Singular perturbations of Dirichlet and Neumann domains and resonances for obstacle scattering
Méthodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991), Astérisque, no. 210 (1992), pp. 197-216.
@incollection{AST_1992__210__197_0,
     author = {Hislop, Peter D.},
     title = {Singular perturbations of {Dirichlet} and {Neumann} domains and resonances for obstacle scattering},
     booktitle = {M\'ethodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991)},
     series = {Ast\'erisque},
     pages = {197--216},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {210},
     year = {1992},
     language = {en},
     url = {http://www.numdam.org/item/AST_1992__210__197_0/}
}
TY  - CHAP
AU  - Hislop, Peter D.
TI  - Singular perturbations of Dirichlet and Neumann domains and resonances for obstacle scattering
BT  - Méthodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991)
AU  - Collectif
T3  - Astérisque
PY  - 1992
SP  - 197
EP  - 216
IS  - 210
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_1992__210__197_0/
LA  - en
ID  - AST_1992__210__197_0
ER  - 
%0 Book Section
%A Hislop, Peter D.
%T Singular perturbations of Dirichlet and Neumann domains and resonances for obstacle scattering
%B Méthodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991)
%A Collectif
%S Astérisque
%D 1992
%P 197-216
%N 210
%I Société mathématique de France
%U http://www.numdam.org/item/AST_1992__210__197_0/
%G en
%F AST_1992__210__197_0
Hislop, Peter D. Singular perturbations of Dirichlet and Neumann domains and resonances for obstacle scattering, dans Méthodes semi-classiques Volume 2 - Colloque international (Nantes, juin 1991), Astérisque, no. 210 (1992), pp. 197-216. http://www.numdam.org/item/AST_1992__210__197_0/

[1] S. Agmon, Lectures on Exponential Decay of Solutions of Second Order Elliptic Equations. Princeton, N.J. : Princeton University Press (1982).

[2] J. M. Arrieta, J. K. Hale, Q. Han, Eigenvalue Problems for Nonsmoothly Perturbed Domains. J. Diff. Eqns. 91 (1991) 24-52.

[3] A. A. Arsen'Ev, On the singularities of analytic continuations and resonance properties of a solution of the scattering problem for the Helmholtz equation. Zh. Vyohisl. Mat. i Mat. Fiz. 12 (1972) 112-138.

[4] J. T. Beale, Scattering frequencies of resonators. Comm. Pure and Applied Math. 26 (1973) 549-563.

[5] Ph. Briet, J.-M. Combes, P. Duclos, Spectral Stability under Tunnelling. Commun. Math. Phys. 126 (1989) 133-156.

[6] R. M. Brown, P. D. Hislop, A. Martinez, in preparation.

[7] J.-M. Combes, P. D. Hislop, Stark Ladder Resonances for Small Electric Fields. Commun. Math. Phys. 140 (1991) 291-320.

[8] S. De Bièvre, P. D. Hislop, Spectral Resonances for the Laplace-Beltrami Operator. Ann. Inst. H. Poincaré 48 (1988) 103-129.

[9] C. Gérard, Asymptotique des poles de la matrice de scattering pour deux obstacles strictement convexes. Bull. S.M.F. 116 n° 31 (1989).

[10] R. Hempel, L. Seco, B. Simon, The Essential Spectrum of Neumann Laplacians on some Bounded Singular Domains, preprint 1991.

[11] P. D. Hislop, The Lax-Phillips Conjecture for a Class of Helmholtz Resonators, in preparation.

[12] P. D. Hislop, A. Martinez, Scattering Resonances of a Helmholtz Resonator. Indiana U. Math. J. 40 (1991) 767-788.

[13] M. Ikawa, On the poles of the scattering matrix for two strictly convex obstacles. J. Math. Kyoto Univ. 23 (1983) 127-194.

[14] M. Ikawa, Trapping Obstacles with a sequence of poles of the scattering matrix converging to the real axis. Osaka J. Math. 22 (1985) 657-689.

[15] D. S. Jerison, C. E. Kenig, The Neumann Problem on Lipschitz Domains. Bull. Amer. Math. Soc. 4 (1981) 203-207.

[16] S. Jimbo, The Singularly Perturbed Domain and the Characterization for Eigenfunctions with Neumann Boundary Conditions. J. Diff. Eqns. 77 (1989) 322-350.

[17] R. Lavine, private communication.

[18] P. Lax and R. Phillips, Scattering Theory. New York : Academic Press (1967).

[19] C. Morawetz, J. V. Ralston, W. A. Strauss, Decay of Solutions of the Wave Equation outside Nontrapping Obstacles. Commun. Pure and Applied Math. 30 (1977) 447-508.

[20] J. V. Ralston, Trapped Rays in Spherically Symmetric Media and Poles of the Scattering Matrix. Commun. Pure and Applied Math. 24 (1971) 571-582.

[21] I. M. Singer, B. Wong, S. T. Yau, S. S. T. Yau, An Estimate of the Gap of the First two Eigenvalues in the Schrödinger Operator. Ann. Scuola Norm. Sup. Pisa 12 (1985) 319-333.