 Lemma. M · H S 2n(H · C)/a. 

Proof. By (9.1.3.6), p(M · H) = M · p*G = p(L · G). Then M · H s 2n(C. 
H)/a. □ 

9.1.4 Conclusion of proof of (9.0.2(bis)) 
By (9.1.3.7) and the properties of the Hilbert scheme, through a gen

eral point x of X (in characteristic zero) there is a rational curve M with 
M · H S 2n(C · H)/a. 

This holds for alla with O < a< C · c1 (F), and so 

M · H S 2n(C · H)/(C · c1 (F)). 

The final thing to check is that TM(x) c.....,. F(x) for general x E M. This can 
be checked after reduction modulo p, for all p ~ 0, and now it is equivalent 
to (9.1.3.6) □ 

9.1.5 Proof of (9.0.2). 

Given E c.....,. Tx with c1(E) · C > 0, we certainly have µmax(Txlc) > O. 
Hence we can take as F any term in the Harder- Narasimhan filtration of Tx 
such that µmin(Flc) > O. D 

9.1.6 Compactifying the leaves of F. 
The classical theorem of Frobenius et al. shows that, given F c.....,. Tx closed 

under Lie bracket, the leaves of F exist locally analytically away from the 
singularities of X and of F. That is, locally analytically there is a morphism 
p : X --+ Y with F = ker dp. In general the leaves are not compact; however, 
we now show (9.0.3) which says that if F is positive in the above sense of 
Miyaoka, then the rational curves that have been constructed tangent to F 
can be bundled together to give compact leaves of F. 

Proof of (9.0.3). Consider the family {Mt} of rational curves tangent to F 
constructed above. Pick a geometric generic point ~ of X. Define inductively 
an ascending chain of subvarieties ¼ of X, as follows: 

V0 = {ç}, and for i > 0 ¼ is an irreducible component of the scheme swept 
out by those curves Mt passing through a general point of ¼-1-

Let m denote the least value of i such that ¼ = ¼+i, and put V m = V. 

9.1.6.1 Lemma. V is tangent at its generic point to F. 

Proof. V is covered by curves Mt, so that if 'f/ is a geometric generic point 
of V the generic curve Mt through 'f/ is smooth there, and the tangent lines 
TM, ( 'f/) sweep out a Zariski open subset of the tangent space Tv ( 'f/). Since 
TM, ('fJ) C F('fJ) for all t, it follows that Tv('fJ) C F('fJ) also, as stated. □ 
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9.1.6.2 Lemma. There is a rational map u : X -+ Z such that dimZ < 
dimX and kerdu(ç) c F(ç). 

Proof. By construction, there is a unique subvariety V as described above 
passing through ç. Sin ce the Hilbert scheme of X has only countably many 
components and the field C is uncountable, there is an irreducible algebraic 
family of subvarieties {Vz}zez in X that covers X, with the property that 
there is a unique member V through ç. Hence there is a rational map u : 
X-+ Z sending each point to the subvariety through it. By (9.1.5.1) we have 
ker du(ç) C F(ç), as required. □ 

Consider the map u : X -+ Z, and say that dim X - dim Z = r. If 
ker du = F at ç, then there is nothing to do. If not, then there is an exact 
sequence 

0 -+ A -+ u*Tz -+ Ç -+ 0, 

where A= F/kerdu and Ç = Tx/F. 
Define W = D 1 n ... n Dm, where Di El miHi I is general, so that W 

is generically finite over Z and µmin(A lw) > max{µmaxW lw ), O}. Let Q 
be the Galois closure of W -+ Z and let C (resp. M) be the pull-back of 
A lw (resp. Tz) to Q. It is clear from consideration of the slopes of these 
sheaves ( restricted to the inverse image of C) that C is a Galois invariant 
subsheaf of M. Hence A descends to a subsheaf 1{ of Tz and the curves {Ct} 
forma covering family of curves on Z whose general member misses any given 
codimension two subset of Z such that, letting f : C -+ Z be the composite 
of C '----+X-+ Z, we have µmin(f*rl) > max{µmax(f*(Tz/1i)), 0}. 

We can now follow (9.1.3) and (9.1.4) to find rational curves on Z that 
are tangent to H, so that a trivial inductive argument completes the proof of 
(9.0.3). □ 

9.1.7 (9.1.3.3) allowed us to avoid the following issue. Suppose that X is a 
normal ( or smooth) n-dimensional projective variety in char. p > 0 and that 
f; is a reflexive ( or locally free) sheaf on X of rank r ::; n. Then it seems likely 
that for f; to be semistable while F* [ is unstable should impose strong condi
tions on X; e.g., maybe X should be uniruled. The exact meaning of stability 
here is deliberately unclear, but when r = n = 2 and instability is taken in 
Bogomolov's sense, then results along these lines have been established and 
used in [Shepherd-Barron91]. However, when n 2:: r 2:: 2 this is not known. 

9.2 The nonnegativity of the Kodaira dimension for regular min
imal threefolds 

Throughout this section, X will denote a minimal threefold of index r and 
irregularity q(X) = O. X has isolated singularties. We shall fix a resolution 
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p: Y-+ X such that p- 1 is an isomorphism over the smooth locus x 0 of X. 
Our aim is to prove (9.0.6), so that we may assume that pg(X) = O. Hence 
x(Ox) ~ 1. 

Theorem 9.3. (i) c2(Y) · p* H ~ O. (That is, c2(Y) is pseudo-effective.) 
(ii) c2(Y) · p* D ~ 0 for all nef Q-divisors Don X. 

Proof. (i) Put F = (pS2t,) vv. Since X is not uniruled, by the main result 
of [Miyaoka-Mori86], (9.0.1) shows that Fis generically semipositive, while 
c1 (F) is nef by definition. It is shown in (10.12) that now c2 (Y) • p* H ~ 0, as 
required. 

(ii) D is a limit of ample divisors, so that (ii) follows from (i). □ 

Recall the Riemann-Roch formula, where n = 0( mod r): 

x(Y, p*O(nKx)) 

2n3 
- 3n2 

( *K )3 n ( * ) ( 2 ( )) ( ) = 12 P x + 12 p Kx · Ky + c2 Y + x O x 

2n3 - 3n2 n 
= 12 Ki,+ 12 Kx · (Kl + p*c2(Y)) + x(Ox) 

~ x(Ox) ~ 1. 

Proof of {9.0.6). We shall consider various cases separately: 
(1) Kl "1- o. 
(2) Kx °i= 0, K5( = 0 and rrr1g(X0 ) is finite (X 0 being the smooth locus of 

X). 
(3) Kx "1- 0, Kl- = 0 and 1rr1g(X0 ) is infinite. 
(4) Kx = O. 

Case (1): Fix a smooth ample divisor Hon X. Taking cohomology of 

0-+ O(nKx)-+ O(nKx + H)-+ On(nKx + H)-+ 0 

gives an exact sequence 

H 1(X, O(nKx + H))-+ H 1(H, On(nKx + H)) 

-+ H 2 (X, O(nKx))-+ H 2 (X, O(nKx + H)). 

If H is suffi.ciently ample, then the first and last terms vanish, giving 

Assume that these groups are nonzero; then Serre duality on H gives 
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However, On(I<x) is nef and big, so that by the Kodaira-Ramanujam van
ishing theorem H 1 (H, On(-(n - l)I<x)) = O. 

Hence H 2 (X, 0( nI< x)) = O. Sin ce Ri p* Oy = 0 for i > 0, we get that 
H 2 (Y, p*O(nI<x )) = 0, and R-R. gives Pn(Y) = Pn(X) ~ 1. 

Case (2): Let a : X ----+ X be the finite cover inducing the universal algebraic 
cover of x 0 , with X normal. J{ x = a* I<x, thus Xis minimal, and it is enough 
to show that ,,;(X) ~ O. Hence we may assume that 71"~1g(X0 ) = 1. 

Again let H be a smooth ample divisor on X. Then 11"~1g(H) = 1, by 
[Grothendieck68]. As in case (1), we can assume that H 2 (X, O(nI<x)) =f. O. 
So by Serre duality, there is a nonsplit extension 

0----+ O(I<x)----+ E----+ O(nI<x)----+ O. 

Assume that E is H-stable. Then if deg H ~ 0, Eln = :F, say, is H
stable. Consider :F@ ;:v = End :F = Ç, say. Ç is polystable (i.e., a 
direct sum of stable bundles of the same slope ). We have c1 (Ç) = 0 and 
c2 (Ç) = 4c2 (:F) - c1 (:F)2 = 0, since I<} · H = O. Then by a theorem of [Don
aldson85], Ç is induced from a representation of 71"1 ( H). Since 11"~/g ( H) = 1 and 
finitely generated subgroups of complex linear groups are residually finite, this 
representation is trivial. That is, Ç is trivial. Hence H 0 (End :F) = 4, so that, 
by the Cayley-Hamilton theorem, :F has a nonzero nilpotent endomorphism. 
This, however, contradicts the H-stability of :F. 

Hence E is not H-stable. So there is an exact sequence 

which destabilizes E; then the composite arrows A----+ O(nK) and O(I<)----+ B 
are nonzero. 

We have Avv = O(A) and Bvv = O(B) with A,B Weil divisors on 
X. Put Ain = a, BIH = b, HIH = h and KxlH = k. We obtain that 
a+ b = (n + l)k, h · (a - b) ~ 0 and a· b::; n · k2 = O. 

Suppose that (a - b) 2 > O. Then (a - b) E C++(H), the positive cone of 
H, so that h0 (0(m(a - b))) = O(m2 ) for m ~ O. Since b- k and nk - a are 
effective, we get 

h0 (0(m(n - l)k)) = O(m2 ) for m ~ O. 

However, k is nef and k2 = 0, so this is impossible. Hence (a - b)2 = O. 
Since O(a) ,- O(nk) and O(k) ,- O(b), we get O(a - b) ,- O((n - l)k). 

Since k2 = 0 and k is nef, we find k • (a - b) = O. Since k and a - b both 
lie in the closure of C++(H), the index theorem gives Q • k = Q • (a - b) 
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m NS(H) ® Q. Since 1rr19 (H) = 1 and Weil(X) '--+ Pic(H), it follows that 
Q · Kx = Q · (A - B) in Weil(X) ® Q. 

There is a primitive element DE Weil(X) such that A~ aD, B ~ f3D 
and Kx ~ K,D for some a,/3,K, E Z. Since O(A) '--+ O(nKx) we obtain that 
h0 (0(nK, - a)D) > 0, hence Pni<,-a(X) > O. 

Case (3): By the proof of (6.7.2) 1rrlg,loc(X, P) is finite. (This is actually 
true for any isolated 3-fold canonical singularity.) Hence finite étale Galois 
covers .X0 of X 0 of sufficiently high degree extend to varieties X that factorize 
as 

- f3 Q 

X --+ X1 --+ X 

where a is of bounded degree and is étale over X 0 , X 1 is minimal and /3 is 
étale. 

Since it is enough to show that K,(X1) 2:: 0, we may assume that X= X 1, 
i.e., that 1rr19 (X) is infinite. Also, we may assume that all these finite covers 
are regular, since irregular minimal 3-folds are known to have K, 2'.: O. 

Replacing X by X, we can assume that x(Ox) 2:: 4. Fixing a resolution 
p: Y -t X, we get h0 (0}) 2:: 3. Choosing three linearly independent sections 
in H 0 ( O}), we get a homomorphism 1 : O} -t O}. Say rank 1 = r, and let 
& denote im 1 . Since O} ® 0( -Ky) ~ Ty, Theorem 1 gives 

for all ample H, L E Pic(X) ® Q. Since Ky · p* H · p* L = Kx · H · L, we see, 
letting L -t Kx, that 

since Ki, = O. But c1 ( &) is effective, and so 

Since h0 (0(c1(&))) 2:: 3, we can write lc1(&)I = B + IMI, where IMI has no 
fixed component and dim IMI 2:: 2. We get M · p* Kx · p* H 2'.: O. 

Suppose that H is sufficiently ample and that S is a general member of 
IP* Hl. Then by the Hodge index theorem on S, we get Q ·Mis= Q · (p* Kx) 
in NS(S) ® Q. Since q(X) = 0, it follows that m · p*M ~ n · Kx for some 
m, n E N, and so K,(X) 2:: O. 

Case ( 4): Since q(X) = 0, we have I Tors Pic(X)I · r Kx ~ 0, and so K,(X) 2:: 
o. □ 
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10. CHERN CLASSES OF Q-SHEAVES 

GABOR MEGYESI 

In this chapter we introduce the notions of Q-varieties, Q-sheaves, Chern 
classes for Q-sheaves, and we extend some results, such as the condition for 
semistability and the Bogomolov-Miyaoka-Yau inequality c? ~ 3c2, from 
smooth varieties to Q-varieties. One of our main aims is to calculate the 
Chern classes of the Q-sheaves of log differentials. Kawamata's original ap
proach was more analytic, using Chern forms; we take a different, algebraic 
approach. This also enables us to define Chern classes for Q-sheaves in gen
eral, not just Q-vector bundles. 

We work over an algebraically closed field of characteristic O throughout. 

10.1 Definition. [Mumford83, §2.] A Q-variety is an irreducible, normal, 
quasiprojective algebraic variety X with only quotient singularities, together 
with a finite atlas of charts 

Xa 

Pcx lia/Ga 
/p~ 

Ua 

where Ua is a Zariski open subset of X, X = UaUa, p~ is étale, quasifinite, 
Galois, surjective, and finite in a neighbourhood of any singular point, Xa 
is smooth and quasiprojective, Ga is a finite group acting faithfully on Xa, 
freely in codimension one, so that Xa --+ Xa/Ga is finite, Galois and étale in 
codimension 1. We also require the compatibility condition that the natural 
projections from the normalisation Xaf3 of Xa xx Xf3 to Xa and Xf3 should 
be étale. 

X can also be constructed globally as the quotient of a quasiprojective 
variety X by a finite group. Take a Galois extension of the fonction field k(X) 
containing all the fonction fields k(Xa), and let X be the normalisation of X 
in this field. Then G = Gal(k(X)/k(X)) acts faithfully on X, and X= X/G. 

S.M.F. 
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Let p be the projection morphism p: .X -t X, and Xa = p- 1 (Ua)- We have 
the following diagram 

X:J Xa 

qal ia/Ha 
./~ 

p Xa 

PJ ia/Ga 1 /p~ 
X :J Ua, 

where Xa is open in .X, H~ '.5 Gis the stabilizer of Xa as a set, Ha <J H~ 
with Ga= H~/ Ha. 

This global cover X constructed above need not be smooth in general. 
However, in the case most important for us, that of surfaces, .X is always 
Cohen-Macaulay, because a normal surface is Cohen-Macaulay; we need this 
fact later. 

10.2 Definition. (cf. [Mumford83, §2.]) A Q-sheaf on a Q-variety X is a 
coherent sheaf on X together with a collection of Ga-linearized coherent 
sheaves Fa on the Xa, such that p':;(F lu0 ) = F<;0 , with isomorphisms 
Fa ®ox0 Ox013 ~ F(3 ®ox 13 Ox013 , satisfying the natural compatibility con-

ditions on triple overlaps. The Fa pull back to coherent sheaves on the Xa 
with compatible H~ actions, so they glue together to a coherent sheaf f: on 
.X with G action, and F = j:G. 

F is Q-locally free or a Q-vector bundle if all the Fa are locally free. A 
sequence E -t F -t Ç of Q-sheaves is said to be Q-exact if the corresponding 
sequence Ea -t Fa -t 9a is exact on each Xa. 

A subvariety Y of a Q-variety X need not be a Q-variety in a way compat
ible with the Q-variety structure of X; even if Y is smooth and irreducible, 
its cover Ya = p;1 (Y luJ C Xa may be singular or disconnected. Y is still 
the quotient of Ya by Ga; the group action, however, need not be free in 
codimension 1 any more. Considering the reduced scheme structure on the 
Ya, the O(Ya)red define a Q-sheaf structure on Oy. We can define a Q-sheaf 
on Y to be a coherent sheaf F on Y together with a collection of coherent 
sheaves Fa on the Ya with a Ga action, such that FIYnu0 = F<;0 and the Fa 
satisfy the same compatibility condition as required for a Q-sheaf on X. 

1 O. 3 Examples. ( i) F = ü1, is a Q-sheaf, with Fa = 01,0 • 

( ii) If X is a surface with quotient singularities and C C X is a curve, 
then Ic = 0( -C) can be given a Q-vector bundle structure by setting 
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F 0 = (Iqu,. • Ox,.) vv. There is also a short Q-exact sequence of Q-sheaves 
O --+ 0( -C) --+ 0 --+ Oc --+ O. 
( iii) If (X, B) is a log canonical surface, where X has only quotient singular
ities, then Ô\(log B) exists as a Q-vector bundle. Let C0 = p-;; 1 (B lu,.). By 
the classification of Chapter 3, there are three possibilities in the neighbour
hood of a point of C0 • 

(a) (X0 ,C0 ) is analytically isomorphic to (A2 ,x = 0), G0 ~ Zn acting by 
(x, y)--+ ((x, (ay), where ( is a primitive n-th root of unity, (a, n) = 1, 

(b) (X0 , C0 ) ~ (A2 , xy = 0), G0 ~ Zn acting by (x, y)--+ ((x, (ay), or 
(c) (X0 , C0 ) ~ (A2 , xy = 0), G0 is the binary dihedral group of order 4n 

acting by (x,y)--+ ((x,(ay) and (x,y)--+ (-y,x). 
In each case CO has normal crossings, therefore F O = 0\ (log CO ) is a locally 
free sheaf, so Ô\(log B) is Q-locally free. 

Considering the normalization C~ of C0 , we see that the G0 action ex
tends naturally to O cv. Therefore we can define the Q-sheaf O Bv, the Q
normalisation of B, by the collection of sheaves O cv on the X o.. If B 1 , . . . , B s 

<> 
s 

are the components of B, then O Bv = E9 0 Br, and we have a Q-exact se
i=l 

quence 

whose Q-exactness follows from the exactness of 

For any quasiprojective variety Z we can define the Chow ring A*(Z) = 
œf~Z Ak(Z), where Ak is the group of k dimensional cycles on Z mod
ulo rational equivalence, and for Y smooth, we can also define A* (Y) = 
œf~ Y A k (Y), where A k is the group of k codimensional cycles on Y mod
ulo rational equivalence. A morphism h : Z --+ Y induces a cap product 
Ak(Y) x A 1(Z) ~ Az-k(Z), [Fulton75, §2]. 

10.4 Definition. For V a possibly singular quasiprojective variety, we define 

A*(V) = Im{ 1~ A*(Y)--+ II End(A*(Z))} 
f,V-Y g:Z--+V 

where Y, Z are quasiprojective, Y is smooth, and the map is induced by the 
cap product (cf. [Fulton75, §2.] or the definition of opA" in [Mumford83, §1.]). 

This definition agrees with the original one for V smooth. Moreover, A* is 
a contravariant functor, A*(V) inherits a natural ring structure, cap products 
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can be defined, and most importantly for our purposes, for any coherent 
sheaf F on V with finite locally free resolution, we can define Chern classes 
ck(F) E Ak(V) [Fulton75, §3.2]. 

In some of the following we need that X is Cohen-Macaulay, therefore we 
assume it from now on. As remarked above, this assumption is satisfied for 
surfaces. The following lemma explains its significance. 

10.5 Lemma. [Mumford83, Proposition 2.1.] If Xis quasi projective and X 
is Cohen-Macaulay, then any coherent sheaf f: on X arising from a Q-sheaf 
F on X has a finite locally free resolution. 

Proof. Let n = dimX. Let O - Ên -t Ên-1 -t ... -t Ê1 -t Êo -t f: be 
a resolution of f:, with Êo, Ê1, ... , Ên-1 locally free O x-modules. As Xa is 
smooth, Fa has a locally free resolution of length at most n. The morphism 
Xa -t Xa is fiat, since Xa is Cohen-Macaulay and Xa is smooth, therefore 
the resolution of Fa pulls back to a locally free resolution off: 1 x"' of length at 

most n. By Schanuel's lemma, if f: lx"' has a locally free resolution of length 

at most n, then Êo lx,,,, Ê1 lx"', ... , Ên-1 lx"' locally free implies that Ên lx"' 
is also locally free. Hence Ên is locally free and so f: has a finite locally free 
resolution. □ 

Hence for any coherent sheaf on X we can define Chern classes in A* (X), 
and using this we can define Chern classes for Q-sheaves on X. 

1 O. 6 De finition. The Chern classes êk of the Q-sheaf F on X are given by 
1 - k -

êk(F) = ÎGÎck(F) E A (X) ® Q. 

By [Mumford83, Theorem 3.1] there exist canonical isomorphisms 1 : 
An-k(X) ® Q -t Ak(.f)G ® Q for O ::; k ::; n, where n = dimX. Identi
fying the Chow groups via,, A*(X) ® Q obtains a ring structure and we can 
define Chern classes in it. There exists a degree map deg : An ( X) G ® Q - Q ; 
to get the correct intersection numbers on X we have to take into account 
that p : X - X has degree IGI, so we define deg : Ao(X) ® Q - Q 
by degZ = deg,(Z)/IGI for Z E Ao(X) ® Q. We can define the total 
Chern class by ê(E) = I:;=0 êk(E). As a Q-exact sequence of Q-sheaves 
0 -t E - F - Ç - 0 on X pulls back to a short exact sequence of sheaves 
0 -t Ê -t f: -t Ç - 0 on X, we have ê(F) = ê(E)ê(Ç). 

For a Q-sheaf on a subvariety of X we can not in general define Chern 
classes in this way. We need this only in one case, for Q-sheaves on a curve 
B on a surface X with only quotient singularities such that (X, B) is log 
canonical; then the cover Ca C Xa is a curve with at most simple nodes as 
singularities and we can define ê1 for a Q-sheaf on B. 
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By considering the sheaves in codimension 1 only, we see that ê1 (Ô~) = 
Kx, and if (X, B) is log canonical, then ê1(Ô~(log B)) = Kx+B. Calculating 
ê2(Ô~) and ê2(Ô~(logB)) is one of the main aims of this chapter. For this, 
we need the notion of the orbifold Euler number. 

1 O. 7 Definition. Let X be a quasiprojective variety with only isolated quotient 
singularities and let Y be an open or closed subset of X. The orbifold Euler 
number of Y is defined as 

eorb(Y) = Ctop(Y) - ~ (1 - r(~))' 
PeYnSmgX 

where Ctop is the usual topological Euler number and r(P) is the order of the 
local fondamental group. It should be noted that if Y is closed then eorb(Y) 
depends not only on Y but also on the embedding Y C X. In our case, this 
does not lead to any confusion. 

10.8 Theorem. Let X be a normal projective surface with only quotient 
singularities, Ba reduced Weil divisor on X such that (X, B) is log canonical. 
Then 

Proof. First we consider the case B = 0 to prove that ê2(Ô~) = eorb(X). 
Fix a projective embedding of X. A generic pencil of hyperplane sections 

has reduced elements only, and its base locus is reduced and disjoint from 
Sing X and B. Blowing up this base locus we obtain a morphism f : X ---+ P1 
with reduced fibres. Since both sicles of the required equality increase by 1 
under blowing up a smooth point, we may assume that in fact we have a 
morphism from X, f : X ---+ P1 with reduced fibres. Let g be the genus of the 
general fi.ber. 

There exists a Q-exact sequence 

(10.8.1) 

where Z is a 0-dimensional scheme supported on Sing X together with the 
nonsingular points where df(x) = O. 

Let PEZ, P E Uo:. Assume that J(P) = O. !a= f o Pais a Ga-invariant 
fonction on Xa. P has degpo:/r(P) inverse images in Xo:. For O < JtJ ~ 1, 
J;;1(t) has the homotopy type of a wedge of µp circles in the neighbourhood of 
each point Q E p-;; 1 (P), hence its Euler number is 1-µp. Therefore if we fixa 
small neighbourhood of P, the intersection of J- 1 (t) with this neighbourhood 
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1-µp 
has orbifold Euler number r(P) for O < itl ~ 1. Thus 

"(µp -1 ) etop(X) = 2(2 - 2g) + L.,; r(P) + 1 
PEZ 

and 

(10.8.2) eorb(X) = 1(2 - 2g) + L r~;)" 
PEZ 

µp can also be calculated as length(Oxo:,Q/(âfa/âx,âfa/ây)) by Milnor's 
Theorem [Milnor68, §7]. Define a 0-dimensional subscheme Za of Xa with 
ideal (âfa/âx,âfa/ây)) at each Q E p-;;i(P). The Ozo: define the Q-sheaf 
structure of Oz. 

Za is a local complete intersection as Xa is smooth, so we can define Z by 
Z lxo: = q;(Za), where q; is the scheme theoretic inverse image. Z is also a 
local complete intersection. We have the following lemma. 

10.9 Lemma. If Z is a zero dimensional local complete intersection sub
scheme of X, then c2 ( 0 z) = - deg Z. 

Proof. Both sicles are clearly additive over subschemes with disjoint supports. 
If Z is a (reduced) smooth point P, then there exist smooth hyperplane 

sections Hi, H2 such that P E Hi n H2, every point of intersection of Hi and 
H2 is smoothin X and Hi, H2 meet transversally there. Let Y = Hi n H2. 
From the exact sequence 

we can calculate c2(Iy) =Hi· H2, hence c2(0y) =-Hi· H2. c2 is invariant 
in an algebraic family, all points of Y are algebraically equivalent on Hi, 
therefore c2 ( 0 p) = -1. 

In the general case, since Z is a local complete intersection, there exists a 
sufficiently ample divisor H such that Oz(H) is generated by global sections 
and there exist Hi, H2 E IHI whose local equations generate the ideal of Z in 
0 x ,P for each point P E Supp Z, and all their other intersections are transver

sal and lie at smooth points of X. Let Y be the scheme theoretic intersection 
of Hi and H 2; then from the exact sequence we have c2 (()y) = - Hi · H 2 as 
before, and each point of Supp Y \ Supp Z contributes -1. c2 ( 0 z) = - deg Z 
in the general case. □ 
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ln our case 

de z = L µp deg qo: degpo: = IGI L µp ' 
g PEZ r(P) PEZr(P) 

hence 

(10.8.3) A 1 1 - "'""' µp 
c2(0z) = jct2(0z) = -ÏGÎ deg Z = - /-:z r(P) · 

From (10.8.1), (10.8.2) and (10.8.3) we obtain 

ê2(Ô.k) = ê1(f*ni1)ê1(Ôx;ll'1) -ê2(0z) 
(10.8.4) 

= 2(2 - 2g) + L /(;) = eorb(X). 
PEZ 

Let B 1, B2, . . . , B s be the components of B. There exist Q-exact sequences 

(10.8.5) 

(10.8.6) 

and 

(10.8.7) 

0-+ 0(-B;)-+ Ox -+ Os; -+ 0, 

s 
Al Al ffi 

0-+ Ox-+ Ox(logB)-+ wOsr-+ 0, 
i=l 

where W; is a 0-dimensional subscheme of X supported at those points of B; 
which are either nodes of B; or singular points of X of type ( c) in Examples 
10.3. (iii) on B;. The Q-sheaf structure of Ow; is given by Op;;1(W;nUa) on 
Xo:, where p;;1 denotes the set theoretic inverse image. 

From (10.8.5) we see that ê1(0sJ = B; and ê2(0sJ = B'f, while from 

(10.8.6) and (10.9), ê2(0sr) = ê2(0sJ + ê2(0wJ = B'f - L r(~). Thus 
PEW; 

from (10.8.7) we obtain 

We have Q-exact sequences 
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where .Âf~;/X is the conormal Q-sheaf, obtained by taking the Ga-invariants 

of NJ"';x"', where Ca = p-;; 1 (Bi lu"'). Now ê1(Ô_\- lsJ = Kx · Bi, while 

ê1(.Âf~;1x) =-Br+ L r(~)' since each simple node of Ca contributes +1 
PEW; 

on Xa. Hence 

(10.8.9) 

A A 1 
10.10 Lemma. c1 (0 sJ = -eorb(Bi)-

Proof. By an argument similar to the above, we can find a morphism f : 
Bi -+ JP>1 such that f has only ordinary ramification points and these are 
all smooth points of X and not nodes of Bi. Let d be the degree of this 
map, a the number of ramification points, b the number of nodes of Bi. Then 

etop(Bi) = 2d- a -b, and hence eorb(Bi) = 2d-a-b- L ( 1 - TI). 
PEB;nSingX r p 

We determine ê1 (Ôk;) from the Q-exact sequence 
1 A 1 A 1 

0-+ f*Orfl -+ 0 B; -+ 0 B;frfl -+ O; 

the argument is similar to Hurwitz's formula. 
Note first that ê1 (f*0~1) = -2d. Each ramification point of f and each 

node of Bi which is a smooth point of X contributes 1 to ê1 (Ôk;/rfl ). If 
a node P E Bi is a singular point of X, then it is type ( c) in Examples 
10.3. (iii). Let P E Ua, fa = f o Pa• On Xa, Ca = p-;; 1 (Bi lu0 ) has a 
simple node at each Q E p-;; 1 (P), and Q is a ramification point of index 
r(P) of fa on each branch, therefore the contribution to ê1(f'lk;/rf1) at Pis 

2(r(P!(;)l) + 1 = ( 2 - r(~)). If P E Bi is a singular point of X which is 

not a node of Bi then it is of type (a) or (c) in Examples 10.3. (iii). Let 
P E Ua. If Pis of type (a), then on Xa each Q E p-;; 1(P) is a ramification 

point of fa of index r(P), so the contribution to ê1(Ôk;1rf1) is 1- r(~). If P 

is of type (c), then r(P) = 4l, Ca has anode at each Q E p-;; 1 (P), and Q is a 
ramification point of index 2l on both branches of Ca, so the contribution to 
A (Al ) p . 2(2l - 1) + 1 _ (1 1 ) . h" c1 H B;frfl at 1s 41 - - r(P) m t 1s case too. 

Hence 

ê1 (ôkJ = ê1 (f*Orfl) + ê1 (Ôk;frfl) 

=-2d+a+b+ L (1-r(~))=-eorb(Bi)- □ 
PEB;nSingX 
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1 
For if= j, Bi· Bj = L r(P) = L eorb(P). Hence by (10.8.9) and 

PEB;nBj PEB;nBj 

(10.10), 

s 

eorb(B) = L eorb(Bi) - L 
i=l 

Combining this with (10.8.4), we obtain 

Next we generalize some results from sheaves on smooth varieties to Q
sheaves on Q-varieties. 

10.11 Lemma. Let :F be a Q-vector bundle of rank r on a normal projective 
surface X witb only quotient singularities. If 

tben :Fis H-unstable for any numerically nontrivial nef divisor Hon X, i.e., 
tbere exists a saturated Q-subsbeaf & of :F sucb tbat 

(10.11.1) 
ê1(&) · H ê1(:F) · H 

rk[ > r · 

Proof. Let 1r : X* ---+ X be the minimal resolution of the singularities of X. 
Let fI = p* H, H* = 1r* fI, :F* = 1r* f:. Then 

so by [Bogomolov79, Theorem 3], there exists a saturated subsheaf &* of :F* 
such that 

and 

for any ample divisor D on X*. Therefore also 
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since H* is nef and not numerically trivial. 
Then 1r*&* <-+ 1r*:F* = :F and c1(1r*&*) · iI =ci(&)· iI, since iI is ample, 

so some multiple of it eau be moved away from the singular locus of X, 
and the sheaves 1r *&*, t agree on the smooth locus of X. Having obtained 
the instability of f: on X, we eau now choose a G-invariant destabilizing 
subsheaf, namely the first step &1 in the Harder-Narasimhan .filtration off: 
for iI [Miyaoka87b, Theorem 2.1], which is unique, therefore G-invariant. 
Taking G-invariants, we obtain the required destabilizing Q-subsheaf & = tf 
of :F, then (10.11.1) follows from 

10.12 Proposition. Let & be a Q-locally free sheaf on a normal projective 
surface X with only quotient singularities such that ê1 ( &) is nef and E is 
generically semipositive, i.e., for any nef divisor D on X and for any torsion 
free quotient Q-sheaf :F, ê1 (:F) · D 2'. O. Then ê2 (&) 2'. O. 

Proof. Let H be an ample divisor on X, t a positive rational number, then 
H1 = ê1(E) + tH is an ample Q-divisor. Let O = Eo C &1 C &1 C ... C 
Es = E be the Harder-Narasimhan filtration for E with respect to H1 , which 
is obtained by taking the G-invariants of the Harder-Narasimhan filtration 
for e with respect top* Ht. Let (h = (&ï/&i_i)vv, ri = rk !'.Îi- &;/&ï-i c 
Çi with skyscraper cokernel, therefore ê2(Eï/Eï-1) 2'. ê2(9i) by (10.9), while 

s 

ê1(Eï/Eï-i) = ê1(9ï), since they agree in codimension 1. ê(E) = II ê(Eï/Eï-1), 
i=l 

where ê is the total Chern class, therefore 

s 

= t(ê(E))2 + tê2(Çï) - t t(ê1(Çï))2 
i=l i=l 

where in the last step we used the semistability of the Çi and Lemma 10.11. 

ê1 (Çi) . Ht h O b d fi · · f h Let Œi = 2 ; t en a1 > a2 > ... Œs 2'. y e mt10n o t e 
TiHt 

Harder-Narasimhan filtration and the generic semipositivity of &. By the 
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Hodge Index Theorem, (ê1(9i))2 ~ rfo}H;. Hence 

ê2(E) ~ ½(ê1(E))2 - t 2~- (ê1(Çi))2 
i=l i 

~ ½ ( (ê,(E))' - t, r;a) Hi) 
~ ½ ({(ê,(E))' -Hi)+ (1-t,r,ai) Hf) 
~ ½ ( {(ê1(t:))2 - Hl}+ ( 1 - <>1 t,r,a,) Hf) 

= ½ (((ê1(E))2 -Hl)+ (l -a1)Hl). 

ê1(91)·Ht ê1(E)-Ht A 2 2 
Now a1 = 2 ~ H 2 < 1, whereas (c1(E)) - Ht --+ 0 as 

r1Ht r1 t 

t--+ 0, so that ê2(E) ~ O. □ 

10.13 Theorem. Let X be a normal projective threefold, Ba reduced Weil 
divisor on X, such that (X, B) is log canonical, (X, 0) is log terminal, Kx +B 
is nef and X is not uniruled. Let S be a general hyperplane section of X; 
then ê2(Ô.\,(logB) 1s) ~ O. 

Proof. X has quotient singularities in codimension 2, so Ô\(logB) can be de
fined as a Q-vector bundle except at finitely many points. S has only quotient 
singularities, (S, B 1s) is log canonical, so Ô\.(log B) 1s is a Q-vector bun
dle. O\. ls is generically semipositive by (9.0.1), therefore sois Ô\.(logB) ls
ê1 ( Ô \. (log B) 1 s) = ( K x + B) 1 s is nef by assumption, therefore we can apply 
(10.12) to deduce the result. D 

We prove a generalization of the Bogomolov-Miyaoka-Yau inequality Ci ~ 
3c2. This inequality was proved for smooth surfaces of general type in (Miya
oka 77, Theorem 4] and for smooth surfaces with c1 negative in (Yau77, The
orem 4.]. lt was generalised to cÏ(O.\,(logB)) ~ 3c2(O\(logB)) in [Sakai80, 
Theorem 7.6] for the case when Xis a smooth surface and B C Xis a semi
stable curve, which implies that Kx + B is nef and (X, B) is log canonical. 
[Miyaoka84, Theorem 1. 1] deals with the log case on surfaces with quotient 
singularities when the curve B does not pass through the singular points of the 
surface. A version of this inequality for log canonical surfaces with fractional 
boundary divisor with Kx + B ample is proved in (KNS89, Theorem 12]. We 
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give a new method of proof for the case when X has only quotient singulari
ties, (X, B) is log canonical, Kx + B is nef. Our result is more general than 
[Miyaoka84] in that we also allow the curve B to pass through the singular 
points. 

10.14 Theorem. Let X be a normal projective surface witb only quotient 
singularities, B C X a curve sucb tbat (X, B) is log canonical and Kx + B is 
nef. Tben 

Proof. We prove this theorem by reducing it to the smooth case. Let F = 
Ô1,(log B). Let 7r : X* -+ X be an embedded resolution of (X,p- 1 (B)red), 
let B* = ((1rop)- 1 (B))red, F* = 1r*f:. Since ci(F*) = 1r*ci(f:), it is suflicient 
to prove that c?(F*) S 3c2(F*). 

Fis locally free of rank 2, therefore sois F*. Flx
0 
= q~01,

0 
(log Ca), where 

Ca= p~ 1(Blu0 ), hence F* l7r-1_x0 = 1r*q~01,JlogCa) C 01,.(logB*) l7r-1x0 , 

therefore F* C 01,. (log B*). If B = 0, F* C 01, •. 
If w E H 0 (X*,01,.(logB*)), then w is d-closed by [Deligne71]. (See also 

[Grifliths-Schmid73, 6.5] for a simpler proof.) Thus we can prove that if C <---+ 

01,. (log B*) is an invertible sheaf, then h0 (X, [_(i!m) sen for some constant c 
[Sakai80, Lemma 7.5]. Using this, and the fact that c1 (F) = 1r*p*(Kx +B) is 
nef, we can follow Miyaoka's original proof for the non-log case [Miyaoka77, 
Theorem 4] to obtain cr(F*) s 3c2(F*). D 

10.15 Corollary. [Miyaoka84, Proposition 2.1.1] Let X be a minimal sur
face of nonnegative Kodaira dimension. Then the number of disjoint smooth 

A 2 A A 
rational curves on Xis at most 9(3c2(X) - c?(X)). 

Proof. K x is nef as Xis minimal, so C 2 S -2 for any smooth rational curve 
on X by the adjunction formula. Let X be the surface obtained by contracting 
some disjoint smooth rational curves to singular points. Contracting a smooth 

. 1 . h lfi t· . A2 b ( n - 2)2 d A rat10na curve wit se ntersec 10n -n mcreases c1 y ---, ecreases c2 
n 

by 2 - ..!_, so 3ê2 - êi decreases by at least ~. K x is still nef, so by the 
n 2 

previous theorem 3ê2(X) - ê?(X) ~ 0, which gives the bound on the number 
of contracted curves. D 
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11. LOG ABUNDANCE FOR SURFACES 

LUNG-YING FoNG and JAMES MCKERNAN 

11.1 INTRODUCTION 

Chapters 11-14 present Kawamata and Miyaoka's proof of the abundance 
theorem for threefolds. 

11.1.1 Abundance Theorem. A three dimensional minimal model X has 
a free pluricanonical system, that is, there exists a positive integer m such 
that lmKxl has no base points. 

(1.22-29) contains a general introduction to Abundance, and to the con
tents of Chapters 11-14. The division of labour indicated by the authors listed 
for each chapter is somewhat arbitrary; every author has made a significant 
contribution to each chapter. We would like to thank Kawamata for answer
ing questions regarding his original version of [Kawamata91b]. We would also 
like to thank Shepherd-Barron, and Corti among others for helpful discussions 
and comments. 

The purpose of this chapter is to gather together and prove some facts 
concerning log abundance for surfaces. These facts will be needed in Chapters 
12-14 to prove the abundance conjecture for threefolds. We collect together 
some standard definitions and notation. 

11.1.2 Notation 
K,(X, D) denotes the Iitaka dimension of the pair (X, D). By definition 

K,(X,D) = -oo iff h0 (0x(nD)) = 0 for every n > 0, and K,(X,D) = k > -ao 
iff 

. h0 (0x(nD)) 
0 < hmsup k < oo. 

n 

One can see that K,(X, D) E {-oo, 0, 1, ... , dimX}. 
K,(X) == K,(X, Kx) is the Kodaira dimension of X. 

ln case the divisors are nef, we can define the numerical counterparts (cf. 
(1.28)): 

v(X, D) = max{ n EN U O 1 (Dn) not numerically O }. 
v(X) = v(X,Kx). 

S.M.F. 
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The log abundance theorem for a normal surface X asserts the following: 

11.1.3 Theorem. Let (X, 6) be a normal surface with boundary 6 (see 
(2.2.4) for a defi.nition). If Kx + 6 is Q-Cartier, nef and log canonical then 
lm(Kx + 6)1 is basepoint free for some m (and in particular v(X, Kx + 6) = 
,,;(X, Kx + 6)). 

We need (11.1.3) in the cases v(Kx + 6) = 0 and 1, and content ourselves 
with proving these cases only. Readers interested in seeing the other case 
should consult [Fujita84]. The proof presented here is different from that 
in [Fujita84] at various points, and is adapted from Miyaoka's proof of the 
abundance theorem in the threefold case, as will be evident to the readers. 
Following Miyaoka's idea, we extend (11.1.3) to the semi log canonical case 
in Chapter 12. 

The idea of the proof is as follows: we first show that the linear system 
lm(Kx+6)1 contains a divisor D (11.2.1). Then we replace D with B = Dred, 
and apply the log minimal model program to ( X, 6 + B), so that K x + 6 + B 
becomes nef (11.3.2). Then we use a further series oflog extremal contractions 
to make each connected component of B irreducible (11.3.4). Next we make a 
cyclic cover of a neighborhood of a connected component of B, to improve how 
it sits inside X (11.3.6). Finally using some simple cohomological arguments, 
one can show that this component moves to any infinitesimal order (11.3.7). 

11.2 EXISTENCE OF AN EFFECTIVE MEMBER 

We start with the following lemma. 

11.2.1 Lemma. Let (X, 6) be a smooth surface with boundary 6. If Kx+6 
is nef then ,,;(X, Kx + 6) ~ O. In other words, there exists a member D E 
lm(Kx + 6)1 for some m > O. 

11.2.2 Remark An analog of this result for threefolds is proved in Chapter 
9. 

Proof. ( cf. [Fujita84, §2]) If ,,;(X, Kx) ~ 0 then the conclusion is clear. Thus 
we may assume that X is ruled. There are two cases to consider, X is rational 
or irrational. 

First consider the case when Xis rational. Let G = Kx+6. Gis nef by as
sumption. Sin ce X is rational, h 1 ( 0 x) = O. Therefore if G is numerically triv
ial, then mG ~ 0 for some m. Otherwise h2 (mG) = h0 (-(m - l)G - 6) = 0 
for m ~ 2 and sufficiently divisible. N ow x( 0 x) = 1, and so Riemann-Roch 
reads 

1 
h0 (X,mG) = h1(X,mG) + 2mG · (mG- Kx) + l. 
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Note that mG - Kx = (m - l)G + ~ and ~ is a sum of effective divisors. 
Since G is nef, we have G • (mG - Kx) ~ 0 and therefore h0 (X, mG) > O. 
This proves the lemma for rational surfaces. 

Next consider the case when X is irrational. We write ~ = ~1 + ~2, 

where ~ 1 and ~ 2 are boundaries, in such a way that ~ 1 has no vertical 
components, and furthermore (Kx + ~1 ) · F = O. (11.2.1) follows if we show 
that lm(Kx + ~1 )1 =/- 0. Thus we mayas well assume that (Kx + ~) · F = 0 
to start with, i.e., we prove the stronger statement: 

11.2.3 lemma. Let (X,~) be an irrational ruled surface with boundary ~
Ssuppose that ~ bas no vertical components and (Kx + ~) · F = O. Then 
,,;(X,Kx +~)~O. 

The proof is by induction on the Picard number p(X). Consider the case 
when X is a JP'1-bundle. 

p(X) = 2, and the cone NE (X) has two edges. One is the class generated 
by F, a fibre of the ruling 1r : X ---+ C with C of genus g > O. Suppose that 
the other edge is generated by H. Since F 2 = 0 and H 2 ~ 0 (see [CKM88, 
4.4]), we must have H · F > O. We normalize H by taking H · F = l. 

Let ~ = E ki~i, where the ~i are the prime components of~- We have 
~i = aiH + Fi, where ai E Z and Fi= 1r*(Di) for some divisor Di on C. Let 
bi = deg (Di)- Since ~i is not a vertical component, ai > O. We also know 
that Kx = -2H + F0 , with F0 = 1r*(D0 ), deg (Do)= H 2 + 2g - 2. Hence 

(11.2.3.1) 

By assumption (Kx + ~) · F = 0, and so 'E k;a; = 2. Now 'E F; = 1r*('E D;) 
and deg (EDi) = H 2 + 2g - 2 + Ek;b;. 

Look at H · ~i- If H · ~i ~ 0, then b; ~ -a;H2 ~ O. Otherwise H • ~i < 0, 
but since H is an edge of NE (X), this implies that ~; < O. Hence ~i is a 
section of the ruling of X with negative selfintersection. Moreover according 
to [CKM88, 4.5], the class of ~i is an edge, and so ~i is proportional to 
H. By the normalization H · F = l, H is the class generated by ~i, and 
we can replace numerical equivalence in (11.2.3.1) by linear equivalence. In 
particular, a; = l and D; = O. 

Now we have the following two cases: 
Case (i). If H · ~i ~ 0 for all i, then E kibi ~ - (E a;k;) H 2 = -2H2 , and 

so H 2 + 2g - 2 + E kibi ~ -H2 + 2g - 2. 
Case (ii). The other possibility is that H · ~ 1 < 0, in which case H is 

generated by ~1 and H · ~i ~ O for all i =/- 1. Then E kibi ~ -2H2 + k 1H2, 
and so H2 + 2g - 2 + E k;bi ~ -(1 - k1)H2 + 2g - 2. Note that since ~ is a 
boundary, k1 ~ 1. 
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When g > 1, in either case, deg (I: Di) > 0, which implies (11.2.3). 
We are left with the case g = 1 and deg (E Di) = O. This implies, in case 

(ii), that ô1 = H is an elliptic curve, H 2 < 0, k1 = 1 and Ôi • H = 0 for 
i ~ 2. Thus His disjoint from ôi, for i ~ 2 and so (Kx + ô)ln = Kn ~ O. 
Therefore Kx + ô ~ O. 

In case (i), this implies H 2 = 0 and bi = 0 for ail i. Then H is the class 
of a section with selfintersection O and we denote the section by H. We also 
replace the numerical equivalence by linear equivalence. Then Kx ~ -2H, 
and Ôi · Ôj = 0 for any i and j. Applying adjunction to ôi, we see that each 
Ôi is a smooth elliptic curve. Now 1r restricts to an étale map from Ôi to C 
of degree ai. 

As the Ôi are disjoint, we can find an étale cover p : ê -+ C, so that on 
the fibre product ir : X -+ ê, the pull back by p of ô is a disjoint union of 
n = E ai sections of ir. Since pis étale, p*(Kx) = K x· Now if n ~ 3, then 
Xis actually ê x lP'1, and p*(Kx + ô) is trivial. If n < 3, as E kiai = 2, n 
must be 2, and on X, f>*(ô) = Zi1 + Zi2. It is then clear that both K x and 
Ox(-Zi1 - Zi2) are the relative dualizing sheaf for ir. Thus p*(Kx + ô) is 
still trivial. But p*(Kx + ô) = ir*p*(E Di)- Therefore p*(E Di) ~ 0, and 
r(I: Di) = p*p*(E Di) ~ 0, where r is the degree of p, that is E Di is a 
torsion class on C. This finishes the proof of (11.2.3) when X is a lP'1-bundle. 

Now suppose that 1r has a singular fibre and E is a component of the 
singular fibre. If E is nota -1-curve, then E · Kx 2 O. Since ô contains no 
vertical component, (Kx + ô) · E ~ O. By assumption, (I<x + ô) • F = 0, 
hence (Kx + ô) · E ~ 0 for some exceptional curve E of the singular fibre. 
We may blow down E to get p: X-+ X'. Set ô 1 = p*ô. We have Kx + ô = 
p*(Kx, + ô') + aE, with a= -E · (Kx + ô) 2 O. Clearly Kx, + ô' satisfies 
the inductive assumption, hence K-(X', Kx, + ô') 2 O. It follows at once that 
K-(X,Kx + ô) 2 O. □ 

The log abundance theorem for the case v(X, Kx + ô) = 0 is a direct 
consequence of (11.2.1). 

11.2.4 Leinma. Let X be a proper surface and assume that (X, ô) is log 
canonical. If Kx + ô is nef then K-(X, Kx + ô) 2 O. 

Proof. We want to find a member in lm(Kx + ô)I. For this let <p: X'-+ X be 
the minimal_resolution, and write Kx, + ôx, = </>*(Kx + ô). Since Kx + ô 
is log canonical and <p is minimal, ôx, is a boundary. As Kx, + ôx, is 
nef, (11.2.1) implies that lm(Kx, + ôx, )1 =f 0. But H0 (m(Kx, + ôx 1 )) = 
H0 (m(Kx + ô)), and so we can find DE lm(Kx + ô)I- D 

11.3 THE CASE v(Kx + ô) = 1 

This section is devoted to a proof of the following result. 
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11.3.1 Theorem. Let (X,~) be a normal surface with boundary ~- If Kx+ 
~ is nef, <Q_-Cartier, log canonical and v(X, Kx + ~) = 1, then lm(Kx + ~)I 
is free for some m. 

We first observe that to prove (11.3.1), it is enough to show that ,.,;(X, Kx+ 
~) = 1. In fact suppose M +BE lm(Kx + ~)I, where M moves in a pencil, 
and Bis the fixed part. Now M · B ~ 0, as IMI has no one dimensional base 
locus, and since (M + B)2 = 0, this implies M(M + B) = M 2 = O. Thus 
IMI is free, and soit defines a map of S to a smooth curve C. As M · B = 0 
and the numerical class of M is equivalent to a multiple of a fibre, the divisor 
B is linearly equivalent to the pullback of a divisor from C. But then some 
multiple of B is base point free. 

Here is the first step of ( 11.3.1). 

11.3.2 Lemma. There exists a surface X birational to X, and divisors A, 
Ê and ÎJ such that: 

(1) (X, A+Ê) is <Q_-factorial and log canonical and ÎJ E lm(K x+A+Ê)I

Moreover Ê = Dred. 

(2) K x +A+ Ê is nef. 

(3) v(X,Kx+~) = v(X,Kx+A+Ê) and ,.,;(X,Kx+~) = ,.,;(X,Kx+ 

A+h). 

Proof. By (11.2.4), we may find D E lm(Kx + ~)1- Pick a minimal good 
resolution µ : X 0 ---t X of the pair (X, D + ~), and write Kx0 + A = 
µ*(Kx + ~)- As (X,~) is log canonical, A is effective. Set Bo = (µ* D)red 
and replace Li with ~ 0 , where we only include those components of Li which 
are not components of Bo. With this choice of ~o, ~o + Bo is a boundary, 
and there is a divisor Do E lm(Kx0 + ~o + Bo)I-

We now apply the log minimal model program to (Xo, ~o + Bo). We 
inductively construct a sequence Xi, ~i, Bi and Di satisfying (1). If Kx; + 
~i + Bi is not nef, then there is a divisorial contraction </>i associated to some 
log extrema! ray of Kx; + ~i + Bi ( clearly </>i is not of fibre type), and we put 
Bi+l = </>i*(Bi), ~i+1 = </>i*(~i), and Di+i = </>i*(Di)- (By [KMM87, 5-1-6] 
(Xi+l, ~i+l + Bi+1) is <Q_-factorial and log terminal.) 

Since at each step the Picard number drops by one, this process must 
terminate at some i, and we set X= Xi, Ê = Bi, A= ~i and ÎJ = Di. 

Conditions (1) and (2) are automatic from the construction. (3) follows 
from the (11.3.3) applied to the pullbacks of the divisors m(Kx + ~) and Di 
to X 0 (cf. (13.2.4)). □ 

Note that in fact the pair (X, A+ Ê) is log terminal; we do not need this. 
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11.3.3 Lemma. Let X be a proper variety of dimension n and G 1 , G2 two 
effective nef divisors with the same support. Then v(X, G 1 ) = v(X, G2 ) and 
K(X, G1) = K(X, G2), 

Proof. Let v(X,Gi) = Vi and K(X,Gi) = Ki, Choose a1 so that a1G1 - G2 is 
effective. 

(1) Let H be any ample divisor. Then 

and therefore v1 ;::: v2. 
(2) H0(mG2) <-+ H0(ma1G1), therefore K1 ;::: K2, 

Now reverse the roles of G1 and G2 . □ 

Now Riemann-Roch for nÎJ reads: 

( 
A ) nÎJ • ( nÎJ - K x) (O 

X nD = 2 + X x) 

= n(n - 1/m) (ÎJ2 ) 7-!_Î). (A Ê) (O ) 2 +2 + +X X· 

We know already that ÎJ2 = 0 and so from now on we can assume Î) •A= 0, 
since otherwise (11.3.1) follows immediately (because h2 (nÎJ) = h2 (K x -
nÎJ) = 0 for large n, as G is not numerically trivial, and we only need to 
show K(X, Kx + .6.) = 1). Since we have chosen Ê so that A and Ê have no 
components in common, this implies that A and Ê do not intersect. 

Choose an integer m so that L = Ox(m(K x +A+ Ê)) E Pic (X) and ILI 
is non-empty. Note that L is nef. 

11.3.4 Lemma. There are X', .6.', B' and D' satisfying (11.3.2.1-3) and in 
addition 

( 4) Every connected component of B' is irreducible. 

Proof. Pick an irreducible component S of B. Suppose S meets another 
component S of Ê. Now v(X, L) = 1, so that L2 = O. But L2 = L · (ÎJ- S) + 
L · S, and both terms are non-negative as Lis nef. It follows that L · S = 0 
and moreover that ( K x +A+ Ê - S) · S < O. But then there is a log extremal 

ray of (K x +A+ Ê - S) associated to S, and so a log extrema! contraction, 
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which must be divisorial. Such a contraction decreases the Picard number of 
X, and so eventually we may isola te every component of Ê. □ 

Pick any prime component S of B', and let U be an open subset of X' which 
retracts to S [BPV84, page 27]. Let L' be the line bundle Ou(m(Ku + S)) = 
Ou(m(Ku + b.' + S)). 

11.3.5 Lemma. L'ls is a torsion element of Pic (S) (i.e some multiple of 
L'ls is isomorphic to Os). 

Proof. If we apply adjunction to Sin U, we get 

(Ku + S) ls = K s + P 

where P = Diff is effective. If P = 0, then S is elliptic or nodal rational and 
so Ks + P = O. If P-/- 0 then Sis a smooth JP1 . D 

Now we make a cover of U to improve Sand how it sits inside U (compare 
[Miyaoka88b], where this argument first appears). 

11.3.6 Lemma. Let U be a normal analytic space, and S a compact sub
space. If the inclusion i : S -t U induces isomorphisms 

then 

(1) the kernel of the restriction map 

Pic (U) --+ Pic (S) 

is a C-vector space. In particular it is divisible, and torsion free. 

Moreover if G is a Q-Cartier integral divisor on U such that Gis is torsion, 
then 

(2) there is a finite Galois cover 1r : Ü--+ U, étale in codimension one, 
such that 1r*G is a Cartier divisor, which restricts to a divisor linearly 
equivalent to zero on 1r* S. 

Proof. Compare the cohomology exact sequences of the exponential sequences 
on Sand U: 

H 1 (S,Z) 
°'S 

H 1(S, Os) 

/31 î /32 î 
H 1 (U, Z) 

ou 
---+ H 1(U,Ou) 
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H 1(S, 0 8) 

/33 î 
H 1(U,Oû) 

H2 (S,Z) 

/34 î 
---+ H 2 (U,Z). 
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Now Pic (U) = H 1 (U, Oû ), Pic (S) = H 1(S, 0 8), and /33 is just the restric
tion map. By assumption, /31 and /34 are isomorphisms, and so the kernel of 
/33 is isomorphic to the kernel of /32 , which in turn is a subvector space of the 
C-vector space H 1 (U, Ou). Hence (1) holds. 

For (2), let r be the smallest integer such that rG is Cartier and rGls ~ O. 
The class of rGls in H 2 (S, Z) is zero, and as /34 is an isomorphism, the class 
of rG is zero in H 2 (U, Z). As H 1 (U, Ou) is divisible, there is a line bundle M 
on U such that: 

We are going to apply (11.3.6.2) to ensure that both the pullback of Kx 
and the class of S are multiples of the same Cartier divisor G, which will itself 
restrict to a divisor linearly equivalent to zero on the pullback of S. 

As Sis irreducible, there is a divisor DE lm(Ku + S)I such that D = eS 
for some positive integer e. But then dS ~ mK u, where d = e - m. Note 
that either d and m are nonnegative or d is negative, but -d < m. Let c be 
the highest common factor of m and d. We may find integers m', d', b1 and 
b2 such that: 

m = m'c, d = d'c, 

Let G be the Weil divisor b1S + b2 Ku. We have 

and so 
c(Ku + S - (m' + d')G) ~ O. 

Thus the three divisors 

(S - m'G)ls, (Ku - d'G)ls and Gis 

are all torsion (the third by (11.3.5)). Now we apply (11.3.6.2) three times 
to these divisors. Thus there is a finite Galois cover 7r : Ü --+ U, étale in 
codimension one, such that, if we put S = 1r* S and G = 1r*G, 

Gis ~O s ~ m'G, 

and so 
ws = oü(S)ls = Os· 

The next lemma shows that S moves in Ü infinitesimally ( cf. [Miyaoka88b, 
4.2]). First some notation; let V be an analytic space, and Sa Cartier divisor 
on V. Denote by Sn the analytic subspace of V defined by the sheaf of ideals 
Ou(-nS) and set An= Spec C[E]/(Er. 

134 



FUPS AND ABUNDANCE 

11.3. 7 Lemma. Let V be a Cohen-Macaulay complex space, and S a divisor 
on V. Assume that K v and S are both multiples d' and m' of the same Cartier 
divisor G, and that the following three conditions hold 

(1) d' + (n - l)m' =/= 0 for any n ~ 2, 
(2) ws ~ Os, 
(3) the restriction HP(Sn, OsJ ---+ HP(S, Os) is surjective for every 

p 

Then S moves infi.nitesimally in V, to any order. 

Proof. We prove the following statements by induction on n. 

(i)n There are proper fiat morphisms Çi : Si ---+ Ai (i ~ n) such that the 
following diagram is commutative 

Si-1 si 

Çi-1 1 ç;l 
Ai-1 Ai 

(ii)n The sheaves RPçMOsn are locally free. 
(iii)n Wsn ~ Osn• 
Note that if (i)n holds for every n, then S moves infinitesimally to any 

order, by definition. 
For n = l, we take çi to be the structure map. Then (ii)i is automatic, 

and (iii)i is just (2). 
Otherwise suppose that all three statements are true for all integers less 

than n. As K v + ( n - l )S is Cartier and Sn-l is Cohen Macaulay (it is a 
Cartier divisor in a Cohen Macaulay scheme), we may apply adjunction to 
Sn-1: 

wsn-i = wv((n - l)S) ® Osn-i 

= Osn-i ((d' + (n - l)m')G). 

On the other hand (iii)n-l implies that wsn-i is linearly equivalent to zero. We 
may apply (11.3.6) (1) to Sand Sn-l to deduce that Gis linearly equivalent 
to zero on Sn-1· In particular Osn-i ® Ov(-S) ~ Osn-i· 

Consider the exact sequence of sheaves on V, 

O---+ JC ---+ Osn ---+ Os ---+ 0, 

where JC is defined by exactness. It is clear that the support of JC is Sn-l· In 
fact 

Os= Ov/Ov(-S) Osn = Ov/Ov(-(n + l)S) 
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and so K ~ Osn-i@ Ov(-S) as a sheaf of Ov-modules. Now we have shown 
that this is the trivial line bundle on Sn-1· 

Let e be the image of the global section 1 of the sheaf K in the vector 
space H 0 (Sn, OsJ. Define a C-algebra homomorphism from C[E]/(Er to 
H 0 (Sn, Osn), by sending E to e. This gives H 0 (Sn, OsJ a fiat C[E]/(Er
module structure, which since An is affine, is equivalent to a proper fiat mor
phism Çn : Sn ---+ An. It is not hard, from the definition of Çn, to check that 
the diagram 

commutes. This proves (i)n-
Condition (3) now implies (ii)n (see for example [Hartshorne77, III 12.11]). 

It follows by duality, that RPçn*Wsn are also locally free, for every p. (Unfor
tunately this seems to require relative duality theory, see e.g. [Hartshorne66].) 
As ws is isomorphic to the trivial line bundle, Çn*Wsn has a global non van
ishing section, which we may pullback to wsn• Thus wsn is trivial also, which 
is (iii)n- D 

11.3.8 Example. There is an interesting example which indicates the ne
cessity for the somewhat strange assumptions of (11.3.7). Take X to be a 
IP'1 -bundle over an elliptic curve, given by the unique rank two vector bundle 
of degree zero which does not split. X has a unique section S of selfintersec
tion zero, which does not move. However it does move to first order. Of course 
there is no divisor G such that both the class of the curve and its dualizing 
sheaf are multiples of G. 

11.3.9. Now we check that the conditions of (11.3.7) apply to S in Ü. In 
fact (1) follows as m' is always positive, and if d' is negative, -d' < m', (2) 
has already been verified, and so we are left with (3). But as S is a curve, 
certainly 

H 1 (Sn, OsJ---+ H 1 (S, Os), 

is surjective, as the obstruction is the second cohomology of the kernel of the 
natural map O Sn ---+ 0 s, which always vanishes. This leaves 

which is again certainly surjective. 
Now we are in a position to finish the proof of (11.3.1). Let G be the Galois 

group of the cover Ü---+ U of degree r. The Cartier divisor (rS)n pulls back, 
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under rr, to the Cartier divisor Bnr· Thus Bnr descends to (rS)n, and moreover 
G acts naturally on H 0 (Snr, 0 snJ· But this may be identified, via Çnr, with 
C[E]/(Err. It follows that (rS)n maps to Ans = Spec (C[E]/(E)nr)G, for some 
s dividing r. Since the Hilbert scheme is of fini te type we are clone. 
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12. SEMI LOG CANONICAL SURFACES 

DAN ABRAMOVICH, LUNG-YING FONG, 

JANOS KOLLAR, and JAMES MCKERNAN 

12.1 INTRODUCTION 

In this chapter we collect together some results concerning semi log canon
ical surfaces (see (12.2) for the definitions and basic properties). The first of 
these is log abundance for semi log canonical surfaces in the cases v = 0 or 
V= l, 

12.1.1 Theorem. Let S be a reduced projective surface and let ~ be a 
Q-Weil divisor on S. Assume that K s + ~ is Q-Cartier, nef and semi log 
canonical and v(S,Ks + ~) = 0 or 1. 

Then the linear system lm(Ks + ~)I is base point free for suitable m > 0 
(and in particular v(S, Ks + ~) = K,(S, Ks + ~)). 

The idea is to show that we can descend sections to S from the normal
ization of S (here we use (11.1.3)). In both cases the arguments are a little 
delicate; we have to analyze carefully the patching data. 

The second result is a version of (1.13) (which is proved in (12.5)). 

12.1.2 Theorem. Let S be a reduced projective surface with semi log canon
ical singularities. Then the natural map induced by Cs C Os 

is surjective for every p. 

When Sis smooth (12.1.2) is a standard result. Therefore we just need to 
analyze how the cohomology of S differs from the cohomology of a resolution. 
We split this analysis into two steps; in one step we consider how to resolve 
the bad singularities at isolated points of S, and in the other step we remove 
the one dimensional singular locus via a finite map. However we introduce a 
new twist; rather than first normalizing S for the second step, which loses too 
much information about the singularities of S, we make S as nice as possible 
by altering S at a finite set of points, and then normalize. 

S.M.F. 
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12.2 BASIC RESULTS 

We collect together here some of the properties of semi log canonical surface 
singularities. 

Let X be a scheme with at worst double normal crossings in codimension 
one. The next set of definitions introduces the appropriate notion of log 
canonical (these definitions were given in [KSB88] for surfaces). 

12.2.1 Definition. 

(1) An n-dimensional singularity (x EX) is called a double normal cross
ing point, resp. a pinch point if it is analytically (or formally) isomor
phic to 

(2) An n-fold X is semismooth if every closed point (x E X) is either 
smooth or double normal crossing point or pinch point. The singular 
locus of X is then a smooth (n - 1)-fold Dx. The normalization 
v: X,.,-+ Xis smooth and D,., = v- 1 (Dx)-+ Dx is a double cover 
ramified along the pinch locus. 

(3) A morphism f : Y -+ X is called a semiresolution if f is proper, 
Y is semismooth, no component of Dy is f-exceptional, and there 
is a codimension two closed subset SC X such that JIJ- 1(X \ S) : 
1-1 (X \ S)-+ X\ Sis an isomorphism. 

(4) Let X be a reduced scheme, Li C X a Q-Weil divisor (cf. (16.2)). 
Let f : Y -+ X be a semiresolution with exceptional divisors E and 
exceptional set Ex(!) C Y. 

f is a good semiresolution (resp. a good divisorial semiresolution) 
of Li C X if the union EUDyUJ;1(Li) (resp. Ex(f)UDyUJ;1 (Li)) 
is a divisor with global normal crossings on Y. 

(5) Let S be a reduced surface. A semiresolution f : T-+ Sis minimal 
if wr is f-nef. (In the nonnormal case, minimal resolutions are not 
unique.) 

(6) Let X be a reduced S2 scheme, Li C X a boundary (i.e., a Q-Weil 
divisor Li = ~ diLii with O ~ di ~ 1). We say that Kx + Li is 
semi log terminal (resp. divisorial semi log terminal, resp. semi log 
canonicaQ (frequently abbreviated as slt resp. dslt resp. sic) if it is 
Q-Cartier and there is a good semiresolution (resp. a good divisorial 
semiresolution, resp. a good semiresolution) f : Y -+ X of Li C X 
such that: 
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where the Ei are the f-exceptional divisors and ail ai > -1 (resp. 
ai > -1 resp. ai ~ -1). We leave it to the reader to formulate the 
analogous definition of the various flavors of semi log terminal. 

(7) Let f : Y - X be a semiresolution. We say X has semirational 
singularities, if f*Oy = Ox and Ri f*Oy = 0 for i > O. As in the 
normal case, this is independent of the semiresolution chosen. 

(8) A scheme X ( over an algebraically closed field) is called seminormal 
if the following condition holds: 

Every finite and surjective morphism X' - X which is one-to-one 
on closed points is an isomorphism. 

12.2.2 Notation. Let (X,~) be slc. Letµ: Xµ --t X be the normalization. 
Let D C X (resp. Dµ C Xµ) be the double intersection locus. Thus µIDµ : 
Dµ --t Dis a double cover. Let 0 = µ- 1 ~ + Dµ- Thus 

Kx,. + 0 = µ*(Kx + ~)-
The irreducible components of Xµ are frequently denoted by Xi and then 

0i denotes the restriction of 0 to Xi. 

12.2.3 Proposition. {vanStraten87} Let S be a surface which is semismooth 
in codimension one. Then S has a minimal semiresolution. H ~ C S is a Weil 
divisor then (S, ~) has a good semiresolution. 

Proof. Let S be a surface, with normal crossings in codimension one, and 
choose a good resolution (T0 , D0 ) of the pair (Sµ, Dµ)- If ~ = 0 then Dµ 
is reduced and we may assume in addition that KT0 +Dois nef on T0 /Sµ. 
The map Dµ --t Ds is two-to-one, and defines an involution T on D0 . It is 
easy to see ( cf. [Artin70] for the general theory) that one can find an analytic 
(or algebraic) space T, which is obtained from To by gluing together points 
of Do that are conjugate under the involution T. Moreover it is not hard 
to see that T is semismooth; pinch points correspond to fixed points of the 
involution T. There is a morphism f : T --t S with fibres which are either 
points or curves. Thus f is projective, hence T is also projective and so f is 
a semiresolution. □ 

The following is clear from the definitions (cf. (2.6)): 

12.2.4 Proposition. Notation as above. Then 

discrep(X, ~) = discrep(Xµ, 0). □ 

It might seem from (12.2.4) that one could define the semi log versions of 
lt, le etc. by requiring the corresponding notion to hold for the normalization. 
However, Kx + ~ is usually not Q-Cartier even when ~ = 0 and (Xµ, 0) 
is log canonical. In dimension two one can give the following necessary ( and 
suflicient) condition. 
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12.2.5 Proposition. Let (S, ~) be a sic surface. Let D 1 C S be a double 
curve such that µ-1(D1) = D~ U Df bas two components. Then (see (16.6) 
for the defi.nition of Diff) 

Diffn~ (8 - D~) = Diffn~1 (8 - nn. 
Proof. Let 81, 82 be analytic neighborhoods of D~, Df respectively. We 
abuse notation, and identify S1 and 82 with their images under µ. Now we 
may compute the different at any point of D~ or Df, on the surface S, by first 
restricting to 81 or 82. In either case this is equivalent to restricting Ks + ~ 
to the double curve D1 . □ 

12.2.6 Corollary. Let (S, ~) be a germ of a slc surface. Assume that Sµ 
bas two irreducible components sr, Sf. Then 

Proof. Note that by (16.6) (Si, 8i) is isomorphic to (C2 , C) iff 8i is irreducible 
and the different is zero. □ 

12.2. 7 Corollary. Let (S, B) be a germ of a slt surface. Then S bas one or 
two irreducible components. 

Proof. Assume that S has at least three irreducible components. Then there is 
a component 81 which intersects at least two other components along curves. 
Thus 8i = 8ISf contains at least two reduced curves. By Chapter 3, this 
implies that (Sf, 8i) is not lt. □ 

12.2.8 Proposition - Definition. Let (S, ~) be a germ of an sic surface. 
Let f : T -+ S be a minimal semiresolution (of S). Let Ei C T be the 
exceptional divisors. Then 

(1) 

where O 2:: ai 2:: -1. Let E = I:a;=-l Ei. 
(2) R1 f*Or(-E) = O. 
(3) If (S, ~) is not semirational then ~ = 0 and Sis either simple elliptic, 

a cusp or a degenerate cusp; where we defi.ne S to be 
(i) simple elliptic, if E = Ex(!) is a smooth elliptic curve, and S is 

normal, 
(ii) a cusp (resp. degenerate cusp), if Sis normal (resp. not normal, but 

T has no pinch points, locally about E ), if E = Ex(!) is a cycle of 
IP'1 or a nodal IP'1 . 
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Proof. Let v : Tv ----t T be the normalization of T. We get a commutative 
diagram 

T 
f 

8. 

Now g : Tv ----t 8µ is a resolution of 8µ. Thus 

where F; are the exceptional divisors of g and 0 ~ a; follows from (2.19). 
Let F = :Ea;=-l F;. Then J* E = F, and so to show that R 1 f*(Jr(-E) = 

0, it is enough to show that R 1 g* Orv ( -F) = 0, as the morphisms v and µ 
are finite. But as 

-F = I<rv + (g:- 1 (8) + L -a;F;) - g*(I<sµ + 0), 
a;>-1 

this follows by Kawamata-Viehweg vanishing [KMM87, 1-2-3]. 
Now if 8 is not semirational, h1(0E) ~ 1, by (2). Applying adjunction to 

E, we have: 

I<E = (I<r + E)IE = L (a;Ei - J;1 (~))IE, 
O~a;>-1 

which is negative unless E = Ex(!) and~ = 0. Thus H 1 (0E) = 0 unless 
E = Ex(!) and~= 0. In the latter case E has arithmetic genus one, and so 
it is an elliptic curve, a cycle of P1 or a nodal P1 . Therefore if 8 is not normal 
then Dµ has two components on every component of 8µ and every (8µ, Dµ) 
falls to case (9) of Figure 3 in the classification of Chapter 3. Thus 8 is a 
degenerate cusp. This proves (3). □ 

12.2.9 Definition. Let (C, ~) be a semi log canonical curve and~ a Q-divisor. 
Let n : C = UC; --+ C be the normalization and define ~i by 

Assume that m( J< C; + ~;) is an integral divisor. For every P E L~i _J let z p 

be a local parameter at P. A sections; E I'(C;, O(m(I<c;+~;))) is normalized 
if s; - ( dz p / z p) m vanishes at P. This is easily seen to be independent of the 
choice of z p. 
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A sections E r(C, O(m(Kc + ~))) is normalized if n*(s)ICi is normalized 
for every i. 

On the nodal curve (xy = 0) C C2 consider the 1-form a= dx/x = -dy/y. 
Even powers of a are normalized and there are no normalized sections if m is 
odd. 

Ail normalized sections form an affine subspace in the space of sections. 
This will be denoted by 

12.2.9.1 Complement. If Ci is such that L~i_J = 0 then Ci is a smooth con
nected component of C and the above definition imposes no restrictions on 
sections of 0( m( K + ~i)). For our purposes it will be convenient to make the 
following convention. Assume that Ci is an elliptic curve such that ~i = O. 
Aut(C) acts trivially on H 0 (C, Oc(12Kc )). We fixa nonzero section for every 
elliptic curve and call it (and its powers in H0 (C, Oc(12mKc))) normalized. 

12.2.10 Definition. Let (X,~) be an slc surface. As in (12.2.2) let n : 
(Xµ, 0)-+ (X,~) be the normalization. As sections E r(X, O(m(Kx+~))) 
is normalized if 

is normalized. 
AU normalized sections form an affine subspace rn(X, O(m(Kx +~)))in 

the space of all sections. 

12.2.11 Proposition. Let (C, ~) be an slc curve and let m be a natural 
number sucb tbat m~ is integral. Tben 

(12.2.11.1) rn(C, 0(2m(Kc +~)))=Ili rn(Ci, 0(2m(Kc; + ~i))); 
(12.2.11.2) If Kc + ~ is nef tben rn(C, 0(12m(Kc + ~))) generates 

0(12m(Kc + ~)). 

Proof. The first partis clear. Using the first part, it is sufficient to prove the 
second for C irreducible and smooth. 

We distinguish two cases: 
(12.2.11.3) deg (Kc +~)=O. Then either g(C) = 1 and~= 0 or g(C) = 

0 and L~_J is at most two points of C. 0(12m(Kc + ~)) has one section (up 
to scalars) and a suitable multiple is normalized if L~_J is at most one point. 
If L~_J = {O,oo} then (dz/z) 12m is normalized. 

(12.2.11.4) deg (Kc + ~) > O. Let P be any point different from L~_J. 
Consider the exact sequence 
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deg(12m(Kc + ô) - LÔJ - P) 

= deg(Kc + llm(Kc + ô)) + deg((m - l)(Kc + ô) + {ô}) - 1 

2: degKc + 11-1 = degKc + 10, 

we conclude that 

is surjective. D 

12.3 THE REDUCED BOUNDARY OF LC SURFACES 

Let (S, 8) be an le surface. Our aim is to analyze L8J in the cases when 
v(S, 8) E {O, l}. 

12.3.1 Proposition. {Shokurov91, 6.9} Let (S, 8) be a proper le surface. 
Assume that K + 8 = O. Then ( S, 8) satisfi.es one of the following conditions: 

(1) L8J is connected and for every CE L8_J the pair (C, Diff(8 - C)) is 
not kit, (i.e., Diff(8 - C) contains a point with multiplicity 1.) 

(2) Le_J is irreducible and for C = Le_J the pair (C, Diff(8 - C)) is kit. 
(3) L8_J bas two connected components, for every C C L8_J the pair 

( C, Diff ( 8 - C)) is kit and there is a morphism onto a curve g : S -t B 
such that L8J consists of two sections of g. (B is either rational or 
elliptic.) 

Proof. Let h: S' -t S be an lt modification of Sand let K +e' = h*(K +8). 
Then (S', 8') is lt and it is sufficient to prove that the result holds for (S', 8'). 
In this case (C, Diff(8' - C)) is not klt iff C intersects another irreducible 
COIDponent of L81 _J, 

We prove a stronger relative version: 

12.3.2 Proposition. Let (S, 8) be a log terminal surface. Let f: S -t R be 
a proper morphism with connected fi.bers. Assume that K + 8 is numerically 
!-trivial. Let r ER be arbitrary. Then one of the following holds: 

(1) L8J is connected in a neighborhood of J- 1(r); 
(2) L8J bas two connected components in a neighborhood of J- 1(r), 

both components are smooth and there is a morphism onto a curve 
g : S / R -t B / R such that L 8 _J consists of two sections of g. 
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Proof. If fis birational then (17.4) implies that we have (1). Thus we may 
assume that f has positive dimensional fi.bers and that Le_J #- 0. 

We apply the (K + 0- EL0_J)-MMP on S/ R for O < E ~ 1. The end result 
is a proper birational morphism p : S / R -+ Z / R such that K z + p( 0) is le 
and Kz + p(0) - ELp(0)_J is lt. We daim that 

p(L0_J) = Lp(0)_J. 

Indeed, since K + 0 is numerically !-trivial, K = p*(Kz + p(0)) - 0. If 
z E p(L0_J) - Lp(0)_J then 

K = p*(Kz + p(0)) - 0 = p*(Kz + p(0) - ELp(0)_J) - 0 

in a neighborhood of p- 1(z), which shows that Kz + p(0) - ELp(0)_J is not 
lt at z, a contradiction. In particular Lp(0)_J #- 0. By (17.4) the fi.bers of 
L0_J -+ Lp(0)_J are connected, hence Lp(0)_J is connected iff L0_J is connected. 

Now we distinguish several cases. 

(i) Kz + p(0) - ELp(0)_J is numerically trivial over R. This can only 
happen if the fi.bers of Z -+ R are one dimensional and Lp(0)_J is 
the union of some fi.bers, thus Lp(0)_J is connected near any fi.ber. 
Otherwise there is a (Kz + p(0) - ELp(0)_J)-extremal contraction 
u : Z / R -+ V/ R. Here there are two subcases: 

(ii) u contracts Z to a point. Then p(Z) = 1, hence any two curves in Z 
intersect. Thus Lp(0)_J is connected. 

(iii) u contracts Z to a curve and the generic fi.ber is 1P'1 . Therefore Lp(0)_J 
intersects the generic fi.ber in at most two points. For any v E V, 
the fi.ber u- 1(v) C Z is an irreducible curve. Thus if Lp(0)_J is not 
connected in the neighborhood of a fi.ber of Z -+ S then Lp(0)_J is 
the union of two sections of u near that fi.ber. Thus L0_J also has two 
connected components. 

In order to prove (2), consider the morphism u op: S -+ V. In a neigh
borhood of ( u op )-1 ( v), L 0 _J consists of two sections and possibly some other 
curves C = UCi C ( u o p )-1 ( v) which are p-exceptional. If C is not empty 
then ( u op )-1 ( v) - C is contractible, and the resulting contraction contradicts 
(17.4). Thus C is empty and (2) holds. □ 

As a straightforward corollary we obtain: 

12.3.3 Theorem. Let (S, ~) be a proper, connected slc surface such that 
K +~=O. Let (Si, ei) be the irreducible components of the normalization. 
Then one of the following conditions is satisfi.ed: 

(1) L0i_J is connected for everyi and for every irreducible curve CC Lei_J 
the different (C, Diff(0i - C)) is not klt. 
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(2) For every i and for every irreducible curve C C L8;_i tb..e different 
(C,Diff(8; - C)) is klt. □ 

The combinatorial description of the intersections of the irreducible com
ponents of S is very subtle in case (1). (See [Friedman-Morrison83] for an 
overview of the special case of semistable degenerations of surfaces.) In the 
second case the combinatorics is easy but we need further information about 
the relationship between the two components of L8;_i. 

12.3.4 Theorem. Let (S, 8) be an le surface. Let f : S --+ B be a proper 
morpb.ism onto a curve, witb. connected fibers. Assume tb.at K + 8 is nu
merically !-trivial and L8_J ::::> C1 U C2 wb.ere tb.e C; are sections off. Let 
f; = JIC;. Tb.en 

(1) (fi)* Diffc1 (8-Ci) = (h)* Diffc2 (8-C2); let us call tb.is IQ-divisor 
P. 

(2) For some m > 0 we b.ave an isomorpb.ism 'ljJ : f*OB(mK + mP) ~ 
Os(mK +m8). 

(3) Let î/J; denote tb.e composite isomorpb.ism 

î/J; : OB(mK + mP) ~ f*(f*OB(mK + mP)) 
,j,, 
~ f*Os(mK + m8) 

~ f*(Os(mK + m8)IC;) 

~ (f;)*Oc,(mK + mDiff(8 - Ci)). 

Tb.en 

and tb.e natural isomorpb.ism 

differ by tb.e sb.eaf multiplication ( -1). 

Proof. Let h : (S', 8') --t (S, 8) be a proper morphism such that K + 8' = 
h * ( K + 8). Then the theorem holds for ( S, 8) iff it holds for ( S', 8'). Thus as 
in (11.2.4) we may reduce to the case when Sis smooth, and then by contract
ing ( -1 )-curves in the fi.bers we may assume that f : S --+ B is a JP1-bundle. 
Thus 8 consists of two sections and some fi.bers (with coefficients), which 
clearly implies (1). (2) and (3) are not affected by the vertical components 
of 8, thus we may even assume that 8 = C1 U C2. By further elementary 

147 



L.-Y. FONG, J. KOLLÂR, J. McKERNAN 

transformations we may also assume that C1 and C2 are disjoint. It is now 
clear that 

1/): Os(K + C1 + C2) ~ f*OB(K). 

In order to see (3) we may restrict our attention to a local chart on B. Thus 
Sis of the form JP1 x B. Let (s: t) be coordinates on JP1 and let C1 = (s = 0) 
and C2 = (t = 0). Let z be a parameter on B and let g(z)dz be a 1-form. 
Under the isomorphism 1/) we obtain 

ds 
1/)*(g(z)dz) = ,\- /\ g(z)dz, 

s 

where ,\ is an unknown constant. Thus 1/J1 is given by 

1/J1(g(z)dz) = ,\g(f{(z))d(f{(z)). 

Changing from s to t we obtain 

hence 

This proves ( 3). □ 

dt 
1/J*(g(z)dz) = -,\- /\ g(z)dz, 

t 

1/J2(g(z)dz) = -,\g(f;(z))d(f;(z)). 

12.4 ABUNDANCE 

In this section we present a proof of (12.1.1). 
Let f : T ---+ S be a minimal semiresolution. By (12.2.8.1) there is a 

boundary D.i' on T such that (T, D.y) is log canonical and K + D.r = f* ( K + 
D..). Thus abundance for (S, D.) is equivalent to abundance for (T, D.y ). In 
several instances it will be convenient to consider only the case when our 
surface S is already semismooth. 

12.4.1 Claim. (12.1.1) is true if v = 0 and we are in case (1) of (12.3.3). 

Proof. We may assume Sis semismooth. Choose m such that m(K + 8i) is 
a linearly trivial Cartier divisor for every i. We daim that 12m(K + D..) ~ O. 

In order to see this we have to choose sections O"i E Os;(12m(K + 8i)) 
such that they patch together along the double curves. By assumption L8i_J 
is connected and K + ei is numerically trivial; thus 

H 0 (L8i_J, 0Le;./12m(K + Diff(8i - Lei_J)))) 

is one dimensional, and it contains a unique normalized section Pi. Choose 
O"i such that it restricts to Pi· If C C L8i_J is a proper subcurve then PilC is 
the unique normalized section of Oc(12m(K +Diff(8i- L8i_J))IC). Thus the 
O"i automatically patch together to a global section O" E H 0 (S, 0(12m(Ks + 
D..))). □ 
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12.4.2 Claim. (12.1.1) is true in the following cases: 

(1) v = 0 in case (2) of (12.3.3); and 
(2) v = l provided v(Si, ei) = 1 for every irreducible component Si of 

sv and Si n Sj bas no vertical components for i i- j. 

Proof. Let µ : Sµ - S be the normalization and let Di C Si be the inverse 
images of the double curves. By assumption Di has one or two irreducible 
components. Moreover, except when Di is irreducible, it makes sense to talk 
about horizontal and vertical components of ei. If v = 0 then (12.3.1.3) 
provides a morphism onto a curve, in the second case the morphism is given 
by abundance for (Si, 0ï)-

By suitable indexing of the components Si (1 :S i :S n) of Sµ we may 
assume the following conditions 

L8i-1 = D-; U Dt U (vertical parts) (D1 or D!may be empty); and 

Dt ~µ(Dt)= µ(D:+ 1 ) ~ D:+1 for 1 :Si :Sn - l. 

We distinguish two cases according to the behaviour of µ on the curves D1 
and D;t. 

(chain) D1 - µ(Di-) and D;t - µ(D;t) are isomorphisms and µ(D1) i
µ(D;t). If D1 - µ(Di-) or D;t - µ(D;t) is two-to-one, let r 1 (resp. 
Tn) denote the corresponding involution of D1 (resp. D;t). Otherwise 
let T1 and T n be the identity. 

(cycle) D;t ~ µ(D;t) = µ(D1) ~ D1. 
The following obvious proposition describes H 0 (S, O(mK +m~)) in terms 

of Sµ: 

12.4.3 Proposition. Suppose tbat m is sufliciently divisible. Set 

(12.4.3.1) 

and let 

(12.4.3.2) 

H(i) = H 0 (Si,O(mK + m0i)) 

H(i-) = H 0 (D-;, O(mK + m Diff(0i - D-;)) 

H(i+) = H 0 (Dt, O(mK + mDiff(0i - Dt)), 

"Pi : H(i) - H(i-) 

'lj;t : H(i) - H(i+) 

</>i : H(i+) - H((i + 1)-) 

</>n : H(n+) - H(o-) (for cycle only) 
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be the natural isomorphisms. 
Then the sections of H 0 (S, O(mK + m.6..)) are exactly those sequences 

{ 'f/i E H( i)} which satisfy the following assumptions: 

(chain) 1PH-1(TJi+i) = cf>ï(î/J7(TJi)), c/>"ï(TJ1) is Ti-invariant and c/>";;(TJn) is Tn
invariant. 

(cycle) 1PH-1(TJi+1) = cf>ï(î/J7(TJi)) and 1P1(TJ1) = cf>n(î/J";;(TJn)). D 

The choice of 'f/1 and the compatibility conditions 1/J i+ 1 ( 'f/i+l) = c/>i ( 1/J 7 ( 'f/i)) 
automatically determine the other 'f/i uni quel y. Let 'f/ denote any set { T/i} 
which satisfy these compatibility conditions. 

We also need the foilowing: 

12.4.4 Lemma. The image G of Aut(D1 , Diff(81 -D1 )) in H(l -) is fi.nite. 

Proof. This is clear unless D1 ~ JP>1. If this holds then Diff ( 8 1 - D1) is klt 
in case v = 0 and has degree > 2 in case v = l. Thus Supp Diff(81 - D1) 
consists of 2:: 3 points, hence Aut(D1 , Diff(81 - D 1 )) is itself finite. □ 

12.4.5 Corollary. Notation as above. Let G = {g1 , ... ,gk}. Then 

descends to a section of 

Os(2kmK + 2km.6..). 

Proof. Note first that by (12.3.4) all the pairs (D;, Diff(E>i - D;)) and 
(D7,Diff(8i - Dt)) are isomorphic, and thus ail the corresponding groups 
are the same. Furthermore, any isomorphism obtained by a combination of 
the isomorphisms in (12.4.3.2) is, up to a sign, induced by an isomorphism 
of the underlying pairs. Therefore, the second set of compatibility conditions 
are satisfied for 'f/ up to an element of G and up to a sign. 

Therefore, in the cycle case, there is an element g E G such that 

and similarly for chains. By taking the product over ail 9i E G and taking 
the square we get rid of the ambiguities. □ 

12.4.6 Claim. (12.1.1) is true if v = l. 
Proof. Let (S, .6..) be slc with v = l. As we remarked earlier, it is suffi.cient 
to consider the case when S is semismooth, and hence D is smooth. Let 
D = Do U D 1, where Do is the union of those irreducible components Di such 
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that v(Di, Ks + .6.) = 0 and at least one of the irreducible components Si 
containing Di has v = l. 

Let 1r : S' -+ S be the morphism obtained by normalizing in a neighborhood 
of Do. The connected components of ( S', 0') have either v = 0 or v = l and 
they satisfy the assumptions of (12.4.2.2). Thus abundance holds for (S', 0'). 
We need to analyze the patching of sections along 1r-1 (D0 ). 

12.4.7 Lemma. Assume that (S,.6.) satisfi.es the assumptions of (12.4.2.2). 
Let p : S -+ B be the morphism given by a large multiple of K + .6.. Let .6.' 
be the vertical part of .6.. Then L.6.' _J is the union of fi.bers of p. In particular 
for every irreducible C C L.6.' _J the restriction ( C, Diff c( .6. - C)) is either not 
klt or C is a smooth elliptic curve and Diffc(.6. - C) = O. Furthermore, there 
are sections 

r E H 0 (S, Os(2mK + 2m.6.)) 

whose restriction to L.6.' _J is the unique normalized section of 

These sections have no common zeros. 

Proof. The first daim follows from (12.3.2) applied to the normalization of S. 
Let bi E B be the points corresponding to L.6._J. For some m > 1 we have 

for some Q-divisor P. Since KB + I::[bi] +Pis ample, for m ~ 1, it follows 
that there are sections of OB(mK + m I::[bi] + mP) taking any preassigned 
value at the points bi. Furthermore these sections will not have any common 
zeros. □ 

12 .. 4- 7.1 Complement. It is easy to see that (12.4.7) also holds if (S, .6.) is a 
semi-smooth surface, B is an affine curve and p : S -+ B is a proper and 
fiat morphism such that K + .6. is p-trivial and every double curve of S is 
horizontal. 

Now we can finish the proof of (12.4.6). By (12.4.7) and (12.4.1) we can 
choose sections of 0s,(2mK + 2m0') which induce the unique normalized 
section of 

These sections will descend to S and they have no common zeros. □ 
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12.5 HODGE THEORY 

In this section we prove (12.1.2). The following lemma is useful in compar
ing the cohomology of S, with that of a partial resolution of S. 

12.5.1 Lemma. Consider the following commutative diagram of Abelian 
groups 

A' W' B' 
d' 

C' 

al wl /31 71 
d 

A w B C. 

If the rows are exact, a and /3 are surjective, and 

(12.5.1.1) d' (ker (3) = im d' n ker 'Y, 

then w is surjective. (The last condition holds for example if there are com
patible splittings (3' and -y' of the maps (3 and 'Y, or if 'Y is an isomorphism.) 

Proof. An easy diagram chase, left to the reader. D 

We first prove (12.1.2) assuming that S is semismooth. 

12.5.2 Lemma. If Sis semismooth then the natural map 

is surjective for every p. 

Proof. Let g: Sµ--+ S be the normalization of S; Sµ is smooth. We compare 
the cohomology of S and Sµ. There are two relevant exact sequences: 

(12.5.3) 

(12.5.4) 

0--+ Cs--+ g*Csµ--+ 9--+ O. 

0--+ Os--+ g*Osµ--+ :F--+ 0 

We identify the sheaves :F and 9, which are defined at the momènt as cokernels 
in (12.5.3-4). 

Dµ is smooth and maps two-to-one to D = Ds. Let T be the natural 
involution on D µ- The involution T acts naturally on the sheaves g* ( 0 D µ) 
and g*(Cvµ). Under this action, these sheaves decompose into invariant and 
anti-invariant parts; the sheaves :F and 9 are then the anti-invariant parts. 
Let P be the union of all the pinch points and let L2 ~ 0( P) the line bundle 
defining the double cover. It is an easy computation to check that :F = L- 1 . 
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Now we compare the two long exact sequences of (12.5.3) and (12.5.4): 
(12.5.5) 

Here the diagram commutes, and the horizontal sequences are exact. As 
previously observed, since 5µ is smooth the map Jp is surjective. 

Now we have to find compatible splittings of the maps Jp and kp; these are 
given by Hodge theory. In fact the cohomology groups HP(Dµ, C) decompose 
into invariant and anti-invariant subspaces under the action of T and HP(D, Ç) 
is just the anti-invariant part. As such HP(D, Ç) inherits a filtration from the 
natural Hodge filtration on HP(Dµ, C). Now consider the commutative square 

(12.5.6) 

Clearly the maps ep and fp preserve the Hodge filtrations. But the horizontal 
maps cp and dp of (12.5.5) factor through the horizontal maps ep and fp of 
(12.5.6). Thus there is a natural splitting of the map kp, compatible with the 
splitting of Jp• Now apply (12.5.1) to deduce ip is surjective. □ 

We are now in a position to prove (12.1.2). 

Proof. Let f : T -----t S be a semiresolution of S. By (12.5.2), the natural 
maps 

are surjective. 
We wish to compare the cohomology of T and S. There are two relevant 

spectral sequences; the Leray-Serre spectral sequences associated to the map 
f and the sheaves CT, OT. The respective E2 terms of the two spectral 
sequences are HP(S,Rqf*CT) and HP(S,Rqf*OT)- Both spectral sequences 
degenerate at the E3 level, and converge to H* (T, C) and H* (T, OT) respec
tively. 

Let F be the exceptional locus of the map f. As F is one dimensional, the 
only interesting cohomology groups to identify at the E2 level are 
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The first identification is easy; given any open neighbourhood of F, we can 
always find a smaller one which retracts to F. For the second we use (12.2.8). 
In fact if we push down the short exact sequence 

0 --t OT(-F) --t OT --t OF--+ 0 

by f, we obtain a sequence 

The two spectral sequences give rise to the following commutative diagram 
of cohomology groups, with exact rows: 

0 H 1 (T,CT) H 1 (F,CF) 

(12.5.7) ii 1 k1 l 
0 H 1(T,OT) H 1(F, OF)-

We apply (12.5.1). We need to find a compatible splitting for k1 . Let Fj be 
the connected compnents of F. By (12.2.8) these corne in three types. If Fj is 
a tree of rational curves then H 1(Fj, C) = O. If Fj is a cycle of rational curves 
then H 1 (Fj, C) --+ H 1 (F, OF) is an isomorphism. Finally if Fj is a smooth 
elliptic curve then H 1 (T, <CT) --+ H 1 ( F, <CF) factors through H 1 ( Sµ, <C) hence 
the splitting of k1 IFj provided by Hodge decomposition works. 

i0 is automatically surjective, and there is a similar commutative diagram 

H 2 (T,CF) 0 

( 12.5.8) hl 
H 2 (T,OF) 0 

( 12.5.1.1) is vacuously satisfied, hence i2 is surjective. D 

12.5.8 Remark. One can see that the kernel of ip in (12.1.2) is precisely 
F 1 HP(S, Cs) (given by the natural mixed Hodge structure, cf. [Grifliths
Schmid73]). The proof given ab ove could have been shortened by using more 
difficult Hodge theoretic methods. 
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13. ABUNDANCE FOR THREEFOLDS, 

CASE v(X) = 1 

JANOS KOLLAR, KENJI MATSUKI, and JAMES MCKERNAN 

This chapter treats the proof of the following result, proved in [Miyaoka88b] 
( see (11.1.2) for definitions ): 

13.1 Theorem. Let X be a minimal threefold. If the numerical dimension 
v(X) is one, then jmKxl is base point free for some m > O. 

The main steps in the proof are almost identical to those of Chapter 11, 
but of course some steps are harder. Here is a generalization of (11.3.2) to 
dimension three. 

13.2 Lemma. Let (X,~) be a Q-factorial kit pair (2.13.5), dimX = 3. 
Suppose there is a nef divisor DE jm(Kx + ~)I such that X \D bas terminal 
singularities. Let B = Dred. Then there is a threefold X, with boundary 
~ + ÎJ, where ÎJ is reduced, such that: 

(1) The pair (X,~+ ÎJ) bas Q_-factorial log canonical singularities, X\ ÎJ 
is isomorpkic to XA \ B and there is a divisor ÎJ E jm(K .x + ~ + Ê)j. 
Moreover Dred = B. 

(2) K x + ~ + ÎJ is nef. 
(3) v(X,Kx+~) = v(X,Kx+~+Ê) and 1,;(X,Kx+~) = 1,;(X,Kx+ 

~ + ÎJ). 

Proof. By (6.16.1) or (20.9) there is a projective partial resolution of singu
larities µ : X 0 -+ X such that 

(1) the divisor Bo=(µ* B)red is a normal crossing divisor, 
(2) µ: (Xo \Bo)-+ (X\ B) is an isomorphism. 

As (X,~) has klt singularities, m(Kx0 + µ--; 1 ~ + E) = µ* D + r = iJ, where 
E is the union of the µ-exceptional divisors and r is effective and supported 
on the exceptional locus. In particular, Supp iJ = Supp µ* D. Now we replace 

S.M.F. 
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µ-;; 1 D. with D..0 where we only include those components of µ-;; 1 D. which are 
not components of Bo. With this choice of D..o, D..o + B0 is a boundary, and 
there is a divisor Do E lm(Kx0 + D..o + Bo)I 

We now apply the log minimal model program to (X0 , D..0 + B0 ). We 
construct Xi, D.i, Bi and Di satisfying (1) inductively. If Kx; + D.i + Bi is not 
nef, there exists an elementary contraction </>i : Xi ___. Zi [KMM87, 4-2-1 and 
3-2-1] associated to a log extrema! ray with respect to Kx; + D.i + Bi. Clearly 
the map </>i is birational. 

If </>i is a divisorial contraction, we set Xi+l = Zi, D.i+l = </>i*(D.i), Bi+1 = 
</>i*Bi and Di= </>i*Di. (By [KMM87, 5-1-6], the image (Xi+i, D..i+1 +Bi+i) is 
Q-factorial log terminal, and (13.2.4) implies that Bi+l and Di+l are divisors.) 

Otherwise there is a log flip, i.e., a small birational morphism <f>t : Xi+1 ___. 

Zi. We take D..i+i, Bi+l and Di+l to be the birational transforms of Bi 
and Di under </>i- (By [KMM87, 5-1-11] the log flip (Xi+i, D..i+i + Bi+i) is 
log canonical and Q-factorial in a neighborhood of Bi+l. The pluricanonical 
class pushes across the flip, because it may be defined using differential forms 
on a complement of any codimension 2 locus.) 

Kx; + D.i + Bi is negative relative to the morphism </>i- Since Di E 
lm(Kx; + D.i + Bi)I is supported on Bi, the exceptional locus of </>i is con
tained in Bi. By (7.1) the process we have just described must terminate at 
some i, and we set X= Xi, A= D.i, ÎJ = Bi and ÎJ = Di. 

Conditions (1) and (2) are automatic from the construction. (3) follows 
from (11.3.3) and (13.2.4) applied to the pullbacks of the divisors m(Kx + ~) 
and Di to a common resolution. □ 

13.2.4 Lemma. The set theoretic image of an effective nef divisor under a 
birational morphism is divisorial. 

Proof. Let f : X ___. Y be a birational morphism, and let L be an effective 
nef Q-Cartier divisor on X. We may assume that Lis Cartier. Let M = f*L 
be the cycle theoretic push forward, and let Mo = f(SuppL) be the set 
theoretic image. Write Mo - Supp M = C0 U ... U Ci where Ci are distinct 
irreducible components. By taking generic hyperplane sections of Y, we may 
assume that min{dimCi} = O. Using generic hyperplane sections on X we 
may assume dimX = 2. Choosing a resolution of singularities for X and 
pulling back L, we may assume that X is smooth. But by the Hodge index 
theorem the intersection matrix of divisors supported on the exceptional locus 
of f over Ci is negative definite, and L is supported on this locus near Ci, a 
contradiction. D 

13.3 Conclusion of Proof of {13.1). 
Let X be a minimal threefold, i.e. a threefold with Q-factorial terminal 

singularities such that Kx is nef. Suppose that D E lmKxl (9.0.6) and let 
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B = Dred• 

13.3.1 Lemma. There is a threefold X, birational to X, with reduced bound
ary ÊJ such that: 

(1) The pair (X, ÊJ) is Q-factorial and log canonical, X\ ÊJ bas terminal 
singularities, and there is a divisor b E lmK .x l• Moreover Dred = ÊJ. 

(2) K x + ÊJ is nef. 

(3) v(X) = v(X, K x + ÊJ) and ~(X)= ~(X, K x + ÊJ). 

Proof. This is an immediate consequence of (13.2.1). □ 

13.3.2 Lemma. There is a threefold X', birational to X, with a reduced 
boundary B' satisfying conditions (1-3) of (13.2.1) and 

( 4) every connected component of B' is irreducible. 

Proof. It remains to modify X further to achieve ( 4). Suppose S is a prime 
component of ÊJ which is not isolated in ÊJ. We will apply the log minimal 
model program to K x + ÊJ - S. 

Suppose we have constructed a sequence of pairs (Xi, Bi) ((Xo, Bo) = 
(X, ÊJ)) and birational morphisms <Pi : Xi ---t Xi+i, with respect to Kx; + 
Bi-Si for j::; i-1, where Bj+ 1 and Si+l are respectively either <PiJBi) and 
<Pi*(Si), if <Pi is a divisoriai contraction, or the birational transforms of Bi 
and Si under <Pi, if <Pi is a log flip. As in (13.2.1), (Xi, Bi) satisfies properties 
(1-3). 

Suppose Si is still not isolated in B;. Then there is another component S' 
of Bi which meets S; in a curve C (recall X; is Q-factorial). Let H be an ample 
divisor and set C' = H n S'. Let L; be the line bundle Ox,(m(Kx, + Bi)). 
It is automatic that v(S, L;ls) = 0 and so deg L;lc, = 0, as the curve C' lies 
in S'. On the other hand, as H is ample, S • C' = H · C > 0, and so 

As L; is nef, the Theorem on the Cone [KMM87, 4.2.1) implies there is a log 
extrema! ray R such that 

with L • R = O. Now S • R > 0 and the support of the base locus of Kx, is a 
subset of supp (B;) and so R C supp (B; - S). By (8.1), there is a log flip of 
R with respect to L and by (7.1) this sequence of log flips terminates. Thus 
at some stage S; is isolated in B;. 

However if T is another prime component of B' and T is isolated in B', 
then Ti ( the component of B; corresponding to T) is isolated in B; ( as each 
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<Pi only modifies points of Sj ). In this way we isolate every component of B', 
one by one. □ 

Proof of (13.1.1). Pick a component S of B', and put ~ = Diffs(O). By 
(16.9.1), the pair (S, ~) is semi log canonical and so (12.1.1) implies Ks + ~ 
is torsion. Just as before, by (11.3.6), we may find a finite Galois caver 
1r : Ü ---+ U1 , étale in codimension one, such that 

S~m'è 
' 

and 

where S = 1r* S. N ow if we can apply ( 11.3. 7), then we may conclude just as 
in Chapter 11. Conditions (1) and (2) of (11.3.7) are automatic. 

Consider the commutative square 

-- HP(Sn, OsJ 
pl 

where Sn is defined as in Chapter 11. As the first vertical map is an isomor
phism (the support of S and Sn are the same), and the map ip is surjective 
(this is (12.1.2)), the map p is surjective as well, which is condition (3) of 
(11.3.7). D 
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14. ABONDANCE FOR THREEFOLDS, 

v(X) = 2 IMPLIES K(X) ~ 1 

DAN ABRAMOVICH, LUNG-YING FONG, and KENJI MATSUKI 

We continue our treatment of Miyaoka's and Kawamata's proof of the abun
dance conjecture for threefolds. In this chapter, we look at the case v(X) = 2. 
The method we use in sections (14.3-4) is due to Kollar. 

14.1 A special case 
Let us first consider the following very special case, which gives some idea 

about the line of proof in the general case. 
Assume X is a smooth minimal model with v(X) = 2, and assume the 

existence of a smooth member DE lmKxl- As v(D,Kn) = 1, by abundance 
for surfaces (11.3.1), K(D) = 1 and Dis an elliptic surface over some curve. 

Let H be a hyperplane section of X. Kodaira vanishing on H gives 

Hi(X, mKx + lH) ~ Hi(X, mKx + (l + l)H) 

for i ~ 2, m > 1 and l ~ O. But since H is ample, this group vanishes for 
large l. Therefore we get 

Hi(X,mKx) = 0 for i ~ 2. 

We now use Riemann-Roch. Since K} = 0, the coefficient of the leading 
(linear) term in x(nKx) is K · c2 (X), which is proportional to c2 (D), which 
is nonnegative [BPV84, p. 188]. Hence x(nKx) ~ C for some constant C, 
and h0 (X,nKx) ~ C + h1 (X,nKx). From the exact sequence 

0----+ Ox ((n - m)Kx)----+ Ox(nKx)----+ On(nKxln)----+ 0, 

we get h2 (D,nKxln) = 0 and 

H 1(X,nKx)----+ H 1(D,nKxln)----+ O. 

Riemann-Roch on D implies that x(D, nKxln) is constant. Since v(Kxln) = 
1, the abundance theorem on surfaces implies that both h O ( D, nK x ID) and 
h1(D,nKxln) grow with n. Hence h1(X,nKx) grows with n. This proves 
that K(X) > O. 

We begin with a construction similar to that of (13.2). 

S.M.F. 
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14.2 Lemma. There is a normal threefold X', birational to X, with reduced 
boundary B', and such that 

(1) (X', B') has Q-factorial log canonical singularities and (X', 0) has 
only log terminal singularities. There exists a divisor D' E lmKx, 1-
Moreover B' = D~ed. 

(2) Kx, + B' is nef. 
(3) v(X) = v(X', Kx, + B') and 11:(X) = 11:(X', Kx, + B'). 
(4) L' = m(Kx, + B') is Cartier. 
(5) If C is a curve in X' with C · (Kx, + B') = 0, then C · Kx, ~ O. If D 

is a curve in X' with D · (Kx, + B') > 0, then (X', B') is log terminal 
along the generic point of D. 

Proof. As in (13.2), we can apply the log minimal model program to construct 
a threefold .X, with boundary iJ satisfying (1), (2) and (3). 

Replacing m by a multiple, we can assume that L = m(K x + B) is a 
Cartier divisor. 

We construct X' inductively. Take Xb = X, Bb = iJ and Db = D. 
If there exists a curve C in Xi such that C · ( K X' + BD = 0 and C • 
Kx, < 0, then there is some Kx, extremal ray Ri lying on the hyperplane 

{ r 'I r · (Kx; +BD= O}. We ha've a divisorial contraction or a log flip 'Pi : 
x; --+ x;+l associated with Ri- Put Bi+l = 'Pi*(BD and Di+l = 'Pi*(DD. 
Then (1-4) are clearly satisfied. Since (.X, 0) has log terminal singularities, 
this process will stop and gives X'. 

It remains to check inductively that if we contract a divisor by 'Pi, we 
still have log terminal singularities generically along curves having positive 
intersection with Kx:+ 1 + Bi+i · Since v(BL LilB:) = 1, (12.1.1) implies that 
lm' L'IB' 1 defines a morphism f from Bi to some curve. Let S be a component 
of Bi on which Li is not numerically trivial, and let À : s>.. - S be the 
normalization. Consider the different e defined by À* ( K xi + BD = K s>- + e 
(cf. (16.6)). e lies over the nonnormal locus of Bi and the singular locus of 
Xi" Let eh be the horizontal part of e. If the generic fibre F of f o À is 
a smooth elliptic curve, then eh = O. Otherwise F ~ lP1 , and eh • F = 2. 
Decompose eh as I:Ckrk + "L, d1.6.1 in a neighborhood of F, where the rk 
map under À to the singular locus of Xi and the .6.1 to the nonnormal locus 
of Bi. Then 

(14.2.1) 

By the inductive assumption, (XL BD has log terminal singularities along 
..\(rk) and ..\(.6.1)- In particular, Xi is smooth along ..\(.6.1) and d1 = l, while 
along ..\(rk), XI has index mk quotient singularities (mk ~ 2) and q = 1- ~k 
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(See (16.6)). The set of solutions (di,··· ; m1, m2, ···)of (14.2.1) can be easily 
enumerated: 

Case 1 (1,1;), 
Case 2 (1;2,2), and 
Case 3 (;2,4,4), (;3,3,3), (;2,3,6), and (;2,2,2,2). 
Suppose that <pi contracts a Kx, extremal curve C on Xf. C · Di < 0 

implies that C C Bi. C · (Kx! + ÈD = 0, and hence C is contained in a 
fibre of f. C • Bi > 0 implies • that C has to intersect a component of Bi 
positively. We see at once that <pi can never contract components that are in 
Case 3. In Case 1, S intersects two other components S1 and S2 of Bi. Xf 
is smooth in a neighborhood of >.(F), hence Xf+1 is generically smooth along 
the intersection of </Ji(St) and </Ji(S2)- In Case 2, Xf has only two curves of 
A1-singularities in a neighborhood of >.(F), hence it is canonical. Therefore 
Xf+i has terminal singularities in a neighborhood of </Ji(>.(F)) (2.28.3), thus 
Xf+i is generically smooth along </Ji(S). (In fact one can see that in this case 
>.(F) · K 2'. 0, and therefore we never have to contract >.(F).) □ 

14.3 Computing the second Todd class. 
We now proceed with the proof of the abundance conjecture and establish 

an inequality involving the second Todd class on a resolution of X'. This is 
used in the final step when we apply Riemann-Roch. 

14.3.1 Lemma. X', B' and L' as in section 14.2. Let µ : V ---t X' be a 
resolution of singularities. Then we have 

Proof. Let 

Then all the 1-cycles C; are supported on the singular locus of X', and in 
particular they lie in B'. (By (13.2.4) X' has isolated singularities outside B'.) 
Because we are interested in the intersection of I: ai Ci with L' = m( K X'+ B'), 
we only need to consider 1-cycles on components S of B' on which v(L') # 0, 
and focus on cycles Ci 'horizontal' to the map f defined in (14.2). They 
are contained in the eh considered in (14.2) and we have a complete list of 
possible singularities there. 

We can compute the numbers ai by taking a transversal slice ri at a general 
point Pi on Ci, and reduce the computation to the surface case. Let µ : f' i = 
µ- 1(ri) ---tri be the resolution induced by µ. Notice that the number cr +c2 
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does not change on blowing up a smooth point of a surface. We may assume 
that µi is the minimal resolution. If Pi is an index mi point, then (10.8) (with 
B = 0) tells us that 

(14.3.1.2) 

If the singularity is a Du Val singularity, then we can work out by explicit 
computation that ai is !, i, 1; and 365 , when mi is 2, 3, 4 and 6 repectively. 
Otherwise, ai is ½, ¾ and -¾, when mi is 3, 4 and 6 respectively. Now an 
index 6 point is always accompanied by an index 2 point and an index 3 point, 
hence the sum of the corresponding ai is at least 2. This completes the proof 
of the lemma. □ 

14.3.2 Lemma. L' · ê2(Ôk,) ~ L' · ê2 (ôk,(logB')) - L' · (Kx, + B') · B'. 

Proof. By (10.8.8), the difference ê2(Ôk, )-ê2 ( Ôk,(log B') )-(Kx, +B') ·B' 

is an effective 1-cycle supported on the singular locus of X'. □ 

14.3.3 Lemma. Let µ : V -+ X' be a resolution of singularities. Then we 
have 

µ* L' ·(Ki+ c2(V)) ~ O. 

Proof. By (14.3.1) and (14.3.2), we have 

µ* L' ·(Ki,+ c2(V)) ~ L' · K} + L' · ê2 ( Ôk,(log B')) - L' · (Kx, + B') · B'. 

It follows from (10.13) that L' · ê2 ( Ôk,(log B')) ~ O. L' = m(Kx, + B') 

and v(B', L'IB') = 1, so that L' · (Kx, + B') · B' = O. Write Kx, as 'E biSi, 
where bi ~ 0 and Si are components of B'. Moreover Si · L' is equivalent 
to an effective sum of curves having zero intersection with (Kx, + B'). By 
condition (5) of (14.2), this implies Si• L' • Kx, ~ O. Hence L' · K}, ~ O. This 
completes the proof of the lemma. □ 

14.3.4 Remarks. 
(i) From the proof we see that the inequality in (14.3.3) is strict, unless 

the map fo has smooth elliptic fibres on all the components of B 
where v(L') = 1. 

(ii) The above proof works in any dimension. 

14.4 Proving that 1,;(X) > O. We now can prove the main theorem along the 
lines of the smooth case as in (14.1). 
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14.4.1 Theorem. [Kawamata91b] Let X be a minimal 3-fold over C. Sup
pose that v(X) = 2. Then K(X) > O. 

Proof. Construct X' and L' as in (14.2). Let µ : V -+ X' be a desingular
ization of X'. Since X' is log terminal, X' has only rational singularities. 
Therefore 

(14.4.1.1) 

x(X', nL') =x(V, nµ* L') 

=1~ (Kt+c2(V)) ·µ*L'+x(Ov). 

(14.3.3) shows that the linear term in (14.4.1.1) is nonnegative. Therefore 

(14.4.1.2) x(X', nL') 2:: C for some constant C. 

Now look at the exact sequence: 

(14.4.1.3) 

Recall that L' = m(Kx, + B'), thus nL'(-B') = Kx, + (nm - l)M' where 
M' = Kx, + B'. Take a general ample hyperplane section H' of X'. Using 
the restriction exact sequence and the Kawamata-Viehweg vanishing theorem 
[KMM87, 1-2-5] we see that 

Hi (X', nL'(-B') + lH') ~ Hi (X', nL'(-B') + (l + l)H') 

for i 2:: 2 and l 2:: O. The last group vanishes when l is large, thus 
H 2 (X', nL'(-B')) = O. Moreover, since B' is Cohen-Macaulay, 

h2 (B',nL'ls,) = h0 (B',ws1 (-nL'ls 1 )) = 0 

for n large. Therefore we have H 2(X',nL') = 0 for large n. Combined with 
(14.4.1.2), this shows that 

h0 (X', nL') 2:: h1 (X', nL') + C. 

Thus it is sufficient to prove that h1 (X', nL') grows linearly with n. Note 
that x(X',Kx, + (n - l)L') = -x(X', (1- n)L') has the same linear term as 
in (14.4.1.1). Hence it follows from (14.4.1.3) that x(B',nL'ls,) is actually a 
constant. Then ( 12 .1.1) together wi th the vanishing of H 2 ( B', nL' 1 B') implies 
that both h0 ( B', nL' 1 B') and h 1 ( B', nL' 1 B') grow with n. We have 

H 1(X', nL')-+ H 1(B', nL'ls 1 )-+ H 2(X', nL'(-B')) = O. 

This shows that h1(X, nL') grows with n and completes the proof of the 
theorem. □ 
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15. LOG ELLIPTIC FIBER SPACES 

JANOS KOLLAR 

The aim of this chapter is to complete the proof of abundance for threefolds. 
Instead of the cohomological approach of [Kawamata85] we present a rather 
geometric one. Many of the arguments work for an arbitrary nef divisor B 
such that v(B) = 2 and ,.,,(B) 2:: 1. The underlying variety can have arbitrary 
dimension or even positive characteristic. We however formulate everything 
for a klt divisor Kx + Âx in characteristic zero, where the necessary flips are 
known to exist. 

15.1 Definition. (15.1.1) A log elliptic fiber space is a proper morphism g : 
(V, Âv) ---+ W such that g*Ov = Ow, the generic fi.ber E9 is an irreducible 
curve and (Kv + Âv) · E9 = O. 

(15.1.2) Let (X, Âx) be a log variety. A log elliptic structure on X is a 
diagram 

(X,Âx) 
h 

w 
where h is a birational morphism, g : (V, Â v) ---+ W is a log elliptic fi.ber space 
and K v + Â v = h * ( K x + Âx) + F, where F is effective and Supp F con tains 
every h-exceptional divisor. 

15.1.3 Comments. The second definition is motivated by two examples. First, 
assume that (V; Âv) is a log elliptic fi.ber space and assume that (X, Âx) is 
obtained from (V, Âv) by (K v + Âv )-extremal contractions and flips. Then 
(X, Âx) has a log elliptic structure (we may have to blow up V a little). 

Second, if X has terminal singularities, Âx = 0 and X is birational to an 
elliptic fi.ber space (V, 0) then X has an elliptic structure. 

S.M.F. 
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15.2 Proposition. Let (X, ~X) be a proper klt variety. Assume that Kx + 
~x is nef and that X bas a log elliptic structure. Then there is an open set 
U C X and a proper morphism f u : U ---t Z which is a log elliptic fi.ber space. 

Proof. Let E 9 CV be the generic fi.ber of g. Then 

0 = Eg · ( K v + ~ v) = Eg · h * ( K x + ~X) + Eg · F 2'. Eg · F. 

Thus F is disjoint from E9 and h is an isomorphism in a neighborhood of 
Eg. □ 

For higher dimensional fi.bers the situation is more complicated. The fol
lowing result (which is not used in the sequel) generalizes [Grassi91, 1.8]. 

15.3 Theorem. Let X be a proper variety with Q-factorial terminal sin
gularities. Assume that mKx = 0 for some m > 0 and p(X) = 1. Let 
p: X--+ Z be a dominant rational map with connected fi.bers. Then p- 1 (z) 
is of general type for every general z E Z. 

Proof. Let g : Y ---t X be a proper birational morphism such that f = p o g : 
Y ---t Z is a morphism. Let E C Y be the exceptional divisor of g. We may 
assume that Y is smooth. Let H C Z be a divisor. Then g(f*(H)) is an 
effective divisor on X, hence ample. 

g*(g(f*(H))) = f*(H) + F1 where Supp F1 CE. 

Let z E Z-H be a point such that J- 1 (z) is smooth and glJ- 1 (z) is birational. 
Then 

g*(g(f*(H)))lf- 1(z) = F1 lf-1(z) 

is the pull back of an ample divisor by the birational morphism glJ- 1(z). In 
particular it is big. On the other hand, Ky = g* K x + F2 where Supp F2 = E. 
Thus 

mK1-1(z) = mKylf- 1(z) = mF2IJ-1 (z). 

Sin ce Supp F1 c Supp F2 this implies that K J-1 c z) is big. □ 

15.4 Theorem. Let (X, ~x) be a projective Q-factorial threefold such that 
Kx + ~x is ldt. Assume that 

(15.4.1) Kx + ~x is nef; 
(15.4.2) dim lm(Kx + ~x)I 2: 1 for some m > O; 
(15.4.3) there is an open set U C X and a proper morphism fu : U ---t Z 

which is a log elliptic fi.ber space. 
Then Kx + ~x is eventually free. 

15.4.4 Remark. If p: X ---t Y is a morphism such that Kx + ~x = p*(Ky + 
~y) then Kx+L\x is eventually free iff Ky+~Y is. Similarly, if p: X--+ Y 
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is a (Kx + ~)-flop then Kx +~xis eventually free iff Ky+ p*(~x) is. We 
use these observations to change X. 

15. 5 End of the proof of ( 11.1.1). Let X be a minimal threefold. The only 
case still open is when v(X) = 2. We woud like to check the conditions 
of (15.4) in case ~x = O. (15.4.1) is assumed and (14.4.1) shows (15.4.2). 
(15.4.3) requires a little work. 

Lt (X',B') be as in (14.2). B' is a semi log canonical surface with v(B') = 
1. Thus by (11.3.1) it has an irreducible component which is birational to 
either a ruled or to an elliptic surface. We already know that dim lm(Kx + 
~x)I ~ 1. Assume that we can construct (X',B') such that B' moves in a 
pencil. We obtain that X' contains a pencil of ruled or elliptic surfaces. X' is 
not uniruled, thus it has a pencil of elliptic surfaces. Therefore X is birational 
to an elliptic threefold, hence (15.2) implies (15.4.3). 

Let us go back to the construction in (14.2) which was started in (13.2). 
(We use the notation employed there.) If D E lm(Kx + ~x)I moves in a 
pencil then we can choose µ : X 0 ---t X such that iJ still moves in a pencil. 
This pencil survives in ail the contractions and flips. At the end we obtain 
(X',B') as in (14.2) such that B' moves in a pencil {Ba and (X',B;) is log 
canonical for general t. At least one of the moving components of B; has 
v(B;) = 1. Thus the above argument applies and (15.4) completes the proof 
of the abundance theorem for threefolds. □ 

15.6 Definition. We say that an effective divisor D C X is (Kx + ~x)
trivially connected if for any two points x 1 , x 2 E D there is a connected curve 
x1,x2 E CC D such that Kx+~x is numerically trivial on every irreducible 
component of C. 

15.7 Lemma. Assume (15.4.1 and 2). Let D C X be (Kx + ~x)-trivially 
connected. Then one of the following holds: 

(15. 7.1) Kx + ~X is eventually free and is composed of a pencil, 
(15. 7.2) there is an effective divisor D' and natural numbers d, m such that 

dD + D' E lm(Kx + ~x)I, SuppD r/.. SuppD' and D n D' i= 0. 

Proof. Let lm(Kx +~x)I = F+ IMI where Fis the fixed part. Assume first 
that IMI is composed of a free pencil. Let p : X ---t C be the corresponding 
morphism with connected fi.bers. Assume that we can not find dD + D' as 
required. Then Supp D is a fi.ber of p, hence F is contained in a union of 
fi.bers. Since F is nef, F is the sum of rational multiples of fi.bers, hence some 
multiple of Kx + ~x is the pull-back of an ample divisor from C. 

Otherwise there is a pencil F' + INtl C lm(Kx + ~x)I such that every Nt 
is connected and INtl has a base point b EX. D C Xis (Kx + ~x)-trivially 
connected, thus if BE lm(Kx + ~x)I intersects D then Dis an irreducible 
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component of B. If b ED then D CF and any general Nt intersects D but is 
different from it. If b tJ. D then there is a to such that N1 0 intersects D. N1 0 

is connected and also contains b, thus we are again clone. □ 

15.8 Lemma. Assumptions as in (15. 7) and assume that (15. 7.2) holds. 
Then Kx + ~x + ED is not nef for E > O. 

Proof. By assumption there is an irreducible curve C C D such that C · ( K x + 
~x) = 0 satisfying C n D' f:. 0 and C rt. D'. Thus 

O = C · ( dD + D') = dC · D + C · D', hence C · D < O. 

Therefore C · ((Kx + ~x) +ED)= EC · D < O. □ 

15.9 Corollary. Assumptions as in (15.4). Then one of the following holds: 
(15.9.1) ln(Kx + ~x )1 is composed of a free pencil for some n > O; or 
(15.9.2) there is a log variety (X', ~X') which is log birational to (X, ~x) 

and satisfi.es all the assumptions of (15.4) and such that X' does not contain 
any (Kx, + ~X' )-trivially connected divisors. 

Proof. Assume that X contains a (Kx + ~X )-trivially connected divisor D. 
Then either (15.7.1) holds or Kx + ~x + ED is not nef. After a sequence of 
D-flops (with respect to Kx +~X) the birational transform of D becomes 
contractible. For this it is suffi.dent to observe that the birational transform 
of D under a sequence of flops stays (K + ~)-trivially connected. The general 
fiber of the elliptic fibration is disjoint from D, thus (15.4.3) is preserved 
under flops and (K + ~)-trivial contractions. Repeating this procedure, we 
eventually stop at X'. □ 

15.10 Theorem. Assumptions as in (15.4). Assume furthermore that X 
does not contain any (Kx+~x )-trivially connected divisors. Then fu extends 
to a morphism f: X-+ Z with 1-dimensional fi.bers. 

Proof. By shrinking Z we may assume that fu is fiat. Thus we get a morphism 
Z -+ Chow(X). (See [Hodge-Pedoe52, X.6-8] for basic results about Chow 
varieties.) Let Z be the normalization of the closure of the image and let 
g : Ü -+ Z be the universal family. Let u : Ü -+ X be the natural morphism. 
We prove that u is an isomorphism. 

u is an isomorphism over g- 1 (Z). Assume that F C Ü is a divisor con
tracted by u. Then g(F) is at most one dimensional. Since g has one dimen
sional fibers, g(F) is one dimensional. Let E = g- 1 (g(F)). dimu(E) = 2 
since a 1-dimensional subvariety of X supports only countably many different 
cycles in Chow(X). (This is the point where we need Chow instead of Hilb.) 
Thus there are divisors E1, E2 C E such that 

dim u(E1) = 2; dim u(E2 ) ::; 1 and E 1 n E2 dominates g(F). 
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We daim that u(E1) is (Kx + .6.x )-trivially connected. Indeed, u(E1 nE2) C 
u(E2) and every curve in u(E2) has zero intersection with Kx + .6.x. Any 
two points of u(E1) can be connected by images of fi.bers of E1 -+ g(F) and 
by u(E1 n E2)-

This contradiction shows that u does not contract any divisors. Since X is 
Q-factorial, u can not contract curves, and thus u is an isomorphism. D 

15.11 Lemma. Let X be a variety witb log terminal singularities. Let f : 
X -+ Z be a proper morpbism onto a normal variety Z sucb tbat every .iber 
bas dimension k for some .ixed k. If dimZ > 2 tben assume tbat Kz 1s 
Q-Cartier. Tben Z bas only log terminal singularities. 

Proof. Choose a projective embedding of X. Fix z E Z. Let H C X be a 
complete intersection of k general hyperplanes. H -+ Z is dominant and we 
may assume that H -+ Z is fini te over z. H has a log terminal singularities 
(cf. [Reid80, 1.13]) thus by (20.3.1) Z has a log terminal singularity at z. □ 

15.11.1 Remark. Shokurov pointed out that under the assumptions of (15.11) 
if X is Q-factorial then sois Z. 

15.12 Proposition. Let f : (X, .6.x) -+ Z be a log elliptic .iber space witb 
1-dimensional .ibers. Assume tbat (X, .6.x) is le and nef. Tben tbere is a line 
bundle L on Z sucb tbat 

n(Kx + .6.x) ~ f* L for some n > O. 

Proof. A general fi.ber E 9 of f is either an elliptic curve (which is disjoint 
from .6.x) or is a rational curve. In either case a multiple of Kx + .6.x is 
linearly equivalent to zero on the generic fi.ber. Thus there is a (not necessarily 
effective) divisor D which is disjoint from E 9 and is linearly equivalent to 
n0 (Kx + .6.x) for some n0 > O. Let Ci C Z be the irreducible components of 
f (Supp D). We can write D = I: Di where the Di are those components that 
map onto Ci. Let Zibe a general point of Ci. Then-Di is nef on J-1 (zi), thus 
Di is a rational multiple of f*(Ci)- Hence niDi = f*(miCi) for some ni > 0 
(possibly mi < 0). Choose M such that 

is Cartier. Then 
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{15.13) Proof of (15.4). If ln(Kx + ~X )1 is composed of a base point free 
pencil then we are clone. Otherwise v(Kx + ~x) ~ 2. 

By (15.9) there is a series of flops and (K + ~)-trivial contractions X ---t 

X' such that X' does not contain (K + ~)-trivially connected surfaces. By 
(15.4.4) it is suffi.cient to show that Kx, + ~X' is eventually free. (15.10) 
gives a proper morphism f: X' ---t Z and by (15.12) there is a line bundle L 
on Z such that n(Kx, +~X')~ f* L. 

I daim that Lis ample. This is proved using the Nakai-Moishezon criterion. 
Let H be ample on X and let E 9 be a general fi.ber of f. Then 

If C C Z is an irreducible curve such that C · L = 0 then Kx, + ~X' is 
numerically trivial on J- 1(C), a contradiction. Thus Lis ample, and hence 
a suitable multiple of L is generated by global sections. □ 
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16. ADJONCTION OF LOG DIVISORS 

ALESSIO CORTI 

In this chapter we discuss several matters connected with the adjunction 
formula for a Weil divisor S C X inside a normal space X. The first goal 
is to define a different Diff which is a Q-divisor on S so that the following 
adjunction formula holds: 

Ks+Diff=Kx+S 1s. 

[Shokurov91,Ch.3] defines the different as a divisor on the normalization sv of 
S, and uses the notion to establish some elementary properties of log terminal 
singularities. However, it is desirable to deal with the reduced part of the 
boundary of a log divisor without normalizing it. For this reason we define 
the different directly on S. 

Once the different is defined, we use it to relate properties of (X, S) to 
(S, Diff). 

We begin with some preliminaries on Weil divisors on nonnormal varieties. 
In the following, X is a pure dimensional reduced scheme. After (16.7) we 
always assume that X is defined over an algebraically closed field of charac
teristic zero. X may be reducible and not necessarily S2. K(X) denotes the 
sheaf of total quotient rings (see e.g. [Hartshorne77, II.6]). 

16.1 Definition. 
(16.1.1) A Weil divisorial subsheaf is a coherent Ox-module C, which is 

principal in codimension one and saturated, together with the choice of an 
embedding C C K(X). The condition that C is free in codimension one implies 
C ~ [,**, provided X is S2 . The embedding C C K(X) is very important, 
although, following common useage in the literature, I will occasionally be 
sloppy aboutit (see 16.3.3). 

(16.1.2) Define the product C · C' C K(X) in the natural way (i.e. C • C' is 
the saturation of the product of sheaves CC' C K(X)). Note that in general 
the natural homomorphism C ® C' ----+ C · C' is neither injective nor surjective 
(it is, however, an isomorphism, whenever C or C' is locally Ox-free). We 
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also write ,e[n) for the product of C with itself n-times. With these laws, the 
set of Weil divisorial subsheaves is a group which we denote by WSh(X). In a 
natural way C* = Hom(C, Ox) = c,-1 = {x E K(X) 1 x ·CC Ox} C K(X). 

Equivalently, let CDiv(U) be the group of Cartier divisors on a scheme U. 
Then 

WSh(X) = proj lim CDiv(X \ S) 

where the limit is over all closed subschemes SC X such that codimx S 2:: 2. 
If X is normal then this is the usual definition. However for nonnormal 

schemes unexpected things can happen. Let for instance 

The ideals ( x) and (y) define different Weil divisorial subsheaves such that 
(x)l2J = (y)l2J. 

(16.1.3) The group of Q-Weil divisorial sheaves is defined as WSh(X)Q = 
WSh(X) @Q. 

(16.1.4) To each unit x E K(X)* there is a naturally associated Weil di
visorial subsheaf (x) = x · Ox C K(X). We say that two Weil divisorial 
subsheaves C, and C' are linearly equivalent and write C ~ C' if c,- 1 • C' = (x) 
for some x E K(X)*. 

(16.1.5) If C is a Weil divisorial subsheaf, we define the support of C to be 
the Zariski closed subset Supp( C) C X of points where C =f. ('.) x. 

(16.1.6) Cc K(X) is effective if Ox CC c K(X). 

16. 2 De finition. 
(16.2.1) A Weil divisor on X is a forma! linear combination: 

D = I:nrI', 

where the .sum extends over all points of codimension one r C X such that 
Ox,r is a DVR, and nr are integers, only finitely many of which are nonzero. 
The group of all Weil divisors is denoted by WDiv(X). As in (16.1.3), 
WDiv(X)Q = WDiv(X) 0 Q 

(16.2.2) There is a natural injective group homomorphism WDiv(X) 3 
D t--t O(D) E WSh(X). Let r C X be a codimension one prime of X, then 
O(D) is uniquely determined by O(D)r = Ox,r if Xis not regular at r, and 
O(D)r = tnr · Ox,r if Ox,r is a DVR. 

If C, is a Weil divisorial subsheaf, C(D) as usual denotes C · O(D). 
We say that D and D' are linearly equivalent if the corresponding sheaves 

are. 
Also, perhaps inappropriately, we say that a Weil divisorial subsheaf C C 

K(X) is a Weil divisor if C = O(D) for some Weil divisor D. Of course, this 
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is equivalent to saying that no codimension one component of the support of 
C is contained in the singular locus of X. 

16.3 Remarks and more definitions. 
(16.3.1) The inclusion WDiv(X) C WSh(X) induces an isomorphism 

WDiv(X)/ ~ ~ WSh(X)/ ~, 
and we denote any of these two groups by Weil(X). 

(16.3.2) Ox C K(X) is a Weil divisorial subsheaf precisely when X is S2 • 

(16.3.3) The dualizing sheaf wx (as in [Hartshorne77, III.7], that is, wx = 
H-d(wx) if Wx is the normalized dualizing complex) is torsion free of rank 
one, and admits therefore an embedding wx C K(X). Since we also know 
that wx is saturated (see e.g. [Reid80, App. to §1]), wx is a Weil divisorial 
subsheaf precisely when X is Gorenstein in codimension one. This is why 
later (16.5) we shall assume this condition (which is satisfied for example if 
X has normal crossings in codimension one). If this is the case then with an 
appropriate choice of embedding wx C K(X), wx is actually a Weil divisor, 
whose linear equivalence class is denoted by Kx. 

(16.3.4) Weil divisors and sheaves are codimension one constructions. This 
means that X may always be replaced with any open subset U C X such that 
codimx(X \ U) 2': 2. This principle is used in many natural constructions 
like pull backs and restrictions, as well as in many proofs ( sometimes without 
explicit mention). 

(16.3.5) Let p : X' -+ X be a finite dominant morphism. There is a natural 
pullback 

pw: WSh(X)-+ WSh(X'). 

This is defined on C by taking U C X open with codimx ( X \ U) 2': 2, and 
such that C is locally free on U. Then on V = p- 1 (U), pw(C) = p*(C) is a 
locally free subsheaf of K(V), and defines a Weil divisorial subsheaf on X' 
(16.3.4). 

(16.3.6) Similarly, let i : S ,_ X be a subscheme of pure codimension one. 
Denote by WShs(X) the subgroup of sheaves C which are Q-Cartier at all 
points P C S of codimension one, and such that S and Supp(C) have no 
common irreducible components (if these conditions are satisfied we say that 
Chas good support on S). Then we have a natural restriction homomorphism: 

iw : WShs(X)-+ WSh(S)Q-

This is defined as follows. If C is Cartier at points P C S of codimension one, 
let U C X be an open subset such that codimx(X\U) 2': 2, codims(S\U) 2': 2 
and C is Cartier on U. Then on V = Sn U, iw C is the usual restriction of 
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a Cartier divisor (and, because Chas good support on S, CC K(X) induces 
iw C C K(S)). This determines iw C on S. If C E WShs(X), then t:,[n] is 
Cartier at points PC S of codimension one for some n > O. iw C is defined to 
be ¼iw t:,[n]. This is independent of the choice of n. We also write CIS instead 
of iw(C). The whole point of this construction is of course that we want to 
define iw in such a way that it is functorial and a group homomorphism. 

Next we state the adjunction formula for a divisor i : S c......+ X. If :F is a 
sheaf on X, we write i* :F = :F ® Os and 

i[*l:F def saturation of (i*F/Torsiono5 (i*F)). 

16.4 Proposition. Let X be a normal scheme ( actually it is enough that X 
is S2), and i : S c......+ X a reduced subscheme of pure codimension one. Then 
there is a canonical isomorphism: 

ws = il*lwx(S). 

In particular: 
(16.4.l)IfX isS3 andS isaCartierdivisor, thenws =wx®Ox(S)®Os. 
(16.4.2) If wx(S) is locally free and S is S2, then ws = wx(S) ® Os. 

In particular w s is locally free and S is Gorenstein if it is CM ( =Cohen
Macaulay). 

(16.4.3) If wx(S) is Cartier at every codimension one point P E S, then 
w s = iw w x ( S). In particular then S is Gorenstein in codimension one, and 
choosing suitable embeddings we may write the above isomorphism in the 
form Ks = Kx + SIS. 

Proof. By assumption X is CM outside a set Z of codimension three; by 
considering X \ Z we may assume that X is CM. 

Along the lines of [Hartshorne77, III.7] it is easy to check that ws = 
Ext1(0s,wx) is a dualizing sheaf for S. Applying Homox( · ,wx) to the 
exact sequence: 

0 - 0 x ( -S) - 0 x - Os - 0 

(since Sis a Weil divisor, Is = Ox(-S) C Ox, with the notation of (16.2.2)), 
we obtain an exact sequence: 

0 --t wx --t wx(S) --t ws --t 0, 

which fits into a commutative diagram (with exact rows): 

wx(S) ® Ox(-S) wx(S) -- wx(S)®Os 

1 Il 
0 wx wx(S) Ws 
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This shows that a: wx(S) ®Os-+ ws is surjective. Sis a Weil divisor, and 
hence X is smooth at every generic point of S. Therefore a is an isomorphism 
at generic points of S, so wx(S) ® Os/Torsiono5 (wx(S) ®Os)~ ws, which 
is what we want. D 

16.4.4 Example. Let A C lP'n-l be a smooth, projectively normal, Abelian 
surface and let X C lP'n be the cone over A with vertex x E X. Then X is 
normal, le and wx ~ Ox(-l). However Xis not S3. Let x EH C X be a 
hyperplane section, smooth outside x. His not normal; let p: fI-+ H be the 
normalisation. Then 

The aim is to generalize the adjunction formula (16.4.3) to the case where 
wx(S) is only Q-Cartier at codimension one points P C S. This is accom
plished in the following: 

16.5 Proposition - Definition. Let X be a normal scheme, i : S <-+ X a 
reduced subscheme of pure codimension one. Assume that S is Gorenstein 
in codimension one and that wx(S) E WShs(X). Then there is a naturally 
defi.ned effective different Vif f(O) E WSh(S)l(l) so that: 

ws • Vif f(O) = iwwx(S). 

If BE WShs(X)l(J), we also defi.ne the different of B by Vif f(B) = Vif f(O) · 
iwB. 

Proof. We systematically remove codimension 2 subsets Z C S, whenever 
needed, without warning. 

From the adjunction formula (16.4) we know that ws = wx(S)s. Suppose 
that wx(S)[nJ is Cartier at every codimension one point P-E S. Consider the 
sequence of maps 

Taking the quotient by the torsion submodules we obtain 

which is an isomorphism at the generic points of S because X is normal. 8 
defines a Weil divisorial subsheaf V on S so that wkn] •V= iwwx(S)[nl. Since 
the isomorphism of the adjunction formulais natural, Vis well defined (i.e., it 
does not depend on the embedding wx(S) C K(X)). Set Vif f(O) = ¼V. □ 
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We now apply the different to study log canonical and log terminal singu
larities. The nice fact is that if Kx + S is log canonical in codimension two, 
the different is actually a Weil divisor (i.e., no codimension one component of 
the support of 'Di f f is contained in the singular locus of S). Also, un der the 
same assumptions, we compute the different. 

16.6 Proposition. Let X be a normal space, S C X a reduced subscheme of 
pure codimension one and B a Q-Weil divisor. Assume that K x + S + B is log 
canonical in codimension two. Then S has normal crossings in codimension 
one, so the assumptions of (16.5) are satisfied. Moreover the different Vif f(B) 
is a Q-Weil divisor ( that is, no codimension one component of the support of 
Vif f(B) is contained in the singular locus of S ), which is denoted by Diff(B). 

Let P C S be a codimension one point of S. The following computes the 
coefficient p of the different Diff(0) at P: 

(16.6.1) If S has two branches at P then P ~ Supp B and p = O. 
This follows from the more precise result that one of the following holds: 

(16.6.1.1) K +Sis lt at P, Xis smooth at P, and Sis a normal crossing 
divisor at P. 

(16.6.1.2) K +Sis le but not 1t at P. Then K +Sis Cartier at P. More 
precisely, locally analytically at P, SC Xis isomorphic to (C C T) x cd-2 , 

where (Cc T) ~ ((xy = 0) C C2 /Zm) and Zm acts with weights (l,q) with 
(q,m) = 1. 

(16.6.2) If S has one branch at P, and K + S is le but not lt at P, then 
p= l. 
More precisely K + S has index two at P. Let 1r: X'--+ X be the index one 
cover, and S' = 1r-1(S). Then S' C X' is as in (16.6.1.2). 

(16.6.3) If S has one branch at P and K + S is lt at P, then, locally 
analytically at P, S C X is isomorphic to ( C C T) x cd-2 , where ( C C T) ~ 
((x = 0) c C2 /Zm) and Zm acts with weights (l,q) with (q,m) = l. Also, 
the local class group Weil(Ox,P) ~ Zm, and Xis smooth at P iff m = l. In 
particular: 

m-1 
p=--, 

m 
where m is characterized by any of the following properties: 

(16.6.3.1) mis the index of K + S at P; 
(16.6.3.2) m is the index of S at P; 
(16.6.3.3) mis the order of the cyclic group Weil(Ox,p). 

Proof. I may assume that X is a surface. AU the statements then follow from 
the classification of log canonical surface singularities in Chapter 3. That 
Vif f (B) is a Weil divisor also follows from the classification, more specifically 
from (16.6.1) above. In (16.6.2), it is easy to check that Ks, = (1rlS')w(Ks + 
P). □ 
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16. 7 Corollary. Assumptions as in (16.6). Let B = L; biBi. The coefficient 
of [P] in Diff(B) is 

0 

1 

1 _ !._ + L ribi 
m m 

in case (16.6.1); 

in case (16.6.2); 

in case (16.6.3), for suitable ri E N. 

Proof. In the first two cases P ~ Supp B, so (16.6) applies directly. In the 
last case the local class group has order m. Thus mBi is Cartier at P hence 
iw(Ox(Bi)) = (rï/m)Os(P) for some ri 2'. O. D 

16. 8 Remark. The different is used in the following situation. Let X be a 
normal variety, and Kx + S + B a log divisor with S reduced and LB_J = O. 
Then if Kx + S + B is lt, it should be true that Ks + Diff(B) is lt (and 
conversely) in some suitable sense. Now in general Sis a variety with double 
normal crossings in codimension one and we need to use the appropriate 
notions of semi log terminal etc. introduced in (12.2). 

Unfortunately we encounter the following technical problem: 
The birational transform of S C X in a log resolution of (X, S + B) is in 

general not a semi resolution of S since different components may get sepa
rated. Also, the exceptional role of higher normal crossing points complicates 
the formulation of the result (cf. (16.9.2)). (Recent results of Szab6 seem to 
have settled this problem.) 

In dimension three one can overcome some of these problems. The results 
become somewhat cumbersome, mostly due to our choice of definition of log 
terminal. 

16.9 Proposition. Let X be a normal threefold, K + S + B a log divisor 
with S reduced. Then: 

(16.9.1) If K + S +Bis le then Ks + Diff(B) is sic. 
(16.9.2) Let K + S + B be dit, and f : Y --+ X a good divisorial resolution. 

Assume that LB_J = 0. Then, outside a number of triple normal crossing 
points at which f is an isomorphism, Ks + Diff(B) is semi lt. Moreover, S 
bas a semiresolution without pinch points. 

Proof. Let us prove (16.9.2) first. Let S' = J; 1 (S). Since K + S +Bis le in 
codimension 2, S is semismooth outside a finite set. We have by definition: 

(16.9.3) 

with allai > -1 (LB_J = 0). In particular, f is generically an isomorphism 
above the normal crossing locus of S. Also, because X is divisorial lt, no 
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component of the double curve of S' is mapped to a point. All this says 
that S' --t S is a good semiresolution outside the triple points. By our def
initions, S' has no pinch points. Note that since f is divisorial, it sends a 
neighbourhood of the triple normal crossing locus of S' isomorphically to a 
neighbourhood of the triple normal crossing locus of S. Now from (16.9.3) 
and (16.5) we get that 

(16.9.4) 

We see later in (17.5) that S is S2 and seminormal. This however is not 
important for the rest of the chapter. 

(16.9.1) is similar but easier: it is not true that S' is a semiresolution of S, 
but this does not affect the slc property (cf. [KSB88, 4.30]). □ 

16.10 Corollary. Let (x E X) be a three dimensional germ, S C X a 
reduced boundary. If Kx + S is divisorial log terminal and S has at least 
three components at x, ( x E S C X) is analytically isomorphic to ( 0 E 
(xyz = 0) C C3 ). 

Proof. By (12.2.7) an slt point cannot have three or more components. □ 

16.11 Example. The assumption dlt is necessary in (16.9.2) and (16.10). In
deed, let SC X be (xw = 0) C ((xy + zw = 0) C C4 ). Then Kx +Sis lt, as 
can be seen on any of the two standard small resolutions. Kx + S however is 
not dlt. Here Ks = Ks + Diff(O) and S has a log canonical quadruple point 
at the origin. 

The rest of the chapter is devoted to the classification of log terminal 
singularities (X, D) in dimension three where LD_J is "large". These results 
will not be used later. It gives however a good flavour of how to work with 
log terminal singularities and with the different. 

The presence of a reduced boundary imposes strong restrictions on log 
terminal singularities; an example is (16.10). A key tool in classifying termi
nal and log terminal singularities are standard coverings of various kinds (cf. 
[CKM88,6.7]): 

16.12 Lemma. Let OEX be a germ of a normal variety, D C X a Q-Cartier 
integral Weil divisor. There is a cyclic covering p : X' --t X, which is uniquely 
determined by the following properties: 

(16.12.1) p* D = D' C X' is a Cartier divisor. 
(16.12.2) p is étale in codimension one and is (totally) ramifi.ed precisely 

along the locus where D is not Cartier. 
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X' can also be characterized as the smallest covering of X such that D' is 
Cartier. X' is called the index one caver relative to D. □ 

To a log divisor Kx +Bas above one can associate two index one covers 
X' --t X, relatively to Kx + B or B. It is useful to be able to relate the log 
terminal property of X and X'. 

16.13 Lemma. Let X be a normal variety, p: X' --t X any fi.nite morphism 
which is étale in codimension one. Then: 

(16.13.1) If X bas canonical (terminal) singularities, so does X'. 
(16.13.2) Let B C X be a boundary (possibly empty) and let B' = p* B. 
(16.13.2.1) Kx +Bis le iff Kx, + B' is le. 
(16.13.2.2) Kx +Bis plt iff Kx, + B' is plt 
(16.13.2.3) If pis a cyclic caver, X is a threefold and Kx + B is dlt (resp. 

lt), then sois Kx, + B'. Furthermore, 

(B' C X')~ ((xyz = 0) C C3 ) {:} (B C X)~ ((xyz = 0) C C3 ). 

Proof. (16.13.1) is [CKM88, 6.7.(ii)]. (16.13.2.1-2) is proved in (20.3). We 
only prove (16.13.2.3) for dlt here, the lt case is the same. This also illustrates 
pretty well the difficulties involved in working with the notion of log terminal. 

Let f : Y --t X be a good divisorial resolution such that Ky + J:; 1 B + E = 
f*(Kx + B) + L aiEi with all ai > 0 where E = L Ei is the f-exceptional 
divisor. Let Y' = (Y xx X')v be the normalized pull back, so that we have 
a diagram: 

Y' 
p' 

y 

1' l I l 
X' 

p 
---X 

Let E' be the f'-exceptional set. The crux of the argument is to be able to 
construct a good divisorial resolution cp : Y --t Y', with the property that the 
image of the cp-exceptional locus is entirely contained in E'. The point is that 
since pis étale in codimension one, p' can only be ramified along E, and since 
Eisa normal crossing divisor, Y' has toroïdal singularities. Set B' = p*(B). 

Pick a point q E J:; 1 B. Choose local coordinates (x, y, z) near q E Y such 
that the components of EU J:; 1 B are the coordinate planes. Locally, the 
covering is the normalization of 
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The local equation of J;1 B is one of the following: (xyz = 0), (xy = 0), 
(x = 0) or (1 = 0). In the fi.rst case p' is unramified along the coordinate 
planes, thus a = b = c = 0 and p' is étale above q. In the second case p' 
is unramified along two of the the coordinate planes, thus a = b = 0 and 
(!'); 1 B' C Y' is a (double) normal crossing point. In the third case p' is 
unramified along one of the the coordinate planes, thus a = O. Let T be the 
normalization of the surface singularity (td = ybzc). Then 

[(J');;- 1 B' C Y']~ [T x {0} C T x C]. 

Therefore Y' is smooth along (!');1 B', except possibly for some curves 
Ci C Y' of cyclic quotient singularities that meet (!');1 B' transversally. We 
begin constructing a resolution by resolving Y' along Ci. (We care only about 
a neighborhood of (!'); 1 B' in this step.) This gives <p1 : Y" --t Y'. Y" is 
smooth in a neighborhood of (<p'); 1(f');1 B', and (<p'); 1(f'); 1 B' + E" is a 
global normal crossing divisor in a neighborhood of (<p'); 1 (f'); 1 B'. It is clear 
that a good divisorial resolution can now be achieved by blowing up centers 
contained in E" only (and not intersecting (<p'); 1(f');1 B'). 

The rest is an easy consequence of the log ramification formula (20.2). The 
situation now is the following: 

y i> y 

X' 
p 

----+ X. 

Here J : Y --t X' is a good divisorial resolution, p is generically finite, and 
Fj being any J-exceptional component, p(Fj) C Ei for some f-exceptional 
component Ei. Write 

Then if p* Ei = Lj eijFj, we have bj = Li eijai + Tj with Tj 2:: 0, by the log 
ramification formula. Since p(Fj) C Ei for some i, we see that bj > O.__ _ 

Finally, if f : Y --t X is not the identity then by our construction f : Y --t 

X' is not the identity, thus (B' C X') is different from ((xyz = 0) C (::3). □ 

16.14 Remark. The converse to (16.13.2.3) is probably also true. Here, how
ever, the problem is to find a sui table resolution of X, without blowing up the 
double locus of B. This does not follow directly from Hironaka. (Recently 
Szab6 settled this question.) 
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From now on X is a threefold, and B C X a Q-Cartier reduced boundary 
such that Kx + B is divisorial log terminal. We begin by classifying these 
singularities. 

16.15 Theorem. Let x E B C X be a three dimensional germ, assume 
K + B dit and B Q-Cartier. Then: 

(16.15.1) If B has three components, then x E B C X is analytically 
isomorphic to 

0 E (xyz = 0) C C3 • 

(16.15.2) If B has two components, both of which are Q-Cartier, then 
x E B C X is analytically isomorphic to 

(16.15.3) If B has two components, neither of which is Q-Cartier, then 
x E B C X is analytically isomorphic to 

0 E (z = 0) C (xy + zf(z, t) = 0) C C4 /Zm(q1, -q2, 1, a) 

where (qi,a,m) = (q1,q2,m) = 1. 

Proof. (16.15.1) is a special case of (16.10), so let's prove (16.15.2-3). 
Let p : X' -t X be the index one cover relative to Kx + B, and set 

B' = p* B. By (16.13.2.3), Kx, + B' is dlt. Note that Ks + Diff(0) = 
Ks + E m~~1 Pi, where Pi C B C X are codimension two singular points on 
X as in (16.6.3). Also by (16.6.3), B' is smooth at p- 1 (Pi), andpJB' is ramified 
in codimension one precisely at E miPi. It follows then from (16.13.2.3) that 
B' has two components. Also then KB, = (pJB')*(KB + Diff(0)) is semi log 
terminal of index one, by (16.9). Then by [KSB88,4.21] B' = B~ + B;, where 
B~ and B; are smooth and cross normally. 

In case (16.15.2), each component of B' is Q-Cartier and Cartier in codi
mension two. It is easy then to show that X' must be smooth along B'. 
Indeed let p' : X" -+ X' be the index one cover relative to B~. Then, since B~ 
is Cartier in codimension two, pJB~' : Bf -+ B~ is unramified in codimension 
one. It follows that Bf is regular in codimension one. But X" has rational 
singularities (it is log terminal), hence CM, so Bf is also CM, and normal 
by the Serre criterion. But then pJBf : Bf -+ B~ is a split cover, since it is 
unramified in codimension one and B~ is smooth. This means that p' = id, 
and since B~ is smooth and Cartier, X' is smooth. Now (16.15.2) follows at 
once: B' C X' ~ (xy = 0) C C3, and x E B C X is analytically isomorphic 
to 0 E (xy = 0) C C3 /Zm(q1, q2, q3). We may assume q3 = 1, because p 
is unramified along B1 n B2, and (q1, q2, m) = 1 because pis unramified in 
codimension one. 
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In case (16.15.3), let p' : X" --t X' be the index one caver relative to B'. 
Then it is clear that, as for B', B" = Br + B;, where Br and B; are smooth 
and cross normally. Then, p'IB" : B" --t B' is a split covering, since it is 
unramified in codimension one. It follows that p' = id and B' is also Cartier. 
Then X' has cDV singularities and the result follows at once. □ 

16.16 Remark. It should be possible to check directly ( although I did not do 
it) that the singularities in (16.15.2-3) are dlt. 

If B has only one component, it is not possible to give a compact descrip
tion as above. Even if B is Cartier, we know from inversion of adjunction 
(16.9) that any Q-Gorenstein deformation (in particular the trivial deforma
tion) of a surface quotient singularity is log terminal. However, under further 
restrictions, it is possible to corne up with a short list: 

16.17 Proposition. {KSB88} Let x E B C X be a three dimensional germ, 
assume K + B is dlt and B is Cartier. Also assume that X is cDV outside B. 
Then x E B C X is analytically isomorphic to one of the following: 

(16.17.1) 0 E (xyz = 0) C C3 ; 

(16.17.2) 0 E (t = 0) C (x2 + f(y, z, t) = 0) C C4 where (x2 + f(y, z, 0) = 0) 
de.i.nes a Du Val singularity; 

(16.17.3) 0 E (t = 0) C (xy + f(zr, t) = 0) C C3 /Zr(a, -a, 1, 0). □ 
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17. ADJUNCTION AND DISCREPANCIES 

JA.NOS KOLLAR 

The aim of this chapter is to investigate the problem posed in Chapter 16 
of comparing the discrepancies of (X, S + B) and (S, Diff(B)). Before formu
lating the first result, we need to define some other variants of discrep(X). 

17.1 Definition. Let X be a normal scheme, D = I: diDi a boundary and 
let Z C S C X be closed subschemes. (More generally, we may allow X to 
be nonnormal as long as the conditions of (2.6) are satisfied.) We use the 
following refinements of (1.6): 

discrep(X, D) 

= inf{a(E,X,D)IE is exceptional, 0 i= Centerx(E)}; 
E 

discrep(Center C Z, X, D) 

= inf{a(E,X,D)IE is exceptional, 0 i= Centerx(E) C Z}; 
E 

discrep(S n Center C Z, X, D) 

= inf{a(E,X,D)IE is exceptional, 0 i= Sn Centerx(E) C Z}; 
E 

One can also define versions where we allow E to be nonexceptional as well. 
These are denoted by totaldiscrep. Of course, totaldiscrep = discrep if Z has 
codimension at least two. We write discrep(S n Center i= 0, X, D) instead of 
discrep( S n Center C S, X, D) which is misleading in appearance. 

1 7 .1.1 Proposition. ( 17.1.1.1) Any of the discrepancies defi.ned ab ove is 
either -oo or 2: -1 and the infi.mum is a minimum. 

(17.1.1.2) For any Z CS C X 

S.M.F. 

discrep(Center C Z, X, D) ;?: discrep(S n Center C Z, X, D) 

2: totaldiscrep(X, D); 
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(17.1.1.3) Hdiscrep(Center C Z,X,D) 2'. -1 then there is an open neigh
borhood Z C U C X such that totaldiscrep(U, D) 2'. -1. 

Proof. (17.1.1.2) is clear from the definition. 
In order to see the other two daims, take a log resolution f: Y-+ (X, D). 

If a(E,X,D) 2'. -1 for every divisor E C Y then 

totaldiscrep(X,D) = min{a(E,X,D)IE c Y} 
E 

by (4.12.1.2). Similarly, (4.12.1.1) implies (17.1.1.1) for the other versions. 
Assume now that there is a divisor E C X such that a(E,X,D) = -1- e 

for some e > O. Let p E E be any point. Choose a general codimension 
one subvariety p E W C E. Let g1 : Y1 -+ Y be the blow up of W and let 
E1 C Y1 be the exceptional divisor. If g; : l'i -+ Y and E; C l'i are already 
defined then let g;+l : Îi+l -+l'i-+ Y be the blow up of E; n (g;); 1 (E) and 
let E;+l be the exceptional divisor of l"i+1 -+ }"i. By an easy computation 
a(Ei,X,D) = -je. Let Pi E Ei be a point such that gi(Pi) = p and let Fi 
be the divisor obtained by blowing up Pi. Then 

a(Fi, X, D) ~ -je+ const. hence discrep(Center C f(p), X, D) = -oo. 

Choosing p such that f (p) E Z completes the pro of. □ 

An upper bound is harder to find: 

17.1.2 Conjecture. {Shokurov88} Let O E (X, D) be an n-dimensional nor
mal singularity. Assume that Kx +Dis Q-Cartier. Then 

discrep(Center C 0, X, D) ~ dimX - 1, 

and equality holds only if Xis smooth and O ~ D. (cf. (1.8)). 

17.1.3 Remark. Assume that the conjecture fails for OEX. Then (X, D) is 
terminal. Thus if a list of terminal singularities is known, the conjecture can 
be verified. Therefore (17.1.2) is trivial if dimX ~ 2. For dimX = 3 it was 
checked by Markushevich (unpublished). 

The following is the easy direction in comparing discrepancies: 

1 7 .2 Theorem. Let X be a variety and let S + B be a Weil divisor. Assume 
that S is reduced and K + S + B is le in codimension two. Assume furthermore 
that K + S + B is Q-Cartier. Let Z C S be a closed subscheme. Then 
(17.2.1) 

totaldiscrep(Center C Z, S, Diff(B)) 2: discrep(Center C Z, X, S + B) 

2: discrep(S n Center C Z, X, S + B). 
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In particular, 

(17.2.2) totaldiscrep(S, Diff(B)) 2: discrep(X, S + B). 

Proof. Set Z = S in (17.2.1) to obtain (17.2.2). Also, the second inequality 
of (17.2.1) is obvions. For the rest we need a simple lemma which we state in 
a general setup: 

17.2.3 Lemma. Let f : Y --+ X be a proper birational morphism with 
exceptional divisors Ej. Assume that Y is normal. Let S + B be a Q-divisor 
on X and let S' be the birational transform of Son Y. Assume that (X, S) and 
(Y, S') are le in codimension two. Let D C S be the union of all codimension 
one points of S above which S' --+ S is not an isomorphism and let D' C S' 
be the preimage of D. Finally let 

Then 
(17.2.4) 

Ky+ J;1 (S + B) = f*(Kx + S + B) + L a(Ei, S + B)Ei. 

(JJS')* Diffs, (!;1 B - L a(Ej, S + B)Ei) = Diffs(B) + 2[D]; and 

Ks 1 + Diffs 1 (!;1 B - L a(Ej, S + B)Ej) = (JJS')* (Ks + Diffs(B)). 

Proof. The left hand sicle of the second eqality is J*(K + S + B)IS' and the 
right hand sicle is f*(K + S + BJS). Thus the second equality is clear. 

The first is a codimension one question on S, so that by shrinking X, we 
may assume that S is semismooth and f : S' --+ S is finite. Assume that 
m(Kx + S + B) is Cartier. Then 

mKs, + m(JJS');1 (Diff(B)) + mD' 

= (JJS')* (m(Ks + Diff(B))) 

= f* (m(Kx + S + B)IS') 

= mKs, + m Diffs, (!;1 B - L a(Ej, S + B)Ej), 

where all the equalities are equalities of divisors. Pushing this clown to S gives 
the first equality. □ 

In order to see (17.2) let f : Y --+ X be a log resolution of (X, S + B) with 
exceptional divisors Ej. Let Ej n S' = L, Cjk + L, Djk where the Cjk are 
the (JJS')-exceptional components of the intersection and JIDik is birational. 
For simplicity assume that S' is disjoint from J; 1(B). 
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Restricting (17.2.4) to S' we obtain: 

Therefore 

(17.2.5) 

Ks, + (JIS'):-1 (Diff(B)) + D' 

= f*(Ks + Diff(B)) + L a(Ei, S + B)Cik· 
j,k 

a (Cjk, S, Diff(B)) = a(Ej, X, S + B), and 

a (Djk, S, Diff(B)) = a(Ej, X, S + B). 

Every exceptional divisor over S appears as an irreducible component of 
Ej n S' for a suitable choice of f. The only problem is that f(Cjk) C Z 
does not imply f(Ej) C Z. However if we blow up Cjk then we obtain a new 
exceptional divisor Ejk such that 

f(Ejk) = f(Cjk) C Z and a(Ejk,X, S + B) = a(Ej, X, S + B). 

This proves ( 1 7. 2 .1). □ 

The following conjecture asserts that the inequalities in (17.2) are equal
ities. Special cases were discussed earlier in [KSB88,Chapter 6; Stevens88; 
Shokurov91,3.3]. The conjecture ( or similar results and conjectures) will be 
frequently referred to as adjunction (if we assume something about X and oh
tain conclusions about S) or inversion of adjunction (if we assume something 
about Sand obtain conclusions about X). 

17.3 Conjecture. Notation as in (17.2). Then 
(17.3.1) 

totaldiscrep(Center C Z, S, Diff(B)) = discrep(Center C Z, X, S + B) 

= discrep(S n Center C Z, X, S + B). 

In particular, 

(17.3.2) totaldiscrep (S, Diff (B)) = discrep (Center nS =/=- 0, X, S + B). 

Unfortunately, I do not know how to prove these in full generality. The 
rest of the chapter is devoted to proving some important special cases. 

The following technical result is crucial in (17.6-7). It was proved by 
[Shokurov91,5.7] for surfaces. 
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17.4 Theorem. Let X, Z be normal varieties (or analytic spaces) and let 
h : X -+ Z be a proper morphism with connected fi.bers. Let D = E diDi be 
a Q-divisor on X. Assume that 

(17.4.1) if di < 0 then h(Di) has codimension at least two in Z; and 
(17.4.2) -(Kx + D) is h-nef and h-big. (If h is birational then h-big is 

automatic.) 
Let 

g h 
f :Y--+X-+Z 

be a resolution of singularities such that Supp g- 1(D) is a divisor with normal 
crossings. Let 

Further let 

i:e;>-1 

Then Supp F = SuppLF _J is connected in a neighborhood of any fi.ber off. 

Proof. By definition 

r A7 - LF_J =Ky+ (-g*(Kx + D)) +{-A}+ {F}, 

and therefore by [KMM87,l-2-3) 

R 1 f*Oy( A 7 - LF _J) = o. 
Applying f* to the exact sequence 

0 ----t Oy( A 7 - LF _J) ----t Oy(r A 7 ) ----t o .. F .Je A 7 ) ----t 0 

we obtain that 

(17.4.3) 

is surjective. Let Ei be an irreducible component of r A 7 • Then either Ei is 
g-exceptional or Ei is the birational transform of some Di and di = -ei < O. 

Thus g*(r A7 ) is h-exceptional and 

Assume that LF _J has at least two connected components LF _J = F 1 U F2 in a 
neighborhood of J- 1 (z) for some z E Z. Then 

f*O._F.,(r A7 )(z) ~ f*OF1 ( A7 )(z) + f*OF2 (r A7 )(z), 

and neither of these summands is zero. Thus f*O._F.,(r A7 )(z) cannot be the 
quotient of the cyclic module Oz,z ~ f*Oy( A7 )(z)· □ 
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17.5 Corollary. If (X, D) is lt then LD _i is seminormal and it bas a semires
olution with normal crossing points only. If (X, D) is dlt then LD_i is semi
normal and S2. If (X, D) is dlt and every irreducible component of LD_i is 
Q-Cartier then every irreducible component of LD_i is normal. 

Proof. We apply (17.4) to h : X ~ Z. Let g : Y ___. X be a log resolution. 
Then F = LF _i is the birational transform of LD_i. By assumption F has 
only normal crossing points. In particular, F is seminormal and S2. We 
can successively blow up the normal crossing points of multiplicity at least 3 
starting with the highest multiplicity locus to obtain a semiresolution of LD _i 
with normal crossing points only. 

By (17.4.3) the composite 

g*Oy( A7 ) ~ Ox ___. 01..D.J '--+ g*OF '--+ g*OF(r A7 ) 

is surjective, and hence 

(17.5.1) 

Let n: B ___. LD_i be the seminormalizsation of LD_i. Then B XnF ___.Fis a 
homeomorphism, thus an isomorphism. Therefore F ___. LD _i factors through 
n. Thus by (17.5.1) n*OB = 01..D.J, hence n is an isomorphism. 

Assume now that (X, D) is dit. Let Z C LD_i be a closed subset of codi
mension 2:: 2. I daim that Z' = SingF n g- 1 (Z) has codimension 2:: 2 in 
F. Assume the contrary. Then there is an irreducible component Z" C Z' 
such that Z" C Y has codimension two and it is contained in the exceptional 
set of g. Therefore Z" is contained in an exceptional divisor E of g. Since 
Supp g-1 (D) is a normal crossing divisor, there is at most one irreducible 
component of F containing Z". This contradicts Z" C Sing F. 

Let n' : B' ___. LD_i be the Srization of LD_i [EGA, IV.5.10.16-17]. Then 
B' x n' F ___. F is finite and birational on every irreducible component. Fur
thermore, by the above considerations, it is a homeomorphism in codimension 
one. Since F is seminormal and S2, this implies that it is an isomorphism. 
Therefore F ___. LD_i factors through n'. Thus by (17.5.1) n:oB' = 01..D.J, 
hence n' is an isomorphism. 

Assume that every irreducible component of LD_J is Q-Cartier and let D 1 C 
LD_i be an irreducible component. We can replace D by D' = D-(1/2)(LD_i
D1). Then (X, D') is dit and LD' _i = D1. Thus D1 is seminormal and S2. By 
the classification of Chapter 3, it is also smooth in codimension one, hence 
normal. □ 

17.5.2 Example. (cf. (16.11)) Let X= (xy - uv = 0) C C4 and 

4 
1 ""' . . D = (x = u = 0) +(y= v = 0) + - L..,(x + 2iu =y+ 2-iv = 0). 
2. 

i=l 
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Then (X, D) is lt and LD.J is two planes intersecting at a single point. Thus 
it is not S2. 

The most important application of the above connectedness result is to the 
problem of inversion of adjunction. The following theorem shows that in the 
notation of (17.3) 

totaldiscrep(S,Diff(B)) > -1 {:::> discrep(CenternS =/= 0,X,S+B) > -1. 

17.6 Theorem. Let X be normal and let S C X be an irreducible divisor. 
Let B be an effective Q-divisor such that LB .J = 0 and assume that K x + S + B 
is Q-Cartier. Then Kx + S +Bis plt in a neighborhood of S iff Ks + Diff(B) 
is klt. 

Proof. Let g : Y --+ X be a resolution of singularities and as in (17.4) let 

Ky= g*(Kx + S + B) + A-F. 

Let S' C Y be the birational transform of Sand let F = S'UF'. By adjunction 

Ks, = g*(Ks + Diff(B)) + (A - F')JS'. 

Kx + S + B is plt iff F' = 0 and Ks + Diff B is plt iff F' n S' = 0. Let 
h : X - X be the identity. By (17.4) S' U F' is connected, hence F' = 0 iff 
F' n S' = 0. D 

1 7. 7 Theorem. Let X be normal and let S C X be an irreducible divisor. 
Let Band B' be effective Q-divisors such that LB.J = 0. Assume furthermore 
that 

(17. 7.1) B' is Q-Cartier, Kx + S +Bis Q-Cartier, and 
(17.7.2) Kx + S +Bis plt. 
Then Kx + S + B + B' is le in a neighborhood of S iff Ks + Diff(B + B') 

is le. 

Proof. By (2.17.5) Kx + S + B + B' (resp. Ks + Diff(B + B')) is le iff 
Kx + S + B + tB' (resp. Ks + Diff(B +tB')) is plt for every O ~ t < l. Thus 
(17.6) implies (17.7). D 

The following corollary is very important in Chapter 18. (See (18.3) for 
the definition of maximally le.) 

17.8 Corollary. Let X be normal, Q-factorial and let S C X be an irre
ducible divisor. Let I: diDi be an effective Q-divisor. Assume that Kx + S 
is plt. Set 
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where i: S -t Xis the natural injection and iw is defi.ned in (16.3.6). 
Then Kx + S + "f:,d;D; is maximally le near a point x ES iff Ks + ~ + 

"f:, d;B; is maximally le near x E S. □ 

The rest of the chapter is devoted to showing that if the minimal model 
program works in dimension n then (17.3) holds for small discrepancies for 
dimX = n. The precise assumptions are the following. 

17. 9 Assumption. For the rest of the chapter we use the following special case 
of the Log Minimal Model Program: 

( *n)- Let f : Y -t X be a proper birational morphism. Assume that Y is 
normal, Q-factorial and dim Y ~ n. Let D be a Q-Weil divisor on Y such that 
(Y,D) is log terminal. Then the steps of the (Ky+ D)-MMP (as described 
in (2.26)) all exist and the process terminates with a relative minimal model 
f: (Y,D) -t X. 

We know that (*2) and (*3) hold. 

We start with the following result which is of considerable interest in itself. 
It is a generalisation of (6.9.4). 

17.10 Theorem. Assume ( *n)- Let (X, B) be a log canonical pair, dimX ~ 
n. Let f : Y -t X be a log resolution. Let E be a subset of the exceptional 
divisors { E;} such that 

(17.10.1.1) If a(E;, B) = -1 then E; c E; 
(17.10.1.2) If Ej c E then a(Ej,B) ~ O. 
Then there is a factorization 

h g 
f: Y---> X(E) ---+ X 

with the following properties: 
(17.10.2.1) h is a local isomorphism at every generic point of E; 
(17.10.2.2) h contracts every exceptional divisor not in E; 

h* (Ky+ J:; 1 (B) + I:-a(E;,B)E;) 

(17.10.2.3) = Kx(&) + g:; 1(B) + L -a(E;, B)h*(E;) 
E;C& 

= g*(Kx + B) is log terminal. 

Proof. For a small E let 

(17.10.3) { 
-a(E;,B) 

d(E;) = 
max{-a(E;,B)+E,0} if E;(/.E. 

if E; CE; 
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Then 

Ky+ J; 1 (B) + Ld(Ei)Ei = f*(Kx + B) + L (di+ a(Ej, B))Ej. 
Eifl.t: 

Apply the (Ky+ J:; 1 (B) + 2:d(Ei)Ei)-MMP to Y/X. Every extremal ray is 
supported in ( the birational transform of) h* ( E). Also, an effective exceptional 
divisor is never nef. Thus the MMP stops with a factorization 

h g 
f : Y --+ X(E) ---+ X 

such that h* ( f) = 0 and h is an isomorphism at every generic point of f. □ 

17.11 Corollary. Assume (*n)- Let (X,S + B) be as in (17.2) such that 
dimX ~ n and Xis Q-factorial. Assume furthermore that either, 

(17.11.1) (X, S + B) is plt and d = discrep(S n Center C Z, X, S + B) ~ O; 
or 

(17.11.2) (X, S + B) is le and d = -1. 
Then the equalities (17.3.1) hold. 

Proof. Let f : Y___. X be a log resolution of (X, S + B) such that J- 1(Z) is a 
divisor with normal crossings. Let S" C Y be the birational transform of S. 

Let f be the set of exceptional divisors with discrepancy d such that S n 
Centerx(E) C Z. By assumption f =/- 0. We apply the 

At the end we obtain h: Y--+ X(t:) and g: X(f) ___. X such that 

Let S' C X(t:) be the birational transform of S. Since X is Q-factorial, 
the exceptional set of g is exactly h*(t:), hence S' intersects the exceptional 
divisor h*(t:). f(S') n f(h*(t:)) C Z, hence every irreducible component 
CC S' n h*(f) lies above Z. 

By (16.7) the coefficient p(C) of [C] in Diff(g;1 B - dh*(t:)) is 

(C) 1 '°' ribi ro(-d) 1 + d d 
p =1--+L...,-+---2:1---2:-, 

m m m m 

and by (17.2.3) a(C, S, Diff(B)) = -p(C). Combining with (17.2) we are 
clone. □ 
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17.12 Corollary. Assume (*n)· Let (X, S + B) be as in (17.2) such that 
dim X ::; n and X is Q-factorial. Then 

totaldiscrep (S, Diff (B)) = discrep (Center nS i= 0, X, S + B). 

Proof. Let d = discrep (Center nS i= 0, X, S + B). By blowing up a codimen
sion one smooth point of S we see that d::; O. If d > -1 then (X, S + B) is 
plt, thus (17.11.1) implies the required equality. 

If d = -1 then we can apply (17.11.2). 
Finally assume that d = -oo. We need to show that ( S, Diff ( B)) cannot 

be le. Let f: (Y, J:; 1(S +B) +E)-. X be a log terminal model of (X, S +B) 
where E is the reduced exceptional divisor. Write 

where by (2.19) Fis effective and either F = 0 or Supp F = Supp E. In the 
former case (X, S+B) is le. In the latter case let S' C Y denote the birational 
transform of S. Then S' and E intersect nontrivially and 

I<s, + Diffs,(f; 1 (B) + E + F) = f*(I<s + Diffs(B)) 

contains a component with coefficient greater than 1 by (16.7). 
Thus (S, Diff(B)) is not le. □ 
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18. REDUCTION TO SPECIAL FLIPS 

ANTONELLA GRASS! and JANOS KOLLAR 

18.1 Conventions. In this chapter f : (X, K + S + B) ---* Z denotes a small 
contraction such that -(K + S + B) is /-ample. We always assume that 
K + S + B is log canonical, S is reduced and B = L~ biBi with O < bi :::; 1 
where the Bi are distinct, irreducible and reduced. (In general B is allowed 
to have a reduced part.) The assumptions imply that S and B have no 
irreducible components in common. One should keep in mind that the sum 
S + B does not determine S and B uniquely. lrreducible components with 
coefficient 1 can be either in S or in B. 

Let O E Z be a distinguished point and set C = J-1 (0). ln dimension three 
C is the whole exceptional set ( after possibly shrinking Z) but not necessarily 
so in higher dimensions. Any irreducible curve in C is called a ftipping curve. 

We always assume that every irreducible component of S + B intersects C. 

18. 2 De finition. 
(18.2.1) The type of S +Bis the sequence (b1, · · · , bn)- It is denoted by 

type(S + B). We usually do not think of B with a specified ordering of the 
components in mind, so strictly speaking f has several types. 

(18.2.2) We introduce an ordering on sequences of numbers as follows: 
(bî, · · · , b:n) < (bi, · · · , b~) if either n < m or n = m and bf ::; b} Vi, with 

strict inequality holding for at least one index i. 

18.3 Dejinition. Let K +~+ L diDi be a log canonical divisor on X. Assume 
that Di are Q-Cartier Weil-divisors. We say that K +~+ L diDi is maximally 
log canonical near Z C X if (X, K + ~ + L d~Di) is not log canonical in any 
neighborhood of Z where d~ 2: di with inequality holding for at least one index 
i. 

Warning: It is important to note that this definition depends on the ~ and 
the Di, not just on~+ LdiDi. 

The following is clear: 

S.M.F. 
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18.4 Lemma. Let K + ô + E diDi be as above. 
(18.4.1) Let f : Y ---+ X be a log resolution. K + ô + E di Di is maximally 

log canonical in a neighborhood of Z iff for every Di there is a divisor Ei C Y 
with log discrepancy zero such that f(Ei) C SuppDi and Zn J(Ei) =/=- 0. 

(18.4.2) There is a (nonunique) sequence di 2: di such that (X, K + ô + 
E diDi) is maximally log canonical in a neighborhood of Z. 

(18.4.3) Assume that K + ô + E diDi is log terminal, Ld1D1.J = 0, and 
D1 does not have any irreducible components in common with ô or with 
Ek# Dk. Then we may assume that d~ > d1. □ 

18.5 Definition. f: (X, K + S + B)---+ Z is a limiting contraction if 
(18.5.1) Xis Q-factorial and fis small; 
(18.5.2) S is irreducible and f-negative; 
(18.5.3) every irreducible component of B is f-negative; 
(18.5.4) K + S +Bis maximally log canonical in a neighborhood of C; 
(18.5.5) K + S is purely log terminal. 

18. 6 Definition. f : (X, K + D) ---+ Z is a pre limiting contraction if 
(18.6.1) Xis Q-factorial and fis small; 
(18.6.2) there exists S C LD.J such that S is f-negative; 
(18.6.5) K + D is log terminal. 

18. 7 Lemma. Let f : (X, K + S + B) ---+ Z be a pre limiting contraction. 
Assume that p(X/Z) = 1. Then there is a suitable B' such that 

(18. 7.1) K + S + B' is limiting. 
(18. 7.2) The fl.ip of K + S + B' is isomorphic to the fl.ip of K + S + B 

(assuming they exist). 
(18. 7.3) type(S + B') 2: type(S + B) and if {B} =/=- 0 then type(S + B') > 

type(S + B). 

Proof. Since p(X/Z) = 1, the flip off is independent of the choice of S + B 
(2.32.1). We can throw away the components of B which are f-semipositive. 
This gives K + S + B1. By (18.4) we can increase the coefficients of B1 until 
we get B' which is maximally log canonical near C. 

The type increased or remained unchanged in both steps. It is unchanged 
only if B = B1 and {B1} = 0. □ 

18.8 Definition. f : (X, K +s+B) ---+ Z is a special contraction if it is limiting, 
K + S +Bis lt and Bis reduced (possibly empty). 

Our aim is to show that if flips of special contractions exist then all flips 
exist. 
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18.9 Theorem. (In dimension three only.) If the B.ip of any special contrac
tion exists then the B.ip exists for any small contraction f : (X, K + D) -+ Z 
such that K + D is klt. 

Proof. This follows from (18.11) and (18.26). 
We start with an explanation of the basic idea behind the proof. 

18.10 Reduction Strategy. Assume for simplicity that Xis Q-factorial. First 
we increase the coefficients of D until K + D becomes maximally log canonical. 
Then take a log resolution h : Y -+ X -+ Z and apply the MMP to Ky +Dy. 
Since Ky + Dy is log terminal, during the program we stay in the category 
of log terminal singularities. Therefore the program never leads back to the 
original f: X-+ Z. Moreover, each time we need to flip, we can increase the 
coefficients further as in the first step. Thus we can use descending induction 
on the coefficients of D. If all technical details work out then ultimately we 
are reduced to flips of contractions g: (X', D')-+ Z' where D' is reduced. 

This simple picture has several technical and conceptual drawbacks. 
(18.10.1) We need to know termination of flips in order to apply the pro

cedure. Currently we know this in special cases only ( cf. Chapter 7). 
(18.10.2) The MMP stops when the birational transform of K +D becomes 

nef. This is in general not the flip, only a log terminal model. The current 
base point freeness theorems are not strong enough to conclude the existence 
of the flip unless LD.J = O. (See, however, Chapter 8.) 

(18.10.3) The main problem is that we are left with too many cases. Assume 
that we need to flip g : (X', D') -+ Z' and D' is reduced. If D' •C' < 0 then D' 
contains the flipping curve C', thus g is a special contraction. In this case the 
restriction glD' : D' -+ g(D') captures many of the properties of g : X' -+ Z' 
and allows us to use results about (not necessarily small) contractions in 
dimension dim X - 1. 

However if D' · C' 2: 0 then we might as well throw away D', and we have 
no boundary at all. These cases include all terminal flips, which are already 
very difficult to handle. 

Our aim is to have a reduction procedure where we always end up in the 
first case D' -C' < 0 of (18.10.3). This makes the reduction more complicated, 
but much more useful. 

A large part of the proof applies in all dimensions. There are only two 
places where we use three dimensional results. The first result we need is that 
limiting flips terminate. The second result concerns log canonical singularities 
and is discussed in detail later (18.15-26). 

18.11 Proposition. Assume that B.ips of pre limiting contractions exist, and 
that any sequence of them terminates. Then 
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(18.11.1) For every small contraction f : (X, D) ---+ Z there exists a Q
factorial log terminal model. 

(18.11.2) If K + D is klt then the fl.ip off exists. 

The following improved version of (18.10) is based on [Shokurov91,6.4-5]. 
Our choice of H' is slightly different. The advantage is that we do not need 
to use semi stable :flips later on. 

18.12 Log Flipping Procedure. 
Start with (X, K + D) arbitrary and let f : X ---+ Z be a small contraction. 

Let TC Z be the exceptional set of 1-1 . 

(18.12.1) Let H' be a Cartier divisor on Z such that 
(18.12.1.1) H = J* H' contains the exceptional locus off. 
(18.12.1.2) H' contains the singular locus of Z and the singular locus of 

the support of J(D). 
(18.12.1.3) Fix a resolution 1r : Z' ---+ Z. Let Fj C Z' be divisors which 

generate N 1 (Z' /Z). We assume that H' contains 1r(Fj) for every j. (This 
usually implies that H' is reducible.) 

The main consequence of the last assumption is the following: 
(18.12.1.4) Let h : Y---+ Z be any proper birational morphism such that Y 

is Q-factorial. Then the irreducible components of the birational transform 
of H' and the exceptional divisors generate N 1 (Y/ Z). 

(18.12.2) We daim that there is a log resolution h : Y ---+ X ---+ Z for 
K + D + H which is an isomorphism over Z \ H'. lndeed, first we can resolve 
the singularities of Z; for this we need to blow up only inside the singular 
set. Then we resolve the singularities of the inverse image of H' U D; for this 
again we need to blow up only inside the singular set which is contained in 
the preimage of H'. 

Then Ky+ (D+H)y is Q-factorial and log terminal. Observe that h*(H') 
contains h-- 1 (T), h*(H') is LSEPD with respect to h and h*(H') contains all 
exceptional divisors. 

(18.12.3) Apply the Y/Z-Minimal Model Program to Ky+(D+H)y over a 
neighborhood of T. We successively construct the objects (hi: Y;---+ Z,KY; + 
(D + H)y;). L(D + H)Y;...J contains the support of h'lH, and every flipping 
curve is contained in supp h'l H which is LSEPD. Termination of flips needs to 
be established. If we can perform the flips then we end up with a Q-factorial 
log terminal model ïi: (Y, Ky+ (D + H)y)---+ Z. 

(18.12.4) Our next goal is to remove the birational transform fI' of H' from 
(D + H)y. 

By definition Ky+ (D + H)y is ïi-nef. Consider the largest 1: in the range 
0::; 1:::; 1 such that Ky+ (D + H)y - 1:fI' is ïi-nef. If 1: = 1 then 

Ky+ Dy= Ky+ (D + H)y - fI' 
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is Ïi-nef, hence ïi: Y-+ Z is a log terminal model. 
Otherwise we try to increase E as follows. Take O < 'f/ ~ E. Then 

Ky+ (D + H)y - (E + 'f/)H' 

is not nef. We can apply the relative Minimal Model Program. We successively 
construct the objects 

By construction (D + H)y - (E + 'fJ)H' is LSEPD, thus by (2.35) there are 
only finitely many (Ky+ (D +H)y - (E+ 'fJ)H')-extremal rays. Therefore we 
may assume that if Ci is a flipping curve, then 

(18.12.4.1) 

hence HI · ci > o. Also O = ïi; H' · ci = HI · ci + I: O'.kEk · ci , where all the 
O'.k are nonnegative integers and the Ek are ïii-exceptional. Then Ek · Ci < 0 
for some index k and Ci C Ek C L(D + H)yi.J. 

If these flips exist and terminate then we obtain 

such that K yk + ( D + H)yk - ( E + 'f/ )H~ is ïik-nef. Thus we can increase the 
value of E to E' ~ E + 'f/· Next apply the 

Minimal Model Program as before, and so on. 
We daim that after finitely many steps we reach E = 1. The only question 

is the termination of flips. This is however slightly more delicate than usual 
since we have to account for the possibility that we have an infinite sequence 
of (K + (D + H)y - EH)-flips during which the choice of E changes. However 
from (18.12.4.1) it follows that for every such flip 

thus our sequence of (K + (D + H)y - EH)-flips is also a sequence of (K + 
(D+H)y-H)-flips. Hence we face only the usual termination problem which 
is settled in chapter 7. 

(18.12.5) If all the above flips exist and terminate then at the end we obtain 
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such that Y is (Q-factorial, Ky+ Dy is log terminal and h-nef. 

18.13 Proof of (18.11). Let f: (X, K +D)-+ Z be a pre limiting contraction. 
Apply the log fl.ipping procedure (18.12). 

We daim that during the procedure only pre limiting fl.ips are used. If 
Ci is a fl.ipping curve in (18.12.3) then Ci c h'; H' and Ci · h'; H' = O. By 
(18.12.1.4) there is an irreducible component Fi C h'; H' such that Ci• Fi =/. O. 
Thus a suitable irreducible component of h'; H' intersects Ci negatively. We 
throw away those components of ( D + H)Y; which intersect Ci nonnegatively. 
Write the remaining components as S + B where the components of S have 
coefficient one and the components of B have coefficient < 1. 

In step (18.12.4) we proved that Ci · Ek < 0, therefore we obtain a pre 
limiting contraction. 

By assumption every step of the log fl.ipping procedure exists and we assume 
termination. At the end we obtain a (Q-factorial log terminal model h: Y-+ Z. 

If K + D is klt, then Ky + Dy is also klt, hence the fl.ip of f exists by 
(2.29). □ 

The following refinement of (18.11) is crucial in the next step. 

18.14 Proposition. Let f: (X, K + S + B)-+ Z be a limiting contraction. 
Assume that p( X/ Z) = 1. Assume moreover that 

(18.14.1) The fl.ip of every limiting contraction of greater type exists. 
(18.14.2) The fl.ip of every special contraction exists. 
(18.14.3) Pre limiting B.ips terminate. 
Then the B.ip off also exists. 

Proof. As before let TC Z be the exceptional set of 1-1 . 

As a first step we construct a log terminal model of (X, K + S + B). To do 
this we take a log resolution p: X' -+ X and apply the (Kx, + (S + B)x, )
MMP relative to a neighborhood of S C X. In the course of the program 
we have to make certain fl.ips with flipping curve C. AU fl.ipping curves are 
contained in 

Supp(p* S) c L(S + B)x, _j. 

By the proof of (2.16.2) the exceptional divisor of p supports a divisor E such 
that -E is p-ample. Thus C • E < 0 and the contraction of C is pre limiting. 

Let B = "2:,~ biBi. Then type(S + B) = (b1, ... , bk)- On X' the only 
divisors in (S + B)x, with coefficient < 1 are the birational transforms B:. In 
order to make a contraction limiting, first we throw away those Bi which have 
nonnegative intersection with C. Then we can increase the coefficients as in 
(18.7). Thus the corresponding limiting contraction of C is either special or 
it has type strictly greater than type(S + B). 

198 



FIJPS AND ABUNDANCE 

Thus the existence of the fl.ip of C follows from the existence of limiting 
fl.ips of greater type and of special fl.ips. 

At the end we obtain g: Y ----t X which is a Q-factorial log terminal model. 
In particular, 

Ky+ (S + B)y = g*(Kx + S + B). 

N ext let H' be a sufliciently general and sufliciently f-ample divisor on X. 
Let H = g* H'. For some O < E < 1, K + S + B + EH' is numerically !-trivial 
and Ky+ (S + B)y + EH is log terminal and numerically f o g-trivial. For 
some O < T/ ~ E apply the MMP for 

Ky+ (S + B)y + (E - rt)H 

to Y/ Z. During the course of the program the birational transform of Ky + 
(S+B)y+EH remains numerically trival over Z. Thus if Ci is a fl.ipping curve 
in the ith -step of the program then Ci • Hi > O. Therefore the contraction 
corresponding to Ci is a (KY;+ (S + B)y;)-extremal contraction. We daim 
that it is pre limiting and of type at least the type of S + B. The statement 
about the type can be proved as before. 

Let S1 C S be such that C · S1 < O. Since H' · C > 0, there is an a > 0 
such that S1 +aH' is numerically !-trivial. Thus g*(S1 +aH) is numerically 
f o g-trivial, and it contains (f o g)- 1 (T). The same properties continue to 
hold for its birational transform on l'i for every i. By assumption Ci• H > 0, 
hence (g* S1 )i · Ci < O. Therefore there is an irreducible component of 

which intersects Ci negatively. 
At the end we obtain g : Y ----t Z such that 

Ky+ (S + B)y + (E - rt)fI 

is g-nef. S + B + ( E - T/ )H' is LSEPD with respect to f, and thus the fl.ip of 
f exists by (2.32.2) and (2.29.1). □ 

(18.14) is very useful if there is no infinite increasing sequence of limiting 
contractions. At first sight there is no reason why such a sequence should 
not exist. [Shokurov88,91] discovered that there are many situations where 
a similar ordering of the coefficients makes sense, and, at least conjecturally, 
there are no infinite increasing sequences. Below we define some of these sets 
of sequences. Later we prove some relationships between them and finally 
we show the nonexistence of infinite increasing sequences in low dimensional 
cases. 
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18.15 Definition. 
(18.15.1) Sn(fano) is the set of sequences (b1 , ... , bm) such that there is an 

a smooth and proper Fano variety X of dimension at most n and a divisor 
E biBi such that p(X) = 1, Kx+ E biBi is log canonical, log terminal outside 
E Bi and numerically trivial 

(18.15.1) Sn(global) is the set of sequences (b1, ... , bm) such that there is 
a proper variety X of dimension at most n and a divisor E biBi such that 
Kx + E biBi is log canonical, log terminal outside E Bi and numerically 
trivial. 

(18.15.2) Sn(local) is the set of sequences (b1, ... , bm) such that there is 
a pointed a Q-factorial variety x E X of dimension at most n and a divisor 
E biBi such that x E nBi and Kx + E biBi is maximally log canonical at x. 

(18.15.2) Sn(local) is the set of sequences (b1, ... , bm) such that there is a 
Q-factorial variety X of dimension at most n, a closed subset Z C X and a 
divisor E biBi such that every Bi intersects Z and Kx + E biBi is maximally 
log canonical near Z. 

(18.15.3) S~(local) is the set of sequences (b1, ... , bm) such that there is 
a pointed a Q-factorial variety x E X of dimension at most n and a divisor 
Bo+ E biBi (Bo =!= 0 is reduced but possibly reducible) such that x E nBi, 
Kx + Bo is purely log terminal and Kx + Bo + E biBi is maximally log 
canonical at x. (Purely log terminal implies that Bo is locally irreducible.) 

(18.15.3) S~(local) is the set of sequences (b1, ... , bm) such that there is an 
a Q-factorial variety X of dimension at most n, a subset Z C X and a divisor 
Bo + E biBi (Bo =!= 0 is reduced but possibly reducible) such that every Bi 
intersects Z, Z C Bo, Kx +Bois purely log terminal and Kx +Bo+ E biBi 
is maximally log canonical near Z. 

18.16 Conjecture. The ascending chain condition holds for any of the six 
sets in (18.15). (With respect to the ordering given in (18.2.2)). 

For technical reasons we also need the following rather complicated defini
tion. We try to formalize the properties of the different (16.6-7). 

18.17 Definition. Sn(local diff) is the set of sequences (b1, ... , bm) such that 
there is a pointed a variety x E X of dimension at most n and a divisor 
K + ~ + E biBi such that 

(18.17.1) x E nSuppBi, 
(18.17.2) J{ + ~ is purely log terminal and K + ~ + E biBi is maximally 

log canonical at x. 
(18.17.3) ~ = E(l - 1/mj)~j where ~j are irreducible, reduced and the 

mj are natural numbers (we allow ffij = 1); 
(18.17.4) Bi is Q-Cartier for every i and Bi = E/sij/mj)~j for some 

integers Sij ;::: 0 such that Ej Sij > O. 
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It is clear that Sn (local) C Sn (local diff). 

18.18 Definition. Let C be a set of sequences. We define two other sets of 
sequences land n-1 (C) as follows: 

(18.18.1) (b1 , ••• ,bn) E Cifandonlyifforeveryl ~j ~ nthereisasubset 
(i1 , ... , ik(j)) of (1, ... , n) containing j such that (bi1 , ••• , biku)) E C. 

(18.18.2) Let n-1 (C) be the set of sequences (b1 , ... , bn) such that O < 
bi ~ l for every i and the following holds: 

There is a natural number k and positive integers rh, integers O ~ Shi ~ rh, 

and th E {0,1} for every 1 ~ h ~ k and 1 ~ i ~ n such that 

rh - l ~ Shi th 
Ph = -- + ~ -bi + - ~ 1 

rh i=O rh rh 

(P1, ... ,Pk) E C; and 

max{ shi} > 0 for every 1 ~ i ~ n. 
h 

for every h; 

(18.18.3) The following two properties are easy to check: 

f, = l and D- 1(C) = n-1(l). 

(18.18.4) From (7.4.3) we see that n-1(n-1 (C)) = n-1 (C). 

The barred versions of (18.15) are related to the others in a very simple 
way: 

18.19 Proposition. 
(18.19.1) Sn(local) C Sn(local); 
(18.19.2) S~(local) C S~(local); 
(18.19.3) C satisfi.es the ascending chain condition iff l does. 

Proof. Let f : Y -+ X be a log resolution. For every Bj there is a divisor 
Ej C Y as in (18.4.1). Let Xj E X be the image of the generic point of Ej. 

Let i = i 1 , ... , ik be those indices such that Xj E B;. Then 

is maximally log canonical at Xj. This proves (18.19.1), and (18.19.2) is proved 
the same way. 

Clearly C C l. Assume that C satisfies the ascending chain condition. Let 
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be an infinite ascending chain where 

We may assume that n = n( i) is constant. By definition, for every i we have 
a covering of ( 1, ... , n) by n subsets. By passing to a subsequence we may 
assume that the covering does not depend on i. Thus for every i we get n 
sequences b{ E C, such that, 

and for every i at least one of the inequalities b{ :s; b{+l is strict. This is 
impossible since C, satisfies the ascending chain condition. □ 

The following was pointed out by Alexeev: 

18.19.4 Proposition. Assum the log MMP for dimension n. Then 

Sn(global) C Sn(fano). 

Proof. Let (X, 1: biBi) E Sn(global). As in (8.8.1) let f: X' - X be a small 
morphism such that X' is Q-factorial. Then (X',:EbiBD E Sn(global). We 
prove by induction on dimX' and rankPic(X') that (b1, ... , bm) E Sn(fano). 
Fix k and consider the (K + 'E b;B: - EBU-MMP. After possibly some flips 
X' --½ X", we perform a divisorial or a Fano contraction g : X" - Z. Bi 
is positive on the extrema! ray of g, thus Bi is not contracted by g in the 
divisorial case, and intersects the general fi.ber in the Fano case. 

If gis divisorial, then rankPic(X') = rankPic(X") > rankPic(Z) and we 
are done by induction on rank Pic. If g is Fano then we can restrict everything 
to the general fi.ber of g and conclude by induction on the dimension. □ 

18.20 Definition. Let C, be a set of sequences. We say that C, has bounded 
sums if there is an M such that I: bi < M for every (b1 , ... , bk) E C. 

The various cases in (18.15) and (18.17) are related by the following result. 

18.21 Theorem. (Inductive Principle) 
(18.21.1) S~(local) C Sn-1(local difl). 
(18.21.2) Assume that for every n-dimensional log canonical variety (X, K + 

D) there is a Q-factorial log terminal mode] f: Y - X. Then 

Sn(local difl) C D-1(Sn-1(global)). 

(18.21.3) If C, bas bounded sums then so does D-1(C). 
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(18.21.4) If ,C bas the ascending chain condition and bas bounded sums 
then so does n-1 (,C). 

Proof. We start with (18.21.1). Let (b1, · · · , bk) be a sequence in S~(local). By 
assumption there exists an n-dimensional variety X and a divisor S + E biDi, 
with S reduced and irreducible, such that Kx + S + E biDi is maximally log 
canonical at a point x E nDi C X. Set 

where i : S - X is the natural injection and iw is defined in (16.3.6). By 
(16.6) K + 6. + E biBi satisfies the conditions (18.7.3-4) and by (17.8) it also 
satisfies (18.17.2). Thus (b1, · · · , bk) E Sn-1(local diff). This proves (18.21.1). 

The proof of (18.21.2) is similar. Pick (b1, · · · , bk) E Sn(local diff). By 
hypothesis there exists an n-dimensional pair (X, K + 6. + E biBi) which is 
maximally log canonical at a point x E X. Let 8 j be the coefficient of 6. j in 
6. + E biBi. Let f : Y - X be a Q-factorial log terminal model. Let 6.j C Y 
be the birational transform of 6.j and let Ek C Y be the exceptional divisors. 
Pick E 0 such that x E f(Eo). By (17.5) Eo is normal. Then 

0 = f*(K + 6. + L biBi)IEo = KE0 + Diff(L Ek + L 8j6.j), 
kf:-0 

where = means numerical equivalence relative to f. By (16.6) and (7.4.3) 

Diff Eo (L Ek + L Ôj6.j) = LPhDh, 
kf:-0 

where Dh C E 0 are divisors and the coefficients Ph are computed by the 
formula in (18.18.2) for suitable rh, Shi and th. (The presence of the Ek 
are the reason of using th in (18.18.2).) If Eo is not proper then replace it 
with the general fi.ber of Eo - f(Eo). The last assumption of (18.18.2) is not 
necessarily satisfied since some of the J; 1 (Bi) may not intersect E0 • By (18.4) 
for every Bi there is an exceptional divisor Ek such that J; 1 (Bi) intersects 
the general fi.ber of Ek - f (Ek)-

Let E0 run through all exceptional divisors such that x E f(E0 ). This 
proves (18.21.2). 

From the formula for Ph it is easy to see that 

Ph~ L k 
{i:Shif:-0} 

Thus 2:Ph ~ Ebi, and hence n-1 (,C) has bounded sums if ,Chas. This 
proves (18.21.3). 
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Finally, consider (18.21.4). Assume that we have an infinite increasing 
sequence b1 < b2 < . . . . By passing to a subsequence we may assume that 
they ail have the same length bi = (b{, ... , bfi). 

We use an upper index j to refer to a formula (18.18.2) associated to bJ. 
The symbols ki ,p{, r{, st, t{ are as in (18.18.2). The numbers b{ are bounded 

from below by µ = min{bt} > 0, and thus p{ 2:: µ hence I:,p{ 2:: ki µ which 
shows that kJ is bounded. Thus by passing to a subsequence we may assume 
that kJ = k is independent of j. 

18.21.5 Claim. For each fi.xed index h, {p{} bas an infi.nite nondecreasing 
subsequence. 

Proof. We drop the index h from the notation. By assumption 

Since p1 ::; 1 we obtain 

r j - 1 I: si . 
p1 = --. - + --1,.b}. 

rJ . rJ 
z 

L s{ b{ ::; 1. 
i 

The numbers b{ are bounded from below by µ > 0, hence s{ are bounded from 
above by a constant. By passing to a subsequence we may thus assume that 
s{ = Si are independent of j. Set ui = I:, sib{, then uj is a nondecreasing 
sequence of real numbers, and uj ::; 1. By passing to a subsequence we may 
also assume that ri is nondecreasing. Thus 

. ri - l uj 1 - uJ r = -.- + ---:- = 1 - -.-
rJ rJ rJ 

is also nondecreasing. 
Observe furthermore that pl is strictly increasing if the sequence rj 1s 

strictly increasing. □ 

We continue with the proof of (18.21). By passing to a subsequence we 
may assume that st = shi are all independent of j and r{ is either constant 
or increasing for every h. We obtain that p 1 :S p2 :S ... and the sequence is 
strictly increasing if one of the sequences r{ is strictly increasing. 

We are left with the case when in addition r{ = rh is also independent of 
j. Then 
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where the Ci are positive and independent of j. Since the sequence bi is 
strictly increasing, the same holds for Lh p{, hence for the sequence pi. □ 

18.22 Theorem. Let (X, E biBi) be log canonical at a point x E nBi. 
Assume that Kx and Bi are al] Q-Cartier at x. Then E bi ~ dimX. 

In particular, Sn(local) has bounded sums. 

Proof. The problem is clearly local. The daim is clear if n = 1. 
By taking repeated cyclic covers we may assume that the Bi = (fi = 0) 

are Cartier. Assume that E bi 2:: n = dim X. Let fJ = (E cdi = 0) for 
general Ci E C. Let g : Y -t X be any log resolution ·of (X, fJ + L Bi) with 
exceptional divisors Ej. By specializing g* fJ to g* Bi we obtain 

where eij 2:: O. Thus if O ~ b~ ~ bi and E b~ = 1 then 

Repeating this procedure we eventually obtain an le pair 

where the Bi are general Cartier divisors ( with coefficient one) and ~ = 
L di Bi is some other divisor such that L di = L bi - n. 

By (17.2) 

is also le. Thus ~ = 0 by induction on dim X. □ 

18.23 Complement. The above argument in fact shows that if the Bi are 
Cartier and E bi > dim X - I then X is smooth at x. Indeed, in this case we 
can replace 

n n-l 

L biBi by L [Ji + ~-
i=l i=l 

By induction on the dimension Bn-l is smooth hence sois X. 
Similarly, if the Bi and Kx are Cartier and E bi > dimX - 2 then x EX 

is a cDV point. 

Combining (18.21) and (18.22) we obtain: 
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18.24 Corollary. Let X be an n-dimensional Fano variety with p(X) = l 
and let E biBi be a Q-divisor such that Kx + E biBi is le and numerically 
trivial. Then E bi:::; dimX + 1. 

In particular, Sn(fano) has bounded sums. 

Proof. Choose an embedding XC pN and let y E Y be the cone over X with 
vertex y. Let B; C Y be the cone over Bi. (B; is Q-Cartier since p(X) = 1.) 
It is easy to see that (Y, E biBD is le. Thus (18.22) implies (18.24). □ 

18.2,4..1 Remark. S2(global) does not have bounded sums. Indeed, assume 
that D E 1 - Kxl is reduced with only nodes. Blowing up a node gives 
p : X' -+ X and p- 1 (D) E 1 - Kx,I has one more components than D. 
Thus there are surface examples with arbitrary many reduced components in 
a member of 1- Kxl-

18.25 Theorem. Assume the log MMP in dimension n - l. Assume that 
the ascending chain condition holds for Sn-2 ( fano). Then the ascending chain 
condition also holds for Sn-1(1ocal) and S~(local). 

Proof. By (18.18.3), (18.19.4) and (18.21.2) 

Sn-1(local diff) C D-1(Sn-2(global)) = D-1(Sn-2(fano)). 

Therefore by (18.21.4) and (18.24) the ascending chain condition holds for 
Sn-i(local diff). The rest follows from (18.21.1) and (18.17). D 

18.25.1 Corollary. The ascending chain condition holds for S 1(global), 
S2 ( local) and Sî (local). 

Proof. Consider S1 (global). The only possible X is JP>1 and if K + E biBi is 
numerically trivial then E bi = 2. Thus if (bi) and (bD are two sequences of 
the same length such that (bi) :::; (bD then (bi) = (bD. The rest follows by 
(18.25). □ 

18.26 Corollary. (Dimension three only) Assume that the fJ.ip of every spe
cial contraction exists. 

Then the fl.ip of every limiting contraction also exists. 

Proof. Consider all limiting contractions whose flip does not exist. Consider 
their types. They give a set B C Sî(local). By the ascending chain condition, 
if Bis not empty, it has a maximal element; let f: (X, K + S + B) -+ Z be a 
corresponding contraction. By (18.14) the flip off exists, a contradiction. □ 
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19. COMPLEMENTS ON LOG SURFACES 

DAVID R. MüRRISON 

One of the key innovations of [Shokurov91] is the notion of n-complement, 
which we now introduce. 

19.1 Definition. Let X be a normal variety and let D be a subboundary 
(2.2.4) on X. Let S be the smallest effective Weil divisor on X such that 
LD- S_J::; 0, and let Do= D - S. An n-complement of Kx +Dis a divisor 

DE 1-nKx - nS - L(n + l)Do_JI 

such that Kx + n+ is log canonical, where 

We say that Kx +Dis n-complemented if an n-complement exists. 
Note that nD+ is an integral divisor belonging to the linear system 1-nK x 1-

The defining properties can be formulated as properties of nD+, which must 
satisfy: 

(i) nD+ - nS - L(n + l)Do_J is effective, and 
(ii) Kx + n+ is log canonical. 

We start with some easy properties of n-complements. 

19.2 Lemma. If D' is a subboundary, D::; D', Kx +D' is n-complemented, 
then Kx +Dis n-complemented. 

If f: Y--+ Xis birational, and Kx+D is n-complemented, then Ky+ f(D) 
is n-complemented. 

Proof. ln the first case, set n+ = (D1)+, and in the second case, set f (D)+ = 
f(D+). □ 

We need a generalization of the notion of n-complement to caver the case 
in which the variety X is reducible. There are difficulties formulating this in 
general, so we restrict our attention to curves and surfaces. 

S.M.F. 
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A variety X is semismooth in codimension 1 if all of its codimension 1 
singularities are normal crossing points (cf. (12.2.1)). Such an Xis Gorenstein 
in codimension 1, so Kx exists as a Weil divisor (class). When dimX = 1, 
we call X a semismooth curve. (The usual terminology is nodal curve.) 

Let X be a semismooth curve, and let D = E diDi be an R-Weil divisor 
supported on the smooth locus of X. The coefficients di are allowed to be 
negative. We say that Kx + D is semilog canonical (slc) if di ~ 1. (Since 
dimX = 1, there is no need to take a semiresolution before computing dis
crepancies. The formula 

shows that -di ~ -1 is the correct analogue of the le condition.) Note that 
Kx + D is slc if and only if D is a subboundary whose support lies in the 
smooth part of X. 

There is also a definition of semi log canonical in the surface case, originally 
given in [KSB88], and discussed in (12.2). This definition does require taking 
semiresolutions. We don't repeat it here. 

19.3 Definition. Let X be semismooth in codimension 1, and let D be a 
subboundary whose support lies in the smooth part of X. Suppose that 
dimX ~ 2. Let S be the smallest Weil divisor on X such that LD - S_J ~ 0, 
and let D0 = D - S. An n-semicomplement of Kx +Dis a divisor 

such that Kx + n+ is slc, where 

(The only place where the restriction on dimension enters is in the definition 
of slc, which has only been given when dimX ~ 2.) 

Shokurov's strategy in studying n-complements is to use inversion of ad
junction (16..13, 17.6) to lift an n-complement from S to X. For this to be 
useful, we need an explicit analysis of complements in low dimension. 

19.4 Theorem. Let X be a semismooth curve, connected but not necessarily 
complete, and let D be a subboundary whose support is disjoint from Sing X, 
and lies in the union of the complete components of X. Suppose that LD _J ~ 0 
(so that in particular, Dis effective, i.e., is a boundary), and that -(Kx + D) 
is nef 011 each complete component of X. Then Kx + D is 1-, 2-, 3-, 4-, or 
6-semicomplemented. 
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Moreover, if Kx +Dis not 1- or 2-semicomplemented, tben X= P 1 and 
LD+ _J = O. In addition, if X contains an incomplete component, and Kx + D 
is not 1-semicomplemented tben D bas the form ½D1 + ½D2 for irreducible 
divisors D1, D2. 

Proof. The combinatorial ingredients in this proof will seem familiar to those 
who have studied log canonical surface singularities (cf. Chapter 3), or Ko
daira's classification of degenerate elliptic curves. Our proof explicitly gives 
the divisor n+ in every case. 

Let C be a complete component of X, and let C n Sing X = {Pi, ... , Pk}. 
Then deg(Kxlc) = 2g - 2 + k. Since deg(Kxlc) ~ 0, there are four possibil
ities: 

(I) g = 1, k = 0, deg(Kxlc) = 0 
(II) g = 0, k = 2, deg(Kxlc) = 0 

(III) g = 0, k = 1, deg(Kxlc) = -1 
(IV) g = 0, k = 0, deg(Kxlc) = -2. 

Now D cannot meet components of type (I) or (II), since deg(Kxlc) = O. 
Since X is connected, if it has a component C of type (I) then X = C and 
D = O. In this case, Kx +Dis 1-complemented, with n+ = O. 

Components of type (II), however, can meet other components of the same 
type, and can meet components of type (III) as well. Since there are only 
two points of intersection on each component of type (II), the entire curve X 
must form a chain or a cycle. Chains will be terminated by components of 
type (III), or by incomplete components. 

In the case of a cycle, D is again O and Kx +Dis 1-semicomplemented 
with n+ = O. In the case of a chain, any complete component C of type (III) 
on the end of the chain will have a divisor D n C = E d;D; with d; ~ 1 and 
Ed; ~ 1. If any d; = 1, then D n C = D1 which is 1-semicomplemented in a 
neighborhood of C with n+ = D1. So we may assume d; < 1. Since C ~ P1, 
an n-complement D will exist exactly when its degree n-degL(n+ l)(DnC)_J 
is nonnegative. There are only a few possibilities in this case: 

(1) L2D_J = O. Then Kx +Dis 1-semicomplemented in a neighborhood 
of C, with n+ = D for some divisor D of degree 1. 

(2) L2D_J = D1. Then Kx +Dis again 1-semicomplemented in a neigh
borhood of C, with n+ = D 1 . 

(3) L2D_J 2'.: D1 + D2. This implies that d1, d2 2'.: ½, and hence that 
d1 = d2 = ½- It follows that L3D_J = D1 + D2, so that Kx + D is 
2-semicomplemented in a neighborhood of C, with n+ = D n C = 
½D1 + ½D2. 

Putting this together from the two ends of the chain, we see that in all 
cases Kx + D must be 1-semicomplemented or 2-semicomplemented. In 
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addition, if there are any incomplete components in X then Kx + D is 1-
semicomplemented unless D = ½ D1 + ½ D2. 

If X has any component of type (IV), that component must be the whole of 
X. So X ~ JP1; we write D = L, di Di with 1 2: d1 2: d2 2: ... , and repeatedly 
use the fact that "I:, di :S 2. If d1 = d2 = 1 then Kx + D is 1-complemented 
with D+ = D 1 + D2. If d1 = 1 > d2, then C - {Di} has the same numerical 
properties as a component of type (III). The analysis given ab ove applies to 

show that Kx +Dis 1- or 2-complemented, with D+ = D 1 + D+, where Î5+ 
is the part of D+ whose support does not contain D 1. Î5+ is determined from 
L2(D - D1)_j as in (1), (2), and (3) above. 

Thus, we may assume 1 > d1. Then an n-complement D exists if and only 
if its degree 2n - degL(n + l)D_j is nonnegative. The possibilities are: 

(1) L2D_j = O. Then Kx +Dis 1-complemented, with D+ = D for some 
divisor D of degree 2. 

(2) L2D_j = D 1. Then Kx +Dis 1-complemented, with D+ = D 1 + D 
for some divisor D of degree 1. 

(3) L2D_j = D 1 + D2. Then Kx + D is 1-complemented, with D+ 
D1 +D2. 

(4) L2D_j 2: D1 + D2 + D3. 
(a) L3D_j = D 1 + D2 + D 3 • Then Kx +Dis 2-complemented, with 

D+ = ½D1 + ½D2 + ½D3 + ½D for some divisor D of degree 1. 
(b) L3D_j = D1 + D2 + D3 + D4. Then Kx +Dis 2-complemented, 

with 
D+ = ½D1 + ½D2 + ½D3 + ½D4. 

(c) L3D_j = 2D1 +D2 +D3 • Then Kx +Dis 2-complemented, with 
D+ = D1 + ½D2 + ½D3. 

(d) L3D_j = 2D1 + D2 + D3 + D4. This implies that d1 = i, d2 = 
d3 = ½, d4 = ½- Thus, Kx +Dis 4-complemented, with D+ = 
¾D1 + ½D2 + ½D3 + ¼D4. 

(e) L3D_j 2: 2D1 + 2D2 + D3. 
(i) L4D_j = 2D1 +2D2+2D3. Then Kx+D is 3-complemented 

with D+ = ~D1 + ~D2 + ~D3. 
(ii) L4D_j 2: 3D1 + 2D2 + 2D3. 

(A) L5D_j = 3D1 + 3D2 + 2D3. Then Kx + D is 4-
complemented, with n+ = ¾ D1 + ¾ D2 + ½ D3. 

(B) L5D_j = 4D1 +3D2+2D3. In this case, using L, di :S 2 
one can show that L 7 D _j = 5D1 + 4D2 + 3D3. Thus, 
K x + D is 6-complemented, with D+ = ¾ D1 + ~ D2 + 

½D3. 

We leave the verification that this covers all possible cases with L, di < 2 
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to the reader. Here is a sample of the type of argument that is required. 
Suppose that L2D _j ~ D1 + D2 + D3 and L3D _j ~ 2D1 + 2D2 + D3. Then 
d1 ~ d2 ~ i, d3 ~ ½ so that L4D_j ~ 2D1 + 2D2 + 2D3. Furthermore, 
d4 :'.S 2 - d1 - d2 - d3 :'.S ¼- Thus, L4di_j = 0 for i ~ 4, and L4D_j is supported 
on D 1 U D 2 U D3. This justifies the division into cases (i) and (ii). 

The last statements in the theorem are clear. □ 

The following corollary is immediate. 

19.5 Corollary. Let D = L diDi be a subboundary on JP>1 . Suppose that 
each di has the form di = ( mi - 1) / mi for some integer mi > 1, and that 
deg(Kll'1 + D) < O. Then the integers mi must fall into one of the following 
cases: 

(1) (m1) or (m1, m2), 
(2) (2,2,m3), 
(3) (2,3,3), 
(4) (2,3,4), 
(5) (2, 3, 5). 

Moreover, Kll'1 +Dis 1-, 2-, 3-, 4-, or 6-complemented in cases (1), (2), (3), 
( 4), or (5), respectively. □ 

We now begin the analysis which relates complements on X to complements 
on S. The first step can be done in arbitrary dimension. 

19.6 Theorem. Let X be a smooth variety, let Z be a normal variety, and 
let h : X -+ Z be a proper morphism with connected fi.bers. Let D = L di Di 
be a Q-subboundary on X (i.e., a subboundary with di E Q), whose support 
is a divisor with normal crossings. Assume that -(Kx + D) is h-nef and 
h-big. 

Write D = S + Do with S the smallest effective Weil divisor such that 
LDo_j :'.S 0, and suppose that either S is irreducible, or dimX :'.S 3 and S is 
semismooth in codimension 1. Given an n-(semi)-complement Ds of Ks + 
Diff(D0 ), then in a neighborhood of any fi.ber of h meeting S, there exists a 
divisor DE 1-nKx - nS - L(n + l)Do_jl such that Diff(D) = Ds. 

If Kx +Sis plt or dimX :'.S 2 then Dis an n-complement. Moreover, if 
Ks + (Ds)+ is plt then sois Kx + n+. 

Proof. Divisors from the linear system 1-nKx - nS - L(n + l)Do_jl on X 
restrict to divisors in the linear system 1-nKs - Diff(L(n + l)Do_j)I on S, 
which is the system containing D s. A failure of surjectivity of the restriction 
map would be detected by 

R 1h*(Ox(-nKx - (n + l)S - L(n + l)Do_j) 

= R 1h*(Ox(Kx + r-(n + l)(Kx + D)l)-
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But this latter sheaf is 0 by Kawamata-Viehweg vanishing [KMM87,1-2-3]. 
Thus, the divisor D exists in a neighborhood of any fi.ber of h intersecting S. 

K + D+ is le near S by (17.7). Since K + D+ = 0, (17.4) shows that 
K + D+ is le in a neighborhood of any fi.ber of h intersecting S. □ 

ln order to apply this to surfaces, we need a lemma. 

19. 7 Lemma. Let X be a smooth surface, let Z be a normal surface, and let 
h : X ---t Z be a birational morphism. Let D = I: di Di be a Q-subboundary 
on X. Assume that 

(19. 7.1) if di < 0 then h(Di) is a point in Z; and 
(19. 7.2) -(Kx + D) is h-nef. 
Write D = S + Do with S the smallest effective Weil divisor such that 

LDo_J ::; 0, and suppose that S is a semismooth curve. Then every component 
of D0 which meets S has nonnegative multiplicity in Do. 

Proof. Write Do= D+ -D-, with D+ and D_ effective such that Supp(D+) 
and Supp(D_) have no common components. By (19.7.1), Supp(D_) is con
tained in the exceptional locus of h. If D_ =/= 0, let E be a component of 
D_ with D_ · E > O. (This exists by negative-definiteness of the intersection 
matrix of a contractible curve.) Then since D+ · E ~ 0 and -(Kx + S + Do) 
is h-nef, (Kx + S) · E < O. It follows that Eisa -1-curve disjoint from S. 
Thus, blowing clown E preserves the assumptions of the lemma. 

The lemma now follows by induction on the number of components of 
Supp(D-). D 

We can now apply (19.4) and (19.6) to classify n-complements on surfaces. 

19.8 Theorem. Let X be a smooth surface, let Z be a normal surface, and let 
h : X ---t Z be a birational morphism. Let D = I: di Di be a Q-subboundary 
on X whose support is a divisor with normal crossings. Assume that 

(19.8.1) if di < 0 then h(Di) is a point in Z; 
(19.8.2) -(Kx + D) is h-nef; and 
(19.8.3) Kx + D is log canonical. 
Write D = S + D0 with S the smallest effective Weil divisor such that 

LDo_J ::; 0, and suppose that S is non-empty. Then Kx + D is 1-, 2-, 3-, 4-, 
or 6-complemented in a neighborhood of a liber of h. 

Moreover, if K x + D is not 1- or 2-complemented, then S = lP'1 and LD+ -
S _J = 0 in a neighborhood of a liber of h. In addition, if there is a component of 
S which is not contained in a liber of h, and if Kx +Dis not l-complemented, 
then in a neighborhood of any liber, Diffs(Do) = ½P1 + ½P2 for some points 
Pi, P2 ES. 

Proof. Since Supp D has normal crossings, S is a semismooth curve. By 
adjunction (16.9), since Kx + S + Do is le, Ks + Diff Do is slc. The normal 
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crossing assumption implies that Diff(Do) is supported on the smooth locus 
of S. Moreover, -(Ks + Diff Do) is nef on every complete component of 
S. By (19.7), LDiff Do-1 = O. Thus we may apply (19.4) and conclude that 
Ks + Diff Do is 1-, 2-, 3-, 4-, or 6-semicomplemented and that it is 1- or 
2-semicomplemented unless S = P1 . 

If Ds is the n-semicomplement of Ks +Diff Do, then by (19.6), in a neigh
borhood of a fi.ber of h there is a divisor D with Diff(D) = Ds which is an 
n-complement of K x + D. 

Suppose that Kx +Dis not 1- or 2-complemented. Then by (19.4), LD+ -
S -1 = 0 in a neighborhood of S = P1 . Let g : Y --+ X be a blowup on which 
Supp g- 1 (D+) has normal crossings. Write Ky= g*(Kx+D)+A-F with all 
multiplicities of components of A being greater than -1 and all multiplicities 
of components of F being greater than or equal to 1; by the connectedness 
theorem (17.4), F is connected in a neighborhood of a fi.ber of h. But then 
in that neighborhood, the union of all components of n+ other than S which 
have multiplicity 1 in n+ would necessarily meet S. Since S already contains 
all components of that kind in a neighborhood of itself, there can be no such 
components. 

The last statement follows immediately from (19.4). □ 

19. 9 Definition. Let X be a normal variety and let D be a subboundary on 
X. An exception al n-complement of K x + D is an n-complement D such that 
there is exactly one divisor E of C(X) such that a(E, X, D) = -1. Kx + D 
is exceptionally n-complemented if there exists an exceptional n-complement. 

19.10 Corollary. Let X and Z be normal surfaces, and let h : X --+ Z be 
a birational morphism. Let D = L d;D; be a ij_-subboundary on X. Assume 
that 

(19.10.1) if d; < 0 then h(D;) is a point in Z; 
(19.10.2) -(Kx + D) is h-nef; and 
(19.10.3) Kx +Dis log canonical. 

Then in a neighborhood of a .iber of h, 
either Kx +Dis 1- or 2-complemented, 
or Kx +Dis exceptionally 3-, 4-, or 6-complemented. 

Proof. Fix P E Z, and let H be a general hyperplane section of Z through 
P. Let >. be the largest nonnegative number such that Kx + D + ).h*(H) is 
log canonical. 

We first replace D by D = D + >.h*(H) and then replace X by a resolution 
of sin&__,ularities g : Y --+ X on which the support of the birational transform 
~ of D has normal crossings. Note that there is at least one component of 
multiplicity 1 in~, for if not one could increase >.. Thus, we can apply (19.8) 
to Ky+~ and obtain an n-complement in a neighborhood of g-1(h-1 (P)). 
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By (19.2), n+ = g(~ +) will determine an n-complement of Kx +Dina 
neighborhood of h- 1 (P). Furthermore, if L~+ - 8.J = 0 then the induced 
n-complement of D is exception.al. The corollary follows. □ 

19.11 Corollary. Let X and Z be normal surfaces, and let h: X-+ Z be 
a birational morphism. Let D = E di Di be a Q-subboundary on X. Assume 
that 

(19.11.1) if di < 0 then h(Di) is a point in Z; 
(19.11.2) -(Kx + D) is h-ample; and 
(19.11.3) Kx +Dis log terminal. 
Suppose in addition that there is a reduced component S0 of D not con

tained in a fi.ber of h. Then in a neighborhood of any fi.ber of h meeting S0 , 

Kx +Dis 1-complemented. 

Proof. We proceed as in the previous proof, replacing (X, D) by (Y,~). Write 
~ = S + ~o with S the smallest effective Weil divisor such that L~O.J ::; O. 
Note that the birational transform of S0 is an incomplete component of S 
in a neighborhood of an.y fi.ber of g o h which it meets. Sin.ce Ky + ~ is lt 
and -(Ky+~) is (go h)-ample, we may replace ~ by S + (1 + c)~o (for 
small c > 0) without disturbing the assumptions. But now it is impossible 
for Diff((l + c)~o) to be ½Pi+ ½P2 , independent of c. It then follows from 
the last statement in (19.8) that Ky+ (1 + c)~ (and hence Kx + D) is 
1-complemented. □ 
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20. COVERING METHOD AND EASY FLIPS 

JANOS KOLLAR 

In this chapter we construct some log fl.ips by reducing their existence to 
the case of flops. The reduction relies on the following: 

20.1 Proposition. Let f : (C C X) ---t (P E Z) be a small contraction of 
threefolds. Assume that there exists a three dimensional log terminal sin
gularity 0 E Y and a finite morphism (0 E Y) ---t (P E Z). Then finite 
generation holds for Z (4.4). In particular, if-His an f-ample divisor, then 
the opposite of f with respect to H exists. 

Proof. By (4.6) and (6.14) finite generation holds for Z. (4.2) gives a small 
modification j+ : x+ ---t Z such that H+ is J+ -ample. This is the opposite 
(or fl.ip) off. □ 

Thus the question ahead is to find conditions which ensure that P E Z 
is covered by a log terminal point. Such conditions are given after some 
preparatory remarks about ramified covers. 

20.2 Proposition. Let h : U ---t V be a finite and dominant morphism 
between irreducible normal schemes of characteristic zero. Let B = I: biBi be 
a divisor on V such that I: Bi contains the branch locus of h. (We allow bi = 0, 
so that the latter condition is easy to satisfy.) Let redh-1 (I:Bi) = I:Dij 
where h( Dij) = Bi. Let eij be the ramification index of h at the generic point 
of Dij• Then 

Proof. Codimension two subsets do not affect the daim, and hence we may 
assume that U, V are smooth. There is a natural morphism h * J{ v ---t J{ u, so 
that the verification of (20.2) reduces to computing ramifications at the generic 
point of Dij for every i, j. By localizing we are reduced to the case when U and 
V are one dimensional regular schemes, and this case is straightforward. □ 

S.M.F. 
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20.3 Proposition. Notation and assumptions as in (20.2). Let h*(K v + 
B) = Ku + .fJ. Then 

(20.3.1) logdisctep(U,.fJ) ~ logdiscrep(V,B) ~ deg(h/v) logdiscrep(U,.fJ), 
and 

(20.3.2) K v +Bis le (resp. plt) iff Ku+ .fJ is le (resp. plt). 

Proof. Note first that even if B is effective, .fJ is not necessarily so. In the 
definition of le and plt (2.10) and (2.13) it is not important that B be effective. 
We use this more general case in the proof. In most applications however we 
only use the case when B and .fJ are effective. 

Let g : W --t V be a proper modification with W normal ( e.g., a resolution 
of singularities). Let Wu be the normalization of W xvU. We have a diagram 

Wu 

u 

p 
----+ w 

h 
V. 

Let D = ~ Bi. We may assume that g-1 is an isomorphism outside D. 
Rewriting (2.5) we get that 

where SuppEi C Suppg-1 (D). Applying (20.2) top: Wu --t W we obtain 

K Wu+ red(g o p)-1 (D) = p*(K w + redg-1 (D)) 

= p*g*(Kv + B) + p* L ac(Ei,B)Ei 

= gù(Ku + B) + p* L ac(Ei, B)Ei. 

If p* Ei = ~ eijFij then ac(Fij, B) = eijac(Ei, B). □ 

It is worthwhile to mention the special case when B = 0: 

20.3.3 Corollary. Let f : X --t Y be a fi.nite and dominant morphism 
between normal varieties. Assume that Kx and Ky are Q-Cartier. If X is lt 
(resp. le) then Y is lt (resp. le). □ 

For ease of reference we mention three special cases of (20.2-3): 

20.4 Corollary. Let h: U --t V be as in (20.3). 
(20.4.1) Assume that h is étale in codimension one. Then K v + B is le 

(resp. plt) iff Ku+ h* Bis le (resp. plt). 
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(20.4.2) Let SC V be the branch locus of h and assume that B = S + D. 
Then K v + S +Dis le (resp. plt) iff Ku+ red h-1(8) + h* Dis le (resp. plt). 

(20.4.3) Let S C V be the branch locus of h. Assume that h is a double 
caver and B = (l/2)8 + D. Then K v + (l/2)8 + D is le (resp. plt) iff 
Ku+ h* Dis le (resp. plt). □ 

20.5 Proposition. Let X be a normal singularity and B an effective Q
divisor. Assume that Kx +Bis plt and has index 2 or 1 (i.e. 2(K + B) ~ 0). 
Then there is a double caver p : Z -, X such that Z is canonical of index one. 

If dim X = 3 then fi.ni te generation holds for every Weil divisor E on X. 

Proof. Let D be a general member of the linear system J2BJ. By Bertini 
theorems, D is irreducible and reduced. By (2.33), K + (1/2)D is plt. Since 
2(-K) ~ D, we can construct a double caver p: Z-, X which ramifies along 
D. By (20.4.3) Kz is plt. Kz is also Cartier, hence Z is canonical of index 
one. In dimension three finite generation holds by (20.1). D 

20.6 Proposition. Let X be a normal singularity and D an effective Q
divisor. Assume that K x + D is le and has index 2 ( or 1). Assume furthermore 
that LD_J is LSEPD and K +Dis plt outside LD_J. Then there is a fi.nite caver 
p : Z -, X such that Z is canonical of index one. 

If dim X = 3 then fi.ni te generation holds for every Weil divisor E on X. 

Proof. The required caver is constructed in two steps. By assumption there 
is a regular fonctions such that Supp(s = 0) = LD_J. Let (s = 0) = "'I:, m;D; 
and let m be a natural number which is divisible by every m;. Let h: X'-, X 
be the normalization of an irreducible component of Spec x O x [t]/ ( tm - s). 
By (20.2) 

Kx, + red h-1 (LD_J) + h*{D} = h*(Kx + D). 

Set D' = redh-1 (LD_J) + h*{D}. (X',D') has index 2, is le and plt outside 
LD' _J. Furthermore, 

is Cartier. 
Since 2(-K - LD' _J) ~ 2{D'}, we can construct a double caver p: Z-, X' 

ramified along Supp{D'}. By (20.4.3) 

Kz + p-1 (LD1 _J) = Kz +(top= 0) 

is Cartier, le and plt outside Suppp-1 (LD' _J). Thus Kz is also Cartier and 
plt (2.17), hence Z is canonical of index one. ln dimension three the flip off 
exists by (20.1). □ 

The following result shows that flips exist if the boundary has at least two 
components intersecting the flipping curve. Such flips are used repeatedly in 
Chapters 21 and 22. 
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20.7 Theorem. Let X be a Q-factorial threefold. Let D = S + B be a 
Q-divisor, S reduced and LB_J = 0. Let f : (C C X) -t (P E Z) be a small 
contraction with p(X/Z) = 1. Assume that 

(20. 7.1) K + D is log canonical and numerically nonpositive with respect 
to f; 

(20. 7.2) S has at least 2 irreducible components s+ and s- meeting C 
such that s- · C < 0 and s+ · C > O. 

Then the B.ip off exists. 

If C · (K + D) = 0 then strictly speaking we cannot talk about the fl.ip of 
f. However by ( 4.5) Z has at most one other small, normal and projective 
modification. By slight abuse of terminology we call it the fl.ip of f. It can 
also be defined as the fl.ip with respect to K + D - s+. 

The proof is clone in several steps. First we prove a weaker version: 

20.8 Lemma. Let X be a Q-factorial threefold. Let D = S + B be a Q
divisor, S reduced and LB_J = 0. Let f : (C C X) -t (P E Z) be a small 
contraction with p(X/Z) = 1. Assume that 

(20.8.1) K +Dis log terminal and numerically negative with respect to f; 
(20.8.2) S has at least 2 irreducible components s+ and s- meeting C 

such that s- · C < O and s+ · C ~ O. 
Then Kx + D is 1-complemented in a neighborhood of C and the B.ip off 

exists. 

Proof. First we prove that K +Dis 1-complemented. By (17.5) s- is normal. 
By (16.9.2) 

Ks- + Diff(D - s-) = (K + D)IS-

is lt and f-negative. Assume that s+ n s- CC. Then 

s+ ·x C = (s+ n s-) ·s- C < O 

since C C s- is contractible; a contradiction. Thus there exists an irreducible 
component of s+ n s- intersecting C but not contained in it. Therefore by 
(19.11) and (19.6) K +Dis 1-complemented. That is, there exists a reduced 
divisor n+ ~ LD _J such that K + n+ is le and numerically O relative to f. 

I daim that n+ is LSEPD. This is clear ifs+· C > O. Ifs+· C = O then 
C C s+. Since both s- and s+ contain C, no other component of S + B can 
contain C, hence they all have nonnegative intersection with C. Thus 

(K + s+ + s-) · C ~ (K + S + B) · C < 0, 

thus in n+ there is a component which has positive intersection with C. 
Let Dz = J(D+). Then Kz+Dz is Q-Cartier, le and plt outside SuppDz. 

s+, s- c n+, therefore n+ and Dz are LSEPD. Thus the fl.ip exists by 
(20.6). □ 
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20.9 Corollary. Let (X, K + D) be a Q_-factorial threefold, not necessarily 
log canonical. Then in a neighborhood of S = LD.J there exists a Q-factorial 
log terminal mode] for K + D. 

Proof. Let (Y,Ky + Dy) be a log resolution (where Dy is as in (2.7)) and 
apply the minimal model program relative to the morphism f : Y --t X in a 
neighborhood of S. In doing so we might encounter a small contraction 

with respect to K yk + Dyk . Let C be the exceptional curve of Yk· By 
hypothesis JZ(S) · C = 0 and CC JZ(S). Then O = JZ(S) · C = E ciBi · C , 
where the sum is taken over the i such that Bi nC =/- 0. Note that E ciBi =/- 0, 
because C C JZ(S). This shows that there exists an irreducible component 
of LDyk .J meeting C and nef on it. 

Let H be an ample divisor on fk: Yk --t X. Then H = fZfk(H) - E aiEi 
for some ai > 0 and the Ei are exceptional for fk. Then E aiEi · C < 0, 
and thus there exists an index i such that Ei · C < O. By definition Ei C 
LDyk.J. Therefore the fl.ip exists by (20.8) and termination was proved in (7.1). 
Thus the (Ky+ Dy )-MMP terminates and gives the required Q-factorial log 
terminal model. □ 

20.10 Lemma. Notation and assumptions as in (20. 7). 
(20.10.1) Assume in addition that 2(K + D) ~ O. Then the Bip off exists. 
(20.10.2) Assume in addition that K + D = O. Assume furthermore that 

Bips of contractions as in (20. 7) exist if K + D = 0 and K + D - s+ is lt. 
Then the fJ.ip off exists. 

Proof. Let g : (Y, Dy) --t (X, D) be a Q-factorial log terminal model. Let 
st c Y be the birational transform of s+. By assumption 

2(Ky +Dy)~ g*(2(Kx + D)) ~ 0 in case 1, 

Ky+ Dy= g*(Kx + D) = 0 in case 2. 

By assumption LD .J is LSEPD with respect to f, thus LDy .J is LSEPD with 
respect to f o g. For O < E ~ 1 apply the (Ky+ Dy - ESi)-MMP to 
(f o g) : Y --t Z. We successively construct objects hk : Yk --t Z such that 

(20.10.3.1) LDyk.J is LSEPD with respect to hk; 
(20.10.3.2) Kyk +Dyk -ESt is lt where st C Yk be the birational transform 

of s+; 
(20.10.3.3) 

2(Kyk + Dyk) ~ 0 in case 1, 

Kyk + Dyk = 0 in case 2. 
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Assume that in the process we encounter a small contraction gk : Yk - Zk. 
Let ck C yk be the flipping curve. Then ck · st > 0, hence LDyk _J has 
another irreducible component which intersects Ck negatively. Furthermore, 
by (20.10.3.2) Kyk + Dyk is le, lt outside SuppLDyk_J and Kyk + Dyk - st is 
lt. 

In the first case Kzk + gk(Dyk) has index two on Zk and is plt outside the 
LSEPD divisor Lgk(Dyk)_J. Thus the flip of gk exists by (20.6). In the second 
case the flip of 9k exists by assumption. By Chapter 7 the sequence of flips 
terminate. Therefore the program stops with 

h:Y-z 

such that Ky+ Dy - ES+ is h-nef. (2.32.2) implies that the flip of f with 
respect to Kx + D - ES+ exists. □ 

Proof of (20. 7). Let H be a sufliciently general and sufliciently /-ample divi
sor. Then for a suitable 1 > E 2: 0, K + D + EH is numerically /-trivial and 
satisfies all the assumptions of (20.7). Thus we may assume that K + D = O. 
By (20.10.2) it is suflicient to consider the case when in addition K +D-S+ is 
lt. As in the proof of (20.8) we see that there exists an irreducible component 
of s+ n s- intersecting C but not contained in it. Therefore by (19.10) and 
(19.6) K +Dis 1- or 2-complemented. Thus by (20.10.1) the flip exists. □ 

The following result applies every time in dimension three when the oppo
site exists. However in practice it is usually very diflicult to find the divisors 
S; required in the assumptions. 

20.11 Theorem. (Mori, unpublished) Let f: X - Z be a small morphism 
with exceptional set C C X. Let S1, S2 C X be effective divisors such that 
S1 n S2 = C. Assume that m1S1 and m2S2 are linearly equivalent for some 
m 1, m2 > O. Then the opposite off with respect to S1 exists and stns:} = 0. 

Proof. The pencil (m1S1 , m 2 S2 } is base point free outside C; denote by p : 
X --+ JP1 the corresponding rational map. Then the opposite of f is the 
normalization of the closure of the image of the map px f: X --+ JP1 x Z. □ 

20.12 Corollary. Let f: X - Z be a small morphism with exceptional set 
C C X. Assume that 

(20.12.1) p(X/Z) = 1; 
(20.12.2) there is a divisor D such that (X, D) is klt and -(Kx + D) is 

f-nef; and 
(20.12.3) there are effective divisors S1, S2 C X such that S1 n S2 = C. 
Then the opposite off exists and St n S:J" = 0. 

Proof. 
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since C C S3-i is contractible. Therefore by the base point free theorem 
[KMM87,3-1-2], suitable positive multiples of Si are linearly equivalent. Thus 
(20.11) applies. □ 

20.13 Corollary. Let X be a Q-factorial threefold. Let f : (X, K + S1 + 
S2)-+ Z be a small contraction with p(X/Z) = 1. Assume that C • (K + S1 + 
82) < 0, C · S1 < 0, C n S2 =/:- 0, K + S1 + S2 is le and K + S1 is lt. Then the 
B.ip off exists. 

Proof. If C · S2 > 0 then (20.7) applies. If C · S2 ~ 0 then C c S1 n S2. If 
equality holds then (20.12) applies, otherwise there is a 1-complement B by 
(19.11) and we can apply (20.7) with s+ = B. □ 
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JANOS KOLLAR 

The aim of the next two chapters is to investigate fl.ips of special contrac
tions (18.8). The importance of these is clear from (18.9). For a special fl.ip 
B is also reduced, in fact usually it is empty. We change notation and write 
S for what used to be S + B. This is important, since (following Shokurov) 
from (21.3) on B is used for something different. 

21.1 Notation. Let X be a normal Q-factorial threefold and SC X an integral 
Weil divisor. Assume that Kx +Sis lt. Let f: X--+ Z be a small (K + S)
extremal contraction; i.e., K +Sis f-negative and p(X/Z) = l. Thus there is 
a proper curve C C X and a fini te subset P C Z such that f : X -C --+ Z - P 
is an isomorphism. The existence of fl.ips is local on Z; we may pick a point 
0 E P C Z and assume that Z is a small neighborhood of O. Therefore we 
may assume that C = J-1(0) is connected, but in general C may be reducible. 

We assume that C · Si < 0 for every irreducible component Si C S. In 
particular, every Si contains C. 

We call f : (X, S) --+ Z a special contraction. By a slight abuse of language, 
the fl.ip of f is called a special fiip. 

Our aim is to construct the fl.ip of f. This is clone in several steps. First we 
construct the fl.ip in certain special cases. For the remaining cases, we prove 
that they exist provided index two fl.ips exist. Index two fl.ips turn out to be 
the hardest, they are discussed in the next chapter. 

21.2 Proposition. If S is reducible, the .i.ip exists. 

Proof. As we remarked, C C Si for every i. Since K + S is lt, S1 n S2 is 
a locally irreducible curve (16.9). Thus S1 n S2 = C (and C is irreducible). 
Thus the fl.ip exists by (20.12). □ 

21. 2.1 Convention. For the rest of the chapter we always assume that S is 
irreducible. 

21.3 Definition. Assumptions as above. 

S.M.F. 
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(21.3.1) By (19.6,19.8) there is an n E {1,2,3,4,6}, called the index of 
K + S, such that K + S is n- complemented. I.e. there is a Q-divisor B such 
that nB is an integral divisor, K + S +Bis le and n(K + S + B) ~ O. (This 
B has nothing to do with the B occurring in the definitions (18.1-8).) 

(21.3.2) We say that K +S+B is exceptionalif (S,Diffs(B)) is exceptional 
in the sense of (19.9). Observe that this may depend on the choice of B. 
Sometimes the contraction f itself is called exceptional if the choice of B is 
already agreed upon. The same applies to the flip of f. 
21.4 Proposition. Index one flips exist. 

Proof. Index one means that B is an integral Weil divisor. Since 

C · B = -C · (K + S) > 0, 

S + B and f(S + B) are reduced LSEPD divisors, and the flip exists by 
(20.7). □ 

21.5 Proposition. If K + S + B bas index two and K + S + B is lt, tben 
the B.ip exists. 

Proof. Assume first that LB.J =/= 0 and let S' C LB.J. If C · S' > 0 then the 
flip exists by (20.7). If C · S' ~ O then C · (K + S + S') ~ C · (K + S) < O; 
the flip exists by (20.13). If LB.J = 0 then K + S + B is plt by (2.16.3) hence 
(20.5) gives the flip. □ 

Next we apply the Backtracking Method (6.4-5). The notation and con
ventions of (6.4-5) are used throughout. 

21.6 Construction of q1 : Y1 --+ Xo. Assume that K + S + B is not lt. Let 
h : xt --+ X be a Q-factorial lt model (20.9). By assumption h is not an 
isomorphism. If Et C xt is the reduced exceptional divisor then K x• + Et + 
st + Bt = h*(K + S + B) is lt. 

21.6.1 Lemma. For any irreducible component E C Et tbere is a unique 
projective morpbism q1 : Y1 --+ X 0 witb the following properties 

(21.6.1.1) Y1 is Q-factorial and p(Yi/ X) = 1. 
(21.6.1.2) The exceptional set of q1 is an irreducible divisor E 1 C Y1 sucb 

tbat under the birational map Y1 --+ X +-- xt the birational transform of E1 

is E. 
(21.6.1.3) q1 is a log crepant morpbism, i.e. 

and is le. 

Proof. Uniqueness of Y1 follows from (6.2). 
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The existence follows from the (Kx, +Et+ st + nt - 1:E)-MMP applied 
to xt -+ X. We need to check that all flips exist and any sequence of them 
terminates. Let C c xt be a flipping curve. Since Kx, +Et+ 3t + Bt is 
numerically h-trivial, C • E > O. As in the proof of (20.9) we find another 
exceptional divisor Ek such that C · Ek < O. Thus the flip exists by (20.7) 
and termination follows from (7.1). 

At the end we obtain a morphism q' : Y' -+ X and E' C Y', which is the 
birational transform of E. Furthermore, 

-1:E' = KVi +(Et+ st + Bt)' - 1:E' 

is q'-nef. Supp(Et +st +Bt)' = Supp q'*(S +B) is LSEPD with respect to q', 
hence base point freeness applies to -E' (2.32.2). Thus we obtain a morphism 

such that -E1 ( the birational transform of -E') is q1 -ample. Thus E 1 con
tains the exceptional set of q1. If D is a Weil divisor on Y1 then D = 
qi(q1(D)) + c(D)E1 for some c(D) E (Q, and hence Y1 is Q-factorial. □ 

From now on we always assume that q1 : Y1 -+ Xo is chosen as in (21.6.1). 

21.6.2 Lemma. Notation as in (6.4). 
(21.6.2.1) K + Sj + Ej + Bj is le for every j; 
(21.6.2.2) Tbere are ce, cb > 0 sucb tbat Sj + ceEj + cbBj is numerically 

trivial on Yj / Z for every j. 

Proof. By (21.6.1.3) the first part holds for j = 1. Since S-C < 0 and B-C > 0, 
there is a Cb > 0 such that (S+cbB)-C = O. Let S1 +ceE1 +cbB1 = qi(S+cbB). 
Both of these properties are stable under flips and flops. □ 

21. 7 Existence of the contractions ri. 
Choose O ~ab< l such that the coefficient of E1 in qi(Kx + S + abB) = 

K + S1 + abB1 + a~E1 is positive. 

21. 7.1 Proposition. Assume tlrnt 1 > ae > a~ is sufii.ciently close to a~. 
Tben 

(21. 7.1.1) Rj · (K + Sj + abBj + aeEj) < 0 for every j. 
(21. 7.1.2) K + Sj + abBj + aeEj is plt for every j. 
(21. 7.1.3) Rj can be contracted. 
(21. 7.1.4) Tbere are bs, be > 0 sucb tbat Rj · (bsSj + beEj) < 0 for every j. 

Proof. (6.5.2) proves (21.7.1.1). 
By assumption Kx +Sis plt. Since q1 is an isomorphism outside E 1, this 

implies that K + S1 is plt outside E 1 U B1. By (21.6.2.1) K + S1 + E 1 + B 1 
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is le, thus K + S1 + abB1 + aeE1 is plt along E1 U B1 since ab, ae < l. Thus 
K + S1 + abB1 + aeE1 is plt. By (21.7.1.1) plt is preserved under flips. The 
first two daims imply the third. 

Both K + S + abB and S are negative on C, thus K + S + abB = cS for 
some c > O. Thus 

K + S1 + abB1 + aeE1 = qt(K + S + abB) + (ae - a:)E1 

= qt(cS) + (ae - a:)E1 = bsS1 + beE1 

for some bs, be > O. This equivalence is preserved by subsequent flips. □ 

Another useful general result is the following: 

21.7.2 Lemma. Notation as above. Then either Rj • Sj > 0 or Qi • Sj > O. 

Proof. Sj intersects the exceptional set but does not contain it. Thus Sj 
cannot be seminegative on Yj/Z. □ 

21.8 Three Kinds of Flips of the Backtracking Method. 
The sequence of flips in the backtracking method can be broken into three 

parts. Sorne easy flips in the beginning, some hard flip (hopefully at most 
one) in the middle and then again a sequence of easy flips. ( Any of these may 
be empty in a given situation.) 

21.8.1 Beginning Flips. 
In the first step Q1 · E1 < O. If R1 · E1 ~ 0 then there is no beginning flip. 

In general however R1 · E1 > O. Assume more generally that Ri-l • Ei-l > O. 
Then Qi · Ei < O. If Ri · Ei ~ 0 then the beginning sequence is finished. 
If Ri · Ei > 0 then Ri · Si < 0 since by (21.7.1.4) Ri · (bsSi + beEi) < O. 
Thus the contracted curve is contained in Si and intersects Ei. The flip of 
Ti exists hy (21.6.2.1) and (20.7). Since the flipping curve is contained in 
Si, the beginning sequence of flips terminates (7.1). Thus we eventually get 
a divisorial contraction (and we are finished) or reach Em C Ym such that 
Emis seminegative on Ym/Z. Therefore Em contains every Ym/ Z-exceptional 
curve. 

21.8.2 Middle Flips. 
The flipping of Tm : Ym--+ Xm is the hardest step. We distinguish several 

cases. We use Locus(Rm) to denote the exceptional set of Tm. 
(21.8.2.1) Locus(Rm) = Sm n Em. 
The flip exists by (20.11) and Sm+i and Em+l are disjoint. Since Em 

contains every Ym/ Z-exceptional curve, SmnEm C Sm is the only Sm--+ f(S)
exceptional curve. Thus Sm+i does not contain any exceptional curves, hence 
Sm+l is nefrelative to Ym+l--+ Z. Qm+l ·Sm+l > 0, so that Rm+l ·Sm+l = 0, 
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and therefore rm+l : Ym+l --+ Xm+l contracts Em+l• Thus Xm+l is the fl.ip 
off. We are finished. 

(21.8.2.2) Locus(Rm) is a proper subset of Sm n Em. 
I do not know any useful general result in this case. An important special 

case is treated in [Shokurov91, 6.11]. 
(21.8.2.3) Locus(Rm) is disjoint from Sm. 
ln this case we need to argue that (rm : Ym --+ Xm, K + Em + Bm) is in 

some sense "simpler" than (f : X --+ Z, K + S + B) and use induction. Assume 
that rm can be flipped. Then Qm+i ·Sm+l = O. By (21.7.2) Rm+l ·Sm+l > O. 

(21.8.2.4) Rm · Sm > O. This belongs to the next case. 

21.8.3 Final Flips. 
These are the flips of type (21.8.2.4) or any flip following a flip of type 

(21.8.2.3-4). 

21.8.3.1 Lemma. Assume that Rj · Sj > O. Then Rj · Ej < 0, the flip of rj 
exists and Rj+1 · Sj+l > O. 

Proof. Rj · Ej < 0 follows from (21.7.1.4). The fl.ip of rj exists by (20.7). 
By assumption Qj+i · Sj+ 1 < O. Thus Rj+l · Sj+l > 0 by (21.7.2). □ 

21.8.3.2 Corollary. Final flips exist and terminate. □ 

First we give an easy application of the backtracking method. 

21.9 Proposition. Assume that Kx + S +Bis not lt outside Supp S. Then 
the flip exists. 

Proof. Assume first that LB _J is not empty. Let E be an irreducible component 
of LBJ. If E • C > 0 then (20.7) applies. Thus assume that E • C ~ O. Then 

(K + S + E) · C ~ (K + S) -C < 0, 

and therefore the (K + S + E)-flip exists by (20.13). 
If LB _J = 0 then there is an irreducible curve D C X, not contained in S 

such that K + S + B is not lt along D. Let h : xt --+ X be a Q-factorial lt 
model of (X, K + S + B) in a neighborhood of S. This exists by (20.9). By 
assumption there is an exceptional divisor E C xt such that h(E) = D. Using 
E construct q1 : Y1 --+ X 0 as in (21.6). Assume that we already constructed 
ri : Y; --+ Xi. Using (21.6.2.1) the following daim implies that ri can be 
fl.ipped: 

21.9.1 Claim. If r; is small then E; intersects every curve in the extremal 
ray R; and R; · S; < O. 

Proof. Let Pi, P2 be the two extremal rays. Y; --+ Z maps E; to f(D). Let 
F; C E; be a general fi.ber of E; --+ f(D). Then F; · E; < O. We can specialize 
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Fi to the central fi.ber to conclude that Ei is negative on at least one of 
the extrema! rays of NE(Y;/Z), say Pi · Ei < O. If Ei contains the whole 
exceptional set U of Y;/ Z then Ei intersects every exceptional curve. U is 
connected, so if U r/,. Ei then there is a curve D C U such that D • Ei > O. In 
this case necessarily P2 · Ei > 0, thus Ei intersects every curve in P2 as well. 

Ri · Si < 0 is proved by induction. First let i = 1 and let D be a curve in 
R1 . Then q1(D) is an irreducible component of C, and hence 

81 · D = qtS · D = S · q1 (D) < O. 

Assume now that Ri-l · Si-l < O. Then Qi · Si > O. Thus if Ri · Si 2:: O then 
Si is Y;/ Z-nef. Y; is (Q-factorial, hence Si n Ei C Ei is a divisor which lies 
entirely in the central fi.ber of Ed f(D). Therefore it can not be nef unless it 
is empty. If sin Ei = 0 and si is Y;/Z-nef then si · Ri = O and Ti : Y; ----+ xi 
contracts the whole divisor Ei. □ 

If Ei · Ri > 0 then the flip of Ti exists by (20.7). Otherwise Ei · Ri ~ 0, 
hence by (21.6.2.2) Ri· Bi > O. Thus (K +Si+ Ei) · Ri < 0 and the flip of Ti 
exists by (20.13). 

The ab ove daim also implies that the exceptional locus of Ti is contained 
in Si, and hence the sequence of flips terminates by (7.1). □ 

The second application of the backtracking method requires more delicate 
considerations. 

21.10 Theorem. Assume that index two special flips exist. Then all special 
B.ips exist. 

Using (19.6) and (19.8) this is a direct consequence of two propositions 
(21.12-13) whose formulation requires a definition: 

21.11 Definition. Consider an extrema! contraction with K + S + B of index 
n. For certain values of s 2:: 1 we can write 

where the Bi are nonzero effective integral Weil divisors and C · Bi 2:: O. One 
such way is B = (l/n)(nB), but there may be others. The maximum value 
of s for which this is possible is called the type of (f : X ----+ Z, K + S + B). 
(This has nothing to do with the type defined in (18.2) and no confusion is 
possible.) 

21.12 Proposition. Fix n and t 2:: 1. Assume that index n exceptional 
special fJ.ips of type at least t exist whenever K + S + B is lt. Then all 
exceptional special fJ.ips of index n and type t exist. 
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21.12.1 Corollary. Index 2 exceptional special B.ips exist. 

Proof. By (21.5) index two flips exist if K + S + B is lt. □ 

The following is a reformulation of [Shokurov91,7.4]. The proof is a case 
by case analysis. 

21.13 Proposition. Let (f: X----+ Z, K + S + B) be an exceptional special 
contraction of index n and type t sucb tbat K + S + B is lt. Tben one can 
fi.nd a B' sucb tbat one of the following bolds: 

(21.13.1) K + S + B' bas index 1 or 2; 
(21.13.2) (f : X ----+ Z, K + S + B') is an exceptional special contraction of 

index n' and type t' and in the following diagram ( n', t') lies to the rigbt of 
(n, t). 

(6, ~ 1) ----+ ( 4, ~ 1) ----+(6, 2)----+ (6, ~ 3)----+ 

----+(3, ~l)----+(4,2)----+(4,3)----+(4, ~4). □ 

21.14 Proof of (21.12). Let (f : X ----+ Z, K + S + B) be an exceptional 
special contraction of index n and type t. If it is lt, there is nothing to prove. 
Otherwise let h : xt ----+ X be a (Q-factorial lt model with exceptional divisor 
Et C xt. The proof proceeds by induction on the number of irreducible 
components of Et. To be more precise, we consider the minimum of the 
number of irreducible components of Ef where hi : Xf ----+ X runs through 
all Q-factorial lt models. (Usually there are infinitely many.) We call this 
number the minimal number of log crepant divisors. In what follows we let 
h : xt ----+ X be a Q-factorial lt model where the minimum is achieved. 

If f(Et) (/_. S then the fl.ip exists by (21.9). Thus assume from now on that 
f(Et) C S. Let st (resp. Bt) be the birational transform of S (resp. B) on 
Xt. Then 

Since fis exceptional, K +S+BIS is exceptional, and therefore on st there is 
at most one curve with log discrepancy zero. Every curve in Et n st appears 
with log discrepancy zero, hence Et n st is an irreducible curve. Thus there 
is a unique component E c Et which intersects st and D = E n st is an 
irreducible curve. By (21.6), E determines q1 : Y1 ----+ X. However, we need a 
direct construction of Y1 which provides additional information. 

21.14.1 Claim. st is h-nef 

Proof. The only curve where this may fail is D. If h(D) is a curve then we do 
not have to consider D. Thus assume that h(D) is a point (this is the typical 
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case). Let H be a sufficiently ample divisor on X disjoint from h(D). D is 
the only curve with the property that D · st < 0, thus [D] is an extrema! ray. 
Since D = En st, the flip exists by (20.13). After the flip (St)+ becomes 
nef relative to h+ : (Xt)+ ----t X. Furthermore (St)+ and (Et)+ are disjoint. 
Applying base point freeness to (St)+ (2.32.2) we obtain a morphism 

where p contracts (Et)+. Thus s : U ----t X is small. s is not an isomorphism 
smce 

n+ ·(St)+> O 

hence p(D+) C U is a curve contracted by s. Since X is Q-factorial, this is 
impossible. D 

21.14, 2 Construction of q1 : Y1 ----t X. Since st is h-nef, we can apply base 
point freeness to obtain 

t p q1 
X ---+ Y1 --+ X. 

p contracts Et - E, thus q1 has at most one exceptional divisor, the image 
of E. There is a curve AC E such that h(A) is a point and A intersects st 
positively. Thus p(A) is not contracted by q1 . Since X is Q-factorial, q1 is 
not small, thus E 1 = p( E) is the exceptional divisor of q1 . 

Let W1 C Y1 denote the closed subset where p-1 is not defined. By con
struction W1 n S1 = 0. Since 

we see that K + S1 + E 1 + B 1 is lt outside W 1. p: Xt ----t Y1 is a Q-factorial 
lt model which has one fewer exceptional divisors than h : Xt ----t X. 

21.14.3 Applying the Backtracking Method. 

21.14.3.1 Claim. Suppose that i :::; m (i.e., we performed only beginning 
B.ips). Then 

(21.14.3.1.1) Y1 --+ Yi is an isomorphism in a neighborhood of W 1 . Let 
Wi C Yi be the image of W1. 

(21.14.3.1.2) K + Si + Ei + Bi is plt outside Wi and the generic point of 
sin Ei. 

Proof. By construction K + S1 + E 1 + B1 is lt outside W1. Therefore it is 
plt outside the generic point of S1 n E1 since there are no triple intersections. 
Assume that the claim holds for i -1. Let Di-1 C Yï-1 be the locus of Ri-1· 
As we showed in (21.8.1), Di-l C Si-1 and Di-1 · Ei-1 > O. Therefore 

Di-1 n Wi-1 C Si-1 n wi-1 = 0. 

230 



FIJPS AND ABUNDANCE 

Therefore Y;_1 --+ Y; is an isomorphism in a neighborhood of Wi-l and 
(21.14.3.1.1) is clear. 

Si-in Ei-i is a contractible curve in Si-1, hence 

Therefore D;-1 r/.. Ei-1 and so K + Si-1 + Ei-1 + Bi-1 is plt along Di-l· 
Therefore K +Si+ Ei + Bi is plt along D;_1 which proves (21.14.3.1.2) for 
i. □ 

Now consider middle flips. (21.8.2.1) finishes the backtracking method. 
(21.8.2.2) is impossible since Sm n Em is irreducible by (21.14.3.1.2). 

In case (21.8.2.3) the flip of rm is provided by induction in view of the 
following: 

21.14.3.2 Claim. 
(21.14.3.2.1) (rm : Ym -+ Xm, K + Em + Bm) bas the same index as (f : 

X-+ Z, K + S + B). 
(21.14.3.2.2) The type of (rm : Ym -+ Xm, K + Em + Bm) is not smaller 

than the type of (f: X-+ Z, K + S + B). 
(21.14.3.2.3) The minimal number of log crepant divisors of (rm : Ym -+ 

Xm, K +Em +Bm) is smaller than the minimal number of log crepant divisors 
of (f: X-+ Z, K + S + B). 

(21.14.3.2.4) (rm : Ym -+ Xm, K + Em + Bm) is either lt or an exceptional 
special neighborhood. 

Proof. By definition of index, n(Kx + S + B) is a principal divisor. Thus 
n(I< + S 1 + E 1 + B1) = qin(I<x + S + B) is also a principal divisor. This 
property is preserved under flips, and hence n(K + Sm + Em + Bm) is a 
principal divisor. Since Sm is disjoint from Locus(Rm), n(K + Em + Bm) is 
a principal divisor in a neighborhood of Locus(Rm)-

Let B = ""L(l/n)Bi be the decomposition giving the type. Since C-Bi ~ 0, 
there is an si ~ 0 such that 

Pulling it back to Y1 , we obtain positive numbers ei such that 

is numerically trivial on Yi/ Z. This property is preserved by flips, and there
fore 
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is numerically trivial on Ym/Z. Since Dm is disjoint from Sm and Dm ·Em < 0, 
we conclude that Dm · B:n > 0 for every i. Thus 

shows that the type of (rm : Ym --t Xm, K + Em + Bm) is at least as large as 
the type of (f : X --t Z, K + S + B). 

Let Wi C Ui C Yï (i = 1, m) be open neighborhoods such that Ym --+ Y1 is 
an isomorphism between U m and U1. Then patching Y m - W m and p-1 ( U1) C 
xt gives a Q-factorial lt model of Ym with one less crepant divisors than in 
xt --t X. 

We still need to show that (rm : Ym --t Xm, K + Em + Bm) is exceptional. 
Let F' = Em alld let KF,+D' = Diff(K +Em+Bm)- Then K +D' is le. Let b: 
F --t F' be a log terminal model and KF+D = b*(KF' +D'). If K +Em +Bm 
is lt along Locus(Rm) then there is nothing to prove. Otherwise LD_J has at 
least two connected components: one is the birational transform of Sm n Em 
and the other lives over Locus(Rm)- Thus (rm : Ym --t Xm, K + Em + Bm) is 
either lt or exceptional by (12.3.2). D 

After the middle flip, we have only final flips left, and these always exist 
by (21.8.3.2). D 
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TIE Luo 

In this chapter we outline some of the steps of Shokurov's proof of the 
existence of log-fl.ips in the case where f : C C X - 0 E Z is a special 
nonexceptional index 2 extremal contraction. The proof given in [Shokurov 
92] is long ( about 35 pages) and we can not daim to have understood all of 
it. 

The assumptions are: 

(22.1.1) K + S +Bis le and 2(K + S + B) ~ 0 in a neighborhood of C; 
(22.1.2) S · C < O; 
(22.1.3) K +Sis plt and X is Q-factorial; 
(22.1.4) (K + S) · C < O; 
(22.1.5) K + S +Bis nonexceptional in a neighborhood of C (by (21.12.1)); 
(22.1.6) K + S +Bis lt outside Supp S (by (21.9)); 
(22.1.7) there is a unique irreducible component L C LDiffs(B)_J which is not 

contained in C (this follows from (22.2)). 

22.2 Lemma. (22.2.1) Assume that al] index two Bips satisfying (22.1.1-7) 
exist. Then al] index two fl.ips satisfying (22.1.1-6) exist. 

(22.2.2) Assume that f : X - Z satisfies (22.1.1-6) and LDiffs(B)_J r/.. C. 
Pick a component L C LDiffs(B)_J which is not in C. Let Le C SuppDiffs(B) 
be the connected component of Supp Diffs(B) containing L. H Le contains 
another noncontracted curve then (X, S) is 1-complemented, and the fl.ip ex
ists. 

Proof. The first part is essentially the statement that if we apply the back
tracking method to an arbirtary index two fl.ip then the middle fl.ip satisfies 
(22.1.7), (21.9) or else it is exceptional. 

In case (22.2.2) it is easy to see that one can find an effective divisor M such 
that Mis f-nef and Supp M = Supp U - L. Thus (S, Diff(B) - EM) satisfies 
the assumptions of (19.11). Hence (S, Diff(B) - EM) is 1-complemented, and 
therefore sois (S, Diff(0)). D 

S.M.F. 
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22.3 Further subdivison of cases. By passing to the analytic category we may 
assume that our flipping curve C is irreducible. We consider four types of 
extremal contractions. These four cases exhaust all possibilities if C is irre
ducible, but not if C is reducible. Because of certain technical details of the 
inductive proof, in case (22.3.c) we allow the flipping curve to be reducible. 

(22.3.a) C is irreducible and C r/,. Supp(B). In particular, K + S + B is lt 
at the generic point of C; 

(22.3.b') C is irreducible, K + S + B is not lt along C and there is a point 
Q rf. L such that (S, Diff(B)) is not lt at Q. In this case CC Supp(B). 

(22.3.b") C is irreducible, K + S +Bis not lt along C and (S, Diff(B)) is 
lt outside L. In this case C C Supp(B); 

(22.3.c) C is possibly reducible, K + S + B is lt at every generic point of 
C and CC Supp(B). 

The proof of the existence of flips proceeds by induction on two numbers: 
the height of a Shokurov flower and the S-log difficulty. These are defined 
shortly. 

22.4 Definition - Proposition. Assume that X is lt and (X, S) is le. By (6.6) 
there are only finitely many exceptional divisors E such that discrep(E, X) s 
O. We define the S-log difficulty of (X, S) (denoted by b(X, S) or simply by 
D) to be the number of exceptional divisors E such that 

(22.4.1) discrep(E, X) S O and discrep(E, X, S) = -1. 

If f : Y -+ X is a proper birational morphism then set f*S = J:; 1 (8) + 
I: d(Ei)Ei. By definition d(Ei) = discrep(Ei, X, B) - discrep(Ei, X, S + B). 
Thus (22.4.1) can be rewritten as 

(22.4.2) d(E) s 1 and discrep(E,X,S + B) = -1. 

22. 5 De finition. An extremal contraction g : Y -+ X is a good extraction if it 
is log crepant and satisfies the following conditions: 

(22.5.1) K + S + E is lt; 
(22.5.2) D =Sn E ~ lP'1; (By (22.5.1) Sand E cross normally generically 

along D.) 
(22.5.3) For double adjunctions, we have 

1 1 
Diffn(Diffs(E + B)) = Diffn(DiffE(S + B)) = 2P1 + 2P2 + P, 

where Pis the unique non-lt point for K + S + B +Eon D. 
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22.6 Lemma. There is a fi.nite chain of good extrema] extractions in cases 
(22.3.a) and (22.3. b") such that in the last extraction there is only one non-lt 
point (as Pin (22.5.3)) on the exceptional divisor. 

Proof. In either case the boundary of Ks+Diff(B) has exactly one component 
passing through the non-lt point. We construct the chain inductively. Taking 
a lt model for K +S+B, h: Xt-+ X, we apply the (Kt +St +Bt +Et -t:Bt)
MMP. Along the way back to X, there is a flip or divisorial contraction, after 
which we get the neighborhood of Q = C n L in case (a) (Q E C i- C n L 
in case (b")). This step is not a flip since the modifications are clone over 
X. So it is a divisorial contraction. It must be a contraction of E to the 
point Q because the non-exceptional assumption. Let us call the contraction 
91: (X1,E1 = E)-+ (Xo = X,Q). 91 is log-crepant and K +911S+E is lt by 
assumptions. It implies that 911S and E cross normally and En(91);;1S ~ JP1. 
Also 

where P = (91);;1 Sn En (91);;1 L. 91 is a good extraction. Assume that we 
have constructed a chain of good extractions that starts at X and ends with: 

We are clone if there is no non-lt point on Ei except along Ei n (9i);;1 Ei-l· 
Otherwise let Qi be the non-lt point. There is an irreducible Li from the 
reduced part of 9*(K +s+B)IEi (where 9 is the composite of all the gi)- Qi E 
Li. Moreover Li is the only locus where 9;1 B intersects Ei in a neighborhood 
of Qi. Looking again from the Q-factorial lt model xt using (Kt+ st + Bt + 
Et - t:Bt)-MMP, we daim that the last step of the modification that gives 
the neighborhood of Qi is a divisorial contraction to Qi- We show that this 
step cannot be a flip. Let C' be the flipped curve passing Qi- By assumption 
C' • 9;; 1 B < O. 9* B • C' = 0 implies that there is an exceptional divisor E' 
such that E' · C' > O. There is no exceptional locus passing through Qi and 
9'! Ei-1 . C' = 0, C' . (9i);;1 Ei-1 < o. 

So C' lies in (9i);;1 Ei-1· 

is not klt along E'l(9i);;1 Ei-l and at Qi. Hence by (12.3.1) it is not lt along 
C'. K +(9i);;1 Ei-1 +Ei is lt before the flip and K +(9i);;1 Ei-1 +(9i);;1 B+Ei is 
not lt in the neighborhood of the flipping curve. Therefore (9i);;1 B intersects 
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Ei more than Li around Qi- This is a contradiction. The nonexceptional 
assumption prevents the modification being a contraction to a curve. So this 
modification is a divisorial contraction to Qi- We check as before that it 
is a good contraction. The process stops after finitely many steps since the 
number of exceptional divisors in the lt model is finite. □ 

The above lemma justifies the following: 

22. 7 Definition. We define the minimum number of good extremal extractions 
needed in the lemma the height of the Shokurov fiower, and denote it by À. 

We remark that the above construction does not work in the cases (22.3.b') 
and (22.3.c) since condition (22.5.3) for a good extraction would fail. 

22.8 Proposition. For the cases (22.3.b') and (22.3.c) we have the following: 
(22.8.1) either there is a good extraction of g : (Y, E) -+ (X, C) such that 

d(E) ::; 1; 
(22.8.2) or the fJ.ip off exists. 

Comments. This formulation (taken from [Shokurov92, 8.8]) does not make 
much sense since a posteriori flips always exist. The daim is that if the 
construction given in [ibid, 8.8] fails to yield a good extraction then the end 
result of the construction can be used to produce the flip. 

The original version [Shokurov91, 8.8] claimed that one always has the first 
case. It is not clear if the second case is really necessary. 

The following easy lemma (whose proof is left to the reader) is used re
peatedly in the proof of the final theorem. 

22.9 Lemma. Let f: S ---t T be a birational map between normal surfaces 
and D an effective ample divisor on S. If J-1 (Supp(D)) is irreducible then 
J-1 (Supp(D)) is nef. □ 

The attached flow chart at the end of this chapter outlines the proof of the 
last theorem. Here g : Y -+ X is a good extraction as constructed for the 
cases (22.3.a,b',b",c). The flow chart ignores the possibility that at some step 
we ended up in case (22.8.2), when the flip is known to exist. 

22.10 Theorem. Index two flips exists. 

Proof. As we remarked earlier, we may assume that all the assumptions of 
(22.1) are satisfied and we need to consider only the cases (22.3.a,b',b",c). 

We reduce the existence of the required flip to that of the exceptional cases 
when either À or 8 is zero, for which the result is known. 

Let g : Y -t X be the good extraction according to cases (22.3.a-c). (If 
a good extraction does not exist then the flip exists by (22.8).) We have 
p(Y/Z) = 2. There are two extremal rays, and R 1 corresponds to g. The 
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contraction of R2 is small. We consider the first flip accordingly. In the 
following we identify L and S with their birational transforms on Y and 
D = SnE. 

Assume f is of case (22.3.a). On Y the locus of R2 is C, the proper 
trasform of C in X. E · R2 > 0 and S · R2 < O. The first flip exists by (20.7). 
If P = D n Lis not on C, K + S + B + E is lt in a neighborhood of C. After 
the flip, on X1, K + S 1 + B 1 + E 1 is lt around the flipped c+ in E 1 • Let R2 

be the new flipping rayon X 1. The locus C1 of R2 is in E 1 . As in (21.8) we 
treat only the case where C1 is apart from S1 and K+ S1 + B1 + E 1 is not 
plt along C 1 . Otherwise the existence of flip is known and is followed by a 
divisorial contraction to x+, the required flip of f. When that is so, since 

there is an L' C LDiff E1 (S1 + Bi)_J not in C1 intersecting C1 at a point Q 
and D 1 at p+. This implies L' irreducible. Supp(B1) does not contain C1. If 
C1 were reducible, we contract an irreducible component of C1 and then take 
an extremal ray R of E 1 ( after contraction of a component of C 1) such that 
R · D1 > O. Notice that L' becomes ample by (22.9). The existence of such 
a ray is guaranteed by (D1)2 > O. If contR contracts a curve F then (12.3.1) 
forces 

F n D1 n L' = p+. 

By induction on p(E1 ), we may assume that contR is of fi.ber type over a curve 
after all because C1 n D1 = 0. By (12.3.1) DiffE1 (S1 + B1) has only p+ = 
L' n D 1 as non-plt point on L' which contradicts our starting assumption. So 
C1 is irreducible. This technique is used later. We are again in Case (22.3.a) 
with smaller À. If P E C, we have R2 · E > 0, R2 · B > 0 and R2 • S < O. 
The flip in C exists by (20.7). c+ C E 1 n Supp(B1). As before we consider 
only the case where the locus C1 of the new flipping curve R2 is away from 
S1 and (K +81 +B1 +E1)IE1 has LCS along C1. It implies the flipped c+ is 
irreducible and c+ n D 1 = p+, which is the only point where B1 passes D 1. 
So 

S1 · (Supp(B1 IEi) - c+) = o. 
It means Supp(B1IE1)-C+ is in C1. In fact they are equal, for otherwise we 
contract Supp(B1IE1) - c+ in C1, c+ becomes ample by (22.9). We use the 
same method as we did in the first part by looking at contractions on E 1 to 
get a contradiction. If K + S1 + B1 + E 1 is lt along C1 we go to case (22.3.c). 
Otherwise C1 has to be irreducible and we have case (22.3.b'). 

Let f be of case (22.3.b'). Let C be the locus of R2 • If C = D = Sn E. 
The flip in C exists and S and E are separated. It is followed by a divisorial 
contraction of E+. We are clone. Otherwise C n S = 0. We treat only the 
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case when K + S + B + E has LCS along C. Then there is an irreducible L' 
as a fiber of gin E, L' n D = P and L' n C1 = Q. Pis the only point where 
B intersects D. That is to say 

S · (Supp(BIE) - L') = O. 

It implies Supp(BIE)-L' is in C. If we contract Supp(BIE)-L', L' becomes 
ample. As before 

Supp(BIE) - L' = C. 

If K +S+B+E is lt along C we are in case (22.3.c). Otherwise C is irreducible 
and we are in case (22.3.b') with smaller 8. 

fis in case (22.3.b"). The locus of R2 is C. E · R2 > 0 and S-R2 < O. The 
flip to X 1 in C exists by (20.7). By the proof of (22.8) we may consider only 
the case when D 1 = S1 n E 1 is irreducible. The locus C1 of the new flipping 
ray R2 is away from S1. We treat only the case when K + S1 + B1 + E 1 is 
not lt along C1. There is an irreducible L' C LDiffe1 (S1 + B1).J such that 
L' n D 1 = P and L' n C1 = Q. Indeed L' = c+. P is the only point where 
B 1 intersects D1. We check as before that 

If K + S1 + B1 + E1 is lt along C1 we are in case (22.3.c). Otherwise C1 is 
irreducible and we are in case (22.3.b'). 

If fis of case (22.3.c). The locus C of R 2 may not be connected. D = EnS 
is irreducible. P = L n D. If C has components passing through Pi ,P2 on D, 
K + S + B + E is lt in neighborhoods of those components. Hence the flips in 
these curves exist. After the flips on X1 we may assume p+ = L1 n D 1 is the 
only point on D1 where B1 intersects D1. We consider only the case when the 
locus C 1 of the new flipping ray R2 is away from S 1 and K + S 1 + B 1 + E 1 is not 
lt along C1. Then there is an L' C LDiffe1 (S1 +B1).J such that L' nD1 = p+ 
and L' n C1 = Q, the non-lt point on C1. As before, we can check that 

K + S1 + B1 + E 1 is klt at some point of C1. We are in the case (22.3.c) with 
smaller 8. 

This is the end of the induction. □ 

The flowchart ignores easy flips and (22.8.2) outcome of the procedure. 
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THE FLOW CHART 

1 f : X ----+ Z is of case (a), (b) or ( c) j 

1 Good contraction exists 1 ----+ JJ, 
~, g_:_Y_----+_X_i_s -g-oo-d~, 

1 First flip exists 1 ----+ JJ, 

1 Done 1 +- 1 Yes 1 +- 1 Is R · S > 0 or K + S + E + B lt? 1 

l 

!Nol 
JJ, 

1 Four cases: (a), (b'), (b"), (c) 1 

JJ, 

Case (a) 

1 Case (a) flip in R, À drops I or I Case (b) or (c) flip in R j 

Case (b') 

j Case ( b') flip in R, t5 drops I or I Case ( c) flip in R 1 

Case (b") 

1 Case (b") flip in R, À drops I or I Case (b') or (c) flip in R 1 

Case (c) 

1 Case ( c) flip in R, t5 drops 1 
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23. UNIRATIONALITY OF THE 

GENERAL COMPLETE INTERSECTION 

OF SMALL MULTIDEGREE 

KAPIL H. PARANJAPE and V. SRINIVAS 

lt is well-known that a quadric hypersurface with a rational point is ratio
nal. Similarly, a cubic hypersurface of dimension at least two is unirational 
once it contains a rational line; over an algebraically closed field this latter 
condition is always satisfied. These results were generalized by [Morin40], who 
showed that the general hypersurface of degree d and dimension sufficiently 
large is unirational once it contains a linear space of sufficiently large dimen
sion defined over the given field; this latter condition being always true over 
an algebraically closed field. This was further generalized by [Predonzan49] 
to include the case of complete intersections. 

The papers [Morin40,Predonzan49] are quite hard to locate and the only 
easily available account is in the book of [Roth55], where one finds a sketch 
of the proo_f for the result of Morin. Analysing this proof it is easy to recover 
a proof of the result of Predonzan. We present here a proof of these results 
and some related results. After this paper was written we came to know of a 
recent paper [Ramero90] where the bounds obtained by Predonzan have been 
improved. 

23.1 An illustrative example. We illustrate the proof in the general case by 
showing how to deduce the unirationality of a general quartic of sufficiently 
large dimension using as inductive starting point the following well known 

23.1.1 Fact. A smooth cubic hypersurface X C ]Pk of dimension at least two 
( n ~ 3) which contains a line Pf C X C lPk, is unirational over k. 

The proof is in several steps. 

{23.1.2). We choose n sufficiently large so that a general quartic hypersurface 
in lPk contains a linear subspace ~ ( this choice of dimension is dictated by 
the ambient dimension for the case of cubics), for k an algebraically closed 
field. 

S.M.F. 
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To do this consider the incidence locus 

z <--t G X IP'N 

'\, / 
G 

where G = G(IP'3, IP'n) is the Grassmanian, IP'N is the space of all quartic 
hypersurfaces in IP'n and Z consists of pairs (L, X), with L ~ !P'3 C IP'n a linear 
subspace contained in a quartic hypersurface X. Then Z is a projective 
subbundle of G x IP'n of codimension (3!4) = 35. Hence, if 

(dimG =) (n - 3)(3 + 1) 2:: 35 

then dim Z 2:: dim IP'N; sa that we can expect the map Z ---. IP'N ta be surjective. 
This is the case as shown in (23.2.3). Now in X is a point of IP'N, we can find 
a point of Z lying over it if k is algebraically closed. 

{23.1.3). Assume that we have a general pair (L,X) in Z defined over some 
field k (not neccessarily algebraically closed). The collection of all lP'4 which 
contain L ~ IP'i form a IP'~-4. The intersection lP'4 n X is the union of IP'i and 
Y C lP'4, which is a cubic hypersurface. Moreover Y n !P'3 is a cubic surface. 

Let XL ---. X be the blow up of X along L and let E be the exceptional 
divisor. We have a natural map XL ---. IP'~-4 which is a fibration by cubic 
hypersurfaces. Moreover, we have a natural diagram 

E <--t 

'\, 
]P'n-4 

k 

]P'3 X ]P'n-4 
k k 

/ 

which makes the map E ---. IP'~-4 a fibration by cubic surfaces. 
Let G' = G(IP'l, IP'%) be the Grassmannian of lines in lP'3 and let I C G' x 

IP'~-4 be the incidence locus of pairs (M, t) such that the fibre of E over t 
contains the line M. We already know that I dominates IP'~-4 so suppose 
that 
(23.1.4) 

there is a component of I that dominates IP'n-4 and is rational over k. 

Let K be the fonction field of this component and (M, t) the corresponding 
point of I. Then t is a generic point of IP'~-4 and M is contained in the fibre 
Et of E over t E IP'n-4_ Thus, M is contained in the fibre Yt of XL over 
t E ]P'n-4, making Yt a cubic hypersurface of dimension three which contains 

242 



FIJPS AND ABUNDANCE 

a line. Thus Yt is unirational over K by induction. Now in the Cartesian 
diagram 

Yt c......+ XL 
! ! 

S Kr mm-4 pec c......+ JL k 

the horizontal arrows are dominant and so the unirationality of Yt over K and 
the rationality over k of K imply that XL is unirational over k. 

In order to ensure that condition (23.1.4) holds we note that if I ---t G' is 
dominant, then the generic fibre of this map is a linear projective subspace 
of pn-4; in particular, this generic fibre is rational over k. Thus in order to 
complete the inductive argument we must choose our n in step one so that 
Z ---t Gis also dominant. This is achieved by the condition (23.2.4) below. 

23. 2 Linear spaces in Complete Intersections. Let d = ( d1, ... , dr) be an r
tuple of positive integers, and n, k be any positive integers such that one of 
the following conditions hold: 

(23.2.1) If r = 1 and d = 2 then n > 2k. 
(23.2.2) If r > 1 or there is i with d; > 2, and d; > 1 for all i, then 

23.2.3 Lemma. Let n, k, d1 , ... , dr be positive integers satisfying one of 
the conditions above. Let H; be hypersurfaces of degree d; in pn. There is a 

linear subspace pk C pn which is contained in the intersection of all the H;. 

Proof. Let V = r(lFn, ÔJP'n ( 1)) and G be the Grassmannian oflinear subspaces 
of dimension k in pn = JF(V). We have the universal short exact sequence 

O----tS----tVxG----tQ---tO 

of vector bundles on G, where Q is of rank k + l. This yields a filtration on 
Symd; (V) x G such that 

and we have a surjection 

The incidence locus 

Z = {(F1, ... , Fr, L) E (EBi=l Symd;(V)) X GIF; vanishes on L, for all i} 
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can alternatively be described as the direct sum 

We need to show that the projection 7r : Z ---+ EBi=l Symd; (V) is surjective. 
If we knew that the top Chern class of EBi=l Symd;(Q) is nonzero this would 
follow easily, but there seems to be no direct way of proving this nonvanishing 
statement. 

For each point z = (F, L) in Z we have a linear inclusion of the fibre Z L 

of Z---+ Gat L, into EBi=l Symd;(V). Thus, in order to show the surjectivity 
of d1r at z it is enough to show the surjectivity of the induced map 

Writing Ta,L = S1 ® Q L we check that the 1/Jz is the composite 

where c/>z is the map induced by the image of z under the map 

Since the product homomorphism is surjective we would have surjectivity of 
1/Jz if we knew the surjectivity of c/>z- This in turn would follow for a suitable 
choice of z if we have the stronger condition 

(23.2.4) ~(k+d·-l) dimSL=n-k2::~ d-~l 
i=l i 

Once we have the surjectivity of d1r at some z, we get that 7r is dominant. 
Since Gis complete, 1r is proper and thus we get surjectivity of 7r as required. 

Since we need the lemma only for the stronger hypothesis (23.2.4) we defer 
the proof of the general cases (23.2.1-2) to (23.6). 

23. 3 De finition. We define, by induction on the positive integers r, d1, ... , dr, 
the positive integers n( d1, ... , dr) and k( d1, ... , dr) as follows 

(23.3.1) If r = l and d1 = 1 then n(l) = 1 and k(l) = O. 
(23.3.2) If r > l, d; = 1 for some i and d' = (d1, ... ,di-1,di+i,··· ,dr), 

then we define n( d) = n( d') + 1 and k( d) = k( d') 
(23.3.3) If d; > 1 for all i, let d - 1 = (d1 - 1, ... , dr - l). We define 

k(d) = n(d - 1) and 

n(d) = k(d) + ~ (k(d) + d; - 1) 
~ d·-1 i=l i 
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Note that we obtain the inequality 

n(d) - k(d):?: t (k(d) ~-d; - 1) 
i=l d, l 

in all of the above cases, i.e. (23.2.4) is always satisfied if we take n :?: n( d) 
and k = k(d). 

23.4 Theorem. Let (X,L) be a general pair, where X= H1 n ... n Hr is 
the complete intersection of hypersurfaces H; in :rn of degree d; respectively, 
L is a linear space of dimension k contained in X which is smooth along L 
and irreducible. Then if n :?: n( d) and k = k( d), X is unirational. 

Proof. We prove this result by induction on the positive integers r, d1 , ... , dr 
and we require the following more precise statement. 

Let the notation be as in (23.1). For each z = (F, L) in Z, let H;(z) 
be the hypersurface in :rn defined by F; and Xz be the intersection of these 
hypersurfaces. Let U(n, d) be the open subset of Z consisting of points z = 
(F, L) satisfying the following conditions 

(23.4.1) Xz is irreducible and the complete intersection of the H;(z). 
(23.4.2) Xz is smooth along L. 
(23.4.3) </Jz is surjective. 

23.5 Theorem. Ifn:?: n(d) and k = k(d), then for each z E U(n,d), Xz is 
unirational. 

Since we have shown that z -t œr=l Symd, (V) is dominant, this implies 
(23.4). 

Proof. We proceed by induction on the positive integers r, d1 , ... ,dr, 
(23.5.1) r = l and d1 = 1. 
In this case Xz is a linear space and hence it is rational. 
(23.5.2) r > l and d; = l for some i. 
Let V'= V/(F;) so that H;(z) = JP>(V') C JP>(V) = :rn. Then F; E SL gives 

the i-th projection of 

</Jz: sr -t El:lj=l Symdj-l(QL). 

Since </Jz is a surjection, we have an induced surjection 

Let G' C G be the sub-Grassmannian of k-dimensional linear subspaces of 
H;(z) and Z' C EEl#;Symd•(V') x G' be the locus of pairs (F',L), where FJ 
vanish along L. Then, if we take 

F' = (Fi IH,(z), · · · , Fi-1 IH;(z), Fi+l IH,(z), · · • , Fr IH,(z)) 
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and z' = (F', L). Then z' lies in Z'. Note that dim V'= n - l ~ n(d) - 1 = 
n(d') and k = k(d) = k(d') and Xz, = Xz. Further, </Jz, = <p' is a surjection 
so that we have the result by induction in this case. 

(23.5.3) di > l for all i. 
Choose a splitting of the sequence 

Then if P = IP'( S L), the blow up IP'(V) L of IP'(V) = IP'n along L = IP'( Q L) is 
alternatively described by 

The surjection (induced by the splitting chosen above) V x P - QL x 
---------p EB Op(l) gives an inclusion IP'(V)L C IP'n x P. Further, the element Fi E 

Symd; (V) goes to the kernel of 

which is Symd;-1(QL x P EB Op(l)) 0 Op(l). Denote these images by Fi. 
The subvariety defined by the vanishi:rig of ail the Fi is the birational trans-

---------form of X in IP'(V) L; this strict transform is just the blow up XL of X along 
L. Since X is smooth along L, this is an irreducible variety and the excep
tional locus, which is its intersection with IP'(QL) x P, is also smooth. In 
particular, the generic fibre of XL --+ P is irreducible and smooth along its 
intersection with IP'(QL). Further, this fibre is a complete intersection defined 
by the simultaneous vanishing of the equations Fi which are of degree di - 1. 

Sin ce k = k ( d) = n ( d - 1), we can repeat the constructions of section 
2 with V{ = Q L and G~ the Grassmannian of h = k( d - 1) dimensional 
linear subspaces of IP'(V{) = L. Let Zf C œr=l Symd;-l (V{) X G~ denote the 
corresponding incidence locus and 

be the universal sequence on G~. 
We have a surjection </Jz : s1 - œr=l Symd;-l(V{), so that we can form 

the base change 

Then Z~' is a vector bundle over the Grassmannian G~ and a rational variety. 
Let z~ : Spec K --+ zr denote its generic point. From the lemma we deduce 
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that SpecK-+ Sf is dominant. Since the natural map Sf - {O}-+ lP'(SL) is 
surjective we see that the map Spec K -+ lP'( S L) is also dominant. Let Y be 
the pullback of XL -+ lP'( S L) to Spec K. Then Y is a complete intersection 
variety in lP'( Q L 18) K EB K) which is defined by the equations Fi, ... , Fr which 
are of degrees d1 - 1, ... , dr - l respectively. Further, if L1 E G~ (K) is the 
image of z~, then 

Further, Y is smooth along its intersection with lP'( Q L®K) hence in particular 
along L1, 

By the genericity of z~, the induced morphism 

<Pz; : s;,L1 -+ EBi=l Symd;-l ( Q1,L1) 

is surjective. But now, if G1 is the Grassmannian of h-dimensional subspaces 
of lP'(V{ ® K EB K) and Z1 C EBi=l Symd;-l(V{ ® K EB K) X G1 is as before, let 
z1 = (F,L1) E Z1. Then the map for z1 is 

<Pz1 : s;,L1 EB J(-+ EBi=l Symd;-1(Q1,L1) 

which restricts to <Pz' and hence is also surjective. 
1 

By the induction hypothesis, Y= Xz 1 is unirational over the field K. But 
K is the fonction field of a rational variety and since Spec K -+ lP'( S L) is 
dominant Y-+ Xis dominant. Thus Xis unirational. D 

23.6 Proof of (23.2.3). The result is trivial in the case (23.2.1), so we only 
need to show the surjectivity of '!Pz for a suitable choice of z in the case 
(23.2.2). Since the map F 1 (Symd;(V) x G) - S ® Symd;- 1 (Q) is surjective 
this follows from the following proposition; taking Q to be Q L and U to be 
Sf, the map ip can be thought of as an element of S L ® EBi=l Sym di - 1 ( Q L) 
which can be lifted to a point z E Z, hence 1Pz = 'lj;. 

23.6.1 Proposition. Let n, k and d = (d1 , ... ,dr) be chosen satisfying 
(23.2.2). Let Q be a vector space of dimension k + l. For any space U of 
dimension n - k and there exists a map 'ljJ: U-+ E9i=l Symd;-l(Q) such that 
the induced map 

is surjective. 

Proof. Sin ce the product homomorphism 1r : Sym d; -l ( Q) ® Q -+ Sym d; ( Q) is 
surjective, we may assume that u = n - k < dimE9i=l Symd•- 1 (Q). Let X be 
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the Grassmannian of (n-k)-dimensional linear subspaces of EB[= 1 Symd;- 1 (Q) 
and U C EB[= 1 Symd;- 1 (Q) 0 Ox be the universal subbundle. The composite 
homomorphism 

U ® Q - EBi=l Symd;- 1 (Q) 0 Q ® Ox - EBi=l Symd;(Q) 0 Ox 

is not surjective at some point of X if and only if there is a one dimensional 
quotient of EB[= 1 Symd; ( Q) where the image of the composite goes to zero. 

Let Y= lP(EBi=l Symd;(Q)); we have a surjection 

EBi=l Symd;(Q) 0 Oy - Oy(l) 

and thus a composite homomorphism 

U ® Q ® Oy - EBi=l Symd;-1 (Q) 0 Q ® OxxY - Ox ® Oy(l) 

This composite is zero at all the "bad" pairs ( x, y) E X x Y. 
Let F be the cokernel of the natural homomorphism on Y 

Q ® Oy - (EBi=l Symd;-1 (Q))* 0 Oy(l) 

The locus of "bad" pairs, Z C X x Y is then the Grassmanian of rank u 
quotients of F. We need to show that Z - Xis not surjective. 

Let Y = Il Ym be the flattening stratification for F. We have an exact 
sequence of vector bundles on Y m 

O- Em - Q ® Oym - (E9i=l Symd;-l(Q))* ® Oym(l) - F IYm- Ü 

where Em has rank m. Thus for all y E Ym, the one dimensional quotient of 
E9[=1 Symd;(Q) is zero on (Em)y · E9[=1 Symd;-1 (Q). Thus it is induced from 
a one dimensional quotient of E9[=1 Symd;(Q/(Em)y)-

Let Am be the Grassmanian of m-dimensional subspaces of Q and let 
Em <---t Q ® 0 Am be the universal subbundle. Let Bm be the projective bun
dle lP Am ( EBi=l Symd; ( Q ® 0 Am/ Em) ). We have a natural morphism Bm - Y 
whose image contains Y m as seen ab ove. Thus, we can bound the dimension 
of Ym and thus also Z IYm· 

dimZ IYm:::; dimBm + u(dimF IYm -u) 

Comparing with dimX = u(dimE9[= 1 Symd;(Q)- u) we see that we would be 
clone if 

Since the conditions of the proposition give us 

(*o) dimEBi=l Symd;(Q):::; u · dimQ 

we have to show that (*m) implies (*m+i)- But then, replacing Q by Q/Em 
we need only show that ( *o) implies ( *i). This is easily checked by calcula
tion. □ 
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