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Introduction 

There are a number of natural ways to look at the goals and results of 
this monograph. The first can be stated broadly as the problem of relating 
the geometr y of a  se t E i n R n t o th e analysi s o f functions an d linea r 
operators on E. A  specific question of this type that we shall be concerned 
with her e i s the following . Le t E b e a  subset o f Rn tha t ha s Hausdorf f 
dimension of, 0 < d < n. W e equip E with d-dimensional Hausdorff measure 
restricted t o it , an d w e assume that thi s measure i s locally finite.  Unde r 
what condition s on E i s it tru e that plent y of singular integra l operators 
are bounded on L2(E)t Example s of the sort of singular integral operators 
that we have in mind are the Cauchy integral when d = 1 and n = 2 and 
the double-layer potential when d = n — 1. 

It i s known from th e work of Coifman, Mcintosh, and Meye r [CMM ] 
that thi s i s tru e whe n E i s a  Lipschit z graph. Ther e are severa l more 
general condition s o n E whic h are know n to b e sufficien t t o ensure th e 
boundedness o f lots of singular integra l operators, but ther e has no t been 
much progress on finding necessary conditions . Ou r main result provide s 
geometrical characterizations o f the sets E for which a fairly larg e class of 
singular integra l operators ar e bounded on L2(E), a t leas t i f we make an 
auxiliary technical assumption o n E (Ahlfor s regularity) . Se e Section 1 for 
the precise statement. Unfortunatel y we do not know at thi s time how to 
work with smaller classes of operators; for example, when d = 1 and n = 2 
we would like to use only the boundedness o f the Cauchy integral. 

The geometrica l conditions that aris e in the aforementioned theorem 
can be thought o f as quantitative analogue s of the classica l notion of rec-
tifiability. Recal l tha t E i s said t o be rectifiable if it i s contained i n th e 
union of a countable family o f Lipschitz images of Rd, except for a set of 
d-dimensional Hausdorff measure zero . Rectifiabilit y i s a qualitative con-
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dition, an d i t i s not stron g enoug h to imply the boundednes s o f singular 
integral operators . Usin g real-variable methods a s i n [Dl , 3] it ca n b e 
shown that various quantitative versions of rectifiability are strong enough 
to impl y the boundedness o f plenty of singular integral operators, and our 
theorem provides a converse to this. 

There is a great deal of information available about rectifiable sets. See 
[Fe], [Fl], an d [Ma], fo r instance. No t so much seems to be known about 
quantitative analogues of rectifiability. I n particular ther e are many char-
acterizations of rectifiability, and these give rise to many candidates for the 
notion of quantitative rectifiability , but th e complete relationship between 
these variou s candidates i s not a t al l clear . Ou r theore m provides some 
nontrivial equivalence s between some of these conditions . Althoug h this 
is a purely geometrical issue, i t turns out tha t singula r integra l operators 
provide a useful too l for passing between some of these conditions. 

Our main result also gives a higher-dimensional version of Peter Jones' 
travelling salesman theore m ([J3]) . Tha t is , we give two other conditions 
on E tha t ar e equivalent to the others , an d which are roughly as follows . 
One o f these condition s says that E i s contained i n a  se t tha t admit s a 
nice parameterization b y Rd. Th e other conditio n is a bound o n certain 
quantities tha t measur e th e exten t t o which E ca n b e approximate d by 
d-planes. Again, Section 1 should be consulted for the precise statement . 

Although there ar e several ways of looking at wha t we are doing and 
what i t means , there i s an underlying common theme. T o a large degree 
we ar e tryin g to produce methods for analyzing the geometr y of sets, i n 
much the same way that more traditional harmonic analysis (as in [St]) i s 
concerned with the analysis of functions an d operators. Som e of the ideas 
of harmonic analysis make sense in this context, but mostl y the techniques 
don't work so well, because of the absence of a linear structure. Th e meth-
ods that have grown out of Carleson's corona construction seem to be more 
cooperative in this geometrical setting. 

In connectio n with the analog y with traditional harmoni c analysis it 
is interesting t o look a t th e theore m in Section 1 from th e perspectiv e o f 
Littlewood-Paley theory . I n some sense this theorem gives a  Littlewood -
Paley characterization of a class of good sets that is analogous to well-known 
results fo r Sobole v spaces . I t turn s ou t tha t thi s analog y is somewhat 
misleading, in that there are some other results in our geometrical context 
that do not have a natural counterpart fo r Sobolev spaces. Suc h a result is 
discussed just before Lemma 5.13, but it s details will appear elsewhere. 
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INTRODUCTION 

The precis e statement s o f our mai n result s ar e give n i n Sectio n 1 , 
along with some background informatio n an d organizationa l details . I t is 
perhaps worth mentioning now that there is a discussion o f open problems 
in Section 21. I n that section there is also some limited description of other 
work in this general area. Mor e information of that nature can be found in 
[D5]. 

The author s would like to than k R.R . Coifman an d P.W . Jones for 
many helpful discussions . Portion s of this work were completed while the 
second author was visiting the first author at th e Ecole Polytechnique and 
UCLA. 

The secon d author is partially supported b y the U.S . Nationa l Science 
Foundation an d the Alfre d P . Sloan Foundation . 

3 





Table of Contents 

Page 

.Introduction 1 

.Table of contents 5 

1. Statement of the main results 7 

2. Dyadic cubes and the corona decomposition 17 

3.Fram(Cl)to(C2) 21 

4. (C2) implies a local symmetry condition 23 

5. The local symmetry condition (LS) implies the weak geometric lemma ...27 

6. Approximation of E in measure 33 

7. Building the stopping-time regions.and some of their properties 37 

8. The construction of the approximating Upschitz graph 43 

9. Pushing the square function estimates from E to the graph of A 51 

10. Controlling a square function of A in terms of J (S. ) 57 

11. The end of the proof that (C2) implies (C4) 73 

12. The proof that (C3) implies (C4): preliminary discussion 81 

13. Pushing estimates on fi i{x, t) from E down to the approximating 

Lipschitzgaph 83 

14. The end of the proof that (C3) implies (C4) 91 

15. (C4) implies (C3) 93 

16. The main step in the proof that (C4) implies (C5) 101 

17. An extension theorem 107 

18. The proof that (C4) implies (C7) I l l 

19.Avariantof(C2)and(C3) 125 

20. A counterexample 135 

21. Some open problems 139 

.BfoBogaphy 143 

.Abstract fin French) 145 

5 





1. Statement of the main results 

Let £  b e a  subse t o f Rn wit h Hausdorff dimensio n d , 0  <  d < n. 
Unless explicitly state d otherwise , d wil l alway s be a n integer . Assum e 
that d-dimensiona l Hausdorf f measure Hd is locally finite when restricted 
to E. Conside r singular integral operators on E of the form 

(1.1) Tf(x) = p.v. 
E 

K{x - y) f(y) dy, 

where dy denotes Hd |E, and where K(x) i s smooth on Rn \ { 0 } , odd , and 
satisfies 

(1.2) I V>K{x) \< C(j) I  x \-d~>, j = 0,1,2,... 

We would like to know what conditions on E ar e needed in order for (1.1) 
to define a bounded operator on L2(J5), say. 

For technica l reason s i t i s better no t t o loo k fo r an L2 estimate for 
(1.1) but rathe r an estimate like 

(1.3) S U D 
€>0 

E 
D 

En{\x-y\>€] 

K(x-y)f(y)dy I2 dx<C{K) 
E 

I / I 2 dx, 

for al l / 6  L2(E). Thi s formulation avoids the problem of the existence of 
a principal value. 

An important exampl e of such a function K(x) i s the Cauch y kernel, 
i.e., K(x) = l 

xi+ix2 for x e R2, d = 1 , n = 2. This case is of course relevant 
for comple x analysis; for instance, th e L boundednes s fo r the associate d 
operator is closely related to the analytic capacity of E and its subsets. (See 
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[G2], [Mu] , [CI , 2]. ) A  higher-dimensional analogue of the Cauchy kernel 
is K(x) = X 

IxIn d = n — 1. One way that this kernel arises is in connection 
with the double-layer potential, which can be expressed in terms of K(x). 

It i s easy to see that a n operator a s in (#.1 ) i s bounded o n L2(E) if 
E i s a  smooth submanifold (e.g. , C1,Qf , a >  0 ) which is nice at oo , or a 
subset o f such a submanifold. Thi s is also true if E i s a  Lipschitz graph 
over some d-plane, but i t is much harder t o prove. Fo r the Cauchy kernel, 
this is a theorem of Coifman, Mcintosh, and Meyer [CMM] , improvin g an 
earlier resul t o f Calderón (which covere d th e cas e of graphs o f Lipschitz 
functions wit h small norm). Th e case of general kernels was derived from 
this result i n [CDM] , a t leas t when d = 1 , n = 2. The higher-dimensional 
case can easily be obtained from this using the method of rotation, just like 
the argument i n Section 13 of [CMM] . 

The fact that Lipschitz graphs are O.K. for these operators shows that 
the smoothness o f E i s not the issue, but i t is not obvious how wild E can 
be. Th e following two results help to clarify th e situation . 

The first says that if d — 1, E is a curve, and, say, n = 2 and K i s the 
Cauchy kernel, then T is bounded on L2{E) if and only if there is a C > 0 
such that 

(1.4) H\EnB(x,R)) < CR 

for al l x € R2 , R >  0 , where B(x,R) denote s the bal l with center x an d 
radius R. Suc h curves are often called regular curves. Thi s was proved in 
[Dl] . 

The secon d result goe s as follows . Le t G be the Canto r se t i n [0,1] 
obtained from th e usual construction, excep t that you remove the middle 
half of the interval at each stage. The n E = G x G satisfies (1.4) , and also 

H^EOBix.R)<C-lR 

for al l x € E, 0  < R < 1, but th e Cauchy integral operator is not bounded 
on L2(E). Thi s follows from [Gl] , se e also [G2] , [D2] , [Jl] , and [Ma3] . 

These two results suggest that rectifiability plays a role here. T o make 
this precis e i t i s helpfu l t o recal l a  coupl e of definitions an d fact s fro m 
geometric measure theory. 

Let A be a subset of Rn with HausdorfF dimension d. W e say that A 
is (countably) rectifiable if there is a countable family fj o f Lipschitz maps 
of Rd into Rn such that 

Hd(A\ ( 3 
/>(Rd)J) =  0, 
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so that A is almost covered by the union of the images of the f^s. I t turns 
out that this is equivalent to requiring that A be almost covered by a count-
able family of ^-dimensional Lipschitz graphs, or even C1 submanifolds. A 
is said t o be unrectifiable i f Hd(A fl B) — 0 for al l rectifiable sets B. A 
basic fact i s that any set A with Hd(A) <  o o can be written as the unio n 
of a rectifiable set and an unrectifiable one. 

For example, any subset of a curve of finite length is rectifiable, but i t 
can be shown that G X G is unrectifiable (wit h d = 1 in both cases). 

References for these topics include [Ma], [Fl], and [Fe]. 
You might hope that i f E i s rectifiable, and i f you have some control 

on Hd \E (lik e (1.4) , whe n d — 1), then singula r integral s hav e t o b e 
bounded on L2(E). Thi s is not true, but for a good reason; rectifiability is a 
qualitative condition, while estimates on singular integrals are quantitative. 
It i s not hard to build sets that are rectifiable, but whic h have pieces that 
approximate unrectifiable set s (like G X  G) on which singular integral s do 
not define bounded operators, in such a way that singular integral operators 
are not bounded on the set you've constructed. 

Thus we need to look for quantitative notion s of rectifiability. W e give 
an example of such a notion after th e following definition. 

DEFINITION. A  set E C  Rn is regular (with dimension d) if it is closed and 
if 

(1.5) 
1 
C 

Rd < Hd(E fi B(x, R)) < CRd 

for all x G  E, R > 0, where C does not depend on x, R. 

We shal l assume throughout th e res t of this paper tha t E i s regular , 
and we shall often write |A | for Hd(A) when ACE. 

It i s not hard to show that if singular integrals like (1) define bounded 
operators on L2(E), the n the right hand inequality in (1.5) must hold. (See 
[D5], [SI].) Th e left han d inequality should be thought o f as a nondegen-
eracy condition. Not e that it is translation and dilation invariant. 

Notice also that i f E i s closed and i f there i s a measure o supporte d 
on E fo r which the analogu e of (1.5) holds , then o must be equivalent in 
size to Hd \E, and E must be regular. Thu s we lose nothing by restricting 
ourselves to Hausdorff measure here . 

DEFINITION. E has BPLG (big pieces of Lipschitz graphs) if it is regular 
and if there exist C, e >  0  so that for every x € E, R > 0  there is a 
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d-dimensional Lipschitz graph T with constant < C such that 

(1.6) Hd(Ef]B(x,R)f]T)>eRd. 

When we say that T is a d-dimensional Lipschit z graph with constant 
< C we mean tha t ther e i s a d-plane P , a n (r a — d)-plane P1- orthogonal 
to P , an d a  Lipschit z function A :  P — • P^ wit h norm <  C such that 
T = {p + A(p):p€P}. 

I his conditio n is a good example 01 what w e mean b y a quantitativ e 
version o f rectifiability . I t i s no t har d t o se e that E i s rectifiabl e i f i t 
has BPLG , bu t th e convers e is not true ; rectifiabilit y only allows you to 
conclude (1.6) wit h an e  that depends on x, R. 

Notice that i f you fix C, e and loo k at th e clas s of sets having BPL G 
with constants C, e, and which also satisfy (1.5 ) with this same C, then this 
class is invariant unde r translations, rotations , an d dilations, and i t is also 
closed in the Hausdorff topology on closed subsets on Rn. (I n this topology 
Ej —» E i f for every e, R >  0  and al l j sufficientl y large we have that each 
point i n Ej f l 2?(0, R) i s within e of an element o f E, an d vice-versa. ) We 
do no t kno w whether i t i s true that an y class of rectifiable subsets of Rn 
with these same invariance and closur e properties ha s t o be contained i n 
the class of sets that have BPLG . 

It follow s from [Dl , 3] that i f the regula r se t E ha s BPLG , the n the 
estimate (1.3 ) hold s for all K a s before. We do not know if the converse is 
true. However , there are some other "quantitativ e rectifiability " conditions 
similar t o (an d a  prior i weake r than) BPL G whic h also imply (1.3) , an d 
for whic h we are able to obtain a converse. We also obtain other analytica l 
and geometrical characterizations o f these sets. 
THEOREM. Let E C  Rn be a regular d-dimensional set in Rn. The follow-
ing conditions (C1)-(C7) ar e equivalent. 

(CI) If K(x) is any smooth odd function on Rn \ {0 } that satisfies (1.2) , 
then (1.3) holds. 

Using a  standar d fac t fro m Calderon-Zygmun d theory (Cotlar' s in-
equality — see [JL] ) we have that (1.3 ) i s equivalent to 

(1.7) 
E 

sup 
€>0 En{\x-y\>e\] 

K(x-y)f(y)dyI2 dx<C(K 

E 
l/l2 

for al l / G  L2(E). [T o be honest w e should admit that in order to apply the 
techniques o f Calderón-Zygmund theory we should first observe that E is a 
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space of homogeneous type, in the sense of [CW], when E is equipped with 
the measure Hd \E and the Euclidean distance.] Calderon-Zygmun d theory 
also implies that these L2 estimates ar e equivalent to their Lp counterparts, 
1 < p < oo, etc. (Se e [JL] again. ) 

(C2) For each smooth odd function i\) on Rn with compact support we 

have that 

(1.8) 
OO 

k— — oo 
E 

wk(x-y)dy dxd62k(t) 

is a Carleson measure on E X  R+. 

Here ipk(x) = 2~kdif>(2~kx) an d dS3(t) denote s th e Dira c mass at s in 
t. A  Carleson measure on E x R+ is a measure ¡1 for which there is a C > 0 
such that for every x 6  E an d R > 0 we have 

R 

0 B(x,R) 
dfi < CRd. 

Thus Carleso n measures are measures on E X  R+ that behav e as thoug h 
they are d-dimensional nea r E x  {0 } =  E. 

This conditio n i s quite natural despite it s technica l appearance . Be -
cause i\> i s odd, fE i/>k(x — y)dy i s zero if E i s a cf-plane; thus this quantit y 
measures in some way how close E i s to being a d-plane . 

One can think of (C2) as a geometrical analogue of classical character-
izations o f various function space s in terms of the siz e of expressions like 
I Jr< wk ~ y)f(y)dy | . Thi s geometric Littlewood-Paley point o f view is 
discussed somewha t mor e thoroughly in fDSll . 

(C3)ß1(x,tf dxdt 
t 

is a Carleson measure on E X R+. 

For x G  E, t > 0 we define ßi(x,t) b y 

Bl(x,t)= 

P 
inf 1 

td EnB(xit) 

dist(y,P) 
t 

dy, 

where the infimum is taken over all cf-planes P. Thu s /3i(#, t) measures how 
well E ca n be approximated b y a d-plane . 
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Peter Jones was the first person (to our knowledge) to look at this kind 
of condition . Actually , he worked with an L°° version, i.e., with /?oo(x,£) , 
where 

(1.9) Bq(x,t)= inf 
p 

1 
td EnB(x,t) 

distfy,^ 
t 

9 
dy 

i r 

In [Jl ] he showed how to use the fac t tha t Lipschit z graphs satisf y (C3) 
(with fl^x^t)) t o give a  new approach t o the estimates fo r Cauchy inte-
grals on Lipschitz graphs. H e later found a  characterization o f subsets o f 
rectifiable curve s in terms o f a (related) quadrati c conditio n on the fl^s. 
In particular h e showed that subsets of regular curves can be characterized 
by a quadratic Carleso n measure conditio n on the /?oo's . Ou r results give 
analogues of this characterization for d > 1. 

If we replace /?i by BQ in (C3), then we still get an equivalent condition 
as lon g as q < 2d 

d-2 ( o < o o i f d = l ) . However , Jone s and Fan g have 
produced d-dimensiona l Lipschit z graphs s o that (Od j does no t hol d tor 
Poo-

There is a classical counterpart o f (C3) for functions just as there was 
for (C2) . Give n a function /  o n Rd, set 

(1.10) 7 « 0 M ) = inf 
a 

1 
td B(z,t) 

l / ( V ) - « ( t f ) r 
t 

dy 
9 

where now the infimum is over all affine functions. Notic e that for Lipschitz 
functions the 7's for / are essentially equivalent to the /3's for the graph of 
f 

The 7's can be used t o characterize smoothness propertie s of /, e.g., 
whether /  lie s i n a  particula r Sobole v space . (Se e [Do], for instance. ) 
This is closely related to the corresponding results using second differences 
instead (se e [St]), which are perhaps more familiar. I n Section 19 we shall 
give a  condition (C8) that i s a geometrical version of a second-difference 
condition for functions, and we shall show that it is equivalent to the others. 

(C4) E admits a corona decomposition. 

The precis e explanation o f this condition is complicated and wil l be 
postponed until the next section. Roughl y speaking it means that you can 
decompose E X R+ into two pieces, the good and the bad parts, with the 
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following properties . Th e bad par t i s not to o big, in that i t i s controllec 
by a  Carleso n measure . Th e good part ca n b e subdivided int o stoppin g 
time regions on each of which E is well-approximated by a Lipschitz graph 
There aren' t to o man y o f these regions , i n tha t the y satisf y a  Carleso i 
measure packing condition . 

This condition plays a  central role for us, actin g a s a  bridge betweei 
(C1)-(C3) an d (C5)-(C7) . Althoug h it is awkward to state, it carries a  loi 
of useful information , an d i s not s o hard to work with. 

(C5) E has very big pieces of bilipschitz images ofKd inside R n\ 
n* = max(n,  2d + 1). 

This means that fo r every e > 0 there is an M > 0 so that fo r eacl 
x G  E an d R >  0  there is a  mapping p : Rd - > Rn whic h is bilipschit s 
with constant M, i.e., 

(1.11) 
1 

M I* - 2/ 1 <  \f>(x) - p(y)\ < M\x - y\ fo r all x,y €  R , 

and whos e image almost contain s B(x,R) f l E, that is, 

\Ef]B(x,R)\p(Rd) I  <eRd. 

Here we identify Rn wit h a subset of Rn i n the obvious way. 

(C6) E has big pieces of Lipschitz images of subsets of Rd. 

This means that there exist e , M > 0 so that for every x £ E, R > C 
there is a Lipschitz mapping p with norm <  M fro m the bal l l?d(0 , R) in 
Kd int o Rn such that 

I E fi B(x, R) fi p(Bd(0, R)) I  > eRd. 

It follow s from th e mai n resul t i n [Jl ] that (C6 ) is equivalent t o th e 
condition yo u ge t b y replacin g 5(0 , R) wit h a  subse t F o f 5(0 , R) an d 
"Lipschitz" wit h "bilipschitz. " [T o apply that resul t i t i s useful t o notice 
that Hausdorff measure is equivalent in size to Hausdorff content for subsets 
of a  regular set. ] Also , if p : F — • Rn i s bilipschitz, F C  Rd, then you can 
extend p to a  bilipschitz mappin g o n Rd, at leas t i f you replace R n wit h 
Rn ,  as we shall discuss in Section 17. 
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(C7) There is an Ai-weight UJ on Rd and an UJ-regular mapping 
z : Rd —• Rn+1 whose image contains E. 

Recall tha t UJ(X) i s a n ^-weigh t o n R d i f i t i s a  positiv e locally-
integrable function suc h that for each ball 5 , 

(1.12) 
1 

\B\ B 
UJ < Cess info;. 

B 

It i s well-known that thi s implies that UJ i s an -AQ Q weight , which can b e 
characterized b y the existence of C, 6 > 0 such that 

(1.13) 
1 

\B\ B 

wl+o 
i 

l+o 

< c 
1 

\B\ B 
UJ 

for al l balls B. (Se e [JL] for basic facts abou t weights.) 
As i n [D3 ] we say tha t z :  R d — • Rn+1 i s a n u-regula r mappin g 

if UJ i s a n AQO weight, z ha s locall y integrable distributiona l derivatives , 
|V¿| <  CUJ¿ a.e., an d 

(1.14) u(z-\B(y,R))) < CRd 

for al l y € Rn+1, R > 0, where w(A) = jAu. 
If z(-) is w-regular, and B i s any ball in Rd, then 

(1.15) diam(2(.B)) <  Cu(B 
1 
7. 

This ca n b e derived from \Vz\ <  CUJ% an d (1.13 ) using standard results. 
Conversely, i t i s no t har d t o sho w that i f (1.15) hold s fo r a n Aoo-weigh t 

w,then z has locall y integrable distributional derivative s and |Vz | <  CUJ* 
a.e.. 

It i s als o no t har d t o sho w that i f z(-) i s a;-regular, the n it s imag e 
E =  <z(Rd ) *s a regular set , an d UJ i s equivalent i n size to the pull-bac k of 
Hausdorff measure . Notic e that z(-) is 1-regular if it is bilipschitz. 

It i s proven in [D3 ] that (CI ) holds fo r E =  z(Rd) i f z(-) i s a n ir -
regular mappin g with UJ €  -AOO - Thu s (C7 ) implies (CI) eve n if we weaken 
the requirement UJ £  A\ t o UJ 6  A^. 

When n > 2d we can replac e Rn+1 in (C7) by Rn an d stil l have an 
equivalent condition . Thi s is proved using the methods o f [D3], Sectio n 5. 
The mai n interes t i n thi s observatio n come s from th e cas e d — 1, n = 
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1. STATEMENT OF THE MAIN RESULTS 

2. Notic e tha t whe n d =  1  we can alway s take w =  1 , because w e can 
reparameterize z(R) b y arclength. 

We originall y derived the equivalenc e of (C7 ) wit h (Cl)-(C6 ) whe n 
d = 1  from Pete r Jones ' [J3 ] characterization o f the subset s o f regular 
curves in terms o f his version of (C3). Th e equivalence of (C3) an d (C7) 
when d > 1  provides a higher-dimensional version of his result, at leas t for 
regular sets . 

This finishes the statement o f conditions (Cl)-(C7) (excep t for (C4)) , 
whose equivalence is stated by the theorem . Notic e that th e ambien t di -
mension n does not play a serious role. 

Let us now describe the routing of implications that we follow in prov-
ing the theorem. I t is relatively easy to show that (CI ) implie s (C2). Th e 
proofs tha t eac h of (C2) an d (C3 ) impl y (C4) ar e quit e simila r and the y 
constitute th e main step in the proof of the theorem. Th e proof that (C4 ) 
implies (C3) i s pretty straightforwar d bu t messy . Bot h of (C5) an d (C7) 
will b e obtained fro m (C4 ) by direct constructions . O f course (C6 ) is a 
trivial consequence of (C5). I t follows from [D3 ] that (CI ) hold s if any of 
(C5), (C6) , or (C7) do. (In the case of (C6) we also use the result of [J3] as 
discussed above. ) Yo u can also derive (CI) directl y from (C4) , a s in [S4] . 

We should point out that our methods for deriving (C5) o r (C7) fro m 
(C4) are quite constructive, although somewhat messy. The stopping-time 
argument give n in Section 7 for producing a corona decomposition (if one 
exists) is both constructive and fairly simple, and one could imagine asking 
a computer to do it. The  difficult par t — proving that a  corona decompo-
sition does exist if (C2) or (C3) holds — is not the computer's problem. 

A curious feature of our arguments i s that we do not know how to pass 
from (C2 ) t o (CI ) analytically , without goin g through th e geometry. On e 
can look for analogues of some of the well-known methods fo r controlling 
singular integral s on Rn using square functions (vi a reproducing formulas, 
for example) , but w e have not bee n able to make anything lik e that work 
here. Similarly , it i s not s o clear how to pass from (C6 ) t o (C5) , o r from 
(C5) to (C7) , without going through singula r integrals. 

We also take u p a  version of the mai n theorem for fractional dimen-
sional sets. Condition s (CI) and (C2) still make sense in this case, although 
(C3)-(C7) don't . W e shall prove that if E i s a d-dimensional regular set, d 
noninteger, then neither (CI ) no r (C2 ) can hold. 

The organization of the remaining sections is as follows. I n Section 2 
we cover some preliminary material and also give the precise defintion of a 
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corona decomposition. W e prove that (CI ) implie s (C2) i n Section 3. We 
derive in Sections 4, 5, and 6  some geometrical consequences o f (C2), an d 
in particular we show in Section 5 that neither (CI ) no r (C2 ) can hold if E 
has fractional dimension . 

We se t u p i n Section s 7  and 8  the initia l machinery commo n to th e 
proofs that (C4 ) holds i f either (C2 ) o r (C3 ) do . W e also give an outlin e 
of th e argumen t use d t o sho w that (C2 ) implies (C4) in Sectio n 7 , an d 
the detail s ar e carried ou t i n Sections 9 , 10, and 11 . Th e proof that (C3) 
implies (C4) i s given in Sections 12, 13, and 14. 

We show that (C4) implies (C3), (C5) , and (C7) in Sections 15, 16 and 
17, and 18 , respectively. In Section 19 we state condition (C8), a  variant of 
(C2) and (C3) , and we indicate why it is equivalent to the other conditions. 
We give a counterexample in Section 20 to show that the "wea k geometric 
lemma" (see Section 5) is not stron g enough to imply rectifiability, even if 
E i s regular. I n the last section we discuss some open problems, concerning 
the theore m an d it s proo f a s wel l as other relate d topics . I n so doing we 
also give some small and partia l indication s o f other wor k in this general 
area. A  more substantial overview can be found in [D5] . 

We should also indicate the interdependence o f the sections. Sectio n 2 
is essential fo r most o f what w e do. Section s 3, 15, (16 + 17) , 18, 20, and 
21 are al l independent o f each othe r an d als o Section s 4—14 , with minor 
exceptions. Th e proof tha t (C2 ) implies (C4) is give n i n Section s 4-11, 
while th e proo f tha t (C3 ) implies (C4 ) uses parts o f Section 5  and als o 
Sections 7 , 8, 12 , 13, 14, and 11 , in that order . Th e details o f Section 19 
rely on the proo f of the equivalence of (C3) with (C4) . 
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2. Dyadic cubes and the corona decomposition 

As in [D4 ] one can build a family o f subsets of E tha t play much the 
same role that dyadic cubes do for Rd. More precisely, there is a family of 
partitions Aj o f J5, j G  Z, into "cubes" Q with the following properties : 

(2.1) i f j < Jfe, Q G  Aj, an d Q' G A*, the n either Q fl Q' = 0  or Q C Q'; 

(2.2) i f Q G A j, the n C "^ <  diamQ < C2j and C7_12 ^ < |Q | < C2jd. 

The cubes ca n also be built i n such a way that they have relatively small 
boundary, lik e ordinary cubes in Rd do: 

(2.3) if Q G A,- an d r  >  0, the n 
I {x G  Qj : dist(x,£\<2 ) <  r2 '} |< Cr*2*d. 

Of cours e i t i s important tha t th e constant C in (2.2 ) an d (2.3 ) does 
not depen d on Q , or r . 

The properties of the Q's and Aj's given in [D4] are not quite the same 
as those above , but th e same kind of construction ca n stil l be used. Fo r a 
slightly better proof , see [D5] . A n extension of this result can be found in 
[C2]. 

We shal l follo w th e standar d practic e o f referring t o th e cube s tha t 
contain a  given cube as its ancestors , referrin g to its subcubes in the next 
generation as its children, etc. 

Let A  =  UAj denot e th e se t o f all ou r cubes . W e can thin k o f A 
as providin g a discret e versio n of E x R+, by lettin g (x,t) £ E X R + 
correspond to the Q G A, with x G Q and 23 < t < 2^+1. 
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We say that E admit s a corona decomposition if for each rj > 0 (think 
of rj as being small) there is a C = C(rj) >  0 such that we can partition A 
into a good set Q and a bad set B with the following features . 

The ba d set i s not to o large, in that i t satisfie s th e Carleson measure 
packing condition 

(2.4) 
qcB 
q cR 

\Q\ < C\R\ fo r all R G A . 

The goo d se t Q can be partitioned int o a family T o f subsets S o f Q 
such that: 

(2.5) each S is coherent, which means that it has a maximal 

element Q(S), and that if Q G S, Q' G A , 

Q C Q' C Q(S), then Q' G 5 ; 

(2.6) from th e viewpoint of each 5, E i s well-approximated by a 
d-dimensional Lipschitz graph T with constant <  77, in the sense 
that for each Q G S we have 

dist(ar, r) <  77 diam Q whenever x € E, dist(a:, Q) < diam Q: 

(2.7) there aren't too many of the 5"s , in that they satisfy th e packing 
condition 

Q(S)CR 

\Q(S)\<C\R\ fo r all Re A . 

There are a number of places where something like a corona decompo-
sition has been used before. On e is the work of Garnett an d Jones [GJ] on 
the corona theorem for Denjoy domains . Althoug h what they did is some-
what differen t i n detail s i t i s quite simila r in spirit . Anothe r example is 
Peter Jones' proof of the L2-boundedness of the Cauchy integral on regular 
curves [Jl] , an d later in his quadratic estimate s on the /?oo' s f°r rectifiable 
curves [J3]. A  corona decomposition also arose in [S4] for a certain class of 
hypersurfaces i n Rn, in connection with square function estimate s fo r the 
Cauchy integral from Cliffor d analysis . 

In eac h of these examples something like a corona decomposition was 
obtained b y applyin g Carleson' s coron a constructio n t o a  functio n tha t 
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2. DYADIC CUBES AND THE CORONA DECOMPOSITION 

somehow controlled the geometry. I n our case we cannot appl y the corona 
construction s o directly, but w e shall use many of the same ideas. 

This notion of a corona decomposition is somewhat technical and com-
plicated, but i t i s very useful. I t includes enough control on the geometry 
of E t o imply other things , an d i t i s set u p i n such a way as t o make it 
amenable t o proving it usin g a  stopping-time argument. I n fact, ther e is 
sort o f a universal stopping-time argument fo r deciding whether E admit s 
a coron a decomposition, which is described in Sectio n 7. Thi s argumen t 
is universa l i n th e sens e tha t i t produce s a  coron a decompositio n for E 
whenever one exists. 

Let u s give an imprecise outline of this procedure. T o get started you 
need to know that E satisfie s th e weak geometric lemma. Thi s condition 
is defined in Section 5; roughly speaking, i t means that for most cubes <5, 
E i s well-approximated by a d-plane PQ. Th e cubes for which this is not 
true are put int o the bad set , and then you use a stopping-time argument 
to partitio n th e good cubes into regions S for which (2.5 ) holds , the angle 
between PQ an d PQ(s) ls small for Q € S, and such that the minimal cubes 
Q o f S either have a bad son or have angle (Pq, PQ(s)) bein g not too small. 
If yo u choose the parameters correctl y (2.6 ) holds , and the hard part i s to 
verify (2.7) . 

In mos t of the examples the verification of (2.7) work s as follows. You r 
hypothesis i s some sort o f square function conditio n on E, suc h as (C2) 
or (C3) . Th e main ste p i s to sho w that i f S ha s lot s o f minimal cube s 
with angl e (PQ^PQ^s)) n° t to o small, then there ha s t o be a  substantial 
contribution t o the square function conditio n on E comin g from S. T o do 
this you push the contribution from S dow n to a square function estimat e 
on th e Lipschitz graph, and you can usually work with that using classical 
results. Thi s gives you control on the Lipschitz graph (namely , control on 
the oscillation of its tangent plane ) that permits you to show that S can't 
have too many minimal cubes of the above type. 

It i s natural to ask after seeing the definition of a  corona decomposition 
whether the graph of a Lipschitz function A necessarily has one. Of course 
our main theorem says that i t does , but i t i s not s o difficult t o prove this 
directly, by applying the corona construction to , say, the Poisson extension 
of V A Thi s is similar to the approach taken in [S4] , althoug h [S4 ] applie s 
in more generality, and can certainly be simplified in this case. 

There are a number of variations that we can make in the definition o f 
a corona decomposition that would still yield an equivalent condition. For 
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example, we could replace 

dist(x,r) <  77 diamQ b y dist(x,T ) <  CdiamQ. 

Because we shall not need this fact we shall content ourselve s with merely 
an outline of the proof. 

Suppose that E admits this weakened version of the corona decomposi-
tion, and let us show that we can find one of the stronger type. W e replace 
each S E  JF by a subregion S a s follows . W e require that i f Q £ S then 
R € S for every cube R in the same generation Aj a s Q which contains a 
point x such that dist(:r , Q) < diam Q. W e also require that i f Q £ S then 
all it s subcubes for the next m generations lie in 5, where m « lo g ^, and 
that the cubes R as above also have this property. I f we take all the cubes 
in S \ S and add them to B for each 5, then the resulting augmentatio n of 
B still satisfies (2.4) . (Thi s can be checked using (2.3 ) an d (2.7). ) I t is not 
difficult t o then decompose the 5's int o subregions that satisfy (2.5) , (2.7) , 
and the stronger version of (2.6). (Yo u have to decompose the S"s because 
they do not have maximal elements.) 

Similarly, in (2.6) w e can replace 

dist(x, Q) < diamQ by dist(x , Q) < k diam Q 

for an y given k > 1. Indeed , if E admit s a  corona decomposition as above, 
we can remove the top m layers of each S G  T, m «  lo g A:, put the m into 
B, and reorganize what's lef t o f each S into new coherent regions. 

We also don't really have to require that the Lipschitz graphs T in (2.6 ) 
have small constant. Indeed , if E admits a corona decomposition where the 
T's merel y have uniformly bounded constants, then we can build one where 
they have small constants by applying the corona decomposition to each of 
these T's to get new ones with small constants, and combining these corona 
decompositions for the T's into one for E. 

It i s also not hard to show that whether E admit s a  corona decompo-
sition does not depen d on the choic e of A, as long as (2.1 ) and (2.2 ) are 
satisfied. (Ou r second variatio n of the coron a decomposition — the one 
with the k — is helpful in this regard.) 

Hopefully thes e variation s giv e an indicatio n o f the flexibilit y o f the 
notion of a corona decomposition. In practice it i s particularly convenient 
that the only requirement o n the bad set i s (2.4) . 
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3. From ( C l ) to (C2) 

It i s helpful t o introduce a n intermediate condition . 

(C2') Given any smooth odd function ip on Rn with compact support, 

oo 

k= — oo E E 

ibicix — y) f(v)dv I  dx < C 

E 

\f\2dx. 

for all f e L2(E). 
That (C2' ) implies (C2) is well-known, and i s obtained b y applying 

(C2') t o characteristic function s o f balls. (Th e converse is not to o difficult 
either; i t i s essentially a  square function versio n of the T ( l ) theorem.) 

To prov e that (CI ) implies (C2 ) we use a  familia r artiface . Le t 
denote the space of all sequences UJ = {uJj}, j € Z, of ±l ' s, with the usual 
product topolog y and th e produc t measur e that give s each choic e of ±1 
equal probability . Defin e €j : Q, —> { ± 1} by £j(UJ) = OJJ. A s usual we 
observe that 

(3.1) 
q 

M 

j= — m E 

ejivtyji* - y)f(y)dV2 dw 

m 

j— — m E 

*/>j(x " y)f(y)dy I  • 

for an y m. Thi s follows from the orthonormality o f the ê -'s . 
We want t o apply (Cl ) to the kernel 

K(x) = Km(x,u) = 
m 

j——m 
Ej(w)wj(x) 
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(which is certainly odd and satisfies (1.2) ) to conclude that 

(3.2) 

E E 
Km(x - y,uj)f(y)dy I  dx < C 

E 
\f\2dx. 

Unfortunately, however, the way we stated (CI ) only gives us (3.2) with a C 
that depends on m and UJ. Usin g a "completeness" argument we shall show 
that (CI ) actually does imply that (3.2 ) holds with a C that is independent 
of m  and UJ. Onc e we've don e that i t wil l follo w immediatel y that (CI) 
implies (C2) , because of (3.1). 

Let N(m,uj) denot e the smallest constan t fo r which (3.2) holds for all 
/ . Fo r each m < oo choose uj{m) s o that 

N(m,uj(m)) = max 
UJ 

N(m,uj) =: N(m). 

We want to show that 

(3.3) sup 
m 

N(m) < oo . 

Suppose not. Choos e mj, j =  1 , 2, 3,. . ., such that 
(3.4) N(mj) > 2m'-\ 
Define w(oo) € ft by Wj(oo) =  u>i(mj) whenever mj_i <  \i\ < rrij. I t is easy 
to se e that 

(3.5) Ntrrij) = N(mj,uj(mj)) < 2N(mi,u(oo)) +  Cm,--! . 
This uses only the fact that the number of i's such that —  rrtj < i < rrij and 
uji(rrij) ^ uji(oo) is at mos t 2m ,_i - f 1. 

On th e other hand, we have for any w that 

E E 

2 
Km(x - y,uj)f(y)dy dx 

< c 
E 

\f\2dx + C sup 
a>0 

E En{\x-y\>a] 

K^x -y,uj)f{y)dy |2 dx, 

where C doe s not depen d on a;, m , or / . Thi s is not har d to check . O f 
course (CI ) says that th e righ t sid e is at mos t C J \f\2dx, where now C 

E 
depends on UJ bu t no t m or / . 

Applying this to UJ = UJ(OO) and then recombining with (3.5) we find 
that there is a C > 0 not depending on j suc h that 

N(mj) < C + Crrij-!. 

For j larg e enough this is incompatible with (3.4). Th e ensuing contradic-
tion establishes (3.3) . 

22 



4. (C2) implies a local symmetry condition 

To simplify notations , we'll use from now on the convention that 

(4.1 XQ = {x G  E :  dist(x, Q) <  ( A - 1 ) diam Q) 

for Q G A and A  > 1. 
Given a small number r, le t TZ(r) denote the set of cubes Q £ A such 

that ther e exist s two points x,  y G  2Q with dist(2x — y,E) >  rdiamQ . 
Thus if Q £ 7£(r), then for any x, y G 2Q, the point z = 2x — y is near 1?, 
and z is of course the point on the line through x and y which is opposite to 
y about x. I n other words, if Q £ 7£(r), then E is approximately symmetric 
near Q about each point in Q. 

DEFINITION 4.2 . W e say that E satisfies the local symmetry condition (LS) 
if for each r > 0 the set of cubes TZ(r) satisfies the packing condition 

(4.3) 
qcR(t) 

QÇ.R 

\Q\ < C(T)\R\ for all Re A. 

In the next section we'll show that i f E satisfies (LS) , the n E i s well-
approximated by d-planes around most cubes Q. 

PROPOSITION 4.4 . If E satisfies (C2), then E satisfies (LS). 

Fix T > 0. Our strategy for proving (4.3) wil l be to find a finite family 
of ^' s s o that eac h cube in TZ(r) give s a substantial contributio n to (1.8 ) 
for one of these T/>'S. Thi s will allow us to derive (4.3) from (1.8) . 
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Let Q G R(t) b e given, and le t k G Z be such that Q G A&. Le t x, 
y G 2Q be such that dist(2a; — y, £7) > r diam Denot e by Co the constant 
in (2.2) . 

Set y o = 2~*( y — x) an d B = J9(y0, t /10Co) . Le t r/> = ipq be an odd 
C°° functio n suc h that 

(4.5) sup p i/jCBU ( - B ) , $ >  0 on S, an d i\) = 1  on S(y0, r/20C0). 

We can even find a finite family w of functions s o that fo r any Q € 7£(r) 
we can take ipQ to be an element o f Thi s is because y 0 € i?(0 , lOCo) \ 
5(0,r/3C0) independentl y o f Q. 

Let x1 be an y poin t o f B(x, 2*r/40Co). Becaus e o f our choic e o f 
il>k(x' — u) > 0, except perhaps when u G i?(2x — y, 2*t /5Co) , an d i n this 
case u c E becaus e o f our assumptions. Also , i f u G #(y, 2fcr/40Co), then 
V**^' —  w ) = 2~*d . Usin g our assumptio n that i ? is regular (1.5 ) we get 
that 

E 

tpk(x' - u)du > rd/C fo r all x' G B(x, 
2Kr 

40C0 5 

whence 

4.6 
3Q 

z/>*(x' - u)du I 2 do:' > C - V W 

For an d x ' given , there are a t mos t a  bounded numbe r of cubes Q 
such that Q G A* and a: ' G 3Q. Hence, for any R G A , 

Qc R(t) 
QcR 

IQI <  c(T) 
Qc R(t) 

QÇR 
3Q JE7 

(ipQ)k(#'— u)duI2dx 

< C(T) 
w cvv 2*<CdiamJR3# £ 

^k{x' -u)du dx' <C"(T)\R\. 

The las t inequality uses (1.8). Thi s proves the proposition. 

R E M A R K 4.7:  Ou r loca l symmetry conditio n implie s a  slightl y stronge r 
version of itself. Fo r each r  >  0  and eac h k > 1 , le t 1Z(r,k) denot e th e 
set o f cubes Q such that there exist x, y G kQ such that dist(2x — y,E)> 

T diam Q. I f JE satisfies ou r local symmetry condition, then 

(4.8) 
Q£R(r<k) 

QÇR 

|Q | <C(r ,* ) | f l | 
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for al l R e A and all r, k. The  proof is not difficult . (I f Q £ Tl(r, Jk), then 
there is a not-too-distant ancesto r of Q in 7£(T'), i f r' i s chosen suitably.) 
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5. The local symmetry condition (LS) implies the 
weak geometric lemma 

For Q G A and 1  < q < oo, define 

(5.1) Bq(Q)= inf 
p 

I I 

\Q\ 
2Q 

dist(x,P) 
diamQ 

q 
dx 

9 

5 

where the infimum is taken over all d-planes P. Thi s is of course a  minor 
variation of (1.9). 

We say that E satisfie s th e weak geometric lemma if for each e > 0 we 
have 

(5.2) 
Boo(q)>e 

QÇR 

\Q\ < C(e)\R\ fo r all R e A. 

The nam e stems from the practice of saying that E satisfie s th e geometric 
lemma (of Peter Jones) if 

(5.3) 
QÇR 

Poo(Q)2\Q\<C\R\ fo r all R G  A . 

Note that if E satisfies our version of the geometric lemma — i.e. , (C3 ) 
— then it satisfies th e weak geometric lemma. Thi s can be readily derived 
from th e fact that 

(5.4) / ?ooOM)<C/? I (X,20 
1 

d + 1 
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To prove (5.4), le t P be the cf-plane that realizes the infimum i n the defini -
tion of /?i(ar, 2£), an d le t y be the point i n B{x,i) f l E furthest fro m P. Se t 
D =  dist(y , P ). IiD<t, the n 

P i { x , 2 t ) > r d - l 

EnB(y,D/2) 

dist(x, P) dx > t-*-1 I  E f i B(y, D/2) \ D 

<c-l(t-ld)d+l>C-lBoo(x,t))d+l 

If D > the n /?i(x, 2£) >  C , and there' s nothing to prove. 

PROPOSITION 5.5 . Suppose that E satisfies (LS). For each e > 0 let Q(e) 
denote the set of cubes Q G  A such that there is a d-plane PQ with the 
following two properties: 

(5.6) dist(x, PQ) < e diam Q for all x G  2Q\ 

(5.7) if w G  PQ sud dist(w,Q ) <  diamQ, then dist(w,E) < e diam Q. 

Let B(e) = A  \ Q(e) denote the complement of G(e). Then 

QcB(e) 
QÇR 

ICI <  C(£) |* | 

for all Re A and all e > 0. 

Thus the conclusio n tell s u s that E i s well-approximated b y d-planes 
in a  stronger sense than the wea k geometric lemma. Notic e that th e con -
clusions of Proposition 5. 5 imply (LS). 

To prov e the propositio n w e shall first prove two lemmata. W e shall 
also use thes e lemmata t o prove that neithe r (CI ) no r (C2 ) can hol d i f d 
is not a n integer , an d s o for their statements and proof s we allow d to be 
noninteger. 

LEMMA 5.8 . Fix Q e A , and let (d) denote the smallest integer greater 
than or equal to d. Then there exist (d) + 1 points y0,..., y^ in Q such 
that dist(yj,Lj-i) > A~l diam Q for j = 1,..., (d), where Lk denotes the 
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k-plane passing through ?/o, . •  •, 2/fc? where A depends only on d and the 
constant in (1-5). 

This is obtained usin g an easy induction argument . Suppos e w e have 
found point s 2 /05 2/i, . .. ,2/j a s above for some j < (d). Suppos e that there 
does not exis t a  suitable poin t 2/;+i , so that 

dist(2/, Lj) < A 1  diamQ fo r all y G  Q. 

Then it i s not hard to see that we can cover Q by less than (A + IV balls 
of radius 10n 

A diamQ, say. Pro m (1.5) w e then get that 

\Q\<C(A + iy 
lOn 
A 

iiamQ 
d 

This is impossible if A is large enough, because j < (d), and so 2/j+1 exists. 
This proves the lemma. 

LEMMA 5.9 . Let M be a large integer, and set k = 4(d + 1 ) M. Let 7£(R , k) 
he as in Remark 4.7, and assume that Q £ 7£(R , k). Ifr is small enough 
(depending on M), then given an integer £, 1  < £ < (d) + 1, £ + 1 points 
2/o,.. •, yi of 2Q, and al5..., ai G  2*Z fl [—M, M], there is a point z G  E 
such that 

I * - {i/ o 4-
£ 

i=l 
o>i(yi ~  2/o) } I  < C(M,£)T diamQ . 

We prove this by induction o n £, beginning with £ = 1. For notationa l 
convenience we take y0 = Q. 

The poin t o f the proo f i s o f course t o us e repeatedl y th e fac t tha t 
Q T^(T, k). Takin g x = y\ an d y = 0  in th e definitio n o f 7£(R , k) we 
see that ther e is a  poin t Z2 € E suc h that \z2 — 2yi\ < rdiamQ. Sinc e 
Z2 €  kQ we can take x = z2 and y — yi t o get a  point z3 £ E suc h that 
1̂ 3 — 2 2̂ + 2 /11 ^  rdiamQ , s o that |Z 3 — 3yi\ < 3rdiamQ . Repeatin g 
this argumen t w e see that fo r 2  <  j < M ther e i s a  Zj £ E suc h that 
\zj ~ JVi \  ̂(2-7"" 1 —  l)rdiamQ. Taking x = 0 and y = ZJ in the definition 
of H(r,k) give s a  point z-j £  2 ? with |j 2:__j +  J2/I | <  2-7~1rdiamQ . Tha t 
takes care of the £ = 1  case, with C(M , 1) =  2M~1. 

Of course , w e could also have done the sam e thin g wit h y\ replace d 
with any of the other 2//s. 
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Assume now that the lemma holds for some l  an d le t us prove it for 
£+ 1  (if £ + 1  < (d) + 1). Le t au ..., ae+i G 2*+1Z fl [-Af, Af ] b e given. By 
induction hypothesi s we can find w\, w2 G E so that 

(5.10) Iwl-
>=1 

1 
flj-yi | < C(Af,£)rdiam Q 

(5.11) | w2 + ai+xyi+x \<2M Vdiam Q 

If r  i s small enough, wi an d w2 both lie in A;Q, we can find a point z G  E 
such that \z — 2wi +  tx;2| <  r diamQ, so that from (5.10) and (5.11 ) we get 

I * -

l+l 

j=l 
flj-yi |< C(M,£+ l)rdiamQ , 

where C ( M ,* + 1) = 2C(M,£) + 2M~1 + 1. 
Let u s now prove Proposition 5.5. Fo r this we require d to be an integer 

again. Le t c > 0  be given. Le t Af be large, to be chosen soon, depending 
on e , and put k = 4(d+ 1)M again . W e shall choose r afte r Af , dependin g 
on bot h Af and e. 

Fix Q0 G A. Choose Q C QQ s o that diamQ ~ €diamQ0 5 and assume 
that Q £ 7£(r, k). Le t y0, • • • iVd be as in Lemma 5.8, and take P = PQ0 t o 
be the d-plane that they span. 

If r i s small enough, then (5.7) holds for Q0- Indeed , every point on 
P whic h is at distanc e <  diam Q0 from Q0 is at distanc e <  diam Q from a 
point of the form 

yo+ 
d 

j+l 
aj(Vj ~ 2/o) , wit h aj G  2dZ, \aj\ <Ce 1. 

If A f is large enough (A f > Ce"1) , w e can appl y Lemma 5.9 t o conclude 
that any such point is at distanc e <  C(Af , d)r diam Q from E. I f r i s small 
enough, we see that every point o f P which is at distanc e <  diam QQ from 
Qo i s at distanc e <  CediamQ o from E, s o that (5.7 ) holds for Qo with e 
replaced by Ce. 

Let u s now show that (5.6 ) hold s for Qo if we assume also that Q0 £ 
7£(r, A:) . Suppos e not; let yd+i G 2QQ be such that dist(y<f+i, P) > e diam QQ. 
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5. (IS) IMPLIES THE WEAK GEOMETRIC LEMMA 

Apply Lemma 5.9 to Qo and the points yy, 1  < j < d + 1, to conclude that 
for eac h a = ( a i , . . . , arf+i), a » G 2d+1Z fl [—M, Ml, ther e i s a  2a G s o 

that if xa = yo + 
d+l 

¿=1 
fli(2/i -  yo), then 

I za — xa I < C{M,d+ l ) r diamQo-

We want to use this to contradict th e assumption tha t E i s regular (1.5) . 
If a y£ a', the n |a: a —  xa' \ > ^ediamQo- Thi s is easily checked using 

the fact tha t for each j < d + 1 , yj i s at distanc e >  ^ediamQ o from the 
(j — l)-plane passing through y0j..., yj-\. B y taking r t o be small enough, 
depending on M an d e , we get that 

\Za-Za'\> 
1 

2C 
e diam Qo fo r a ^ a . 

Thus the balls Ba = B(za, ediamQo/4C) ar e pairwise disjoint. Fro m 
(1.5) we get 

\kQo\> 
a 

\BaC\E\> C~lMd+l (ediamQ0) d 

and also |JfcQ0| < CMd(d iam Qo)d- Thi s is impossible if we choose M t o be 
much larger than e~d. Thi s contradiction tells us that yd+i does not exist, 
and so (5.6) holds for Qq. 

Thus we have proved that Qo G G(Ce) if Qo ^ ^(r5,K), if the associated 
cube Q £ 7£(r , fc), and i f r, fc are chose n correctly . Propositio n 5.5 now 
follows from Remar k 4.7. 

Let us now indicate why E cannot satisfy (CI ) or (C2) if its dimension d 
is not an integer. I t is enough to show that E cannot satisf y (LS) . Suppose 
it did . Le t Qo be a  cube with Qo £ TI{T, k). W e use a n argumen t ver y 
similar to the one we just did , but wit h e = 1 , Q = QQ. 

Use Lemm a 5.8 t o selec t point s yQ,yl, •  • •, 2/(d) m Qo- Give n a — 
( « ! , . . . ,a(d)) , a\ G 2 Ẑ f l [—M, M], le t za , za , and Ba be as above (but 
with e = 1) . I f r i s small enough (depending on M ) , w e obtain once again 
that the i?a's are disjoint, and hence 

\kQo I  > 
a 

\BaDE\> C-1MW(diamQo)dJ 

while \kQ0\ < CMd(diamQo)d. Thi s is impossible if M i s large enough 
and (d) =^ d. 
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REMARK 5.12 : Th e weak geometric lemma is not strong enough to imply 
rectifiability. W e shall giv e a  counterexampl e i n Sectio n 20. However , a 
modification of an argument o f Peter Jones [J2] shows that E has big pieces 
of Lipschitz graphs i f it is regular, satisfies the weak geometric lemma, and 
has big projections. Thi s last condition means that there is a 9 > 0 so that 
for each x G  E an d R >  0 there is a d-plane P  s o that \U(E D B(x, R))\ > 
0Rd, where n i s th e orthogona l projectio n ont o P. Se e [DS3] for more 
details. 

Although the weak geometric lemma is not strong enough by itself to 
imply rectifiability, it seems to be a very useful intermediar y condition . I t 
certainly plays that role in proving that (C2 ) and (C3 ) imply (C4). 

It turns out that (LS ) is equivalent to (C1)-(C7). W e hope that this is 
as big a surprise for the reader as it was for the authors. Th e proof wil l be 
given in a separate publication. Whe n d = 1  there is a direct constructio n 
that shows that (LS) implies (C7). Thi s combines with the arguments give n 
here to provide a much simpler proof o f the fact tha t (C l ) o r (C2 ) imply 
(C7) whe n d = 1 . Th e argument fo r showing that (LS ) implie s (C1)-(C7) 
when d > 1  is much less direct an d i t relie s in particular o n the fac t tha t 
( C l ) implie s the other conditions . Thu s it doe s not enabl e us to dispens e 
with what we are doing here and in the succeeding sections. 

We conclude this section with an easy lemma which says that the good 
d-plane PQ i n Proposition 5.5 is almost unique . 

LEMMA 5.13 . Let Q G A be given, and suppose that Pi and P2 are two 
d-planes such that dist(ar,Pj) < ediamQ for all x G  Q, i = 1 , 2. Then 

(5.14) dist(w, P2) < CediamQ + Cedist(w, Q) for all w G Pi 

(5.15) dist(w, P i) <  Ce diam Q + Ce dist(w, Q) for all w G P2. 

In particular, Angle (Pi,P2) <  Ce. 

Let 2 /05 • • • iVd b e the point s i n Q provided by Lemma 5.8, an d le t P 
denote the d-plane passing through them. I t is not hard to prove (5.14) and 
(5.15) by comparing each of Pi and P2 to P using the fact that dist(yj, Pj) < 
ediamQ for 0 < j < d, j =  1,2 . [A n important poin t i s that this last fact 
not only implies that all the points of P ar e close to P^, but tha t the points 
of P{ ar e als o close to P . T o see this it i s useful t o notice that i f ZJJ ar e 
points in Pi close to yj, then the ZJJ generat e P,-. ] 
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6. Approximation of E in measure 

Prom Propositions 4.4 and 5. 5 we know that i f E satisfie s (C2 ) the n 
most cube s can be well-approximated by d-planes in the sense of (5.6) an d 
(5.7). Thi s result ca n be strengthened, i n that th e Hausdorf f measure on 
E wil l be well-approximated by a constant times Lebesgue measure on the 
d-plane. Thi s is what w e prove now. 

Let &  be a large constant. W e denote by C/(e, k) the set of cubes Q G A 
such that there is a cf-plane PQ with the propertie s 

(6.i) dist(x, PQ) < ediamQ fo r all x G kQ 

(6.2) i f w G PQ and dist(w; , Q) < fcdiamQ, then à\st(w,E) < ediamQ. 

If E satisfies the conclusion of Proposition 5.5, then A \C / (e , k) satisfie s 
the usual Carleson measure packing condition for all e, k. Thi s follows from 
the observation that i f Q £ C/(e, k) and i f Q* is an ancestor o f Q such that 
ArdiamQ < diamQ* < CfcdiamQ, then Q* £ Ç(e/Ck), wher e Q(6) is as in 
the statement of Proposition 5.5. 

Given Q G A and a  d-plane P. define a measure an p on P by 

(6.3) ^QiP(A)=\TL-1(A)n(k/2)Q\ 

for al l (Bore l sets ) A C  P , wher e I I denote s th e orthogona l projectio n 
onto P. I n fancier language , / /Q , P i s obtained b y taking th e restrictio n of 
Hausdorff measure on E t o (k/2)Q an d pushing it dow n to P usin g II . 

Let u s cal l W(e , k) th e subse t o f £/(e , k) consistin g o f those cube s Q 
such that for each d-plane P  wit h Angle (P , PQ) < 1/10 there is a constant 
Ao.p >  0 that satisfie s 

(6.4) VQ,P(A) - \QTP\A\ I < ed(diamQ)d 
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for ever y cube A Ç P with 
k 

ediamQ < diam A < diam Q, dist(A, H(Q)) <  —  diamQ. 
PROPOSITION 6.5 . Suppose that E satisfies (C2). Then for every e > 0 
and k > 10 there is a C = CYe, k) such that 

(6.6) 
QcH(e,k) 

QÇic 

\Q\ < C\R\ for all Re A . 

By a n easy covering argument on e sees that (6.4 ) hold s if 

6.7 / / Q J P ( A ) - A Q ) P | A | I < r(diamQ) d 

for ever y cub e A C  P suc h that d i s t (A, I I (0 ) <  (&/5)diamQ , A ha s 
sidelength exactly rj diam Q, an d has sides parallel to a given (fixed ) se t of 
axes, provided that w e choose rj small enough with respect t o e  and then 
choose r smal l enough. T o verify (6.7 ) i t is certainly enough to show that 

(6.8) fJ.Q,p(A) — fiQ^A1) I < r(diamQ )72 

whenever A, A' ar e tw o cubes i n P tha t satisf y th e propertie s just listed 
and also dist(A, A1) > diamQ. 

Let u s prov e the proposition . Le t T\ be much smalle r than r , t o be 
specified later . W e must show that mos t cube s li e in W (e, &), in the sense 
of (6.6) ; i t i s enough to show that most cubes in (?(ri , k) lie in W(e , &), by 
the remarks a t th e beginning of this section. 

Fix Q G Q{j\, k) and a d-plane P with Angle (P, PQ) < JQ. W e want to 
find conditions that imply (6.8) an d such that the cubes that don' t satisf y 
these conditions satisfy a  Carleson measure packin g condition . O f course 
we wan t these conditions to be given in terms o f something controlle d by 
(C2). Th e argument w e use is similar to the proof of Proposition 4.4. 

Let A, A' b e given. Le t p be the cente r o f A an d q the poin t o f PQ 
such that n(# ) =  p, and defin e p' and qf similarly. B y the versio n of (6.1 ) 
in this context , U~1(A) f l (k/2)Q i s contained i n the n-dimensiona l cub e 
D centere d a t q whose projection is A. A  similar result is true for A' an d 
the correspondin g ra-cube D'. Fro m the version of (6.2) i n this context we 
get tha t there is a point XQ G  E at distance <  T\ diam Q from the midpoint 
between q and q'. 

Let j G  Z be such that Q G  A j, so that diamQ ~ 2J. W e want t o 
choose a function i\) so that 2Jdipj(xo — y) looks a lot like the characteristi c 
function o f D minus the characteristi c functio n o f D'. Mor e precisely, we 
ask if) t o be odd, C°° , compactl y supported, an d we want i t t o satisf y 
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(6.9a) fcfxo -y) = 2~jd i f dist(y, D) < Crx diam Q 

(6.9b) 0 < ipj(x0 - y ) <  2~d i f dist(y , D) < 2CVi diam Q 

[6.9c) tl>j(x0 -y) = -2-3« if dist(y, D') < Cri diam Q 

(6.9d) -2- 'd <  ^-(x o -  y ) <  0 i f dist(y , D1) < 2Crx diam Q 

(6.9e) il>j(x0 - y) = 0 i f d is t (y ,DUD') > 2Cr i diamQ. 

We can even find a (fixed ) finite family $  o f functions s o that we can 
find a xj) £  $  wit h these propertie s no matter wha t Q , P, -A , and A' are , 
subject t o the constraint s impose d above. (W e allo w $  t o depen d on T\ 
and al l the other constants. ) 

An argument lik e the one used in the proof of Proposition 4.4 can be 
used to show that if E satisfies (C2) , then 

E 
ibi(xn — v)dii\ is as small as we 

want except for a class C of Q s that satisfie s a  Carleson measure packing 
condition. (T o be precise, |  J i/>j(xq — y)dy\ should be as small as we want 

E 
for al l xo that arise from admissibl e choices of P, A , Af.) Becaus e of (6.9), 
we get that if Q £ C, then 

(6.10) \EC\D\<\EnG'\ + 
4 

r(diamQ) 

(6.11) | ^ n Z > ' | < | ^ n G | 4 D 
4 

T(diamQ)d, 

where G i s th e cub e concentri c wit h D bu t whos e sidelength ha s bee n 
increased by 4Crx diamQ, and similarly for G1. 

Prom chasing definitions we see that (6.8 ) holds if (6.10), (6.11) , and 

(6.12) \Ef](G\F) I  +  \ED(G'\F') \ < 1 
4 

r(diam<2)d 

do. i t i s not hard to see that (b.lz ) i s true it y  G  £/(T, k) and T\ IS small 
enough: becaus e 

E H  (G \ F) C  {z : dist(*, PqD(G\ F)) < 2rx(diam Q}, 

we can cover E f l (G \ F) by less than CT^ ~  ball s of radius 3ti diam Q, 
and then use the regularity of E (1.5 ) to prove (6.12). 

To summarize , we have shown that i f Q £ £(r , k) and Q £ C, where 
C satisfies a  Carleson measure packin g condition, then (6.10) , (6.11) , an d 
(6.12) hold, and they imply (6.8), and hence that Q £ H(e,k). Thi s com-
pletes the proof of the proposition. 
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REMARK 6.13 : I n this proof , as in many places, we do not us e the fact 
that we are dealing with d-dimensional Hausdorff measure on E; the same 
argument woul d work if we used any positive Borel measure supported on 
E an d satisfying (1.5). (O f cours e such a measure must b e comparable to 
Hausdorff measure.) 

REMARK 6.14 : Th e constants XpfQ i n (6.4 ) alway s satisfy C"1 < Ap? g < 
C. Thi s is easily seen by applying (6.4) t o a cube of diameter < С diam Q 
that contains Ii(Q). 
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7. Building the stopping-time regions, and some of their properties 

In provin g that (C2 ) o r (C3 ) impl y (C4 ) w e shall use stopping-time 
arguments, an d thes e argument s wil l b e ver y simila r to eac h othe r an d 
have a substantial overlap . I n this sectio n we give a  construction o f the 
stopping-time regions that wil l be used in both cases. 

Let E be given. W e assume that E satisfies the weak geometric lemma. 
Suppose that w e are given e , £, 0 < e  < 5 , both of which are as smal l as 
we want, and with 8/e large. Le t k > 0  be large, to be chosen later (but 
not depending on e or 6). Suppos e also that we are given a decomposition 
A =  B U Q, where B satisfies (2.4) , an d fo r each cube Q € Q there i s a 
d-plane PQ suc h that (6.1 ) holds. 

The reader should keep in mind that for us the only important property 
that B satisfies is (2.4). Thu s we do not mind adding cubes to B as long as 
(2.4) is preserved. 

LEMMA 7.1 . Under the preceeding assumptions we can find a new decom
position A = B' U Q', where Q' C Q and B' still satisfies (2.4), and where 
we can partition Q' into a family T of stopping-time regions S such that 
each S satisfies (2.5) and also: 

(7.2) ifQ € S, then Angle (PQ,PQ(S)) < 6; 

(7.3) if Q is a minimal cube of S, then at least one of the children 

of Q lies in B', or else Angle (PQ, PQ(S)) ^  ¿/2 . 

Before proving this — which is not difficul t —  let us make a few re-
marks about how this fits into the big picture. W e want to prove eventually 
that if E satisfies (C2 ) or (C3), then it admits a corona decomposition. To 
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do this it is enough to show that for all sufficiently small e, <$, the stopping-
time regions S provided by the lemma also satisfy (2.6 ) and (2.7) . W e shall 
see in the next section that (2.6 ) i s always true under the circumstances of 
the lemma, while (2.7) i s harder to prove. We shall give some preliminary 
reductions i n that direction after provin g the lemma. 

Let u s prov e the lemma . W e start wit h a  slightly simpler version of 
it. Give n RQ £  A , let Q(Ro) denote th e subse t o f Q of cubes containe d 
in R0. W e first sho w that w e can partition Q(Ro) int o a  family ^(RQ) of 
stopping-time regions with the above properties. 

This is easy, because ther e i s pretty muc h only one way to do it. Le t 
Qo be an element of Q(Ro) o f maximal size (i.e., Qo € Aj fo r j a s large as 
possible). I t is easy to see that there is a subset S of Q(Ro) tha t has Qo as 
its maximal element an d whic h satisfies (2.5) , (7.2) , an d (7.3) . ( 5 can be 
built usin g th e obviou s stopping-time argument. ) Remov e S fro m Q(Ro) 
and repea t th e process : pic k an element of Q(Ro) wit h maximal size, and 
then build the associated stoppin g time region. Repeating this we get our 
partition F(Ro) o f G(Ro). 

For man y purposes this localized version of the lemma is adequate, bu t 
it i s not hard to prove the more global version either. T o do this we need a 
sequence {Rj} o f cubes which are pairwise disjoint, whose union is all of 2?, 
and which have the property that for each £ there ar e at mos t C cubes in 
A* no t containe d i n any of the ijy's . Onc e we have this sequence of cubes 
we se t Q' = UG(Rj), Bf = A\G', an d T = Uf(Rj), an d i t i s not har d to 
check that these choices satisfy th e conclusions of the lemma. 

Let u s indicate how to find such a sequence {Rj}- I f E — Rd, it is easy 
to write down such a sequence of dyadic cubes explicitly , and th e genera l 
construction i s in a similar spirit . 

Fix a  point po € E. Fo r each k > 0 consider the se t o f cubes i n Ajt 
which intersect B(p0,2k) or which have a brother tha t intersect s it . (Two 
cubes i n Aj t are called brothers i f they have the sam e father.) I f we no w 
take th e unio n ove r k >  0  of the cube s s o selected, we get a  sequence of 
cubes which have the desired properties except for being pairwise disjoint. 
The minima l elements (wit h respect t o inclusion) of this sequence give s a 
new sequenc e having all the desired features . 

That complete s the proo f o f Lemma 7.1. W e now give a  preliminary 
reduction that i s useful fo r checking (2.7) . 

Give S €  F,  le t m(S) denot e th e minima l cube s o f 5 . Le t m0(5) 
denote the se t o f minimal cubes o f S whic h have at leas t on e child in 5' , 

38 



7. BUILDING THE STOPPING-TIME REGIONS 

and le t mi(5) denote the Q £ m(S) wit h Angle (PQ,PQ(S)) > 6/2. Thu s 
m(5) =  m0(5 ) U  mi(5), b y (7.3). 

Define Fo, ^ i, and T<i a s follows : 

^0 = {S £ ^ : 

QGm0(5) 

Q I  > Q(S)/4 } 

Fl=(ScF:) 

<?€mi(S) 

Q >  |<?(S)| / 2 } 

^2 =  { 5 € ^ : I  O(S-) \ ( 
QGm(S) 

Q ) I > \Q(S)\ /4 } 

Clearly, then, f =  f o U / i U ^ -

LEMMA 7.4 . Fo r z  = 0,2 . 

(7.5) 
S cfi 

Q ( S ) C Ä 

\Q(S)\ < C\R\ for all Re A. 

Thus (2.7) holds if we can prove (7.5) for i = 1. 

The cas e i =  2  easil y follow s fro m th e fac t tha t th e set s Q(5 ) \ 

Qcm(s) 
Q) are pairwise disjoint in Ü7, which is itself a  consequence of the 

pairwise disjointness 01 the i s an d (2.5) . The  case 1 = 0  can be derived 
without difficult y fro m th e requirement that B1 satisfy (2.4) . 

Let u s sa y a  few words more about ho w we'll sho w that (2.7 ) hold s 
when E satisfies (C2) . Simila r ideas will be used for (C3). 

For eac h 5 £ w e define a function d(x) on Rn by 

(7.6) dix) = inf 
Qes 

{dist(a:, Q) + diam Q\. 

This function encodes a lot of information about 5 , e.g., where its minimal 
cubes ar e ver y small . Als o defin e an associate d "summin g region " a = 

a(S) C E x Z by 

(7.7) a = {(x,£) EExZ: x £ k0Q(S) an d 

7od(z)<2'<diam<2(S)}, 

where the constants ko (large) an d 70 (small ) wil l be chosen later. (The y 
will not depen d on e, 6. Also , k will be chosen after &o , and wil l be much 
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larger.) On e should thin k of a a s an enlarged and smeared-u p versio n o f 
{(x,t) : x e Q for some Q £ S H  Ai}. Give n an od d smooth function tp 
with compact support , set 

(7.8) J(S,w)= 
(x,l)co E 

<MX -  y)dv I dx-

LEMMA 7.9 . Suppose that we axe given k, e, 6, ko, and j0, and let J7 be 
as in Lemma 7.1. To prove that (2.7) holds if E satisfies (C2), it suffices to 
find a finite family * ofifi's such that for some r >  0 

(7.10) 
wcvv 

J(S,*/0 >  r\Q(S)\ whenever S £  T\. 

Here r, *  ar e allowed to depend on all the constants above, but not on S 

This follows from Lemma 7.4 once we show that for any 

Q(S)CR 
J(S,i/>) < C\R\ fo r all R G  A . 

This inequalit y i s a n immediat e consequenc e o f (C2 ) and th e fac t tha t 
<j(5), S €  J7 , have bounded overla p in E x  Z. Thi s last fac t come s from 
the disjointnes s o f the 5' s an d a  little definition-chasing: i f (x,£) E  &(S), 
then there i s a Q £ 5 such that 

dist(x,Q) <  JO12*)2* ^  diam Q < 70-12'. 

For an y given (z,£) , ther e are only a bounded number o f cubes with these 
two properties , and so there are only a bounded number of 5's with (x, £) £ 
ff(5)-

Thus t o prove that (C2 ) implies (2.7) we want t o sho w that i f ko is 
large enough an d 70, e , o,an d e/6 are small enough, then we can find \& 
such that (7.10 ) holds. Th e proof of this is complicated but th e basic idea 
is fairly simple . W e first show that ther e i s a  Lipschit z function A (on 
some d-plane) whose graph approximate s E ver y well on the scale of d(x), 
with error s o n the orde r o f e. W e use thi s approximation t o push down 
estimates o n J from E t o the graph of A, proving eventually that th e lef t 
side of (7.10) control s a  square function applie d to A, modulo terms that 
are small compared to <5, and that this square function control s the L2 mean 
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oscillation of VA In other words , if the lef t sid e of (7.10) is very small, we 
show that VA mus t be almost constant, in a way that is incompatible with 
S G  T\. (I f S 6  T\, the n the graph o f A cannot be too flat, b y definition 
of T\ an d mi(5). ) 

The proof that (2.7) holds if (C3) does will be very similar in structure, 
the mai n differenc e bein g tha t w e have t o wor k with a  differen t kin d of 
square function. 

REMARK 7.11 : A s we mentioned in Section 2, this kind of procedure wil l 
always produce a  corona decomposition for E i f there is one. Tha t is , if E 
admits a corona decomposition, then it satisfies the weak geometric lemma, 
and we can apply Lemma 7.1 (with Q taken to be exactly the set of Q's for 
which there is a PQ such that (6.1) holds) to obtain the good regions S €  F. 
The result s of the nex t sectio n impl y that (2.6 ) holds, whil e Lemma 7.4 
tells us tha t w e need onl y check (7.5 ) for i =  1  to prove (2.7) . Thi s one 
can do using the assumption that E admit s a corona decomposition, if the 
parameters are chosen correctly. 

[The reason for this last assertion is that if Q G mi(5), an d i f E has a 
corona decomposition with rj chosen small enough (depending on £), then it 
is not hard to show that there must be a cube R such that Q C R C Q(5) , 
and suc h that R i s either a  bad cub e o r a  minimal o r maximal cub e for 
a stopping-tim e regio n associated t o the coron a decompositio n of E wit h 
constant rj.] 
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8. The construction of the approximating Lipschitz graph 

Throughout thi s section we use th e sam e assumptions and notation s 
as in Section 7. Fi x 5 G  T a s in Lemma 7.1, and set P = PQ(S). Le t P1- be 
an (n — <i)-plane orthogonal to P, and let II and U1- denote the orthogonal 
projections ont o P  an d P-1 . W e shall ofte n identif y P  wit h Rd , and i n 
particular we equip P wit h dyadic cubes. W e denote by L the diamete r of 
Q(S). 

In additio n t o the function d(x) defined in (7 .6 ) , w e shall also use th e 
function D defined on P bv 

(8.1) D(p) = inf 
ren-i(P) 

d(x) = inf 
Qes 

(dist(p,n(Q)) + diamQ} . 

PROPOSITION 8.2 . There is a Lipschitz function A : P —• P x with norm 
< C8 such that 

(8.3) dist(x,(n(ar),^(n(x)))) <  Ce d(x) 

for all x € koQ(S). 

Thus th e point s o f k0Q(S) ar e clos e t o th e grap h o f A. A s with 
Lemma 7.1 , w e only nee d t o kno w that E satisfie s th e wea k geometric 
lemma for this proposition. 

It wil l b e very important tha t w e have an e in (8.3 ) instead o f a 8. 
When we later tr y t o push square function estimate s fro m E dow n to th e 
graph o f A, we will need to know that the errors ar e small compared to 8, 
and (8.3 ) i s one of the reasons why. 

Set Z = {z 6  E : d(z) =  0} , so that D(p) = 0 iff p G  U(Z). W e first 
define A on I I (Z) . T o do this, we have no choice: we must prove that I I is 
1-1 o n Z, an d tha t it s inverse is Lipschitz. We shall even have use for the 
following more general result. 
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LEMMA 8.4 . Ifx,yce 10kQQ(S) satisfy \x-y\ > 10~3 min(d(x),cf(y)), then 

i n ^ - n ^ y ) ! ^ 2 * | n ( x ) - n ( y ) | . 

Assume that \x — y\ > 10 3d(x). Le t Q £ S b e such that 

dist(a;, Q) + diam Q < C\x —  y\. 

We ca n replac e Q by one of its ancestors , i f necessary, t o ge t dia m Q ~ 
\x — y\. B y our assumptions in Section 7, there is a d-plane PQ fo r which 
(6.1) holds , and so 

dist(x, PQ) + dist(y, PQ) < Ce\x - y| < £|x - y|. 

The lemm a now follows from Angle ( P , P Q ) <O 

Prom the lemma we see that 

(8.5) A(U(z)) = U±(z) for zeZ 

defines a 25-Lipschitz function o n I I (Z). T o define A on the rest of P we'l l 
use arguments from the proof of the Whitney extension theorem (see [St]), 
and i n particular a variation of the Whitney decomposition of P \  I I (Z) . 

For eac h x 6 P wit h D(x) > 0 and x not on the boundary o f a dyadic 
cube, let Rx be the largest dyadi c cube in P containin g x an d satisfyin g 

(8.6) diami?* < 20- 1 inf 
ucRx 

D(u). 

Let iZ,- , z £  J  b e a  relabellin g o f the se t o f al l thes e cube s Rx withou t 
repetition. Thu s th e i?,' s ar e pairwise disjoint, the y cove r P \  I I (Z) , an d 
they do not intersec t I I (Z) . [Her e we use the convention that dyadic cubes 
are closed but ar e called disjoint i f their interior s ar e disjoint.] 

LEMMA 8.7 . If 10Ri n  lORj ^  0 , then 

C 1 diam Rj < diami?, <  C diam Rj. 

It i s clearly sufficient t o check that 

(8.8) 10 diam i?a <  D(y) < 60 diam R{ fo r all y € lOi?; . 
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Because D is Lipschitz with norm 1, 

D(y)> min 
ueRi 

D(u) -10 diamR i >  10diami?2. 

For th e secon d inequality in (8.8 ) we use the fact tha t th e father R o f R{ 
fails (8.6) . Thu s there is a z G  R such that D(z) < 20 diamR = 40diami?2, 
whence 

D(y) < D(z) + 20diamiîi < 60diamiîa. 

Let u s procee d now to th e constructio n o f A o n the bal l Uo = P fl 
i?(n(xo), 2k0L), where xo is any fixed point of Q(5), and L is still diamQ(5). 
For future us e we set 

(s:9) Uj = Pn B(U(x0),21~:>k0L) fo r all j €  N. 

We also restrict ourselve s to the set I0 of i 6 / fo r which Ri meets Uo. 
Given i € To, let us choose a cube Q(i) € S such that 

(8.10) C 1  diamiî,- < diamQ(i) <  C diami?,- an d 

dist(n(Q(»)),iJ.-) <  Cdiamiîi. 

The existence of such a Q(i) is not a problem. I f p is any point of ij,-, ther e 
is a cube Q G S such that 

dist(p, II(Q)) + diam<2 < 2D(p) < 120 diam Ri, 

by definitio n of D(p). W e then take Q(i) to be a  suitable ancesto r o f Q 
(possibly even Q itself) . 

Note that a  single cube Q may correspond in this way to more than 
one (bu t no t too many) Ri. 

Let Bi denot e the affin e functio n fro m P t o P1- whose graph i s th e 
d-plane Pq(i)> Becaus e of (7.2), the Lipschitz norm of Bi i s < 26. 

For each i let qi be a C2 bump function suc h that 

(8.11) 0 < 4>i < 1, h = 1 on 2Ri, i>i =  0 off 3iî,, an d 

I V l q i I <  C(diam Ri)'1 fo r I = 1,2. 

Because o f Lemma 8.7, ther e are , fo r each i , a t mos t C cube s Rj wit h 
3Ri f l 3Rj ^  0 ; in particular th e supports of the ^  hav e bounded overlap. 
We can define a partition of unity for V = 

iei0 
2Ri by 

(8.12) qi(p)=qi(p) 
jeio 

hip) 

- 1 

for p G V, i G /o-
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Using Lemma 8.7 again we have that 

(8.13) I V V i I  < C(diamRi)-e, £=1,2. 

We define A on F b y 

(8.14) A(p) = 
ieio 

<t>i{p)Bi{p). 

Notice that V f l I I (Z) = 0  (by 8.8), and o f course U0 \ U(Z) Ç V, s o that 
(8.5) an d (8.14 ) combined define A on Uo. Le t us prove that A is Lipschitz 
with norm C6 on Uo. 

We first check that the restriction o f A to 2Rj, j G  io3 is 35-Lipschitz. 
Given p, q € 2Rj w e have 

(8.15) 
\A(P)-A(q)\<\ 

i 
* 0 > ) { f t ( p ) - * ( « ) } I  +  I 

i 
{Ml)-h(p)}Bi(q)\| 

< 26\p-q\{ 
I 

<!>&)}+ I 
i 

(qi(p)-qi(q))ébi(q)-bj(q)I 

(In th e last step we used the fact tha t (^i(p ) ~ q i ( q ) ) = 0 ) I f <t>i(p) ^  0 
i 

or ^ j (^ ) 7̂  0, Lemma 8.7 give s diamilj ~  diamii p an d the n we get fro m 
(8.13) that 

(8.16) I MP) "  4>i(Q) I  < ^(diamiï,)- 1 I  p - «  I . 

To estimate B{(q) — Bj(q) w e use the following lemma . 

LEMMA 8.17 . IflORi D  lOiî; ^  0 , then dist(Q(î), Q(j)) < C diam Rj and 

(8.18) I Bi(q) - £ , ( $ ) I  < Cediamo fo r aii ç € lOOiî , 

To prov e th e firs t part , pic k an y x €  Q(j) an d V € Q(0 - W e may 
safely assum e that \x — y\ > |d iamQ(j) , an d sinc e d(x) < diamQ(j) b y 
definition, w e can appl y Lemma 8.4 to obtai n 

I H ^ x) - nx(y ) I < I n(x) - n(y ) I • 

Because |II(a:)—Il(y) | < C diamUj by (8.10) (and Lemma 8.7), w e conclue 
that 

dist (Q(i), Q(j)) < \x-y\ < C diam Rj. 

46 



8 THE CONSTRUCTION OF THE APPROXIMATING LIPSCHITZ GRAPH 

This implies that Q(j) C  kQ(i) (i f k is large enough), and (8.18 ) now 
follows at once from Lemma 5.13 (with Q =  Q(j) , P i =  Pq(j)-> P 2 =  Pq(i))-

Combining (8.15) , (8.16) , and (8.18 ) we get 

(8.19) 
\A(p) - A(q)\ < 26\p-q\ + C(diam Jfy)"1!?- q\edmmRj 

< 36\p-q\ fo r p,q G  2Rj, 

if e/6 is small enough . W e used the fact tha t there are a  bounded numbe r 
of i' s for which <f>i(p) —  (t>i(q) ^  0  for fixed p, q. 

Next, let us show that 

(8.20) \A(p) - A(po)\ < C6\p - po | i f Po € n ( Z ) , p G 
jei0 

Rj. 

Choose j s o that p & Rj, an d pick y € QO") . Thu s we have 

\A(p) — A(p0)\ < ax + a2 + a3 + a4, wher e aj =  \A(p) — Bj(p)\, 

a2 = IBAp) - B,(n(y))|,a3 = |5,(n(y) ) - IIx(y) | , an d 
a4 = IN-'-(y ) - A(Po)\. 

Notice that D(p) < \p—p0|, since D(p0) — 0, and so diamijy <  \p—pQ\. 
From the definitio n o f A and Lemm a 8.17 we get 

ai < CediamRj < Ce\p — p0\. 

Next, a 2 ^  2<5| p — n(y) | < CSdiamRj < C8\p — p0|, becaus e of the 26 -
Lipschitzness o f Bj an d (8.10) . Th e definition o f Bi gives 

a3 <  2dist(y, Pq(j)) < 2ediamQ0 ) <  Ce\p-p0\. 

To estimate a\ w e apply Lemm a 8.4 to x = (pojA(po)) G  Z an d y to get 

a4 = |nx(y ) -  U^x)] < 2*|n(y) - p o | < C6\p-p0\. 

(Here we have used (8.10) for the last inequality.) Combinin g these various 
estimates gives (8.20). 

Combining th e fac t tha t A i s 26-Lipschit z o n H(Z) wit h (8.19 ) an d 
(8.20) i t i s eas y t o se e that A i s Lipschit z wit h nor m <  C8 on UQ. W e 
can use the Whitney extension theore m t o extend A from Uo t o a Lipschitz 
function o n all of P wit h norm <  C8. 

We now turn to th e proo f of (8.3). I f x G  Z, the n x i s on the grap h 
of A , and ther e is nothing to prove . Fo r the remainin g cas e we'll use th e 
following lemma, which will also be needed later. 
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LEMMA 8.21 . Let p £ U0 and r > 0, D(p) < r < k0L, be given, and let 
Q e S be such that dist(p , II(Q)) <  Cr and C_1r <  diam Q <  Cr. Then 
n_1(B(p, r )) fl 2k0Q(S) is contained in CQQ, where Co depends only on C 
and ko. 

As a consequence, 

Cô1d(x) < D(U(x)) < d(x) for all x e k0Q(S), 

where Co depends only on k0. 

To prove the lemma, pick x £ Q and let y be any point in II"1 (B(p, r))fl 
2koQ(S). I f \x — y\ < diamQ, then y £ CoQ, as promised. Otherwise , we 
can use the fact tha t d(x) < diamQ to apply Lemma 8.4 to get 

|nx(aO - n-HYI L <  \U(x) - U(y)\ < CdiamQ. 

(The las t inequality come s from our hypotheses concernin g p, Q, and r. ) 
The secon d affirmatio n o f the lemm a i s obvious when H(x) £ n(Z); 

apply Lemm a 8.4, fo r instance, to se e that n_1(II(a:) ) fl k0Q(S) contains 
only one point. Otherwise , if II(:r) £ n(Z) , tak e p =  H(x) an d r = D(p). 
By definitio n o f D(p) there is a  Q as above . Th e first par t o f the lemm a 
tells u s tha t x £  CQQ, whenc e d(x) < CoT>(U(x)). Th e other inequalit y 
follows from the definitions . 

Coming back t o (8.3) , le t x £ k0Q(S) be such that d(x) >  0 , and se t 
p =  II(x) . Th e lemma tell s u s tha t D(p) > 0 , an d s o p lie s in som e J?, . 
Applying the lemma with r = D(p) and Q = Q(i) , we get that x £ CoQ(i)-

We'll choose k to be much larger than Co, and s o (6.1) gives 

III-^x) -  Bi(U(x))\ < 2ediamQ(z) <  CeD(p) < Ced(x), 

and sinc e \Bi(U(x)) -  A(II(:r)) | < CeD(p), b y Lemma 8.17 and th e defini -
tion of A, we get |n-L(x ) -  A(U(x))\ < Ced(x), a s desired . 

This completes the proof of Proposition 8.2 . W e end this section with 
one more estimate o n A. 

Lemma 8.22 . | V 2 A ( u ) | <  Celiami?,-)-1 ifu €  2Rj. 

Indeed, if dQda i s any second partial derivative, 

dad3A = dadpÇy^ faB,) 

(dada4>i)Bi + (da<t>i)(daBi) + da^idaBi). 
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(Since Bi i s affine dadsBi =  0. ) Because dQ<f>i = dQ <t>i) =  0 , w e have 

dQdpA — dotdp(j>i{Bi-Bj) + O&qi(aBbi-aBbj 

+ dp<j>i(daBi - daBj). 

It i s not har d to obtain the desire d estimate from (8.13 ) and Lemm a 8.17 . 
(We also use th e fac t tha t |Vi?, - — VU^I <  Ce if u £  supp(V<^,) ; this ca n 
be derived from Lemm a 8.17 , o r proved using a very similar argument.) 
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9. Pushing square function estimates from E to the graph of A 

In thi s section, and i n the followin g tw o sections a s well , w e assume 
that E satisfies (C2) , an d we want to prove that E must then satisfy (C4) , 
We follow the outline given at the end of Section 7, and we make the same 
assumptions an d notations a s in Sections 7 and 8. 

To implement the program described in Section 7 we must first specify 
the subsets Q and B of A. W e take Q = W(e , a s defined in Section 6. 
and B = A \ Q. A s we said in Section 7, k is large and will be chosen later, 
but i t wil l not depend on €, 6. 

Let J = J(S,i/>) b e as i n (7.8) , wit h ip fixed.  On e of the thing s we 
have to do to carry out the program described in Section 7 is to transform 
an estimate on J into an estimate for a suitable square function applie d tc 
A, an d it is this issue that we begin to take up now. 

Let fi denote the measure on P obtained by pushing down Hd \koQ^ 
using II , i.e., 

n{F) = \Il-\F)nk0Q{S)\. 

Define I =  I(S, ip) by 

(9.1) 1 = 
(q,A(q))) P 

<J>t((p,A(p))-(q,A(q)))d„(q) f  dp, 

where the "summin g region" G\ C P X  Z is defined by 

(9.2) *i =  {(P,t) ePxZ: P6U4, Ci7o£(p ) <2£< £}, 

U4 is as in (8.9) , L i s still diamQ(5), C\ > 1 will be chosen soon (large, 
and independent o f e, 6, and 70), and dp denotes Lebesgue measure on P. 
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PROPOSITION 9.3 . There is a constant C > 0, independent of 6 and e, such 
that 

I<CJ + Ce2\Q(S)l 

at least if we assume that supp é C  i?(0, l 10 k0). 

Set df(x) = 
E 

V^(# — y)dy and 

bt(x) = 

E 

Vv((II(z), A(U(x))) - (II(y) , A(U(y))))dy. 

We first  want t o replace at by hi in the integra l that define s J , wit h only 
small errors. Actually , we shall even ask for less than that, namely, 

(9-4) Ji <2J + Ce2\Q(S)\, 

where 

(9.5) J, = 
<*.<)€<T2 

\bAx)\2dx, 

(9.6) CT2 = ((X,L) € E x  Z : x  e 
n 
2 

* o Q ( 5 ) , y0d(x) <2e< L}. 

To se e this, we first observe that for (x,£) 6 Oi we have 

M * ) - M * ) l < C I | V < / > l l o o 

EnB(x±k02') 

e(d(x) + d(y))2-£2-lddy. 

If (xj£) e <?2 and y i s i n E D  B(x, l 
10' fc02<), then d(x) < l0~12i an d d(y) < 

d(x) + • 
10 fc02 <  C 2 .  Thus we also have |a^(x ) — bi(x)\ < Ce , whence 

\ae(x) - 6*(x)| 2 <  Ce2 

EnB(x,^k02') 

(d(x) + d(y))2-e2-iddy. 

Consequently, 

h < 2  J + 2 
(x,l cO2 

bl(x)— a ^ ( x ) | 2 d x 

< 2. 7 + Ce2 
(x,l cO2 

EnB(r,^fc02') 

(d(x) + d(y))2-'2-"dyd x 

< 2 / + Ce2 
(*,<)6»2 

2_'d(xUr +  Ce2 
yefc0Q(5) 2<>C-id(v) 

2-^(y)dy 

< 2  J +  Ce2 

1 
2 fcoQ(S) 

dx+ Ce2 

koQ(S) 

iy<2J + Ce2\Q{S)\, 
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as desired . 
Next w e want t o push our integral s dow n to P. Becaus e th e point s y 

that appear in the definitio n o f bi(x) always lie in k0Q(S) when (x,£) G  <r2 
we have that 

(9.7) b,(x) = 
p 

M(p,Mp))-(^Mq)))Mq), 

where p = H(x). Le t us check that 

(9.8) h = 
(p,l)co3 

\ce(p)\2dfi(p) <  Jl 5 

where cAp) = 
P 

il>e((p,A(p)) - (q,A(q)))dn(q) an d 

(9.9) <r3 = {(p,£)ePxZ: Peu3, 
1 ?iloD(p) < 2e < L}. 

(Thus < j3 is a little larger than the regio n o\ use d to define I.) 
Because o f (9.7) , w e only hav e t o chec k tha t i f (p,£) G  03 an d x G 

n - ^ p ) D  k0Q(S) then (x,£) G  cr2. Using (6.1) with Q = Q(S) w e see that 
such an x must lie in \koQ{S). Also , if |d i s larger than the constant Co 
from Lemm a 8.21, then d(x) < \dD( p) < 7̂ "12̂ , and s o (x,i) G  a2. This 
establishes (9.8) . 

To finish th e proof of Proposition 9.3 we have to be able to replace th e 
measure dp,(p) i n J2 b y dp. Notice that dfi(p) > dp on I I (Z) , whenc e 

(9.10) 
U(Z) 21<L 

\ce(P)\2dp<J2. 

To control the rest we restrict our attention to each Ri for which RiOUi 7̂  0 
and compar e dfi(p) to dp on R{. Le t /4 = {i : R{ fl U4  ̂0} . 

LEMMA 9.11 . Hi e h an d T  is a cube satisfying T C  10i2, and diam T > 
Me diam i?2 with M larg e enough (not depending on e or 6), then 

1 
C 

T 

dp< 
T 

du(p) < C 
T 

dp. 
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Here C does not depend on e or 6. 

To prov e the lemm a we first appl y Lemma 8.21 t o an y p G  Ri wit h 
r = 60 diam Ri and Q = Q(i). W e get that Ii~1(10Ri)nk0Q(S) i s contained 
in CoQ(i) fo r some Co- Th e restriction o f fi to 10i22 is therefore the sam e 
as the restrictio n t o 10-R , of the measur e ^Q(t)} p introduce d i n Sectio n 6 
(see (6.3)) , a t leas t i f k > CQ. 

We chose our good set of cubes Q to be W(e, A:), so that (6.4 ) hold s for 
each Q 6 Q, for Q = Q(i) in particular. W e also pointed out in Remark 6.14 
that the constant A , = A Q ( , ) P satisfie s C- 1 < A2 - < C. Lemm a 9.11 follows 
immediately from (6.4 ) an d definition-chasing . 

We wan t t o use the lemm a to contro l J i n terms o f Partitio n Ri 
into dyadic cubes Tij suc h that 

Me diam Ri < diamTj j <  2Mediami?, , 

where M i s as in the lemma. Le t m denote the minimum of |c^(p)| on T2J. 
Straightforward estimates o f the oscillation of ci(p) over T, , yield 

Tu 
I ct(p) I2 dp < 

Ti,j 

[m + C e diam Ri2 *]2 dp 

< Cm2 
Ti,j 

dii(p) + Ce2(diaxaRi)22-2i 
Ti,i 

dp 

< c I cfo) | 2 dfi(p) + Ce2(diamRi)22-2t 
Ti,j 

dp. 

Summing this in j w e get 

\ce(p) \2dp<C 
Ri 

I ce(p) |2 dfi(p) + Ce2(diamRi)22-2i 

Ri 

dp. 

Before summing this in i we need some notation an d a n observation. 
Let C(i) denot e th e se t o f ̂ 's suc h that (p,i) € o\ fo r som e p €  Ri. I f 
£ e C(i), then 2t > CnQD(p) > \Cif0D(p') fo r any othe r p' €  Ri, an d 
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(pl\£) £ a3- Henc e 

(p,l)col 

PeP\u(Z) 

I c€(p) |2 dp < 
i cI4 eec(i) Ri 

I ct{p) | dp 

<c 
i cI4 lcz(i) Ri 

\ct(p) \2da(p) + Ce2 
i cI4 eec(i) 

2-2'(diamfl,)2 
Ri 

dp 

< c 
(p,l)co3 

\ct(p) \2d^p) + Ce2 
i cI4 Ri 

dp 

<CJ2 + Ce2\Q(S)\. 

(For the second to last inequality we used (8.8).) 
This last estimate, combine d with (9.10), (9.8) , and (9.4) , finishes th e 

proof of Proposition 9.3. 
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10. Controlling a square function of A in terms of J(5, ip) 

According to the progra m outline d a t th e en d of Section 7 , we want 
to show that fo r suitabl e choice s of €, <$, etc., w e can find a  finite family 
\I> of t/>'s so that (7.10 ) holds . T o do this we want t o sho w that w e can 
control squar e functions o f A i n term s o f ,7(5 , */>), modul o certai n type s 
of errors . Propositio n 9. 3 wa s a first step in this direction , bu t w e need 
something better. Th e problem is with J in (9.1), in particular its nonlinear 
dependence on A and the appearance o f dfi(q) instead of dq. In this section 
we show that i f \I> is chosen properly we can indeed control a more usefu l 
square function o f A in terms of 

wcvv 
J (V ,S ) . 

We continu e t o us e th e sam e assumption s an d notation s a s i n th e 
preceeding 3  sections. Le t us no w choose the clas s \I > that w e shall work 
with. 

Let PQ and PQ1 - denote the translates of P an d P1- tha t pass throug h 
the origin. Pic k v G C?°(Po) which is radial, not identically zero, supporte d 
in 5(0, i 

20 , zero on a neighborhood of the origin, and satisfie s 

Po 

v(p)f(p)dp =  0 

for al l polynomials / o f degree < 2. 
We shal l sometime s commi t th e followin g mino r abus e of notation . 

Given a function o n PQ, such as */, and a function o n P, such as A, we note 
by v * A the function o n P define d by 

p 

v(p - q)A{q)dq. 
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To simplify notation s w e allow our ip's to be vector-valued. Writ e the 
generic element of Rn a s (p , iu), p G  P0, w G PQ-. Fo r our first %j) we take 
any odd, C°° function wit h compact support an d values in PQ~, an d which 
satisfies 

(10.1) ip(p,w) = v(p)w fo r all (p,w) such that \w\ < |p|. 

This function wil l give us control on A, but w e also need a function to give 
us control on the measure dp,. Fo r our second ip we take any function with 
values in P which is odd, supporte d i n i?(0,1), and satisfie s 

(10.2) ijj(pjw) = v(p)p fo r all (p, w) with |u; | < |p| . 

We can make these choices in such a way that the family of all */>'s that 
arise i s finite,  by making sure that th e se t o f all PQ' s tha t aris e i s finite. 
This we can do, in a way that depends on e. (W e could also use a slightly 
different approac h i n which the family o f ^'s i s much smaller. This  would 
complicate further th e notations an d presentation o f our argument , bu t i t 
would not present an y serious problems.) 

We take for our family \I > the se t o f 0's just describe d (in (10.1) an d 
(10.2)) as well as some of their dilates . Tha t is , we also take the function s 
sidi/>(six), if) as above , wher e s =  2mo , j =  1 , 2,...,mo —  1 , where mo 
is a  larg e integer t o b e chosen . (I t wil l no t depen d o n E o r an y o f the 
other constants ; just rc, d, and the choices of ^'s above. ) W e denote these 
functions b y rl>*{x\ and we take ^{{x) =  2~id^ ( | r ) as always. Defin e 
v\ similarly. 

As we said before, we want to control a square function o f A in terms 
J(S,tl>>\ *l>> G  Se t 

(10.3) Ij,l=Ijl(S)= 
<.P.t)€<T4 

2-2* 

P 

2 
u}(p - q)A(q)dq dp, 

where 

*4 = {(P , t) G  P X  Z : distfp, Ti(Q(S)) < 100L an d 
(10.4) 

yo 0 
1 
2 D(p) <2£ < 0L}. 

Here 0 > 0 is a small constant t o be chosen later (befor e e). 
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PROPOSITION 10.5 . Assume that 

(10.6) J(S,^)<e2\Q(S)\ 

for all ifti £ w If e, 8, 7o, 6, and k0 1 are small enough (how small e has to 

be will depend on the other constants), then for j =  0 , . . . , m0 — 1, 

(10.7) I{< [Ce2 + C'(LO+62)S2] \Q(S)\, 

where C, C do not depend on e, 6, or 0, and C does not depend on j0. 

We should perhaps point out that this proposition also depends on mo 
being sufficiently large, but thi s is not important becaus e our choice of m0 
will not depend on the other constants . 

We shall prove Proposition 10.5 in this section, and use it to show that 
(7 .10) hold s (with r =  e2) in the next section. 

Suppose that (10.6 ) holds , so that Propositio n 9.3 ca n be applied to 
conclude that 

(10.8) I=I(S,^)<Ce2\Q(S)\ 

for eac h wj € ^ . Le t us write down explicitly what that means . Fo r %j> a s 
in (10.1) , (10 .8 ) becomes 

(10.9) 
(p,l c o2 P 

sn-lvÌ{p - q){A{p) - A(q))df,(q) 2 dp < Ce2\Q{S)\, 

while for if) as in (10 .2 ) w e get 

(10.10) 
(p,l c o2 

%*I*(P) I dp<Ce2\Q(S)\, 

where u(p) = v(p)p. I n both cases j run s from 0  to m0 — 1. 
To derive (10.7) fro m (10.9 ) w e want to replace dfx(q) in (10 .9 ) b y dq 

with onl y acceptable error s incurred . T o do this we shall us e (10.10 ) t o 
show that dp, can be approximated by dq. W e shall also need the followin g 
lemma to help control the errors. 
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LEMMA 10.11 . Let r, M be given, 1 < r < ^  ( 1 < r < oo if d = 1), 
M >  0. Fo r each p £ P an d £  Z there is an affine function APi£ : P —• P1-
such that 

(10.12) 
l 

2-ld 

PnB(p,M2l) 
\2-i[A(q)-AP9t(q)] \rdq 

2 r 

dpd62t(t) 

is a Carleson measure on P x  R+ with norm < ( ^ ( M ) ! ^ ^ ! ! ^ (whic h is of 
course <  C(M)62). 

See [Do] fo r a proof (o r [Jl] for d = 1) . I n [Do] th e case of VA £ L°° 
is not discussed , bu t thi s lemma follows immediatel y from the result s for 
VA £ L2. 

Notice tha t th e lemm a i s stil l tru e i f we also requir e tha t APi£ b e 
independent o f p for p inside a dyadic cube with sidelength 2£. Thi s is not 
hard to derive from the lemma . [On e way to do this is to observe that if 
M > 2\/d , Q is any dyadi c cube in P  wit h sidelength 2* , and i f a i s an 
affine functio n s o that \Q\ J 

Q 
A — a | i s as smal l a s possible , then for all 

p £ Q we have 

(10.13) sup 
Q 

\Ap,i-a\<C2-u 
PnB(PiM2l) 

IA-Ap,lI. 

Thus we can replace APj£ b y a withou t changin g much.] Fro m now on we 
assume that APie has this extra property. 

There are two easy consequences of this observation that we shall use. 
The firs t i s that 

(10.14) 
e 

2-i[A(p)-APii(p)} \2dpd62<(t) 

is a Carleson measure o n P X R+. (Tak e r = 2  in (10.12) and use Pubini.) 
The secon d is that APit satisfies 

(10.15) V , A , , , ( ? ) | < C6, \A(p) - APtl(p)\ < C62e. 

We shal l now use (10.10) to replace A in (10.9) by A — APj£. Afterward s 
we us e Lemma 10.11 to control the errors that arise when we replace dp, by 
something more convenient. 
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LEMMA 10.16 . Fo r j =  0 , l , . . . ,m 0 -  1 , 

(p,lcOl p 
sj2-£vì(p-q)[APAp)-ApÀ<l)}M<l) I2 dp< Ce2\Q(S)\. 

Indeed, because APie(q) is an affine function , 

P 
8Ì2-lvÌ(p -  q) (Apii(p) - APii(q)) dp{q) 

is, for each » , L a  linear combination of integrals of the form 

P 

sJ2 lv\(p - q)(pi - qi)dfi(q), 

with coefficients that ar e dominated by C6 (because of (10 .15)) . Her e pi 
denotes the ith component of p with respect to some basis. Thi s integral is 
just the ith component of v\ * //(p), and so the lemma follows from (10.10) . 

Combining Lemma 10.16 with (10.9 ) yields 

(10.17) 
(p,lcol p 

<*(«)<fo(«) \ dp<Ce2\Q(S)\, 

where 

(10.18) &p,l(q)= M-'AiP ~ «) IMP) ~ A{q) - APti(p) + APtl(q)]. 

The advantag e of (10.17 ) ove r (10.9 ) i s that w e have better contro l over 
aPie(q) (coming fro m Lemm a 10.11 ) tha n A(p) — A(q), an d thi s wil l b e 
needed when we try to replace dfj,(q) by something better . 

To analyze a using (10.10 ) w e first need to understand the operator 

(10.19) 17 =  log s 
MN —1 

¿=0 

oo 

¿ = - 0 0 

vil*vkm*f 

Here we include a scalar produc t i n the convolutio n v\ *v\. (Remembe r 
that v is vector-valued.) Le t rj(£) be the Fourier transform o f v * v. 

Because each component of v is real-valued and odd, each component 
of v i s imaginary, and so r\{£) <  0  everywhere. Also , rj i s radial, becaus e 
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v i s radial and v(p) = v{p)p. Sinc e we required that v have two vanishing 
moments we have that (n(£))  <  C| f |2. Thes e properties (and the fact that 
77 i s rapidly decreasing) imply that 

oo 

0 
w: 

dt 

t 

is a finite negative constant. 

Set X(0 =  log s 
mo —1 

7=0 

00 
*=-cx 

i ;(*->2 '0, so that (Tf)A =  A/ . W e can 

write À  as 

A(0 = 
m0—1 

>=0 

00 

*=-oc 

s-j+l2l 

amsp 
C(p)a(p)^P 

dt 

t 

As mo gets large, A(£) tends to •00 
'0 aoxi dt 

t 
and so our previous remarks 

now make it clear that there is a constant a > 0 so that 

1 

2 a < - A < 
a 

2 a 

if m0 is large enough. (Remembe r that 5  = 2 1 
mg We shall assume from 

now on that m o is sufficiently large for this to happen. Thu s T i s invert-
ible, (T_1(/)) A =  A - 1 / , an d T-1 can be written as a convolution singular 
integral operator such that th e jth derivative s of its kernel are dominated 
hv \n\-d~J 

Set C = T *(£) , so that £  is also vector-valued. W e have that 

(10.20) 
(o) IV>C(P)| < C( j ) ( l +  \p\rd-2-j, i = 0 , 1 , . . . 

(6) C(p)a(p)^P = 0 fo r all affine functions a(p). 

These propertie s o f £  follow fro m th e fac t tha t v i s smooth , compactly 
supported, an d satisfies (b) , an d the estimates on the kernel of T"1 noted 
above. 

Bv definitions we have that 

(10 .21) a — log s 
m0—1 

j=0 

00 

¿=-00 
C(p)a(p)^P 

where # ( p ) =  s^d2-idC(s^2"£p), and wher e the serie s converge s in th e 
sense of distributions. [Agai n this includes a scalar product i n ^ *  v\\ W e 
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are going to use this formula to spli t p into three pieces , of which one is 
smooth and the other two will produce contributions to (10.17) that can be 
controlled. Th e remaining part of (10.17) (comin g from th e smooth piece) 
will be used to control Ii an d thereby prove (10.7) . 

Let i j j , j G  /, be the family o f cubes from Sectio n 8, with the corre-
sponding partition of unity {<j)j} of P \ I I (Z) . 

Let us write u = / + q + h, where 

(10.22) 

f(p) =log s 
mo —1 

J=0 21>L 

a * v\ * fi(p) 

+ logs 
mo —1 

2<<L P\U4 

£f(p — w)v\ * p,(w)dwj 

(10.23) g(p) = log s 
mo — 1 

?=u (w,l)col 

Ci(p — vo)vl * p(w)diVj 

(10.24) h(p) = log s 
mo —1 

j=o (™>0 Ge 

f^(p —  w)v\ *  p(w)dw. 

For the definition of h we have used e to denote the se t {(w,£) G  P X  Z : 
w G C/4,2^ <  CijoD(w)}j wher e C\ is as in the definition ( 9 . 2) o f G\. Thes e 
sums should be viewed as converging in the sense of distributions. 

We want to replace the dp(q) in (10.17 ) b y f(q)dq, an d so we have to 
control the corresponding contributions of g and h. The main point for the 
g term is that (10.10 ) allow s us to control the L2 norm of g. 

LEMMA 10.25 . 
p 

g(p)2dp < Ce2\Q(S)\, with C independent of e, 6, and 6. 

This is proved using the usual duality argument. Le t F be any function 
in L2(P). The n 

p 

Fg < Clogs 
mo —1 

j=o (w,l)col 
I £i * F(w) I I v\ * p{w) I dw. 
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Using (10.10 ) an d Cauchy-Schwarz we can dominate this by 

Ce \Q{S)\ 1 2 log s 
m0 — ì 

j=0 £ P 

(Ì*F\ dw 

l 
2 

< Ce \Q(S)\? \\F\\2. 

The las t inequality is a standard square function estimate , and in this case 
it ca n be derived simply from Plancherel . This proves the lemma. 

Next we use this to control the contribution of g to (10.17) . 

LEMMA 10.26 . 

p 

oo 

e=-oo p 

<*Ì,e(q)9(q)dq f dp < Ce2 \Q(S)\, 

where C does not depend on e. 8. or 6. 

Let r e ( 2, 2d 
d-2 

) b e arbitrary, le t r' denote its conjugate exponent, and 
set 

G{{P) = 

P 

Wi(p-q)\ \9(q)\rdq 

l 
r 

1 

(10.27) FÌ(p)=\2-e[A(p)-AP!t(P)]l 

(10.28; H{(P) = 

P 

№(p-q)\ |2- < [A(q) - Ap,e(q)} \rdq 

1 r 

By Holder's inequality, the quantity t o be estimated i s at mos t 

(10.29) C G{{P? (FÌ{p? + HÌ{pY)dp. 

We know from (10.12 ) an d (10.14 ) tha t 

(10.30) 

t 

(FÌ(p)2+H}(P)2)dpd62t(t) 
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is a Carleson measure wit h norm <  C62. Because r' <  2 , we can contro l 
the L2 norm of the maximal function 

Gi(p) = sup 
q-pI2l 

GJM) 

by the L2 norm of g, and s o Carleson's inequalit y (se e p236 of [St]) an d 
Lemma 10.25 imply that (10.29 ) is < Ce262\Q(S)\. Lemma 10.26 follows. 

Next w e want t o contro l the contributio n o f h to (10.17) . Se t cr 5 = 
{(p,t) €  P x  Z : p e U4 jQ1D(p) < 2* < L}. (Recal l that Uj was denned 
in (8.9). ) 

LEMMA 10.31 . There is a C independent of e, 6, 70, an d 0 such that 

(p,l)co5 
p 

*Jp/q)h(q)dq\Z dp < Clo62\Q(S)\. 

The notation h(q)dq is convenient bu t somewha t misleading , since h 
is a priori only a distribution an d a t bes t a  measure. Th e idea behind th e 
lemma is that although h is not very regular, it has a lot of local oscillation 
to help its integra l agains t aJp £ (which is relatively smooth) to be prett y 
small. 

Let u s record a  couple of simple estimates o n aJp £. It i s readily seen 
from th e definition (10.18) of aJp £ (an d also (10.15)) that 

(10.32) I < < ( « ) I < C62-", |VaJf , ( , ) | < C82-^\ 

and also that supper t  Ç  B(p,2€). 

Set a — a3pi — 
P 
ai M)H<l)d<l for ( P ^ ) € a*. Thu s 

a = log s 
mn — 1 

2=0 w,k c e 
P 

a£,*(«)C*(« - w)d(i "I * Kw)dw 

by (10.24). W e need to get estimates fo r the interior integral 

AZ = AZ(j, p , I, i, k, w) = 

p 

&ip,l(q)£(q-w)dq 
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When k > £ or \p - w\ > 2i+1 we have 

(10.33) \AZ\ < CHe(p)$k,e(p-w), 

where 

Ht(p) = 2~ed 
B(p,2l) 

2-e\A(q)-APtt(q)\dq + 2~l\A(p) - Ap,e(p)\ 

and 9kAx) =  2  ( 2 +  2  +  Fl)-d- 2 •  Thi s uses (10.20a). I f Jfc < £ and 
|p — w| < 2f+1 then 

(10.34) | A Z | . < C52*2-f(rf+1> . 

This use s th e boun d (10.32 ) o n V o ^ , and bot h part s o f (10.20) . Le t 
AZi(p,£, k, w) denote the right side of (10.33) when k > £ or \p-w\ > 2e+l, 
and let it be zero otherwise, and let AZ2(p,£, k, IU) denote the right side of 
(10.34) when k <£, \p — w\ < 2*+1, and zero otherwise. 

Set d  =  {(to,I) 6  e  : k > £ or \p - w\ > 2e+1} an d e 2 = {(w,£) € e : 
k < £ and \p — w\ < 2t+1}, and spli t a into a( l ) + a(2 ) accordingly . Thus 

a(l ,2) <  C 
(«".*)6e(1,2) 

AZ(1n)(p,£,k,w)2-kd 
B(w,2k) 

dfi(r) dw. 

We want to show that 

(10.35) 
(p.')€o-5 

\a(l,2)\2dp<C7o62\Q(S)\. 

We start with a( l ) . 
By definitions 

a(l) <C(p)a(p)^P 
C(p)a(p)^P B(u>,2*) 

2*<2-rf)(2* + 2l + \p - ^|)-d-2d//(r ) du; . 

If r  G  B(w,2k) an d A: ) G ei, then 2* < Ci7o£>(w) [se e the definition of 
e just afte r (10.24) ] and D(w) < \r - w\ + D(r), an d s o D(w) < 2D(r) if 
70 i s small enough. Thu s 2k < 2CijoD(r). Also , (w,k) G  ei implie s that 
2£ < 2k or 2*+1 < | p - w| and this implies that 2k > 2£ or | p- r| >  2* when 
|r —  ti; | <  2* . Thu s (w,fc ) G  ei an d |w ; — r | <  2k imply that (r , £) G  ex , 
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ex = {(r,Jfc ) e P X Z : r e U3, 2k < 2Ci7o-D(r) , an d eithe r 2k > 2l or 
|p — r\ > 2£\, whence 

a( l ) < CHi{p) 
(̂ fc)Géi B(r,2fc) 

2*(2-¿)(2* + 2' + | p - r\)-d~2dw dp(r) 

< CH£(p] 
(r,fc)Géi 

22k(2k + 2l + \p-r\)-d-2dp(r). 

To contro l thi s expressio n i t wil l b e convenien t t o brea k u p th e r-
integral. Le t {Ri} b e the cube s chose n in Section 8, which cover the se t 
{q e P :  D(q) > 0}. Le t J3 denote the set of i such that Ri D U3 ^ 0 . Then 

a( l ) < CHi(p) 
icI3 (r,k)cel 

reKi 

22k(2k + 2£ + \p-r\)-d-2dp(r). 

Consider / (2k + 2£ + \p-r\)~d-2dp{r). I f p £ 2i?¿, then the integrand 
Ri 

is roughly constant on i2a, and thi s integral is comparable to the on e you 
get b y replacing dp(r) b y dr, becaus e o f Lemma 9.11. I f p €  2ií¿ , then 
10 diam ii, <  D(p), b y (8.8) , an d o f course 2£ > ^ D(p) i f (p,£) G a5. 
Prom Lemma 9.11 we get that p{T) « |T | for subcubes T o f ii, of size 2£, 
at leas t i f € is small enough, depending on 70. [N.B. : Althoug h we have to 
let the choice of e depend on 70 here, the constant from Lemma 9.11 doesn't 
depend on anything, not e or 70 in particular.] Becaus e (2*+2* + |p—r\)~d~2 
is roughly constant on the scale of 2*, we get that 

Ri 

(2k + 2£+\p-r\)-d-2dp(r)* 

Ri 

(2k + 2£ +\p-r\)-d-2dr 

in this case as well. 
Let u s us e thi s t o contro l a( l ) . I f (r , k) G  éi, r £  i2¿ , then 2k < 

Cyn diami?,- by (8.8), and so 

a( l ) <  CHe(p) 

«€/3 Ri ^ 2* <Cyo diam R¡ 

22k (2e + \p-r\yd-2dr 

< CHe(p) 
i cI3Ri 

7o2(diam Ri)2 (2* + \p - r |) * 2 dr. 
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Let Fi(p) denote this last expression without the CHi(p) whe n (p,^) €  cr5, 
and FAp) =  0  otherwise. T o check (10.35 ) i n thi s case w e want t o us e 
Carleson's inequalit y an d th e fac t tha t 

l 
\Hi(p)\2dpd62i(t) i s a  Carleson 

measure with norm < Go (which comes trom (10.12) and (10.14)). lhus 
we need to control the L2 norm of 

f*(p)= sup 

n.l 
l»-J>l<2' 

Fm(q) 

The definitio n of F clearl y gives F*(p) < Сsnp Fi(p). Becaus e 2£ > 

7QD(P) ^ {PA) G  a5, we have 

diami?a <  D(r) < D(p) + \p - r \ < jQ 
i 
2 (2£ + \p-r\) whe n r e Ri, 

so that 

F*(p) < С 
icI3 Ri 

j2 diam #2(7o2 diamiJi + \p - r\)-d~2dr. 

To estimat e th e L2 norm o f F+ we integrate i t agains t a n arbitrar y L2-
function G and observe that 

FJG\ < С 
icI3 Ri 

7o G*(r)dr, 

where G*{r) denotes th e Hardy-Littlewoo d maxima l function o f G. O f 
course the right side is at most C7o|Q(S)|s ||G||2,ands o /F2 < C^\Q(S)\. 
Thus (10.35) does follow in this case from Carleson's inequality. 

Now w e want to prove (10.35) for a(2) . W e have 

a(2) < С 
(w,k)ce2 

62k2-l(d+l)2-kd 

B(wak) 

dfi(r) dw. 

If \w — r\ < 2k and (w, k) £ e, then 

D(w) < D(r) + \w - r\ < D(r) + 2k < D(r) 4 1 
2 

D(w) 
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if 70 is small enough. Thu s D(w) < 2D(r), and so 2* < 2C\^D{r). Henc e 

a(2) < C 

weB(p,2l+l) 2k <2&yn D(r) 
k<£ 

82k2-l(d+l)2-kd 

B(w,2k) 

dfi(r) dw 

< c 
B(j>,2<+2) 2*<2Cl7oD(r) 

62k2-£(d+1Ufi(r) 

< C 

B(p,2l+2) 

SyoDir^-W+VdfiM. 

As befor e w e want t o replac e dfi(r) b y dr , an d s o w e decompose 
B(p,2'+2) using the JJ,-'s. Using (8.8) we obtain 

a(2) <  C 
i B(p,2l+2)uRi 

6-r0(diamRi)2-^d+1Un(r). 

If B(p,2t+2)nRi 9*0 , then 

diam i?, < inf Z?(r) < Z?(p ) + dist(p, Ri) < D(p) + 2e+2 < 7 2 

when (p,^ ) G  ¿75. I n this case we obtain from Lemm a 9.11 that 

fi(B(p, 2t+2) n Rt) < C\B(p, 2t+2) fl 2Ri|, 

at leas t i f e is small enough. [A s before, how small e has to be depends on 
7o, bu t th e constant doesn't. ] Thi s gives 

a{2) < C 
i B(p,2'+2)n2ß; 

*7o(diamÄ,-)2-'(J+1)rfr 

< C 

B(p,2>+*) 

6l0D(r)2-e<~d+1Ur. 

(We have used the fact that the 2-Rj's have bounded overlap.) 
Since D(r) < D(p)+\p-r\ < 70~*2'+1 if(p,£) G  cr5 and r G  B(p,2e+2), 

1 
we conclude that in particular a(2 ) <  C8y£. Hence 

a(2)2 < C^7of 
B(p,2<+*) 

D(r)2-^d+1Ur. 
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Let u s plu g thi s into th e lef t sid e of (10.35) . W e want t o us e Fubin i t o 
integrate i n r last . Becaus e (p,£) G  &5 and r G  J?(p, 2^+2) impl y that 
D(r) < 70~22̂ +1 and r G  U3 (since 2l < L ), w e get that 

(p.0€o-5 
a(2)2 < C52i 

3 
a 
0 

U3 2< + 1>-y 
o 
i 

DM B(R,2«+» ) 

2-l(d+l)dpD(r)dr 

<co2yo3/1 

t/3 2<+1>7*D(r) 

2-^Z?(r)dr<C*27o|Q(5)|. 

This completes the proof of Lemma 10.31. 
Combining (10.17) with Lemmas 10.26 and 10.3 1 we conclude that 

(10.36) 
(p,l)cos 

a 

p 

a>p/q)f(q)dq \* dp < (Ce2 + C'lo62)\Q(S)\, 

with C, C independen t o f e, £, and 0 , and C als o independent o f 70. We 
now show that /  i s smooth on [ /5 , an d the n look a t wha t happen s when 
you replace f(q) b y f{p). 

Let us check that f satisfie s 

(10.37) l/l <  C , | V / | <  CL-1 o n U5. 

The first term on the right side in (10.22) clearly satisfies these conditions. 
(Don't forge t tha t ¡1 has tota l mas s <  C|Q(5)|. ) I t i s not har d to show 
that the second term also has these properties , using (10.20a) ' 

If V G C/«, 2l < L, then we get 

n 
p 

&ip,l(q)(f(p)-f(q))dq)< co2lL-l 

from (10.37) , (10.32) , an d sup p aJp £ C B(p, 2£). Becaus e <r 4 (defined i n 
(10.4)) is contained in <r5 fl {p G UQ} if fc0 is large enough, we conclude from 
(10.36) that 

(p,l)cO4 D <*Uq)dq T \f(P)\2dp < (Ce2 + C'7062)\Q(S)\ 

+ c 
(p.oeo-4 

6222eL~2dp < [Ce2 + C(7o +  «2)^2] 
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where C i s independent o f 70, and both C, C" are independent o f e, 6, and 
6. This reduces to 

(10.38) 
(p,l)co4 

2-2* 

E 
4{p-q)A{q)dq \f(p)\2dp 

<[Ce2 + C'(l0+62)62] \Q(S)\, 

with C , C " as above , becaus e o f the definitio n (10.18 ) o f a3pi and th e 
vanishing moments assumptions on v. 

Comparing this with (10.3) we see that Proposition (10.5) wil l follow 
if we can show that there i s a C2 > 0 so that 

(10.39) f(p) > C21 for all p e P with dist(p , U(Q(S))) < 100L. 

Fix p. I t suffice s t o show that ther e i s a  nonnegative smooth functio n 77 
with integra l 1 , suppor t containe d i n th e bal l wit h cente r p an d radiu s 

c2 sup 
U5 

V / l +  i" 1 
- 1 

, and which satisfies 

ri(q)f(q)dq > 2C2~\ 

Because o f (10.37 ) w e can choos e 77 so tha t ||̂ ||oo < C(C2L~1)d, 
llVr/lloo <  C (C2^_1)d+1. Sinc e dfi(q) i s equivalent t o dq at th e scal e of 
ediamQ(5) (b y (6.4), or Lemma 9.11, applied to Q(5)) , w e get that 

V(q)dfi(q) > 4C"1 

if C2 is large enough an d e  is small enough ( e depending on C2, bu t no t 
vice-versa). Thu s it is enough to check that 

(10.40) n r,(q)(g(q) + h(q))dq < 2C2\ 

The contributio n o f g to (10.40 ) i s certainl y les s than C2X if e  is smal l 
enough, by Lemma 10.25. For the contribution o f h we use the smoothnes s 
of 77 and the localization and cancellation properties (10.20 ) of £: 

D r](q)h(q)dq I  <  log s 
771 n —1 

7 = 0 (w,lce 
\ (} * rç(w)| \v\ * fi(w)\dw 

< C(C2) log S 
mo — 1 

j=o w,lce 
2eL-d-1\vJe*fi(w)\dw 

< C(C2) 

2'<Ci7oL 

2lL-d-l 

U3 

dfi(r) < C(C2)7o. 
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[Remember that e  was defined just afte r (10.24) . W e have used Fubini i r 
the thir d inequality. ] Thi s is <  C^1 i f 7o is small enough. [I t is not hare 
to comput e ho w C(C2) depends on C2, bu t w e don't nee d t o kno w th e 
answer.] 

This proves (10.40) , and finishes the proof of Proposition 10.5 . 
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11. The end of the proof that (C2) implies (C4) 

To finish the proo f we have to sho w that (2.7 ) is true. A s we have 
said before (see Lemma 7.9 and Proposition 10.5) , it suffice s to show that 
(10.6) implie s that S £ Pi, whic h we do in this section. [Recal l that T\ 
was defined just befor e Lemma 7.4.] Th e idea is to use (10.7 ) t o contro l 
the oscillation of VA i n a way that i s incompatible with the lowe r bound 
on the oscillation of VA force d by S £ T\. 

Assume that (10.6 ) holds. B y Proposition 10.5, 

(p,l)co4 
2-2i\v}*A(p) |2 dp<r\Q(S)\ 

for j =  0,... , m0 -  1 , where r =  Ce2 + C'(y0 +  02)S2, with C, C a s in the 
proposition. O n the other hand, using Lemma 8.22 it i s not hard to check 
that 

Uo 2<<~nD(p) 
2~2i v{*A(p)\2 dp<Ce2\Q(S)\ 

for a  7i whic h is much larger than 702 (71 = (lOOrc)- 1 would be O.K.). [On e 
way t o do this is to observe that v\ * A(p) = v\ * (A — Ap(p)), wher e Ap is 
the linear Taylor approximation to A at p, and then estimate brutally using 
Lemma 8.22.] Thu s if we se t V =  {x G  P :  dist(x, U(Q(S))) < 100L}, then 
we ca n conclude that 

(11.1) 
v 2l<eL 

2~2£ I v[ * A(p) I dp<2r\Q{S)\ 

for j = 0,.. . ,m0 - 1 . 
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To use this estimate we need a reproducing formula involving the i/ '̂s. 
As in the discussion between (10.19) and (10.20), if mo is large enough then 
we can find a function a on P0 that satisfies (10.20 ) and also 

/ =  log s 
m0 —1 

i=0 

oo 

i=-oo 

&i*vom*f 

for al l functions /  i n L2(P) , say , where a\ — s^d2"ida(s^2~ip). O f course 
the convergence is taken in the sense of distributions. I n particular w e can 
apply this to the function A. [I n dealing with convergence issues it is helpful 
to observe that we can choose A to have compact support. ] 

We decompose A into two pieces, A = A\ + A<i, b y 

Ai(p) =log s 
m.Q — 1 

j=0 21>6L 
aJ£*vJ£* A(p) 

(11.2) 
+ log s 

mo —1 

j=p 2L<EI P\V 

aUp - q)v\ * A(q)dq, 

(11.3) M(p) =  lo g s 
mo —1 

j=0 2L<BL V 

&i(p-q)vjl*A(q)dq 

Prom (11.1) we get 

(11.4) 

p 

|VA2|2 <  CT\Q(S)\ 

using a  duality argument simila r to the one in the proo f of Lemma 10.25. 
Here C is a constant that doesn' t depen d on e, £, 70, or 6. (The same will 
be true of the other constants in this section unless stated otherwise.) 

We would like to say that A\ i s smoother than A. Thi s is true inside 
V, bu t no t o n P \ y . I f we set Vj = {x € P : dist(x,Q(5)) <  100L2">} , 
then we do have that 

(11.5) |VAi | <  C7> , |V2A!| <  CSQ-1^1 o n Vi. 

To check this it i s convenient to let An an d A\2 denote the tw o terms on 
the righ t sid e of (11.2). I t i s not har d t o show that Ai 2 satisfies (11.5) , 
using | | VA|| <  C8 and the fact that a satisfies (10.20a) . 
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To contro l (11.5 ) for An i t i s helpful t o make the followin g observa -
tions. W e can write 

logs 
mo —1 

J=0 21>6L 

&ij*vil=oh, 

where h = [log2(öi) ] an d 

(j) — log s 

M Q — L 

>=0 2<>1 

éi*vjl 

By construction w e also have that 

(j) = (Dira c mass at 0 ) — log s 
m 0 — l 

j=0 2'<1 

&jl*vjl, 

with this last series converging in the sense of distributions. I t i s not hard 
to chec k tha t (j> satisfie s (10.20a) , using th e firs t formul a fo r cf>(p) whe n 
\p\  ̂10 , and th e secon d when |p | >  10 . Pro m here i t i s easy to see that 

= <t>h *  A satisfies (11.5) . 
We want t o use these estimates o n Ai an d A2 to control how well A 

can b e approximated b y affine functions. Firs t w e consider th e maxima l 
function 

(11.6) N(A,)(v) = sup 
B 

IbI-l/d(IBI-l 

B 

\A2 -mBA2\)}, 

where the supremum is taken over all balls B that contain z> and have radius 
< Zr , and TÏIBA2 = l 

UM B 
A2. It is well-known and not hard to see that 

(11.7) 
p 

N{A2f < C 

p 

\VA2\2<CT\Q(S)\. 

[You can use the Poincaré inequality 

\B\-
D+1 

D 

B 

\A2 - mBA2\ < C 
1 

B 

| V A 2 | 

to reduce (11.7) to an estimate on the Hardy-Littlewood maximal function 
of VA2. ] W e are going to use this together with the following estimate on 
the oscillation of A2 on a ball B. 
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LEMMA 11.8 . Set ose A2 
B 

SUD 
PEU 

A2(p) — mBA2\, and let r denote the radius 

ofB. IfBCVu then 
B 

A2 < Cr{r-1mB(\A2 - mBA2\)} 

Let ç  Ç B be such that 

\A2(Q) - mnAo \ = ooo 
B 

A2 =: A . 

Since ||V -A2||i,oo(m < C6 (because this is true for A, AA we have |A2(p ) — 
™>BA2\ > A 

2 when p c B, | p — g| < A 
2Cb' 

If A 
2C6 < r , then we get that 

B 

\A2 -mBA2\ > C"1 
A 
2 

A 
2C£ 

d 

whence A**4"1 <  C£d 
B 

|A2 -  7TIBA2| . 

If 2C6 > r , the n |A 2 —  rriBA2\ > A 
2 over a large portion o f B, s o that 

™>B\\A2 — mBA2\) > C *A . Usin g ||VA2||x ,oo(B) < C6 we also have that 

r 1mB(\A2 - mBA2\) < C6, 

so that 

C 1 A < mB(\A2 — mBA2\) = r{r 1mB(\A2 - mBA2\)} 
l 

d+l + d 
d+l 

<Cr{r 1mB(\A2 - mBA2\)) l d+l d+l 

Combining these two cases gives the lemma . 
Now w e are read y t o loo k a t ho w wel l A i s approximate d b y affin e 

functions. Le t B = f?(po,r) b e contained i n V\. W e assume that r < ro£, 
where ro i s a small number to be chosen soon . 

LEMMA 11.9 . Set F = {p e V2 : N(A2)(p) < 6 l 2 6}. IfB = B(p0,r) 
intersects F and r < TQL, then 

(11.10) sup 
peB 

\A(p) - Afa) -  VAifro ) •  (p - p0) | <  C{6 
l 

2(̂  + 1) + ro0-1}r6. 

Indeed, if p £ JB, then from (11.5 ) w e obtain 

\A(p) -  A(po) - VA^po) •  (p - p0) | 
< |A2(p ) -  A2(Po)\ + |A2(p ) - ilxCpo ) - VA^po) •  ( p - p o )| 

< 2 osc A2+coo-lL-l(2 

< Cr{r-lmB(\A2-mBA2\)} 
l 

d=L O A 
D=L + Côe^ror 

< Cr{N(A2)(u)} 1 6 
d 

3+1 =COO6LRORT 
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for an y u G  B. Choosin g u G  Bf)F, w e get that this is at most Cr6 i 
2(d + i; 

C66 1rnr , a s desired. 
We shal l choose 0 small enough, and then r0 small enough, so that this 

last quantity i s less than rj r£, for some small rj that wil l be chosen soon. 
Let HB be the d-plane which is the graph of the affine function 

aB(p) = A(p0) + VAi(po) • (P ~ Po). 

If B i s as in the lemma, T is the graph of A, and the constants are chosen 
as we just explained, then 

( l i . i i ) sup 
xemii-1(B) 

r dist(x , HB) < TJ6. 

We wan t t o sho w that thes e estimate s o n A ar e incompatibl e with 
5 G / i . Recal l that S G  T\ if 

(11.12) 
qcml(s) 

Q > \Q(S)\/2, 

where mi(S) i s the set of minimal cubes Q of S such that Angle ( P Q , P) > 
6/2. W e ar e going to show that if Q G " ^ ( S ), the n II(Q) canno t intersec t 
Fj o r even get too close, by comparing the -ff^' s t o the PQ'S . W e firs t need 
to check that the cubes in mi (5 ) canno t b e too large. 

LEMMA 11.13 . Given ro > 0  and a constant M > 0, there is an e0 > 0  sc 
that if e < e0 then Angle (PQ,P) < 6/100 for all Q G  S with diamQ > 
r0L/M. 

This is quite easy: given Q G 5, let Q ,  Q , . . . , Q1 = Q(S) denote the 
successive ancestors o f Q, i.e., Q1 i s the father o f Q, Q2 the father o f Q1 , 
etc. By  definitions, all these cubes must satisfy (6.1) , an d so Lemma 5.13 
gives Angle (Pg.- ,PQ.+i ) <  Ce. Thus 

Angle (PQ,P)<C eT< Ce log (2L/ diam Q), 

from which the lemma follows easily. 

LEMMA 11.14 . IfQ G  mUS), then dist(II(Q),F) >  diamQ. 

Suppose not . Pic k any XQ G  Q, set p 0 =  n ( x g ) and P  =  P(p0,r) , 
r =  1 0 diam Q. The n P intersect s P , and r < r0L because of Lemma 11.13 
(if e is sufficiently small). Notic e also that B <ZV\. 
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If x £ Q, then 

\x - (U(x), A(U(x)))\ < Ced(x) < C e diam Q 

by Propositio n 8.2 an d th e definitio n (7.6 ) of d(x) , an d s o dist(x, HB) < 
Crj6r (if e is small enough) because of (11.11). Invokin g Lemma 5.13 again 
we ge t that Angle (PQ,HB) < Cn6 < o 

100 if w e choos e rj (and also e) to be 
small enough. 

Let Q be the largest ancestor of Q such that 1 0 diam Q < r0. Let 
B* be the ball centered at po with radius 1 0 diam Q*. The same argument 
gives Angle {PQ* , HB* ) < 6 

100* Furthermore, HB+ — HB, since the function 

QB depend s only on po. 
Thus Angl e (PQ,PQ*) < 

6 
50 ' 

and Lemm a 11.13 tell s u s tha t Angl e 
pq*P)< o 100 (if e  is smal l enough) . Thes e two inequalities forc e Q 
mi (5) , an d th e lemma is proved. 

We ar e now at th e final step of the proo f that (10.7 ) i s incompatible 
with 5  €  J7! . Becaus e o f Lemma 11.14, i t suffice s t o sho w that (11.12 ) 
implies tha t ther e i s a  Q E  m i (5) wit h dist(II(Q) , F) < diamQ . (O f 
course we continue t o assume that (10.6 ) holds.) 

We first  choos e a convenient coverin g of the se t X = 
QemAS) Q. Fo r 

each Q 6  mi(5) , pic k a  poin t XQ £ Q , an d conside r th e bal l BQ = 
(XQJ CdiamQ) . I f C i s larg e enough, w e can find a  subse t T o f mx(5) 
so that {BQ : Q £ T } cover s X an d the balls B(XQ, 3  diam Q), Q G T, are 
pairwise disjoint. (Thi s follows from the well-known argument use d in the 
proof of the covering lemma on p9 of [St].) Henc e 

(11.15) 1*1 < 
qct 

\EDBQ\<C 
qcT 

(diam<2)d. 

Because B(XQ, 3  diam Q) ar e disjoint for Q £ T, we can apply Lemma 8.4 
(with x = xn.y = XQ') t o conclude that the balls DQ =  PnB(Ti(xQ), dia m Q), 
Q e T , ar e also disjoint. I n particular 

T 
DQ > \X\IC. 

All o f these balls DQ ar e contained in V 2 , an d none 0 1 the m intersect s 
F, becaus e o f Lemma 11.14. Sinc e F  =  { p € V 2 : i\T(A2 ) <  0 * * } , w e 
conclude from (11.7) that 

(11.16) |X | < c I \JDq \< C\V2\F\ < ce-H-2r\Q{s)\. 

78 

т 

file:///X/IC


11. THE END OF THE PROOF THAT (C2) IMPUES (C4) 

Recall that r  =  Ce2 + C'(jo + 02)52, where C, C ar e independent o f e, fi, 
and 0, and C i s also independent o f 70. I f we choose 0 small enough, then 
70 and ro , and the n e , we get that \X\ < 1 

3 Q(5)| , s o that (11.12 ) can' t 
hold. 

Thus we have shown that if S satisfies (10.6) , then S (£ Fl, at leas t if 
we chose the various parameters correctly . Prom the arguments in Section 7 
it follows that (2.7 ) holds, and of course (2.6) was proved in Section 8. This 
completes the proof that (C2 ) implies (C4). 
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12. The proof that (C3) implies (C4): preliminary discussion 

The argument wil l be very similar to the one used to show that (C2) 
implies (C4) . 

We assume throughout thi s section and th e next tw o that E satisfie s 
(C3). A s we remarked a t th e beginnin g of Section 5, E mus t satisf y th e 
weak geometric lemma. Le t £, 6 be given, a s smal l as we want, wit h e/6 
as smal l as we want also . Le t k >  0  be large, to be chosen later , bu t no t 
depending on e or 6. 

Let Q be the set of cubes for which (6.1) holds, and set B = A \ Q. W e 
can apply Lemma 7.1 to get the stopping-time regions, and t o prove that 
(C4) holds we need only verify (2.7) , since the rest of the requirements ar e 
established b y Lemma 7.1 and Sectio n 8. Lemm a 7.4 tells us once again 
that we can reduce (2.7 ) to the corresponding estimate for T\. 

To prove the packing condition for T\ w e use a variation of Lemma 7.9, 
whose particulars are as follows. Le t S be one of the stopping-time regions, 
and se t 

(12.1) X = {(x,t) E E x  R+ : x G  kQ(S), k~1d{x) < t < kL}, 

where d{x) and L(= diamQ(5) ) ar e as before. T o prove the packing con-
dition for T\ i t suffices to show that there is an rj >  0 such that 

(12.2) 
X 

Pi(x,kty 
dxdt 

t 
>rj\Q(S)\ whe n S e Fu 

at leas t i f we choose fc0,  6, 6 correctly. Here rj is allowed to depend on e, 
6 or k, but no t S. 

The proof of (12.2) wil l be carried out in two steps, in much the same 
way as before. In the first step we show how the lef t sid e of (12.2) controls 
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a similar quantity on the graph of A (A as in Section 8). In the second step 
we use these estimates o n A to show that if the lef t sid e of (12.2) i s small 
enough, then S £ T\. 



13. Pushing estimates on fi^x^t) from E down to the 
approximating Lipschitz graph 

Let k0 be large, to be chosen later; kQ will not depen d on e,o,  an d it 
will be chosen before A:, in such a way that k will be much bigger than k0. 
Let A , P, n, i? , Q(i)  etc . be as in Section 8, Proposition 8.2 in particular . 

Given p G  UQ and t > 0, set 

(13.1) tip, t) = inf 
a 

t~d 
B(P,t) 

1 
t 

A(u) — a(u)\du, 

where the infimum is taken over all affine functions a : P —> P^. I t is eas; 
to se e that if we se t 

(13.2) 7 ( P , ' ) = inf 
M 

t~d 
B(p,t) 

1 
dist((u, A(г¿)), M)duj 

where the infimum is taken over all d-planes M, then 

(13.3) 1 
2 7 ( P , < ) < 7 ( P , * ) < 2 7 ( P , * ) -

This uses the fact tha t A is Lipschitz with small norm. O f course 71 (p,^) 
is essentially the same as the analogue of f3i(x,t) fo r the graph T of A. 

This section is devoted to proving the following estimate . 

LEMMA 13.4 . Se t T = k0L/10 and 

(13.5) r = L~d 
T 

0 
u2 

7(Pi05 
dpdt 

t 
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If k/k0 is large enough, then 

13.6) T <Ce2 + CL~d 
X 

Bl(x,kt)2 dxdt 
t ' 5 

wnere C does not depend on e or 6. 

[Recall that X wa s defined in (12.1).] W e restricted ourselves t o {7 2 so 
that B(p,t) stay s inside U\ if p G  U2 and t < T. 

We first  estimat e 7(p, t) fo r smal l t. Le t i?, , J , J0 , etc. , b e a s i n 
Section 8, and le t J2 denote th e se t o f i G J0 such that R{ fl {72 7̂  0 -

LEMMA 13.7 . 

icI2 

diam fl; 

r0 
fl." 

7(P,*)2 
kkkk 

t 
< Ce2Ld. 

The mai n ingredient s fo r this are Lemm a 8.22 an d Taylor' s theorem . 
Prom the latter we get 

l(p,t)<Ct sup 
acb p,t 

\V2A(u)l 

and s o using Lemma 8.22 we get 

»G/2 

diam fl; 

0 
Ri 

7(p,*)a 
dpdt 

t 
<Ce2 

i 

diam Ri 

0 ax 

(diam Ri )  2  tfdpcft 

<Ce2 
l a 

dp< Ce2|Q(S) | <  CLd. 

Now w e need t o estimate 7(p,tf) whe n p G  n(Z) o r when p G  Ri bu t 
£ > diamjRj . Bot h case s wil l be covere d if we assume that t >  D(p)/60 , 
because of (8.8 V 

Let p  G  U2 and t b e given , l/60D(p) < t < T . Choos e z G  E such 
that 2 G  0 (5 ), 1 » — nfz) | <  Ct. W e want t o contro l y(p,t) i n terms of 
Bl .2, 10 

kt). Le t P D t be a  d-plane for which the infimu m i n th e definitio n 
o£Pi(z, 1 

10 
kt) i s achieved. Takin g M = PPit in (13.2) we get that 

(13.8) 7(Pit)<2t-d-1 

B(P,t) 

dist((u, A(u)), PPit)du < a + 
«€/(P,*) 

ais 
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13. PUSHING ESTIMATES ON JS/xt) 

where a = 2t~d-1 /B(p 
,t)nU(Z) dist((w, A(u)),PPjt)dw, I(p,t) i s th e se t o f 

indices i G  IQ for which R{ fl B(p, t) ^  0 , an d 
ai = 2t~d-1 

B(p,t)nRi 

dist((tx, A(u)), PVit)du. 

Let u s estimate a first. If u G  B(p,t) f l I I (Z), the n x =  (u,A(u)) G  -2 , 
and i t follow s fro m Lemm a 8. 4 tha t \x — z\ < Ct an d tha t x i s th e onl y 
point in n_1(ii ) fl koQ(S). W e can lif t th e integra l defining a from II(Z ) t o 
Z CE to ge t tha t 

(13.9) a < 2t~d-1 

n-MB(j>,t))n*oQ(S) 

dist(a;,PP)t)dx <  C/?i(z , B 
10 

ll 

Next w e estimate the a2 . Fi x i G iYp, 0- W e have 

(13.10) ai < C(bi + Ci), 

where 6,- = t'^1 RinB(p,t) dist((u,A(u)),Poa))du an d 

Ci = t d 1(diamiJj)dsup{dist(w, PPìt) -w G PQ(Ì)-> 

dist(w,Q(i)) < Cdiami?,} . 

[The set o f tu's over which this supremum is taken is large enough because 
dist(i2j, H(Qi)) < Cdiami?,.] Becaus e PQ(2) i s the grap h of Bj, 

( i3 . i l ) 6, - < t-d-x 

RiHBipA) 

\A(u) - Bi{u)\du < Ce ^^(d iami? , ) ' ' *1 , 

since \A(u) — Bi(u)\ < CediamiJa b y Lemma 8.17 an d th e definitio n (8.14 ) 
of A. W e can contro l ca as follows . 

LEMMA 13.12 . 

d <Ce «-^(diamifc)**1 

+ Crd~1 (diami?,) 4 2q(i)i6L 

2Q(0 

dist (x, PPjt] 
i 
3 ix 

3 
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This lemma is similar to Lemma 5.13, and their proofs are quite similar 
also. I f yoj 2 / 1 , . . . , yd ar e th e d + 1 points promise d by Lemma 5.8 with 
Q = Q(i), then 

cl-<C*~d~1(diamJJ,0 
d SUP 

0<j<d 
{dist (yji PPit) + dist (yi s Pg(a)) } . 

To chec k thi s we compare P P)t and Pg(a ) wit h the cf-plan e Ld generated 
by 2/o , yiT'-iVd- Th e distance o f points o n Pg(a ) t o Ld is controlled by 
sup dist(yj,Pg(j)) . [T o see this it i s helpful t o observe that becaus e this 

0<j<d 
quantity i s smal l compare d t o diamQ(i) , th e point s zj i n Pg(, ) closes t 
to yj generat e Pg(i). ] I t i s easy t o show that su p dist(yy, Pp,t) control s 

0<j<d 
the distanc e o f points on Ld to Pp^. Combinin g these tw o facts give s the 
inequality. Sinc e Q(i) € S satisfie s (6.1 ) w e have 

ci<C*-rf"1(diamiJtT sup 
0<j<d 

{dist (yj,Pp,t)} + Ce *-rf-1(diamiJ,-)rf+1. 

Moreover, thi s inequality remain s tru e i f each yj i s replaced b y any 
yj G  E suc h that \yj — yj\ <  C0_ 1 diamP,, provide d Co is large enough. 
(Indeed, such yy's would still satisfy th e same properties that the yy' s do. ) 
The lemm a follows by taking cubi c roots of the inequality , averaging over 
such y^'s, and using the regularity assumption (1.5) . 

We want to combine these various inequalities with (13.8) to get a good 
estimate fo r y(p, t). Fo r this it i s important tha t w e took a cubic root in 
Lemma 13.12 , instead o f just a n ordinary average , so that w e can control 
the overlap of the 2Q(iVs which enters into the sum in i. 

Let J(i) be the subset of JT(p, t) composed of the j 's such that diam Q(j) 
< diainQ (t) an d 2Q(j) D  2Q(i) ± 0. Se t N{(x) = 

>€J(0 
*2Q(i)(X)- Then 

Ni(x) 2  < C for all x (because l 
m2 

< oo) , and 

2Q(0 

Ni(x) < 
jeJ(i) 

\2Q(j)\ < C 
jeJ(i) 

\Rj\ < C\Q(i)l 

because the P,-'s are disjoint and stay at distance <  C diamP, from li(Qj). 
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From Holder's inequality we now get that 

iWi)\-x 
2Q(i) 

dist(x,PP)t) 1 Ni(x)- 2 
3J NI(X] 2 

3 dx 3 

<((I2q(i)I-l 

2Q(i) 

dist(x, PPA Ni(x)-2dx} {\2Q(i)\~1 
2Q(i) 

Ni(x)dx}2 

< C(diam Ri)~d 
2Q(.) 

dist( x,Ppt)Ni(x)~2dx. 

Putting this into Lemma 13.12, and then using (13.8) , (13.9) , (13.10), and 
(13.11) we obtain 

f(p,t) <Cß1 z. 
1 
10 

kt + Ce t-*-1 
»e/(p,t) 

(diam.Ri)d+1 

(13.13) 
+ c t-*-1 

»e/(p,t) 2Q(t) 

dist(x, PPit)Ni(x) 2dx. 

Because Ni(x) 2 , the last ter m is at most 

(13.14) c t-*-1 
U2Q(I) 
IEI(P,T) 

dist(x, Pp t)dx 

Let u s sho w that thi s can b e dominated b y f3\(z, l 
1C 

kt). Firs t not e that 
diam Ri < Ct if i G  I{p, * ) , becaus e D(u) < D(p) + 1 < Ct on B(p, t). Thu s 
dist(n(Qt), H(z)) < Ct (because of the various definitions), and this implies 
that Qi C B(z,Ct). [Pic k x G  Q(i). By definition, d{x) < diamQ(z) <  Ct, 
and so if \x — z | is much bigger than Ct, then Lemma 8.4 implies that 

i n ^ - n ^ C O l <  26\U(x)-U(z)\. 

Because the right side is at mos t Ct, we get that | x — 2r| < Ct.] No w it is 
immediate that (13.14 ) is dominated by Cß\{z, l 

io kt), an d so 

(13.15) 7 ( P , « ) < C f t [z, 
1 
10 

ll + C e r * -1 
«€/(jM) 

(diami?,)"**1. 
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Of course the same argument used to prove (13.15) also works with z 
replaced by any w £ E fl B(z, t) an d so 

(13.16) 

7(p,*)2 <Ct~d 
B(z,t)nE 

Pi 
(w, l 

1U 
kt 

2 

dw 

+ C{e r*-1 
IEI(PIT) 

(diami?,)^1}2. 

To finish the proof of Lemma 13.4 we want t o use this to estimate 

Tl = L~d 

u2 
C-*D(p) 

f(P,t)2 
dt 
t 

dp. 

Using (13.16) we have that T\ < C(a + b), with 

a = L~d 

u2 

•T 

C-iD(p) 
t~d 

v(z(p,t,t)ue 
Pi («>, 

l 
10 

V 
kt) dw 

dt 
t 

dp, 

b = e2L~d 

u2 

T 

d-lS(p) 
j - 2 ( d + l ) r 

i€l(p,t) 
[diamiJ,)d+1}2 

dt 
u 

dp, 

where z(p, t) = z i s th e poin t i n Q(S) w e chose shortl y afte r provin g 
Lemma 13.7. 

Consider a first. By definitions, for any (w,p , t) that arise in the inte -
gral, we have |n(u; ) — p\ < Ct and w £ k0Q(S). Thu s 

a<L~d 

koQ(S) 

T 

C-lD(p) 
t~d 

p6B(n(w;),Ct) 

dp A (w, 
1 
10 

kl 
2 dwdt 

t 

< CL~d 

koQ(S) 

T 

C->D(p) 
Pi (w, 

D 
10 

fa 
)dw dt 

t 

< CL~d 
X 

Pi (x, kt)2 
dxdt 

t 

To estimate b recall that diami? , <  Ct i f i £  I(p,t) (becaus e D(u) < 
D{p) + t<Ct on B(p,t), an d using (8.6)). Thu s 

IEI(P,T) 
(diamiJa)d+1 <Ct 

i£l(p,t) 
(diam Ri)d < Ctd+1. 
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This gives us that 

6 < Ce2L~d 

u2 

T 

C-*D(p) IEI(P,T) 

(diami?,)*4"1 
dtdp 
td+2 

< Ce2L~d 

IEII 

(diam i?,-)rf+1 
T 

C-1 diam Ri 
DÌ3T(p,Ri)<t 

dpdt 

td+2 

In interchangin g th e orde r of the su m an d th e integral , we have used th e 
facts tha t dist(p , i?,) <  t whe n i £  7(p,t) , an d tha t i £  i(p , t) an d t > 
C~xD{p) impl y t > C-l diami?,- , an d w e have le t I\ denot e th e se t of 
i £  IQ such that i? , fl J7i ^ 0 . Prom here we easily get that 

6 < Ce2L~d 
iG/i 

(diami?,) +1 
t>C~1 diam Ri 

{diami?,,+t}d 
dt 

td+2 

< Ce2L~d 
icIl 

(diamRi)d <Ce2 . 

Combining this with our estimate for a we have 

ri < CL~d 

x 

Pi{x,kt? 
dxdt 

t 
+ Ce2. 

This and Lemma 13.7 give us the estimate (13.6 ) we wanted for r, an d so 
Lemma 13.4 is proved. 
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14. The end of the proof that (C3) implies (C4) 

According to bection 12, it sufhces to show that (12.2) holds tor rj small 
enough. Thus , for example, it suffices t o show that if 

(14.1) 
X 

Bl(x,kt)2 dxdt 
t <*2\Q(S)\ 

then S £ T\. 
The proof of this is very similar t o the argumen t given in Section 11 

in proving that (C2 ) implies (C4) : w e use Sectio n 1 3 to turn (14.1 ) int o 
an estimate o n A, then apply Littlewood-Paley theory t o this estimate t o 
show that VA doesn' t oscillat e much, and the n check tha t tha t prevent s 
many minimal cubes of S from lying in mi(5) . 

This step in the proo f that (C3 ) implies (C2) is in fact s o similar t o 
the correspondin g ste p for (C2 ) that w e can simpl y reduce t o our earlie r 
argument. Assum e that (14.1 ) holds for a fixed 5. B y Lemma 13.4, 

l 

o u2 
7(P , * r 

dpdt 
t 

<Ce2\Q(S)\. 

If v\ i s as describe d relativel y early i n Sectio n 10 , then 2~l\v\ * A(p)\ < 
Cj(p,t) wheneve r 2£_ 1 <  t < 2£, because of the vanishin g moment s as -
sumption on v. Therefore , just like for (11.1) , 

(14.2) 
V 21<L 

2-2EYt*A(p)\2<Ce2\Q(S)\, 

where V i s as it was for (11.1). Thi s is even better than (11.1), since there 
are no 0, 70 around. 

91 



G. DAVID, S. SEMMES 

Unce we have this version ot (11.1), we can use exactly the same argu-
ment a s in Section 11 to show that S £ T\ i f e, 8 are chosen properly. This 
completes the proof that (C3 ) implie s (C4) . 

Of cours e i f we were to d o the argumen t ove r again ther e ar e som e 
relatively minor changes we could profitably make. Fo r example, we could 
replace th e discret e squar e function estimat e (14.2 ) by a  continuous one, 
namely 

v 0 
h*A(p)\2 

dpdt 
t3 

<Ce2\Q(S)l 

and then we could use the reproducing formul a 

f = c 
OO 

0 
vt*vy*k 

dt 
t 

instead o f the mor e complicated discret e on e we used before . Ther e ar e 
other simplification s that could be made, stemming from the absenc e o f 6 
in (14.2) and from the stronge r nature of 7(p, t) a s compared to ut * A(p), 
but th e main ideas are still the same . 
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15. (C4) implies (C3) 

As promise d i n Sectio n 1 , we shall actuall y prov e that i f E satisfie s 
(C4), then 

(15.1) ßr(x,t)2 
dxdt 

t 

is a Carleson measure on E x R+ for all r < 2d 
d-2 if d > 2, r < oo if d = 1. 

The idea is that th e existenc e of a corona decompositio n wil l allo w us t o 
reduce to the case of Lipschitz graphs, for which we can use Lemma 10.14. 

Let 77 >  0  be given, small, as in the definition of a corona decomposi-
tion. (Th e smallness o f rj wil l be a convenience that wil l not pla y a major 
role.) Le t B, Q, T, S £ T b e as in Section 2. 

Given Q £ A, let Q denote the set of (ar, t) £ Ex R+ suc h that x £ Q 
and 

(10C)"2 diam Q<t< dia m Q, 

where C i s as in (2.2) . I t i s easy to check that E X R+ = 
QGA 

Q. Give n 
S £  se t S = 

Qes 
Q-

LEMMA 15.2 . Let a(x,t) be a bounded, nonnegative function on E x R+. 
Then a{x,i)dx=r is a  Carleson measure if a(x,t)x^(x,t} dxdt 

t 
is for each 

S€f, with uniformly bounded norm. 

Decompose a into ao + ai, where ao = axg- , B — 
qc b 

Q. I t i s easy to 

check that an(x,t) dxdt 
t 

is a Carleson measure, becaus e o f (2.4). 
On the other hand 

ai < 

scf 
aX<§ 
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by definitions . Fi x x € E an d R > 0, and conside r 

(15.3) 
scf y£EnB(x,R) 

a 

0 
a(y,t)xs(y,t)dy dt 

t 

Let E1 denote th e su m ove r the 5  G f fo r whic h Q(S) fl B(x,R) ^ 0 
and diamQ(S ) <  P , an d le t E2 be th e su m ove r the 5' s suc h that 5  fl 
{{B(x, R)DE) x (0 , R)) ^ 0 and diam Q(S) > R. W e ma y replace the sum 
in (15.3) by E1 + E2. 

By assumption s we have that 

l R 

0 
B(x,R)nE 

a(y5 *)Xc(</ > 0 
dydt 

t 

< 
l diam Q(S) 

0 
q(s) 

a(y,t)xs(y,t) dydt 
t 

<c 1 
|Q(5)| <  CPd. 

The las t inequality comes from (2.7). T o control E2 w e observe that E2 only 
involves a bounded number of 5's. Thi s is because the 5's ar e disjoint, an d 
the ones that arise in E2 must each contain a cube Q for which Qf)B(x1 R) ^ 
0 and diam Q & R. Thi s and our hypotheses o n a yield 

2 R 

'0 
B(x,R) 

a(y,i)x-§(y,t)dy 
dt 
t 

< C 
2 

Rd < CRd. 

This proves the lemma. 
In vie w o f the lemm a we need only control th e /?r(x,£)' s on each 5 . 

Fix 5  €  F  an d le t T be the Lipschit z graph ove r the d-plan e P promise d 
in (2.6) . Le t PL b e the (n — d)-plane that passes through th e origin and is 
orthogonal to P , an d le t A :  P — • P1- b e the Lipschit z function suc h that 
r =  {p + A(p) : p € P } . Le t II, IL1- be the orthogonal projections onto P , 
Px s o that x = U(x) + nJ-(x). Defin e d(x) a s in (7.6) . 

Set 

(15.4) lr{p,t) = inf 
a 

t D 

B(p,t) 

It-^AIU) - a(u)]\rdu 

1 
r 

94 



15. (C4) IMPLIES (C3) 

for p £  P , t > 0, wher e th e infimu m i s take n ove r al l affin e function s 
a : P — > P-1- . W e want t o control the /3r's on 22 in terms of the 7r's. 

Let (x,t) G  5 b e given, so that t < L = diamQ(5), an d le t p be any 
point i n P suc h that \p — H(x)\ < t. Le t a be an affine function fo r which 
the infimu m i n the definitio n o f ~fr{p, 100£) i s attained, and le t H = HPjt 
denote its graph. Fo r y £ E, \y — x\ < t, we have 

(15.5) 
dist(y, tf) <  |nx(j/ ) -  A(n(y)) | +  \A(U(y)) - a(U(y))\ 

<Cr,d(y) + \A(U(y))-a(n(y))\. 

(This uses dist(y,T) <  Crjd(y) which can be derived from (2.6). ) 
We wan t t o us e thi s t o contro l (3r(x,t) i n term s o f 7r(p, 1002). Fo r 

r = oo we get that 

(15.6) P00(x,t)<C71 sup 
. yeB(x,t)r\E 

t-Xd{y) + 7oo(p,100^) 

for al l p £ P wit h \p — II(x)| <  t. Fo r r < oo we cannot estimate s o quickly, 
because we might ge t a  ver y singular measur e when w e push Hausdorf f 
measure on E down to P, and so we don't wan t t o simply integrate (15.5). 

Instead w e have t o smea r up (15.5) first.  Le t 6 £ (0,1) be a  smal l 
positive number, to be chosen later , and le t By denote th e bal l in P  wit h 
center n(y ) and radius Sd(y). Because of (15.5) we have for u £ By that 

dist(2/, H) < Crjd(y) + CSd(y) + \A(u) - a(u)\. 

(We hav e used here th e fac t tha t A i s Lipschitz. ) Takin g rth power s an d 
averaging over By gives 

(15.7) dist(y, H)r < C(rj +  8)rd{y)r + C[6d(y)]-d 
By 

\A — a\rdu. 

[When d(y) = 0 we interpret th e averag e over By a s being the valu e at y. 
Similar libera l interpretations ar e require d below . Alternatively , one ca n 
treat the cas e d(y) = 0 separately, b y simply integrating (15.5).] Hence 

(15.8) 
B(x,t)(lE 

dist(y,H)rdy<C(r] + 6Y 

B(x,t)nE 

d(y)rdy 

+ C 
B(x,t)nE 

(od(y))-d 

By 

\A(u) — a(u)\rdudy, 
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(Don't forge t tha t y  G E, bu t u G P .) 
We want to use Fubini to simplify the last term, but first w e need some 

preliminary information . W e begin by observing that d(x) < Ct becaus e 
(x,t) G  5, an d s o d(y) < Ct i f y G  B(x,t). I n particular , 6d(y) < t, if 
6 i s smal l enough . Next , le t u s chec k that i f y, z G  B(x,t) f l e  satisf y 
By D Bz ^ 0 , then d(y ) an d d(z) are comparable, and that | y — 2| < d(y) . 
Indeed, we certainly have 

| n ( y ) - n ( 2 ) | <  C6(d(y) + d(z)), 

and also 
\y-(Tl(y),A(Il(y)))\ < Cdist(j / ,r) < C ^ ( y ) , 

and similarly for z. Hence 

\y-z\ < C(6 + r,)(d(y) + d(z)). 

If rj and 5  are small enough we can conclude that 

l 

2 
i{y) < d(z) < 2d(y), 

because d(-) is Lipschitz. 
With these observations we can reverse the order of integration in the 

last term in (15.8) to obtain 

B(x.t)nE 

№y)-d 
By 

\A(u) — a(u)\rdudy 

< 
B(j>,iot) 

\A{u)-a(u)\r 

yeB(xA)nE 
ucby 

[6d(y)]-ddy iu 

< C 
B(p,10t) 

\A(u) - a(u)\rdu. 

Hence 

ßR(X,T)<C 
1 
td 

B(x,t)nE 

(r1d(y))rdy 

1 r 

+ Cfr(.P, LOOT). 
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Combining this with (15.6) we get that 

(15.9) / 3 r O M ) <c ( 
1 

B 
B(x,t)nE 

(t-1d(y))rdi 

1 r 

+ C inf 
p€B(n(i),t) 

lr(p, wot) 

for an y r < oo, (x,t) P  5, i <  diairiQ(S). Le t us use this to check that 
Br(x,-)2Xs(s,t) dxdt is a Carleson measure i f r < 2d 

d-2 
when d > 2, r < oo 

whpn n. = 1. 
Fix z € E, R> 0 . To control 

(15.10) 
o 

B(z,.R)nE 

Br(x,-)2Xs(s,t) dxdt 

t 

we consider separately the contributions coming from the two terms on the 
right side of (15.9), starting wit h the second. I t is dominated by 

(15.11) 
0 

B(z,R)nE 

ys(x,t) l 

td 
B(n(x),t) 

7r(p, 10002rfpda 
dt 
t 

Of course we want to use Fubini's theorem. 
It i s easy to reduce to the case where z £ Q(S) and R < diamQ(5). 

It i s also not har d t o check that th e set o f x i n Q(S) such that (x,t) € S 
and |II(x ) — p\ < t (fo r given p, t) is contained in a ball of radius Ct, and 
hence has measure <  Ctd. Thi s uses (2.6) an d the fact tha t d(x) < Ct if 
(x,t) G  S. Thu s by reversing the order of integration we see that (15.11) is 
at most 

c 
R 

0 
B(n(*),2B) 

7r0», 100<)2 
dpdt 

t 5 

and this is < CRd by Lemma 10.11. 
To sho w that th e contributio n t o (15.10 ) fro m th e first term on the 

right side of (15.9) is at mos t CRd it is enough to prove that for any cube 
T G 5 , 

(15.12) 

Qes QÇT 

Ar(Q)2|Q|<C|T| 
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if r < Id 
d-2 

(r < oo when d — 1), where 

AP(Q) = 
1 

\Q\ 
2Q 

{d(y)l dia m Q)r dy 

1 
r 

[To see that thi s is sufficient i t i s helpful t o notice that th e first  term on 
the right side of (15.9) i s <  C\r{Q) whe n (x,t) G  Q] T o verify (15.12 ) it 
is useful t o introduce a  collection of cubes which is like the set o f minimal 
cubes in S except that it is more regular, in a certain sense, and it is easier 
to compute d(x) in terms of this collection. 

Let Q(S) denot e the union of the cubes lyin g in the sam e generation 
Aj o f cubes as Q(S) and which intersect 2Q(S). Le t n(S) denot e the cubes 
N C  Q(S) which are minimal among the cubes that also satisfy 

(15.13) 200C2 diamiV > inf 
xcN 

d(x), 

where C is as in (2.2). I f N i s one of these minimal cubes, then none of its 
children satisfy (15.13) , and so 

100 diam N < inf d(x). 

This imnlie s that 
sup 

xcN 
d(x) < 2 inf 

xeN 
d{x\ 

since d(x) i s Lipschitz with norm 1 . Notic e that d(y) = 0  when y G  Q(S) 
but y does not li e in any of the i\T's . O f course the iV's are disjoint . 

Let us use these cubes N t o prove (15.12). Give n Q, let Q denote the 
union of the cubes in the same generation Aj as Q that intersec t 2Q. For 
r =  oo we have that 

Qes 
QCT 

\oo(Q)2\Q\<C 

Qes QCT 

/ 

v 
sup 
NCQ 

Ncn(s) 

diamiV 
diamQ 

2 

\Q\<c 
qcS 
OCT 

NCQ 
N£n(S) 

\N\2/d 

IQI2/d \Q\-

When d = 1  this is at mos t 

C 

NCT 

Nen(s) 
,Q:QDN 

IQI-1 \N\2 < C 

NCT 
N6n(S) 

\N\ < C\T\. 
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Now suppose that r < oo . We may as well assume that r > 2, in which 
case 

Qes 
QCT 

K(Q)2\Q\<C 
Qes 
QCT 

NCQ 
Ncn(s) 

\N\ 

\Q\ 

r +1 
\ 

/ 

2 r 

101 

< c 
Qes 
QCT 

NCQ 
Nen(s) 

\N\ 

\Q\ 

2 
r a 

+l 

IQI 

< c 
NCT 

N€n(S) 
Q-.Q3N 

IQIl- 2 
r 

2 
d N r 

If r < 2d 
d-2 

then 1 — 2 < 2 
r 

and so the inner sum converges and thi s is 

< C 

NCT 
Nen(s) 

\N\<C\T\. 

This proves (15.12), which is the last step in the proof that (C4) implies 
that (15.1 ) i s a  Carleson measur e for r < 2d 

d-2 
when d > 2, r  <  o o when 

d=l. 
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16. The main step in the proof that (C4) implies (C5) 

PROPOSITION 16.1 . Let E be a regular set that satisfies (C4). Then for 
any e > 0  there is an M > 0 so that for all x £ E and r >  0  there is a 
compact set F C  E fl B(x, r) and a mapping f : F — > Rd such that 

(16.2) \EDB(x,r)\F\ < erd 

(16.3) M-1 \x-y\< \f(x) - f(y)\ < M\x - y\ for all x,ye F. 

Once we prove this proposition all that remains i n showing that (C4) 
implies (C5 ) is t o find a  bilipschit z extensio n o f /-1 :  f(F) —* F t o a 
embedding of Rd into Rn*. This will be taken u p in the next section. 

To prove the proposition we first construc t P, and then the definition 
of /  wil l become natural. The  general idea of the proo f i s that for a good 
region S i n A as in Section 2 it i s easy to choose a map of Q(S) onto Kd 
that is bilipschitz at scale s larger than the minimal cubes of 5, becaus e of 
(2.6) (the approximation of Q(S) by a Lipschitz graph), and we can try to 
patch these maps together to get /. The  total amount o f patching required 
will be controlled by (2.7). 

Let x £ E an d r > 0 be given, an d le t m 0 be such that 2m ° < r < 
2mo+1. Le t P0 b e the unio n o f the cube s i n Am o that intersec t P (x , r ) . 
Call these cube s (Qoj), j £  J ; not e that ther e ar e a  bounded numbe r of 
them. Decompos e the se t o f cubes Q £ A  such that Q C  RQ int o a  bad 
set an d a  family o f good region s S C A  in such a way that (2.4) , (2.5) , 
(2.6) an d (2.7 ) hold, with rj small, to be chosen later (dependin g only on 
the geometry of JS, not on e) . I t is easy to obtain this decomposition from 
the one provided by (C4) . 
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In th e constructio n o f the se t F w e shall sometime s need t o remove 
from cube s the part which is too close to the boundary. Fo r each Q £ Am 
set 

(16.4) G(Q) = {xeQ: dist(a?,E'\Q ) <  r2m} , 

where r  i s a  smal l constan t tha t w e shall choos e soon (depending on c). 
Thus cr(Q) i s the par t o f Q which is very close to the boundary , an d th e 
measure of &{Q) is controlled by (2.3). 

Applying (2.3) with a not-too-small choice of r alread y gives the exis-
tence, for each cube Q £ A, of a "center" CQ £ Q such that 

(16.5) dist(cQ,E\Q) > 
1 

Co 
diam Q, 

with Co independent o f e. 
We still need a little more notation before denning the se t F. W e call 

a cube Q C RQ a "transition cube " if it is a bad cube, the top cube in one 
of the good regions 5, or a minimal cube in one of the 5's . W e denote by 
T th e se t o f transition cubes , and by Tj = T f] Aj th e ones of generation 
j . Fo r each transition cub e Q, let £(Q) denote the number o f ancestors of 
Q tha t ar e transition cubes . Fo r instance, th e Qoj's ar e transition cube s 
such that £(Qoj) = 0. 

Our set F is denned by 

(i6.6) F = EDB(x,r)n ( Q€T 
a{Q) 

C 

n 

V 
QcY 

l(q)<L 

Q 

J 

C 

where L is a very large constant whos e value will be chosen very soon. 
Notice that 

Q€7 
\Q\<C\Ro\, 

because of (2.4) and (2.7) . Usin g (2.3) we can choose r s o small that 

qct 
HQ)\<Cr 

i c \Ro\<erd/2. 
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Similarly, i f L i s large enough, the n A = 
OGT 

l(q)</ 

Q satisfie s |A | < erd/2, 
because 

qct 
XQ >  L on A, so that 

\A\ < L-1 
qcy 

IqI<xcl-lIRoI 

Thus F satisfies (16.2) . 
As a first approximation of the map / o n F we shall define a function 

g on the se t T  o f transition cube s with values in the se t o f cubes i n Rd. 
Our mapping will have the following properties: 

(16.7) 
for each Q £ Trn,g(Q) i s a cube of Rd with diameter 

C^~'^2m, wher e C\ is a large constant (t o be specified) , 

16.8 if Q, Q' 6 T, Q C Q', then g(Q) C 2 
(Q'). 

Let u s start with the cubes Qoj, j £  </ . W e pick the cubes g(Qoj) t o 
be cubes of size 2m°, at mutua l distances betwee n 2m° and C2m° . Thi s is 
possible if C is large enough. 

In general we define g recursively as follows. Suppos e g(Q) ha s already 
been defined for some Q £ Tm. Assume first that Q is a bad cube or the 
minimal cube of some good region 5. Le t C(Q) denot e the set of children in 
Q, i.e., the set of cubes in Am_i whic h are subcubes of Q. Notice that they 
are al l either bad cubes or top cubes of some other good region, and that 
£(R) = £{Q) +1 if R £ C(Q). I f C\ is sufficiently large, we can easily choose 
cubes g(R), R £ C(Q\ suc h that each g{R) has diameter C7j"/(<J)~12m~1, is 
contained in \g(Q), an d also 

(16.9) d\st(g(R),g(R'))>2m-1C-£(Q)-1 

for al l i?, R' £  C(Q), R^R' 
Assume now that Q is the top cube of a good region 5. W e want to 

define g(R) fo r the minima l cubes R o f 5, bu t first  w e need some more 
notation. Le t TQ be as i n (2.6) , s o that TQ is a  Lipschit z graph ove r a 
d-plane P Q , an d let I I Q b e the orthogonal projection onto P Q . Le t (J)Q b e 
an affine mappin g from PQ to Kd such that <f>Q(n.Q(Q)) C  \g(Q) an d 

(16.10) C - ' C f ^ b -  « | < |*Q(p) - ^ ( , ) | < C-i(Q)\p - q\ 
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for al l p, q £ P Q . 

If i j is a minimal cube of 5, and m is such that R £ Tm , the n we take 
g(R) t o b e a  cub e centere d a t <^Q(IIQ(CR) ) wit h diamete r Cl~*(c^~12m? 
where c# is the "center " of R that we chose before (so that (16.5 ) holds) . 
Clearly g(R) C \g{Q). 

We nee d to estimate dist(g(R), g(R')) fo r any pair i? , R1 o f minimal 
cubes of S. Observ e that 

\CR -cR> \ > C"1 {dia m # +dia m i?' +  dist(#, # ' ) }, 

because of (16.5). Applyin g (2.6) t o the smallest cube Q1 C Q that contains 
CR and has diameter >  \CR — CR> | we get 

dist(cH , rg) +  dist(cH ' ,Tg) <  27 7 diam Q' <  CT]\CR - CR>\. 

If rj is small enough this implies that 

\NQ(cR)-ILQ(cR,)\> 1 
\CR - CR>1 

since TQ i s a Lipschitz graph with constant <  r\ over PQ. Combinin g these 
estimates with (16.10) we see that if C\ is large enough, then 

(16.11) 

c- i>(Q)- l ^diam R + diam Rl + d { s t ^ R f ^ 

<dist{g(R),g(R')) 

< C~i(Q){di3,mR + diamiJ' + dist(i?, R')}. 

Now tha t w e have constructed g we are ready to define / o n F. I f 
x £  P , then i t can only belong to a finite number o f transition cubes ; let 
Q(x) b e the smalles t one . B y the definition s of F an d transitio n cubes , 
Q(x) i s the top cube of some good region S(x). [Otherwis e all the children 
of Q(x) are also transition cubes , and they are disjoint from P . ] W e tak e 

f(x) = ^Q(x ) {UQ(X)(X)) , 

with the notations above . Not e that f(x) £  g(Q(x)). 
We wan t t o check the bilipschit z condition (16.3) . Le t x, y £  F b e 

given, and let Qi be the largest cube in RQ that contains x but no t y. 
Suppose first that Qi lie s in a stopping time region 5, bu t i s not it s 

top cub e Q(S). I n this case y £ Q(S) too. Suppose further tha t there are 
two minima l cubes R, R' o f S containing x, y, respectively. O f course 

|ar — y| < d i a m # + d i a m + dist(jR, iJ'), 
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but becaus e x é <r(i?) , y 4. cr(R') (b y definition of F ), w e also have 

| * - y | > 
r 
C 

diam-R + r 

c 
diam R' + 

1 
2 dist(J?,i?'). 

For thi s pair x, y (16.3 ) follows from these inequalities, (16.11) , and from 
/(*) € g(R), f(y) € g(R') an d £(R) = £(R') < L. 

If x is not contained in any minimal cube of 5, then f(x) = ^>g(IIg(x)) , 
where Q = Q(S) i s the to p cub e o f 5. Th e argument use d to establis h 
(16.11) also gives 

C^i(Q)~1{dmmRf + dist ( * , # ) } 
<d i s t ( / ( * ) , s (# ) ) 

< C1"£(Q){diami г, + dist(x, R')} 

for suc h an x, an d (16.3 ) is deduced a s before. Th e same argument work s 
if y is not containe d i n a minimal cube of 5, or if neither x nor y is. 

We ar e lef t no w with th e cas e wher e Q\ i s a  transition cub e which 
is no t a  minima l cub e o f some good region . Thi s means that th e fathe r 
Qi o f Qi is also a transition cube, and i t i s not th e top cube of some good 
region. Becaus e Q2 contains y , we can bound | / ( x ) — f(y) \ from above using 
/(#), f(y) £  #((32 )5 and we can bound i t from below by applying (16.9) to 
R = Qi an d R' = the brothe r o f Q\ tha t contain s y [sinc e f(x) £  g(R), 
f(y) £  g(R')]. Thes e bounds imply (16.3), becaus e 

r 

c 
diam Qi < \x — y\ < C diam Qi 

(since x <£ o-(Qi) , y £ Q2 \ Qi) . 
Thus we have shown that F and /  satisf y (16.2 ) and (16.3) . I f F ha p 

pens not to be closed, then we can replace it by its closure. Thi s complete 
the proof of Proposition 16.3. 
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17. An extension theorem 

PROPOSITION 17.1 . Let A Ç Kd be a closed set. Suppose that f : A —> Rn 
satisfies 

(17.2) 0 * - v l < l / ( * ) - / ( v ) l < < ? o | * - v | 

for all x, y € -A . Assum e also that n >  2d + 1. The n there is an extension 
g :TLd R n o f / suc h that 

(17.3) M -l Ix-  y | < \g(x) - g(y)\ < M\x - y\ 

for all x, y € : Rd. Her e M depends only on d, n, and Co. 

That (C4 ) implies (C5 ) follows fro m thi s and Propositio n 16.1 . (O f 
course the /  her e corresponds t o the /_1 fro m Proposition 16.1.) 

It i s not clea r tha t th e conditio n n > 2d + 1 is optimal. I f we want 
g t o be a small perturbation of a Lipschitz extension o f / tha t i s given in 
advance, then we do have to have n > 2d. 

The propositio n i s no t har d t o prov e using th e technique s o f [D3] , 
Section 4. (Sectio n 5 of [D3] i s relevant to the question o f the optimality o f 
n > 2d+l.) Becaus e the proof requires a  rather large amount of notations, 
and no new ideas, we shall omit it here, and content ourselve s with a slightly 
weaker result. 

PROPOSITION 17.4 . Let A C Rd be closed, and suppose that f : A — • Rn 
satisfies (17.2). Then there exist an integer m, a constant M, and an 
extension g : Rd — • Rm of f such that (17.3) holds. The constants m, M 
depend only on d, n, and Co-

This result, together with Proposition 16.1, still prove that (C4) implie s 
(C5), onl y with a different value of n*. I t is of course still possible to deduce 
(CI) fro m this weaker version of (C5) . 
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Let u s prove the proposition . B y the Whitne y extension theorem we 
know that w e can exten d /  t o a  map from R d to R n whic h is Lipschitz 
with norm <  C'Q, where C'Q depend s only on Co and d, and C'0 > Co- Let / 
denote this extension also. 

We also need a Whitney decomposition of fl = Rd \ A. Le t Q,-, i £ /, 
be the maximal dyadic cubes in fl with 

diamQj <  10"3 dist(Q,-, A). 

For each i £ J choos e :  "Rd —* Rd+1 such that: 

(17.5) </>i i s supported i n 3Qj, \oi</>i\ <  C\ diamQj, an d |V<^ | <  C\\ 
(17.6) \<j>i(x) - </>i(y)\ >CX \x- y\ fo r x, y e 2Qi\ 

(17.7) l^(*)l < 
1 
2 

diam Q{, for x £ 2Qi] 

(17.8) |<M#)| ^ diamQj , fo r x G  Qi -

The constant C\ is a geometric constant that depends only on d. 
It i s quite easy to construc t thes e functions <j>i. W e added on e more 

coordinate so that (17.8 ) can be satisfied too. 
The ide a o f the proo f i s t o ad d th e function s t o / , t o increas e 

f(x) —  / ( y ) whe n necessary . W e shall pu t th e function s <j>i i n differen t 
dimensions, so that they never interfere with each other, o r with / . 

For each i £ J le t V(i) denot e the se t of indices j E I suc h that 

(17.9) 10 2  diam Qi < diamQ, < 102diamQ, , an d 

(17.10J dist(QJ,Qi) <  106(C£)2{diamQ i + diamQi} . 

Thus j £ V(i) i f and only if i G  V(j), an d there i s an integer N suc h that 
V(i) ha s less than N element s for each i. Le t X b e a set with N elements . 
There is a function a : I — > X suc h that a(i) ^ a(j) wheneve r j £ V(i) bu t 
j zfz i. [On e way to find such a function i s to arrange th e elements of / i n a 
sequence and then define a(i) recursively in such a way that this property 
always holds.] 

Set m = n + 1 + (d+l)N, an d identify Rm with R n x Rx (Rd+1)x . 
We define g : Rd -+ Rm by 

ri7 . l l) gQ = /5 wher e gQ i s the Rn coordinate of g, 
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(17.12) gx(x) = dist(x, ^4), wher e g\ denotes the R-coordinat e o f g,and 

(17.13) ga{x) = 
icI 

a(i)=a 

<t>i(x), a e X 

Clearly g is M-Lipschitz for some M. T o check the other part of (17.3) 
let x, y € Rd be given, x ^ y , and le t us distinguish a few cases. 

Suppose firs t tha t x an d y both li e in fl,  x £  Q2 , y £  Qj> W e may 
assume that diamQ, >  diamQj. 

Case 1  6ist(Qi,Qj) > 105(C'0)2 diamQ,. 
Thus Qi and Qj  ar e much further awa y from each other than they ar e 

from A (by the wa y we chose the Q,'s) . W e shall use (17.2 ) to find a  lower 
bound for \go(x) — #o(y)| - Choos e u, v € A a s close as possible t o x , y, so 
that 

|x - u\ < 3 • 103 diamQi, | y — v| < 3  • 103 diamQ, <  3  • 103 diamQ,. 

Then \u — v\ > \\x —  ?/|, an d 

|/(*) - f(y)\ > | / ( « ) - / ( « ) | - l/OO - /(«01 - l / (y) - /001 
> C0-1|u-t j | -C0|a;-u|-C0|i /- i> | 

> 1 
2 

C0_1|x — y| — 6 • 103Co diamQ,. 

By assumption the las t term is at mos t 

6 
100 

(C0) 1 distiQuQj) < 
6 

100 (Co)"1 I * - y | , 

and s o \f(x) — f(y)\ >  (lOCo ) ,  as desired . 
Case 2 dist(Q^Qt) < 105(Ci) 2 diamQ,, and diamQ , < l 

5 
diam Qi. 

Thus dist(Q,, Qj) i s not to o large compared t o the distanc e of Qi to 
A, bu t Qj i s closer to A than Qi is. I n this case we have 

9i(x) > dist(0t-,j4) >  10 3 diam(5i, 

9i(y) < dist(Q,-, A) + diam Q, <  3 • 103 diam Qj < 3 
5 

10 diamQj , 

by definition of our Whitney cubes. Thi s provides an adequate lower bound 
on \g(x) — g(y)\, becaus e \x — y\ < 2 • 105(C'Q)2 diamQ,, by assumption. 
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Case 3 d\st(Qi,Qj) < 105(C¿)2 diamQ,, and diamQ, > i 
5 

diamQa. 
Thus th e distance s betwee n Q¿, Q¿, and A ar e roughl y comparable 

to eac h other . Unde r these condition s we have k £ V(i) i f 3Qk meets 
Q¿; thus ga(i)(y) =  <l>i(y)I because of (17.13) and the properties of a(-). We 
have ga(i)(x) = <¡>i(x) for the same reason. W e can bound \ga(i)(x)—ga(i)(y)\ 
from below using (17.6) when y £ 2Q¿, and (17.7) and (17.8) when y £ 2Qi. 
This lower bound is good enough because \x — y \ < 2 • 105(C¿)2 diam Qa, by 
assumption. 

These three cases take care of the situation wher e x, y both lie in ÍÍ. 
If x £  Í Í and y  £ A , then we can use the sam e arguments a s in Cases 1 
and 2  above, dependin g on whether dist(y,Qt ) i s larger or smalle r than 
105(C¿)2 diamQ,. Whe n both x and y lie in A we can apply (17.2) directly. 
This completes the oroof of Proposition 17.4. 
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The idea, roughly speaking, is that the corona decomposition permits 
us to realize £ a s a  subset of a countable unio n o f Lipschitz graphs, with 
a lo t o f control on how these graph s fit  together , an d w e shall buil d ou r 
u;-regular mappin g by connecting up pieces of these Lipschitz graphs. 

Before beginnin g our constructio n w e first address a  technica l poin t 
that wil l be needed later , concernin g the "connectedness " o f A. A  finite 
sequence Qi,..., Qi of cubes in A wil l be called a path if for each j , 1  < 
j < £ — 1, Qj is either a son or the father o f Qj+i- A  subset of A is said to 
be connected if any two points can be joined by a path in the subset. 

A usefu l fac t which is easy to verify i s that A is connected if and only 
if every pair of elements has a  common ancestor. 

If A is the set of dyadic cubes in Rn, then A is not connected; it has 2n 
components. I n general A will always have only finitely many components. 
However, i t i s no t har d t o modif y A  slightl y i n suc h a  wa y that A  i s 
connected, as follows . 

Let A be as in Section 2, and let A be the set of subsets of E defined by 
A = oo 

? = —oo 
A j , wher e Q e Aj if Q £ Aj an d Q does not intersec t B(0,2-7) , 

or if Q is the union of the R G  Aj that intersect 1?(0, 2J). Clearl y each Aj 
is a partition o f E, an d A  stil l satisfies (2.2 ) and (2.3) . I t i s not har d tc 
check that A  also satisfies (2.1) ; th e mai n poin t i s the trivia l fact tha t il 
Q G  A ( j ), Q' G A ( i ), j < fc, Q C Q\ an d i f Q intersects J?(0,2>) , then Q' 
intersects B(0,2*) . O f course A is also connected. 

In view of this we may as well assume that A is connected, since we can 
replace it b y A otherwise. Thi s change in A wil l no t upse t th e condition 
that E admits a  corona decomposition. Indeed, we noted in Section 2 that 
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the existenc e o f a coron a decompositio n does no t depen d o n th e choice 
of A  as lon g as (2.1 ) and (2.2 ) are satisfied . I n this particular cas e i t i s 
even easie r t o transfe r a  coron a decomposition for A  t o on e for A . Fo r 
example, you can take all the cubes in A that were changed and put the m 
into B without disturbin g (2.4) , an d the n take th e 5's wit h the change d 
cubes remove d and reorganiz e them int o regions that satisf y (2.5) , (2.6) , 
and (2.7) . 

Let u s no w proceed with the constructio n o f an w-regula r mapping 
whose image contains E. Le t 77 >  0 be small, to be chosen later. It s value 
will only depend on geometric constants. Let B, Q, J7, S be as in Section 2. 
Given S £ T, (2.6 ) tell s us that there is a Lipschitz graph T over a d-plane 
P = Ps which well-approximates E with respect t o S. Le t II = II 5 denote 
the orthogonal projection onto P, and let T(S) denot e the part of T whose 
projection onto P i s the closed ball P(II(:r) , 20 diam Q(5)) , where x is any 
point of Q{S). 

We observe first that E is contained in the union of the r (5) 's, S £ T, 
except possibly for a set of measure zero . T o see this let Qj(y) denot e the 
element o f Aj tha t contain s y. Becaus e of (2.5) , Qj(y) £ B for a t mos t 
finitely many j ' s, except for a set o f y's of measure zero . Similarly , (2.7 ) 
tells u s tha t fo r almos t al l y , Qj(y) i s a  Q(S) fo r only finitely  many j. 
Hence for a.a. y  there is an S € T suc h that y £ Q(S) and every Q C Q(S) 
with Q 3 y lies in 5. Fo r such an y we have y £ T(5) because of (2.6). 

We are going to modify th e r (5) 's t o make it easier to connect the m 
together. W e also introduce a n additiona l dimensio n an d wor k in Rn+1 
instead o f Rn; this wil l b e needed to ensure that th e mappin g z : Ttd —• 
R71"1"1 that w e define eventually is indeed regular. (O f course we identify 
Rn wit h the subspace o f Rn+1 wher e the last coordinate is zero.) 

Fix a  stopping time region 5. I n addition to the notation tha t we'v e 
already recalled , let d(x) be as in (7.6) , an d le t P1- be the (n — d)-plane 
that passes through 0  and i s orthogonal to P i n Rn. Le t A :  P — • P-1 be 
the function whos e graph is T. W e shall construct a  surface Ti (5) which is 
vaguely reminiscent of a pair of trousers with many legs (see Figure 1), and 
which is better t o work with than T (5). Doin g this requires quit e a bit of 
notation, unfortunately . 

Let ci(S) denot e the (d — l)-sphere in P wit h center n(x ) and radius 
20 diam Q(S). (Remembe r that x £ Q(S) i s th e poin t selecte d i n th e 
definition o f T(5) .) Als o le t 61 (5) b e the close d d-ball in P  bounde d by 
Ci(5), an d let ai(S) b e the (d— l)-sphere in Rn+1 tha t is parallel to Ci(5) 
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but whic h is centered a t 

(n(x) ,A(n(x) ) , 2diamQ(5) ) E P x P 1 x R ^ R n + 1 . 

(Here we identify P x  P1- with Rn via the map that sends (p, q) to p + q.) 

a0(Qi) 

P-LxR 

To(qi) 

co(qi) 

p 
bo(Qi) 

aj(S) 

Tl(s) 

rQ(S) 

r(S) 

cl(s) 

•(S^b^SMjIhgCQj) 

Figure 1 . A  symbolic picture o f Ti(5) . The  vertica l directio n 
contains bot h P1- and th e (n + l)th-co-ordinate axis. 

For eac h minima l cub e Q of S w e make th e followin g construction . 
For eac h child Qi of Q select a  point X{ G Qi at distanc e >  10diamQ,/Co 
from E \Qi. W e can do this if Co is large enough, becaus e o f (2.3). Le t 
co(Qi) b e the (d — l)-sphere contained i n P wit h center n(x, ) and radius 
2 diam Qi/Co, an d le t bo(Qi) be the open ball it encloses. 
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Let I(S) denot e the set of all Q,-'s, where Q runs over all minimal cubes 
of 5 . I f 7] i s small enough, we get (using (2.6)) that 

(18.1) d i s t ( & o ( Q 0 , W j ) ) > 
1 

Co 
[diam Qi + diam Qj] 

(18.2) dist(60(Qa),c1(5)) >  diamQ(S ) 

for al l i, j G I(S), i ^ j . W e also let ao(Qi) b e the (d — 1) sphere in Rn+1 
that is parallel to Co(Q2) but i s centered a t 

(n(ar.-)j A(U(xi)), 2 diam <?,•). 

Set D(S) = b1(S)\( 
Rei(S) 

bo(R)) an d 

T0(5) =  {(u,A(u),d'(u)) : u G Z>(5)} C Rn+1, 

where d'(u) =  d((u,A(u))) , d(x) a s i n (7.6) . Almos t ever y y £ E lie s 
in T Q (5) fo r some S. Indeed , for almost ever y y ther e i s an S suc h that 
y G Q(S) an d such that Q £ S wheneve r Q C Q(5), y G Q, and for such 
an 5  w e have y G T and d(y) = 0 . W e also have TL(y) G -D(S') because of 
the way we chose the &o(Qa) , and because of (2.6). 

We define r i ( 5) by taking TQ(S) and adding some pieces to it; to wit, 

r 1 ( 5 ) =  r 0 ( 5 ) U T i ( 5 ) U ( QscI(s) 
To(QO 

where Ti(S) an d To(iJ ) ar e define d a s follows . W e take Ti(S) t o b e th e 
"tube" obtaine d by joining each point (u, A(u),d'(u)), u G ci(5), to 

(u,A(n(x)), 2  diam Q(5) )Ga! (5 ) 

by a  straight line . Similarly , if Qi G  I(S), w e take To(Q, ) to be the tube 
obtained by joining (u, A(u),df(u)) t o 

(u,A(II(xt-)), 2diamQa ) G a0(Qi ) 

by a  straight lin e for each u G co(Qi)-
It i s not har d to see from our constructio n tha t ther e i s a bilipschitz 

map of D(S) ont o Ti(5) which sends CI(S) to ai(S) an d c0(<2i ) t o a0(<2i ) 
for al l Qi G / ( 5 ) . 

114 



18. THE PROOF THAT (C4) IMPLIES (C7) 

Next w e wan t to do a similar (but simpler) construction fo r cubes Q in 
B. T o simplify notations w e associate t o each Q G  B a new stopping-time 
region S = 5(Q) , wher e S has Q as its unique element (and so Q(S) =  Q). 
We le t 7 denot e the union of T wit h {S C  A : S =  5(Q) , Q  € 5 } . Give n 
Q G  5, selec t an y x  G  Q and an y d-plan e P  tha t passes through x , an d 
let ci(5 ) b e the (d — l)-spher e in P wit h center x and radius 20 diam Q; a s 
before, we take &i(5 ) t o be the closed ball in P enclose d by ci(S). 

Let Qi be the childre n of Q, and le t J(S ) denote the set.o f these Qi. 
For eac h Qi G I(S) choos e a point Xi G  &i(5), and let c0(Qi) b e the (d — 1) -
sphere in P centere d at x, - with radius 2 diam Qi/CQ. Th e reader wil l most 
likely be unsurprised to learn that b0(Qi) denotes the open d-ball enclosed 
by c0(Qi). I f Co i s large enough, we can choose the x, - in such a way that 
(18.1) and (18.2 ) hold . [I n this case we do not nee d to take the point s x , 
inside II(Qi); when Q is a bad cube, we don' t have to respect the geometry, 
because the geometry is bad.l 

We no w set D(S) = b1(S)\{ 
Qiei(S) 

b0(Qi)) als o in this case. W e vie w 

D(S) bot h a s a  subset of P an d a s a  subset of Rn. W e take Ti(5 ) t o be 
the translation of D(S) insid e Rn+1 by 2diamQ(5) in the last variable: 

I \ ( 5 ) =  {(u,2diamQ(S) ) < E Rn+1 : u G  D(S)}. 

We le t ai(S) denot e the "exterior " boundary o f Ti (5), and , for Qi G I(S), 
we tak e ao(Qi) t o b e th e imag e o f co(Qi) b y th e sam e translatio n of 
2diamQ(5) in the last variable. 

Thus, just like when S G  F  r*i(5) i s a "nice " surface wit h boundar y 
ai(5)U( 

Qiti(S) 
AO(Qi))I AND there is a bilipschitz map of D(S) ont o Ti(5) . 

We ca n now glue the various Ti(5)'s together without much difficulty. 
For S G  7 le t T2(5 ) b e a "tube" tha t joins the sphere a^S) t o a0(Q(S)). 
In writin g 00 (^(5*)) w e must keep in mind that Q(S) i s not onl y the to p 
cube i n 5 , bu t i t i s als o th e so n o f a  ba d cube , o r o f a  minima l cub e 
of a n elemen t o f T. W e can choos e T2(5) C Rn+ 1 in suc h a  wa y that 
C"1 diamQ(5) <  y„+ i <  CdiamQ(5) fo r all y G  ? 2 ( 5 ) , an d als o so that 
there is a mapping zs o f D(S) onto T2(5) =  F i ( 5 ) U T 2 ( 5 ) wit h the following 
properties: 

(18.3) zs i s 1-regular, unitormly in o, and in particular, G <  \vzs\ < C 
a.e.; 
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(18.4) the restriction o f zs t o Ci(5 ) i s an affine function tha t sends the 
sphere ci(5 ) ont o a0(Q(S)), and , for each i G / ( 5 ), th e restrictio n 
of zs t o co(Qi) i s an affine map onto ao(Qa)- Thes e affine maps 
are all compositions of translations, dilations , and rotations . 

A few comments are perhaps in order concerning (18.3) . W e can split 
D(S) int o the union of a not-too-large spherical shell near the outer bound-
ary and the remaining subregion of D(S). W e can map the latter onto Ti (5) 
in a bilipschitz fashion. W e can't always map the spherical shell onto T2(5) 
in a bilipschitz manner, because it could be that ai(S) an d aQ(Q(S)) inter -
sect, but w e can certainly do it using a  1-regular mapping. 

Although our definition of w-regular mappings considered only the case 
of maps define d on all of Rd, it ca n easil y be extended to subdomains of 
Rd. I n the cas e of 1-regular maps, fo r example, one has t o decid e if the 
condition \Vz\ <  C a.e . should b e replaced by the requiremen t tha t z b e 
Lipschitz on its domain. Fortunatel y in our case this is not an issue; we can 
certainly build zs s o that it is Lipschitz, and in any case Vz G L°° implies 
z is Lipschitz on a domain like D(S). 

Note that (18.3 ) implie s that T2(5 ) i s chosen s o that r2(5 ) satisfie s 
the regularity condition 

C^Rd < \B(x, R) fl r2(5)| <  CRd 

whenever x G  T2(5) and 0  <  R <  diamQ(5) , an d tha t diamr2(5 ) < 
Cdiam<2(5). 

Set E = 
ser 

T2(5). W e certainly have that E\E ha s measur e 0 ; we 

already checked this for E \ ( 
ser 

To(5)). Befor e constructing a  parameter -

ization of E le t us check that i t satisfies (1.5) . 
We begin by showing that for any x £ Rn+1 and R > 0 we have 

(18.5) \B(x,R)f]E\ <CRd, 

starting with the case where #n+i = 0. 
Let S € y b e suc h that T2(5 ) D  B(x,R) ^  0 . Assum e first  that 

S = S(Q) fo r som e Q G  B. The n diam Q <  CR] otherwise , w e have 
yn+i > R fo r al l y 6  T2(5) , s o tha t y £ B{x,R). Thi s implie s that 
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Q C  B(x,CR), an d so 

\B(x,R)D 
scqf/f 

US) I < 
QcB 

QCB(x,CR) 

|r2(5)| < 
qcb 

QCB(x.CR) 

C\Q\ < CRd, 

by (2.4) . 
Similarly, w e can boun d b y CR th e tota l mas s o f the r2(5)' s for 

which SeP, Q(S) C  B(x, CR). Thi s leaves the 5 G  T suc h that T2(S) D 
B(x, R) ^ 0  but Q(5 ) % B(x, CR). Fo r each such 5 we certainly have 

\r2(S)DB(x,R)\<CRd] 

let u s show that ther e i s only a bounded number o f these 5's . T o do this 
it suffice s t o show that ther e i s a  Q G 5 suc h that dist(x,Q ) <  CR an d 
i£ < diamQ < CR, because there are only a bounded number o f such Q's, 
and because the 5's ar e disjoint subsets of A . 

For on e of these 5' s w e must hav e diamQ(5) >  R, sinc e otherwise 
Q(S) C  B(x, CR) (i f C is large enough). Becaus e of this we are reduced 
to finding Q £ 5 with dist(x, Q) < CR an d diamQ < CR] we can replace 
Q b y an ancestor i f necessary to get diam Q > R. W e may as well assume 
that diamQ(5 ) >  CR, since otherwise we can take Q = Q(S). 

To find  such a  Q we use th e assumptio n tha t r2(5 ) fl B(x,R) ^  0 . 
If R"1 diam Q(S) i s large enough w e have T2(5 ) H  B(x,R) =  0 , an d s o 
B(x,R) mus t intersect Ti(5) . Suppos e that B(x,R) intersect s To(5) , an d 
that y G Rn+1 lies in the intersection. Writ e y = (y',yn+1) , y' G  Rn. Then 
|yn+i| <  R, an d yn+ i =  d(y'), wher e d(-) is as in (7.6 ) (fo r this 5). Thus 
d(y') < R, y' € B(x,R) D  Rn, and the definition of d(y') provides us with 
the Q that we want. 

Suppose no w that ther e i s a  y = (y',yn+i ) i n B(x,R) f l Ti(S). B y 
definition Ti(5 ) i s a union of line segments, and ther e i s a A  G [0,1] suc h 
that 

y = A(u , A(u), d'(u)) +  (1 - A)(u , A(U(xs)), 2  diam Q(S)) 

for some u G Ci(5), where x$ denotes the point selected in the definition of 
T(5) (whic h we called x before) . Becaus e |yn+i | <  R an d R~1 diamQ(5) 
is big, we must have that d'(u) < R and that 

l -A< i? (2d i amQ(5) ) "1 . 
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This implies that \y' — (u,A(u))\ < CR, b y using the fact tha t 

\A(u) - A(U(xs))\ < 20diamQ(5) 

in th e abov e formula fo r y. Sinc e d'(u) = d(u,A(u)) < R an d d(-) is 
Lipschitz, we have that d(y') < CR, and so we are in the same situation as 
before. 

The onl y remainin g possibilit y i s tha t ther e i s a  y = ( y , , y n + i ) m 

B(x, R)f)To(Qi) fo r some Qi G I(S). B y definition y lies on the line segment 
that joins (u, A(u),d'(u)) t o (u, A(U(xi)), 2diamQ, ) fo r some u G c0(Qi). 
If diamQ j <  CR, then we can take Q = Qi', if not, th e sam e argumen t a s 
the on e we just used implies that d(y') < CR, an d thi s again provide s us 
with the sor t of Q that we want. 

Combining al l these cases we get tha t (18.5 ) hold s whe n x n + i = 0 . 
Let u s sho w that thi s i s stil l true i f x n + i ^ 0 . W e may a s wel l assume 
that x n + i > 0 , since yn+1 > 0  whenever y £ E. W e can als o require that 
xn+i >  2i2 , since th e othe r possibilit y ca n easil y b e reduced t o th e cas e 
where x n + i = 0 . Writ e x = (x1, xn_j_i). 

Let S € fbe suc h that T2(5) intersect s B(x, R). I f S = S(Q) for some 
Q G B, the n diamQ ~  £ n + i 5 an d dist (x ' ,Q) < Cxn+i, an d ther e are only 
a bounded numbe r of Q's like that. I f S G T, the n diamQ(S) >  C~1xn_|_1, 

and an argument like the one we gave in the x n + i = 0  case shows that there 
can only be a bounded numbe r of these 5's as well . (Fo r each such S you 
prove that there is a Q in S with diamQ ~  x n + i an d dist (x', Q) < Cx„+i. )  Since

\B(x,R)DT2(S)\ < CRd 

for an y S G F, we get that (18.5 ) is true in this case also . Altogethe r now 
we hav e proved (18.5) for all x G R n + 1 . 

Actually, our proof gives a bit more : for each x G R n + 1 an d R >  0 we 
have 

(18.6) 
scF 

\B(x,R)nr2(S)\<CRd. 

This controls th e overlapping of the r 2(5)'s. 
Let's check the lower bound, i.e. , that 

(18.7) \Ef]B(x,R)\ > C~xRd 
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whenever x G  F, R > 0. 
Notice that {y G  F :  yn+i =  0 } is exactly E modul o a set o f measure 

zero. Indeed , we have 

£ f ] R n = 
scF 

( r0(S)nRn) 

and r0(5 ) D Rn C  E b y definition, and w e have already seen that F  \  F 
has measure zero . Pro m this it follows that (18.7 ) holds if xn+i = 0, since 
we are assuming tha t E satisfie s (1.5) . 

Suppose no w that x = (x',xn+i) , xn+\ > 0. Choos e S G  T s o that 
x G r2(£')- B y construction w e have 

xn+i + dist(a?',Q(5)) < CdiamQ(5) . 

If i? is large enough compared to diam £?(5), then there is a point y G  Q(S) 
such that y G  i?(x, | i ? ). Henc e B(x,R) D B(y,\R), an d sinc e y € E 
and E \ E ha s measur e zero , w e can deriv e (18.7) fro m (1.5 ) again. I f 
R < C diam Q(5), the n we have 

IJ3(x, R) H Fl > B ( x , R ) f l T2(5)| > C " 1 ^. 

This completes the proof that E satisfie s (1.5) . W e now construct our 
parameterization z(-) of E. 

For each 5 G  T w e are going to choose a mapping hs : Ds — * Rd which 
is the composition of a translation, rotation , and a dilation. W e shall define 
z(-) o n hs(D(S)) b y z(x) = zs o h^1(x)J where zs :  D(S) — > T2(5 ) i s the 
map we chose earlier (satisfying (18.3) and (18.4)) . W e need to choose the 
hs's i n such a way that we can do this coherently. 

Fix So G an d le t hsQ b e any ma p o f D(SQ) int o R d that i s th e 
composition of a translation, rotation , an d a  nontrivial dilation. Fo r each 
Qi G  ^(5o) there i s exactly one choice of h>s(Q{) [S(Qi) i s the element of T 
whose top cube is Qi] such that hs0(co(Qi)) = hs(Qi)(ci(S(Qi))) an d such 
that zs(Qi) o ̂ 5^.) agrees with zs0 o o n that set . B y repeating thi s 
procedure w e choose hs fo r al l S G  T wit h Q(S) C  Q(So). W e can also 
run thi s process backwards to choose hs for all S G  T wit h Q(S) D Q(5o), 
and the n run i t forwards again to get al l S G  W e do indeed reach al l 
S1 G  T, becaus e of the connectedness o f A. 
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Set fl = 
scF 

hs(Ds)- (Remembe r that each Ds i s closed, by construc-

tion.) Thu s fl C Rd, and we can define z :  fl —• Rn+1 by z(x) = zsohg1(x) 
if x £ hs(D(S)). Thi s is well-defined by construction. I n particular, th e 
interiors of the hs(Ds) ar e pairwise disjoint. 

We need to understand fl  better . B y definitions, hs(Ds) = Ps \ 7 s , 
where fls is a closed ball and 7 5 is a countable unio n o f open balls . On e 
can chec k that 7 5 C  JQPS] thi s follows fro m th e correspondin g inclusio n 
back on D5, and the fact that hs does not distor t relativ e size. Henc e if B 
is a ball in 7 5 , 10B C /3s- Our construction als o gives that for 5, S' £ J-\ 

(18.8) 0s C fa when Q(S) C Q(S'), 
0s fl 0S- = 0 when Q (S) fl Q(S') = 0. 

These observations impl y that 0s Q io@s' when S, S' € J~, Q(S) C 
Q(S'), an d S ^  5' , an d also that 

(18.9) loBscBs' 

It no w follows that 
scF 

0S = K-d- Indeed, if S ; is any sequence in T suc h 

that Q(Sj) C Q (5 i+i ) , S , ^ S y + i , for each j , then 0 S D ( l O ) ' * " 1 / ^ • 
Next le t us show that M = Rd \ ft  has measur e zero. Le t S G J7 b e 

given. Le t Si7k b e an enumeration o f the 5(Q)' s wit h Q G I(S). Repea t 
this process; i f we have chosen Sjtk G J7, k = 1,.. . , i V ( j ) , fo r a  given j , 

we let Sj+i^i b e an enumeration o f the S(Qys tha t arise from Q G I(Sjik)-) 

k = 1,..., N(j). Thi s process may terminate afte r a  finite number of steps. 
Set/Ji>fc =  / 3 5 i , t . 

Prom (18.9) we obtain 

(18.10) 
k 

l / W I < 
1 
10 

k 
\0JM-

In particular. 
j 

u Pi* ) has measure zero. Thi s set contains M f l / ? s , an d 

so we conclude that M ha s measure zero, since S i s arbitrary . 
We can extend z(- ) so that i t i s defined on all of Rd, not just fl.  Fi x 

x £  M , and choos e S £ T s o that x  £  / 35 . Le t 5/,* b e as above , and for 
j = 1, 2 , . . ., le t A:(j ) be the index such that x £ fij,k(j)' (Notic e that there 
must be infinitely many S f̂c's that contain x if x £  M .) The n Q(Sj}k(j)) i s 
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a decreasing sequence of closed sets whose diameters tend t o zero, and so 
their intersection consists of a single point, which we take to be z(x). 

Observe that z(M) ha s measure zero ; if y G z(M), the n y G Q(S) for 
infinitely man y S G T, an d the se t o f such y has measur e zer o because of 
(2.4) an d (2.7) . 

Let u s check that thi s extension of z(-) to Rd is continuous. B y con-
struction. 

(18.11) diamr2(5) <  CdiamQ(S),dist(r2(5),Q(S) ) <  CdiamQ(S) . 

Combining this with (18.8) it is easy to see that 

(18.12) diam z(ps) < C diam Q(5), dist(*(/?s) , Q(S)) < C diam Q{S). 

Prom this it follows easily that z(-) is continuous eve n at point s of M. 
This is a pretty good time to show that z(Rd) D E. W e already know 

that z(Q.) = E contains almost every point in E] the same argument shows 
that z(/3s \ M) = U{r2(5' ) :  Q(S') C  Q(S)} contain s almos t al l point s 
in Q(S). Henc e z(/3s) contains al l points wit h positive lower densit y in 
Q(S), becaus e z(/3s) is compact. From here and (1.5 ) i t follows easily that 
z(Kd) = \Jz(fis) 2 E. 

It remain s to show that z(-) is o;-regular for some Ai-weight LJ on Rd. 
By definitions z(-) is locally Lipschitz on ft, and so Vz(x) i s defined almost 
everywhere. 

Let u s show that for any x G E and any R > 0 we have 

(18.13) C-1\B(x1R)í)É\ < 
z-HB(x,R)) 

\Vz(y)\ddy<C\B(x,R)nÉ\. 

Notice first that we don't have to worry about M o r z(M)7 since they botl 
have measure zero . W e know that th e analogue of (18.13) holds for z, E 
replaced by zs o  A^1, T2(5), becaus e each zs i s 1-regular, and because he 
is just a  composition of a translation, rotation , and a  dilation. Hence 

z-1(B(x,R)) 

\Vz{y)\ddy = 
56^ *-l(B(*.*))n(/»s\7s)) 

\Vz{y)\ddy 

= 
scf 

\B(x,R)nr2(S)\. 
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The desired estimate no w follows from (18.6) and (18.7) . 
Next w e want t o chec k tha t u(x) = \Vz(x)\d i s a n Ai-weight . Le t 

B = B(x,R) b e a  give n bal l i n Rd . Choos e S s o that B C  /3S and s o 
that Q(S) i s minimal with this property. Le t 6(S) G R+ denote the factor 
by which hs dilates ; thi s makes sense , becaus e hs i s a  compositio n of a 
translation, rotation , an d dilation. 

Observe that 

(18.14) |V*(z ) | >  (CÔ(S))-1 a.e . on ps. 

To see this notice that 

(18.15) C~1*(5) <  S(S(Q)) < 1 
2 

6(S) 

whenever S G T an d Q G I(S), becaus e h~(c0(Q)) = ^s(Q)(ci(5(Q)) an d 
CQ(Q) i s much smaller than Ci(5(Q)) , althoug h no t excessively smaller. I n 
particular S(S') < 6(S) if Q(S') C Q(5), and (18.14) now follows from this, 
(18.3), and the definition of z [z — zs o hg1 on hs(D(S))]. 

To finish the proof that UJ i s an A\-weight w e need to show that 

(18.16) u(B) < C6{S)~dRd. 

In view of (18.13) and (18.5 ) we need only show that z(B) i s contained in 
a ball of radius CSfS^R. 

Set as = Ps \ is an d BQ = B fl {as U  ( 
'Qiei(S) 

AS(Qi))}' O f course B 

intersects «5, since otherwise S i s not minimal . Le t yo be a point i n this 
intersection. 

We know that z is Lipschitz on J50, with norm < C5(5)_1 , because of 
(18.3), the remarks concerning (18.3) given after (18.4) , and (18.15). Hence 
z(B0)ÇB(y0,C6(S)-1R). 

Suppose that B\Bn i s not empty. Le t Q, G I(S) an d Qi G I(S(Qi)) 
be such that B intersect s OIS(Q1 . ) . Sinc e otsiQx .• ) Q 1 

10 Ps(Qi) and 5  inter -
sects the complement of PsiQ)-, we have that 

R> 1 
2 

radius Ps(Qi) ^ C  1^(5)diamQj . 

Because we also have diam z(Ps(Qi)) <  C diam Qi from (18.12), we conclude 
that 

Z(Ps(Qi)) Ç  { y :  dist(y,z(Vo ) <  C7*(5)-1B } Ç B(y0, Cô^R) 
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if C i s large enough. I t now follows that z(B) C  B(yo, C'8(S)~1 R). Thi s 
proves (18.16), and hence that w G i i . 

Combining (18.16 ) an d (18.14 ) w e get tha t w(B)i i s comparabl e t o 
8(S)~1R, an d putting this fact togethe r with the one we just proved gives 

(18.17) diam ¿(5) <  CUJ(B) i 

for al l balls B C  Rd. Thi s implies that z has a  locally integrable distribu -
tional gradient o n Rd, not just on ÍÍ. Indeed , the distributional directiona l 
derivatives of z ca n b e given as weak limits of t~1(z(x + tv) — z(x))j an d 
(18.17) implies that for 0 < t < 1 these functions ar e uniformly dominated 
hv 

sup 
0<fí<l 

1 
Rd 

B(x,R) ) 
I 

Thus th e distributiona l directiona l derivative s must be locally integrable . 
This argument als o gives |V^ | <  Cuji a.e. , but o f course \Vz\d = u a.e . by 
definition of UJ. 

This complete s th e proo f tha t (C4 ) implies (C7) , and henc e o f th e 
theorem stated in Section 1. 
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19. A variant of (C2) and (C3) 

Set 

(19.1) syr(x,t) = 
( 

\ 

1 
t2d 

B(x,t)nE B{x,i)C\E 
{rl dist(2 y - to , E))rdydw 

1 
r 

for 1  < r < oo. Thi s measures the exten t t o which E i s symmetric about 
each of its points. I n particular, if syr(x, t) = 0 for all x, t, then E must be 
symmetric about all of its elements. Th e variant o f (C2) an d (C3 ) that we 
shall consider i s the following : 

(C8) syi(x,t)2 dxdt 
t is a Carleson measure on E X R+. 

This condition is equivalent t o the others, an d this is still true if we replace 
r =  1  by any r, 1  < r < 2d 

d-2 
(1 < r <  oo if d = 1) . W e are going to indicate 

the proofs of these results in this section. 
One can thin k o f sy1(x,t) a s a  geometrica l version o t a n averag e c 

second differences of a function. Whe n E is a Lipschitz graph i t is not ha r 
to make precise th e relationshi p betwee n syi(x,t) an d average s o f secon 
differences o f the function bein g graphed . 

Let u s first chec k that (C8) , wit h r = 1 , implies our loca l symmet r 
condition (LS ) from Sectio n 4 . Le t r  >  0  be given , a s i n Definitio n 4.5 
Suppose that Q £ 7£(r), so that there are y, w £ 2Q such that 

dist(2y -W,E)>T dia m Q. 

If w e can show that this implies that 

(19.2) syl(x,t)<C-lt*2s+l 
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for any x £ Q and any t such that 3 diam Q < t < 4 diam Q, then it i s easy 
to derive (4.3) from (C8) . 

Fix an y such x an d t. I t i s easy to check (19.2 ) usin g th e definition 
(19.1) and the fact that 

dist(2y' -w\E) > 
T 

10 
diam Q 

for an y y' G  B(y, t t^t*) , w* G  B(w, l 100 RI). 

From her e i t i s no t to o difficul t (bu t rathe r tedious ) t o prov e that 
(C8) wit h r =  1  implies (C4) by modifying th e argument s use d t o show 
that (C2 ) and (C3 ) eac h imply (C4). W e omit the details , becaus e the y 
are somewha t messy , an d becaus e w e now know that (LS ) itsel f implie s 
(C1)-(C7), a s mentioned just before Lemma 5.13. 

Assume now that E satisfie s (C4 ) an d consequently the conclusion of 
Proposition 5.5 as well, and let us show that (C8 ) must hold, and even the 
stronger version where r = 1  is replaced by r < 2d 

d-2 
(r <  oo if d = 1). 

Let rj >  0 be small and let k > 0 be large, to be specified later. Le t /?, 
Q, S € T b e as in the definition of a corona decomposition. 

Let Q(rjj k) be as defined in the beginnin g of Section 6. W e want t o 
modify th e coron a decomposition slightly, so that al l the goo d cube s also 
lie in Q(rj, k). Thu s we replace B by B U (A \  </(r?, k)) and Q by Q fl £(77, k). 
By assumption s (2.4 ) is not disturbed , bu t (2.5)-(2.7 ) notic e the change . 
However, if for each S G T yo u subdivide S C\Q(rj,k) int o maximal regions 
that satisf y (2.5) , the n th e resultin g famil y o f regions also satisfies (2.6) 
and (2.7) . Thu s we may as well assume that our corona decomposition has 
GQG{r),k). 

The argument w e use to show that (C8 ) hold s is quite similar to the 
one in Sectio n 15 . W e shall us e th e sam e notations also , and th e reade r 
may find it helpful to review that section. 

By Lemma 15.2 it suffices to show that, for r < 2d 
d-2? 

(19.3) *yr(M)2XsOM) 
dxdt 

t 

is a Carleson measure for each S G  F  wit h norm bounded independentl y 
s-* ^ ^ ^ 

of S. W e may as wel l replace 5 her e by 5i, where Si =  {(x,t) G  S : t < 
10~3 diamQ(S)}; the contribution t o (19.3) coming from S\S\ ca n easily 
be controlled using syr(x,t) < C. 
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Fix S £ T an d r < 2d 
d-2' 

As i n Section 15 we let T be the Lipschitz 
graph over a d-plane P as promised in (2.6). W e als o let P2- b e the (n — d)-
plane that passes through th e origin and which is orthogonal to P , and we 
let A: P P1- b e the function whos e graph is Y. W e denot e by II and U1-
the usual projections of Rn ont o P an d P-1, an d we define d(x) and D(p) 
by (7.6 ) an d (8.1) , as always. 

In orde r t o sho w that (19.3 ) i s a  Carleso n measure we are goin g to 
estimate syr{x, i) in terms of an //-average of second differences of A, plus 
error terms arising from the approximation of E by V. 

Fix x , t £  5i . Give n y £ Rn, set y = (U(y),A(U(y))) £  I \ I f 
y £  2Q(S) we have \y — y \ < Cr/d(y), because of (2.6). Hence 

(19.4) 

syr(x,t)< 

\ 

t-2d 

B(x,t)nE B(i,i)nE 

{t"1 dist(2y -w,E)) dydw 
i 
i 

i 
r 

+ Cr¡ ( B(i,i)nE 

(r1d(y))rdy ) 
1 
r 

The first  ter m on the right side of (19.4) can be dominated by 

(19.5) ( t-2d 

B(p,2t)nP B(p,2t)nP 

(r1 dist (2g - s, E))r d\(q)d\(s) ) 
r 

where p = n(x) , q = (^, A(q)), s = ( 5 , ^ ( 5 ) ) , an d A  is the measure obtained 
by pushin g Hd |2Q(5) down to P using n . 

We wan t t o replace A  by Lebesgue measure in (19.5) . O f course A  is 
comparable t o Lebesgu e measure on n(Z) , an d s o we need onl y look a t 
P \  n (Z) , whic h is the se t o f points q £ P suc h that D(q) > 0. I n this 
region we have that A  is comparable t o Lebesgue measure at th e scal e of 
5rjD(q), a t least if you sta y close to U(Q(S)). Mor e precisely, we claim that 

(19.6) C-1(VD(q))d < X(B(q,5VD(q))) < C(r)D(q))d 

for al l q £ P suc h that 

(19.7) dist(<z,II(Q(S)))< 
1 
10 

diam Q(S). 
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(Actually, w e need (19.7) only for the first inequality in (19.6).) 
Before checkin g (19.6) le t us record and verify th e useful fac t that 

(19.8) C^d{u) < D(U(u)) < d(u) whe n u £ 2Q(S). 

We hav e seen thi s sor t o f thing before , in Lemm a 8.21, bu t th e circum -
stances were somewhat different there . Th e second inequality in (19.8) is a 
direct consequence of the definitions, and so we need only concern ourselves 
with the first.  Let u £ 2Q(S) be given, an d choose v £ Q(S) such that 

I n(u) - U(v) I + d(v) < 2D(U(u)). 

This w e can do , because o f the definition s o f -D(- ) and d(- ) in (8.1 ) and 
(7.6). W e can control \u — v\ by projecting onto T, as follows: 

\u-v\<\u- m(u)r\ + \m<u)r - № ) ) *! + \v- (n(v)r\ 
< Crid(u) + C\Il(u) -  U(v)\ + C7/d(u ) 
< Cr)d(u) + CD(Tl(u)). 

It i s easy to obtain the first half of (19.8) from these inequalities together 
with d(u) — d(v) < \u — v\, if 77 is small enough. 

Now le t us check the right side of (19.6). I t suffices to show that 

(19.9) IL-^Biq, 5r)D(q))fi2Q(S)) C  B(q,Cr,D(q)). 

Let u be an element of the lef t sid e of (19.9). The n u € 2Q(S), an d so 

| w - ( n ( u ) ) A | < Crid(u). 

Prom (19.8) we have 

d(u) < CD(Il(u)) 
<CD(q) + C\Il(u)-q\ 

< CD(q), 

since u lies in the lef t sid e of (19.9). Thu s 

| u - 5 | < | U - ( n ( u ) ) A | +  | ( n ( u ) r - g | 

< Cr)D(q) + C\U(u) - q\ 

< CriDiq). 
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This proves (19.9), and also the right side of (19.6). 
Next we verify the left sid e of (19.6). B y definition of D(q) w e can find 

a Q G S such that 

(19.10) dist(g, IL(Q)) + diam Q < 2D(q). 

By replacing Q by an ancestor i f necessary we may also assume that 

(19.11) D(q) < CdiamQ. 

Because Q G 5, Q is a good cube, and in particular Q G Q(rj,k). Thu s Q 
satisfies (6.2) , with e replaced by r}. We want to use this to produce a point 
in | Q ( 5 ) whos e projection onto P lie s near q. We shall then use that and 
the regularity of E t o get the first inequality in (19.6) . 

Let us begin by observing that 

(19.12) Angle(P,Pg)<C7?. 

This is a minor variation of Lemma 5.13; the point is that every element of 
Q i s within Crj diam Q of both PQ an d T , and T  is a Lipschitz graph over 
P wit h constant <  7). Th e argument use d t o prove Lemma 5.13 ca n also 
be applied in this case. 

Let w be th e elemen t o f PQ suc h that H(w) = q, and le t Q be th e 
projection of Q onto PQ. The n 

(19.13) dist(w, Q) < (1 +  Crj) dist(g, n(Q)) +  Crj diam Q. 

Indeed, let y G  Q be such that \q — II(y) | =  dist(g,II(<3)) , and let y be the 
projection of y onto PQ. The n \y — y \ < rj diam Q, and 

dist(w, Q) < \w — y\ 
(by (19.12) ) < ( l +  Ci7)|II(u;)-II(y) | 

<(l + Cr,){\q-U(y)\ + \U(y)-U(y)\} 
< ( 1 + Cri){dist(q, n(Q) ) + ri diam Q). 

In particular w e have dist(u;,Q) < CdiamQ, by (19.10) and (19.11) . Be -
cause w G  PQ an d (6.2 ) holds with e replaced by r), we get that there i s a 
point u G  E such that 

(19.14) \u — w\ < rj diam Q. 
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(This is the place where we need k to be reasonably large. ) 
Prom (19.14) and (19.10 ) we obtain 

(19.15) \IL(u)-q\<2r,D(q)9 

and hence 
tt-l(B(q,5nD(q)))uB(u,nD(q)). 

To prove the first inequality in (19.6) it is enough to show that 

(19.16) B(u,rjD(q))DEC2Q(S), 

since \(B(q,5rjD(q))) = |n_1(5(5,5tjD(q))) f l 2Q(S)\ (b y definition of A) . 
To prove (19.16) it suffices to check that dist(u , Q(S)) < |diamQ(5 ) 

if 77 is small enough, sinc e rjD(q) < —77 diam Q(5) <  |diamQ(5 ) i f rj is 
small enough (and if q satisfies (19.7)) . Usin g (19.14) and (19.13 ) we have 

dist(u, Q(S)) <\u-w\ + dist(w, Q(S)) 

< rj diam Q + dist(w, Q) 
< 2r] diam Q + dist(iu, Q) 
< Crj diam Q + (1 + Crj) distfa, U(Q)). 

This i s less than |diamQ(5 ) i f rj is small enough an d q satisfies (19.7) . 
[We are using here the fact that Q C Q(S).] 

This finishes the proof of (19.6). Le t us use this to analyze (19.5). 
It i s not hard to show that 

(19.5) < C 

\ 

t-2d 

B(j>,3*)nP B(p,3t)nP 

(r1 dist(2 £ - s,E))r dqds ) 
1 
r 

(19.17) + C 

\ B(p,3t)nP 

W-'DWdXiq] 

1 
r 

We shal l onl y sketch th e argument . Th e first step i s t o find a  covering 
of U(2Q(S)) b y U(Z) an d a  countable famil y o f balls that hav e bounded 
overlap an d whic h are o f the for m J3(a , 5r]D(a)). Thi s i s simila r t o th e 
story abou t th e R^s i n Section 8, and i t i s not difficult . T o derive (19.17) 
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you us e thi s coverin g to brea k u p th e integral s i n (19.5) , an d the n you 
control th e piece s separately usin g th e followin g thre e facts . First , th e 
oscillation of dist(2ç —i, E) in q or s over a ball i?(a, 5rjD(a)) i s bounded by 
CrjD(a). Second , we know that À  and Lebesgue measure are comparable on 
n ( Z ) , an d that they give the balls i?(a, 5rjD(a)) comparabl e mass. Third , 
since (xjt) G  S w e have Ct > d(x) > D(p). Thi s implies that i f i?(p,2t) 
intersects i?(a , 5rjD(a)), the n Ct > D(a). This ensures that our covering is 
thick enough to be useful for controlling the integrals over B(p,2i). Mor e 
precisely, it implies that B(a,5rjD(a)) Ç  B(p, 3t) if B(a,5rjD(a)) intersect s 
B(pj 2t) and rj is small enough. 

The last ter m in (19.17) is dominated by 

C 
I 

\ 

t~d 

Bix.Ct^E 

(rit-1d(y))rdy 
\ 

) 

1 
I 

To show this it is enough to check that 

(19.18) n - 1 ^ , 100 ) H 2Q(S) Ç B(x, Ct), 

because of (19.8) and the definition of A. Th e proof of (19.18) is similar t< 
that of (19.9), and we omit the details. I t is important t o use the fact th a 
Ct > d(x), which holds because (x,t) G  S. 

Putting these inequalities back into (19.4) we obtain 

syr{y,i) < C 

( 
t-2d 

B(p,3t)nP B(j>,3*)nP 

(t~1dist(2q-s1E))rdqds 

i 
r 

(19.19) + Cr¡ 

\ 

t-d 

B(x,Ct)nE 

(t-1d(y))rdy 

1 
r 

To deal with this we observe that 

dist(2¿ - i , E) < \2q - s - (2q -s)A\ + dist((2g - s)A , E). 

131 



G. DAVID, S. SEMMES 

Of cours e \2q - s - (2q - s)A\ = \2A(q) - A(s) - A(2q - s% an d s o its 
contribution t o the first term on the right of (19.24) is at most 

C t-2d 

B(p,3t)r\P B(P,3t)nP 

(t'1\A(2q -s) + AU) -2A(q)\Y dqds 

i 
r 

< CiUr>. 6t) < C inf 
B(Mz),t) 

7r(-,10i), 

where 7r(p, t) is as in (15.4) . Thu s 

syr(x,t) < C inf 
B(n(*),t) 

7r(-,10i) + C 

( 
t-d 

B(p,9t)nP 

(t-xàist(û,E))rdu 

1 
r 

(19.20) + Cr) t-d 

B(x,Ct)CiE 

(t-1d(y))rdy 

1 
r 

Let u s sho w that th e middl e term o n the righ t ca n b e controlled by 
the last term . T o see this we first check that 

t-d 

B(p,9t)nP 

(i-1 dist(û,E))rdu 

1 
r 

(19.21) < C t~d 

B(p,10t)nP 

(i_1 dist(û, E))rd\(u 

1 
r 

+ C t~d 

B(p,10t)nP 

(nt^DiuWdXiu) 

1 
r 

This ca n b e proved using th e sam e sor t o f covering argument a s used t o 
get (19.17) : dq and d\(q) ar e comparabl e o n th e scal e o f 5rjD(u), an d 
dist(ç, E) oscillates by at most CrjD(u) o n a ball of radius 5rjD(u), becaus e 
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it i s Lipschitz. I t i s also important tha t D(p) < d(x) < Ct an d tha t t < 
10~3 diamQ(5), whic h are true because (x,t) 6  Si- Th e second condition 
is needed to ensure that (19.7 ) holds in the relevant cases . 

Next we convert the integrals on the right side of (19.21) into integrals 
on E. Usin g (19.18) and the definition of A we obtain 

(19.22) left sid e of (19.21) 

< C t'd 

B(x,Ct)r\2Q(S) 

(t-1dist((U(y),A(U(y))),E))rdy 

1 
r 

+ C t~d 
B(x,Ct)nE 

(rit-1d(y))rdy 

1 
r 

We have also used the fact that D(H(y)) < d(y). The first term on the right 
is dominated by the second, because o f (2.6), and because al l the relevant 
2/'s lie in E. 

Prom (19.22) it follows that the middle term on the right side of (19.20) 
is indeed dominated by the last term, so that 

(19.23) syr(x,t) < C inf 
B(n(s),*) 

7r(-,10*)+C77 t~d 

B(x,Ct)nE 

{t-'d^ydy 
r 

The remainder of the proof that (19.17) is a Carleson measure with bounded 
norm if r < 2d 

d-2 is exactly like the corresponding step in Section 15 (begin-

This finishes the proo f o f the resul t state d a t th e beginnin g o f th e 
section, that (C8 ) i s equivalent to (C1)-(C7) , eve n if r = 1  is replaced by 
any r such that 1  < r < 2d 

d-2' 
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20. A  counterexampl e 

Although th e wea k geometric lemma (5.2) is a  useful auxiliar y con-
dition, i t i s not stron g enoug h to imply rectifiability properties o f the se t 
in question . W e shall no w construct a  1-dimensiona l se t E i n R2 which 
satisfies the weak geometric lemma but no t much else. O n the other hand, 
we shall show in [DS3 ] that a  d-dimensional regular se t tha t satisfie s th e 
weak geometric lemma and another geometrica l condition (big projections 
on some d-planes) has big pieces of Lipschitz graphs, and satisfies (C1)-(C8 ) 
in particular . 

We use a  minor modification of the Va n Koch snowflake . Th e set E 
will be obtained as the limit of a sequence En of sets, with each En being 
the union of 4n line segments of length 4~n. 

Given a  sequence {o¿n} of small real numbers we construct th e jBn's 
recursively according to the followin g recipe . W e take Eo to be the unit 
interval on the ar-axis . Suppos e -En-i ha s been constructed. T o construct 
En we replace each line segment L of En-i b y four segment s Zq , L2, L3 , 
L\ wit h the following properties . (Se e Figure 2.) 

(20.1) Th e length of L, i s 4~n, i = 1,..., 4. 

(20.2) Th e endpoint o f L¿ is the initial point of £¿+1 , i = 1, 2, 3. 

(20.3) Th e L2's make the angles 0, an, n — o:n, and 0, respectively , 
with L. 

(20.4) Th e midpoint of L is also the midpoint of the segment that joins 
the initial point of L\ t o the endpoint o f L4. 

The an' s ar e allowe d t o be quite arbitrary , fo r the momen t anyway, 
although we do ask that thev be small enough so that the various segments 
do not cross each other. (|o:n | < 1 

100 
for al l n will do.) 
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Ll 
L2 L3 

L4 

L 

Figure 2 

Let E be the se t obtained in the limit from the F„'s , using th e Haus -
dorff metric, for instance. I t is not hard to see that E is (locally) regular; if 
B is a ball centered on E with radius 4~n, then the total length of En fl B is 
about 4~n, an d takin g further generation s doe s not alte r this significantly. 

It i s also not hard to check that E satisfies th e weak geometric lemma 
if and only if an tends to 0. 

If OL^ < oo , then E i s containe d i n a  curv e o f finite length : th e 
distance from the initial point of one of the segments of En-\ t o the initial 
point o f the correspondin g piec e of En i s about o^4~n , an d similarl y for 
the endpoints, and so you can connect the various pieces of E together and 
get a  curve which contains E and has finite length (and is even chord-arc). 

If Ck^ =  oo , then the curv e you get from the metho d just describe d 
has infinite length. Moreover , any curve that contains E must have infinite 
length. Thi s follows from the theore m of Peter Jones in fJ3 l an d th e fac t 
that the measure fi — /3i(x,t)2 dxdt 

t 
on E x R+ [as in (C3) ] satisfie s 

fi(B x (0,/?) ) =  oo 

for an y ball centered on E an d any R > 0. 
Even more is true. If Oi2 = +oo, then I f n E\ = 0 for any rectifiable 

curve r , so that E is totally unrectifiable in the sense of geometric measure 
theory. I t suffices to check this for Lipschitz graphs, because any rectifiable 
curve is contained i n a countable unio n of C1 curves, except perhaps for a 
set of length zero. (Se e [Fe], for example.) 

Suppose tha t T  is a Lipschitz graph an d jJ5 7 D T| = r  >  0 . Fo r each 
n, E i s naturally divide d into 4n parts F(n,z) , 1  < i < n. Thi s is easily 
seen from the construction o f E\ these 4n parts of E correspon d t o the 4n 
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components o f EN. Becaus e 
i 

\T fl E(N, I)\ =  r , ther e is an I such that 

| rn E(N,I)\ > r4" n =  R\E(N,I)\. 

Since any E(N,I) ca n be obtained fro m any E(N,J) b y a rigid motion, we 
conclude that for each n , j ther e is a Lipschitz graph rnj suc h that 

\Tnijr\E(N,J)\>R\E(NJ)\. 

In other words , we can us e th e self-similarit y o f E t o pass from th e 
positivity of |i£nr| to E having big pieces of Lipschitz graphs. I n particular 
E mus t satisfy (C6) , whic h implies that E i s contained i n a  regular curv e 
and tha t the measure /1 is a Carleson measure , both of which we know to 
be false. Thi s proves that \E D T\ = 0  for all Lipschitz graphs T. 
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21. Som e open problem s 

There are three omissions in the theorem that are particularly glaring. 
The first  i s that w e don't kno w if we can restric t ourselve s to a  "small " 
collection of kernels in (CI) , e.g., to K(x) = Xj 

\X " + 1 > i =  1,... , n. A  partial 
result in this direction is given in [Fg]. A  related result is in [Ma2] . 

We als o don't kno w so much about restrictin g ourselve s to small sets 
of T/>'S in (C2) . Ou r arguments i n Sections 4,5, and 6  (for proving Propo -
sition 6.5) relied heavily on much flexibility in the choice of Z/J'S. However , 
we reall y didn't nee d so many </>' s in Section s 9 , 10 , and 11 , although i t 
simplified th e proo f substantially . W e used th e fact tha t w e could choose 
</>'s that satisfy (10.1 ) and (10.2 ) in order to obtain (10.9 ) and (10.10) . We 
could have used much less special (and much smaller) families of ^'s t o get 
versions of (10.9) and (10.10 ) with e2 replaced by e2 +  64. Roughl y speak-
ing, th e reason for this is that you can split */>((p , A(p)) — (5, A(q))) int o the 
part that i s linear in A and th e remainder , an d the latter i s controlled by 
C62 usin g the fact that the Lipschitz norm of A is < C8. 

The secon d omission is that we do not know whether "E has BPLG " 
is equivalent to our other conditions . (O f course it implies (C6).) I n some 
sense (C5 ) an d (C7 ) ar e not so far from this, since we know from [D4] that 
images of Rd under bilipschitz or u;-regular map s in Rn have BPLG. 

The thir d i s that th e theore m doe s not sa y anythin g abou t th e cas e 
when £  i s no t regular . O n th e othe r hand , th e theore m o f Jones [J3 ] 
characterizing th e subset s of planar curves with finite length i n terms of 
quadratic condition s on the /?oo' s does not nee d the se t t o be regular. O f 
course fo r thi s i t help s tha t yo u are workin g with /3^ instea d o f (3q fo r 
q < 00, and, as we've pointed out, Jones and Fang found a counterexample 
to show that such quadratic conditions on the /3oo's need not hold for higher-
dimensional Lipschitz graphs. 
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A natura l conjecture concernin g non-regular set s that migh t be prov-
able using current technology is that qualitative versions of (C1)-(C3) imply 
that E i s rectifiable. Fo r example, if Hd(E) < oo and if 

sup 
€>0 

En{\x-y\>e] 

K(x - y)f(y)dy 

is finite a.e. on E for all K a s before and all / i n some reasonably rich class 
(e.g., bounded measurable functions wit h compact support), then is it true 
that E i s rectifiable? 

Mattila [Ma2 ] has obtained a result related to this problem. Roughly 
speaking he gives a characterization o f rectifiability of one-dimensional sets 
in th e plan e i n terms o f the existenc e of principal value s for the Cauch y 
kernel. 

The natural qualitative versions of (C2) and (C3 ) are given in terms of 
the finiteness a.e. of square functions. Fo r (C2) this would be the require-
ment tha t for all ip a s in (C2) , 

£<0 

2-ed 

B(x,2£)nE 
II 

E 

i/>e(y — z)dz I  dy < oo 

for a.e . x £  E. Th e counterpart to (C3 ) is 

o 

i 
t-d 

B(x,t)nE 

PÁy,i?dy 
dt 

t 
< o o 

for a.e . x G  E. On e can formulate a  qualitative version of (C8) similarly. 
This possibl e relationship betwee n the finiteness a.e. o f these square 

functions an d the rectifiability of E is analogous to the classical results that 
characterize th e existence of limits or derivatives a.e. by the finiteness a.e. 
of square functions, a s in Chapters 7  and 8 of [St]. Ther e are already results 
in geometric measure theor y that ar e reminiscent o f the characterization s 
of a.e . existence of limits or derivatives in terms finiteness a.e. of maximal 
functions. Fo r example, there ar e result s that relat e rectifiabilit y (which 
is equivalent t o th e existenc e a.e . o f approximate tangen t planes ) t o th e 
existence of cones at a.e . point i n the se t whic h contain mos t o f the mass 
of the se t asymptoticall y as you shrink down to the given point. 

There ar e othe r question s lik e thes e whic h sho w u p i n connectio n 
with harmonic measure estimates an d the Ahlfors distortion theorem. (See 
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21. SOME OPEN PROBLEMS 

Chapter 1  of [B], especially p 33-34, or [BCGJ].) On e formulation goes as 
follows. Le t r b e a Jordan curve in the plane , not necessaril y rectifiable, 
with complementary components J2l9 0,2- Given z E  I\ t >  0 , let 0i(z,t) 
denote the length of the largest component of dB(z,t) D  oi, i = 1 , 2. Thus 
if T is a line, 0i(z,t) =  7r, and in general 

e(zj) = max 
2=1,2 

7r-6i{z,t)\ 

measures ho w close T is to being a line. 
Let E be a closed subset of T of finite length. If 

o 

i 
e(z,t)2 

dt 
a 

< o o 

a.e. on E, doe s that impl y that E i s rectifiable, as a  1-dimensional se t in 
the plane? 

Notice that e(z,t) i s quite similar to syq(x,t) (define d i n Section 19) ; 
syq(xy t) is an integrated version of e(z, t). However , we do not know how to 
show that quadrati c condition s on e(x,t) impl y rectifiability properties of 
E, even if we make quantitative versions of these assumptions, i.e. , that E 
is regular and e (z, t)2dz~ is a Carleson measure on E X R+. Th e problem 
is that e(z, t) is not stable enough to apply the methods of this paper. 

Another basic issue is to find and understand more simple geometrical 
sufficient condition s on E for singular integrals to be bounded on E. Some 
things are known (see [D4] , [DJ] , [ D S 3 ] , [SI , 3, 5]) , bu t i t is quite easy to 
generate questions of this type that we do not know how to answer. 

Here i s a n example . Le t £  b e a  d-dimensiona l regula r se t i n Rn . 
Suppose that there is a constant C so that for each x £ E, R > 0 there is a 
relatively open subset U of E which is homeomorphic to a ball in Rd and 
satisfies 

E f i B(x, R)CU CEf] B{x, CR). 

Does this imply that (C l ) hold s for E? 
This can be thought o f as a  higher-dimensional version of the chord-

arc condition for curves. Whe n d — 2 it is shown in [S2 ] that i f you make 
a priori smoothness assumption s abou t E, then there i s a quasisymmetric 
parameterization o f E (b y a plane) which is o;-regular for some u € A^, 
with estimates tha t d o not depen d on the a priori assumptions. W e don't 
know anythin g fo r d >  2 ; for d = 2  we also don' t hav e any direc t geo -
metrical understanding o f this condition. (Th e result wa s proved by using 
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uniformization t o get a conformal map from the plane to E, an d then esti-
mating extrema l length.) 

A productiv e metho d fo r generating question s o f this sort i s t o take 
a book on geometric measure theory ([Fe ] for instance, or [Ma]) , loo k a t 
some of the known results concerning rectifiability , and tr y t o find quanti-
tative versions . Fo r example, it i s known that A i s rectifiable i f and only 
if ¿ ^ ( N ^ J ? ) >  0  for al l measurable subsets B o f A wit h Hd{B) > 0, an d 
almost al l d-planes V, where HyB denote s th e orthogonal projection of B 
onto V. W e would like to have a version of this theorem with estimates . 

Another group of problems pertains to (C7) and the existence of good 
parameterizations. A n obvious question i s whether i n (C7) we can do any 
better tha n Ai weights , e.g. , i s (C7 ) equivalent t o bein g abl e t o find a 
1-regular mapping whos e image contains E? A t least on e of the authors 
thinks that the answer should be no, but neither knows how to prove it. We 
don't kno w any good geometrical invariants to help us distinguish betwee n 
1-regular and o;-regular mappings . 

We observed in the introduction tha t (C7 ) i s equivalent t o the version 
of itsel f with Ai replace d b y A^. I s there a more direct wa y to see this? 
One could hop e that a n o;-regula r mappin g fo r w € A^ coul d be "repa -
rameterized" someho w to get a n a-mapping, Co € A\. A n optimist migh t 
hope that this could be done by composing with a quasi conformal mapping 
on Rd . Thi s lead s u s t o th e ol d and difficul t proble m o f understanding 
which AQQ weights can arise as the Jacobia n of quasiconformal mappings , 
modulo multiplication b y a function whic h is bounded an d bounded away 
from zero . Th e paper [DS2 ] is related t o this problem. 

One can also ask for a characterization o f the A^ weight s UJ for which 
there is an o;-regular mapping. Thi s is probably easier than the correspond -
ing problem for quasiconformal mappings . W e do know some partial results 
for this question, including the fact that there does exist an o;-regular map-
ping when UJ i s an A\ weight . 
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RÉSUMÉ 

L'objet de ce texte est l'étude de relations entre certaines propriétés 
analytiques d'un sous-ensemble E de R n (notamment, la continuité-L2 
d'opérateurs définis par des noyaux singuliers comme le noyau de Cauchy ou le 
potentiel de double-couche) et des propriétés plus géométriques de E . Nous 
supposerons toujours que E est un ensemble de dimension d régulier au sens 
d'Ahlfors, c-à-d. tel que, pour toute boule B(x,r) centrée sur E , la mesure de 
Hausdorff d-dimensionelle de E∩B(x,r) est comprise entre C-lrd et Crd . Le 
résultat principal est l'équivalence de diverses conditions, analytiques ou 
géométriques, portant sur E . 

La première condition est la continuité sur L2(E) de l'opérateur d'intégrale 
singulière défini par tout noyau K(x-y) , où K est impaire et a des dérivées 
d'ordre j inférieures à C x-y d-j . La plupart des conditions géométriques peuvent 
être vues comme des formes plus fortes, et quantifiées, de rectifiabilité. Par 
exemple, l'une des conditions équivalentes est que E est contenu dans une surface 

admettant un paramétrage "co-régulier" (en dimension d=l, cela veut dire que 
est une courbe régulière au sens d'Ahlfors ; dire que E est rectifîable signifierait 
seulement que E est contenu, à un ensemble de longueur nulle près, dans une 
union dénombrable de courbes rectifiables). D'autres conditions sont obtenues en 
mesurant, de diverses manières, l'écart entre l'intersection de E avec chaque boule 
centrée sur E et un plan affine de dimension d , et en demandant une certaine 
intégrabilité du résultat obtenu. Ce point de vue est inspiré du résultat de P. Jones 
sur le problème du voyageur de commerce. On peut aussi voir certaines des 
conditions équivalentes comme des analogues de conditions de Littlewood-Paley, 
ou de différences symétriques, utilisées pour décrire la régularité des fonctions. 

Les techniques utilisées sont des techniques de variable réelle. La partie la 
plus délicate de la démonstration repose sur un argument de temps d'arrêt très 
proche de la construction dite "de la couronne" introduite par L. Carleson, où l'on 
cherche à bien approximer E par des graphes lipschitziens sur des régions de 
Ex + les plus grandes possibles. 
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