@incollection{AST_1992__210__197_0, author = {Hislop, Peter D.}, title = {Singular perturbations of {Dirichlet} and {Neumann} domains and resonances for obstacle scattering}, booktitle = {M\'ethodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991)}, series = {Ast\'erisque}, pages = {197--216}, publisher = {Soci\'et\'e math\'ematique de France}, number = {210}, year = {1992}, language = {en}, url = {http://www.numdam.org/item/AST_1992__210__197_0/} }
TY - CHAP AU - Hislop, Peter D. TI - Singular perturbations of Dirichlet and Neumann domains and resonances for obstacle scattering BT - Méthodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991) AU - Collectif T3 - Astérisque PY - 1992 SP - 197 EP - 216 IS - 210 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_1992__210__197_0/ LA - en ID - AST_1992__210__197_0 ER -
%0 Book Section %A Hislop, Peter D. %T Singular perturbations of Dirichlet and Neumann domains and resonances for obstacle scattering %B Méthodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991) %A Collectif %S Astérisque %D 1992 %P 197-216 %N 210 %I Société mathématique de France %U http://www.numdam.org/item/AST_1992__210__197_0/ %G en %F AST_1992__210__197_0
Hislop, Peter D. Singular perturbations of Dirichlet and Neumann domains and resonances for obstacle scattering, dans Méthodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991), Astérisque, no. 210 (1992), pp. 197-216. http://www.numdam.org/item/AST_1992__210__197_0/
[1] Lectures on Exponential Decay of Solutions of Second Order Elliptic Equations. Princeton, N.J. : Princeton University Press (1982).
,[2] Eigenvalue Problems for Nonsmoothly Perturbed Domains. J. Diff. Eqns. 91 (1991) 24-52.
, , ,[3] On the singularities of analytic continuations and resonance properties of a solution of the scattering problem for the Helmholtz equation. Zh. Vyohisl. Mat. i Mat. Fiz. 12 (1972) 112-138.
,[4] Scattering frequencies of resonators. Comm. Pure and Applied Math. 26 (1973) 549-563.
,[5] Spectral Stability under Tunnelling. Commun. Math. Phys. 126 (1989) 133-156.
, , ,[6]
, , , in preparation.[7] Stark Ladder Resonances for Small Electric Fields. Commun. Math. Phys. 140 (1991) 291-320.
, ,[8] Spectral Resonances for the Laplace-Beltrami Operator. Ann. Inst. H. Poincaré 48 (1988) 103-129.
, ,[9] Asymptotique des poles de la matrice de scattering pour deux obstacles strictement convexes. Bull. S.M.F. 116 n° 31 (1989).
,[10] The Essential Spectrum of Neumann Laplacians on some Bounded Singular Domains, preprint 1991.
, , ,[11] The Lax-Phillips Conjecture for a Class of Helmholtz Resonators, in preparation.
,[12] Scattering Resonances of a Helmholtz Resonator. Indiana U. Math. J. 40 (1991) 767-788.
, ,[13] On the poles of the scattering matrix for two strictly convex obstacles. J. Math. Kyoto Univ. 23 (1983) 127-194.
,[14] Trapping Obstacles with a sequence of poles of the scattering matrix converging to the real axis. Osaka J. Math. 22 (1985) 657-689.
,[15] The Neumann Problem on Lipschitz Domains. Bull. Amer. Math. Soc. 4 (1981) 203-207.
, ,[16] The Singularly Perturbed Domain and the Characterization for Eigenfunctions with Neumann Boundary Conditions. J. Diff. Eqns. 77 (1989) 322-350.
,[17] private communication.
,[18] Scattering Theory. New York : Academic Press (1967).
and ,[19] Decay of Solutions of the Wave Equation outside Nontrapping Obstacles. Commun. Pure and Applied Math. 30 (1977) 447-508.
, , ,[20] Trapped Rays in Spherically Symmetric Media and Poles of the Scattering Matrix. Commun. Pure and Applied Math. 24 (1971) 571-582.
,[21] An Estimate of the Gap of the First two Eigenvalues in the Schrödinger Operator. Ann. Scuola Norm. Sup. Pisa 12 (1985) 319-333.
, , , ,