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Introduction

There are a number of natural ways to look at the goals and results of
this monograph. The first can be stated broadly as the problem of relating
the geometry of a set F in R™ to the analysis of functions and linear
operators on E. A specific question of this type that we shall be concerned
with here is the following. Let E be a subset of R™ that has Hausdorff
dimension d, 0 < d < n. We equip E with d-dimensional Hausdorff measure
restricted to it, and we assume that this measure is locally finite. Under
what conditions on E is it true that plenty of singular integral operators
are bounded on L%(E)? Examples of the sort of singular integral operators
that we have in mind are the Cauchy integral when d =1 and n = 2 and
the double-layer potential when d = n — 1.

It is known from the work of Coifman, McIntosh, and Meyer [CMM]
that this is true when FE is a Lipschitz graph. There are several more
general conditions on E which are known to be sufficient to ensure the
boundedness of lots of singular integral operators, but there has not been
much progress on finding necessary conditions. Qur main result provides
geometrical characterizations of the sets E for which a fairly large class of
singular integral operators are bounded on L?(E), at least if we make an
auxiliary technical assumption on E (Ahlfors regularity). See Section 1 for
the precise statement. Unfortunately we do not know at this time how to
work with smaller classes of operators; for example, when d =1 and n = 2
we would like to use only the boundedness of the Cauchy integral.

The geometrical conditions that arise in the aforementioned theorem
can be thought of as quantitative analogues of the classical notion of rec-
tifiability. Recall that E is said to be rectifiable if it is contained in the
union of a countable family of Lipschitz images of R¢, except for a set of
d-dimensional Hausdorff measure zero. Rectifiability is a qualitative con-
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dition, and it is not strong enough to imply the boundedness of singular
integral operators. Using real-variable methods as in [D1, 3] it can be
shown that various quantitative versions of rectifiability are strong enough
to imply the boundedness of plenty of singular integral operators, and our
theorem provides a converse to this.

There is a great deal of information available about rectifiable sets. See
[Fe], [F1], and [Ma], for instance. Not so much seems to be known about
quantitative analogues of rectifiability. In particular there are many char-
acterizations of rectifiability, and these give rise to many candidates for the
notion of quantitative rectifiability, but the complete relationship between
these various candidates is not at all clear. Qur theorem provides some
nontrivial equivalences between some of these conditions. Although this
is a purely geometrical issue, it turns out that singular integral operators
provide a useful tool for passing between some of these conditions.

Our main result also gives a higher-dimensional version of Peter Jones’
travelling salesman theorem ([J3]). That is, we give two other conditions
on E that are equivalent to the others, and which are roughly as follows.
One of these conditions says that E is contained in a set that admits a
nice parameterization by R?. The other condition is a bound on certain
quantities that measure the extent to which E can be approximated by
d-planes. Again, Section 1 should be consulted for the precise statement.

Although there are several ways of looking at what we are doing and
what it means, there is an underlying common theme. To a large degree
we are trying to produce methods for analyzing the geometry of sets, in
much the same way that more traditional harmonic analysis (as in [St]) is
concerned with the analysis of functions and operators. Some of the ideas
of harmonic analysis make sense in this context, but mostly the techniques
don’t work so well, because of the absence of a linear structure. The meth-
ods that have grown out of Carleson’s corona construction seem to be more
cooperative in this geometrical setting.

In connection with the analogy with traditional harmonic analysis it
is interesting to look at the theorem in Section 1 from the perspective of
Littlewood-Paley theory. In some sense this theorem gives a Littlewood-
Paley characterization of a class of good sets that is analogous to well-known
results for Sobolev spaces. It turns out that this analogy is somewhat
misleading, in that there are some other results in our geometrical context
that do not have a natural counterpart for Sobolev spaces. Such a result is
discussed just before Lemma 5.13, but its details will appear elsewhere.



INTRODUCTION

The precise statements of our main results are given in Section 1,
along with some background information and organizational details. It is
perhaps worth mentioning now that there is a discussion of open problems
in Section 21. In that section there is also some limited description of other
work in this general area. More information of that nature can be found in
[D5].

The authors would like to thank R.R. Coifman and P.W. Jones for
many helpful discussions. Portions of this work were completed while the
second author was visiting the first author at the Ecole Polytechnique and
UCLA.

The second author is partially supported by the U.S. National Science
Foundation and the Alfred P. Sloan Foundation.
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1. Statement of the main results

Let E be a subset of R® with Hausdorff dimension d, 0 < d < n.
Unless explicitly stated otherwise, d will always be an integer. Assume
that d-dimensional Hausdorff measure H? is locally finite when restricted
to E. Consider singular integral operators on F of the form

(11) Tf(z) = po. ] K(z - y) f(y) dy,
E

where dy denotes H? | > and where K(z) is smooth on R™ \ {0}, odd, and
satisfies

(1.2) | VIK(z) < CG) |z |7, j=0,1,2,...

We would like to know what conditions on E are needed in order for (1.1)
to define a bounded operator on L?(E), say.

For technical reasons it is better not to look for an L? estimate for
(1.1) but rather an estimate like

(1.3) sup/l
>0
E

for all f € L2(E). This formulation avoids the problem of the existence of
a principal value.

An important example of such a function K(z) is the Cauchy kernel,
ie., K(z) = zl-:_wz» for z € R?,d = 1, n = 2. This case is of course relevant
for complex analysis; for instance, the L? boundedness for the associated

operator is closely related to the analytic capacity of E and its subsets. (See

K(z - y) f(y)dy |* de < C(K) / £ P de,
En{|z—y|>€} E
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[G2], [Mu], [C1, 2].) A higher-dimensional analogue of the Cauchy kernel
is K(z) = faf=» @ =7 — 1. One way that this kernel arises is in connection
with the double-layer potential, which can be expressed in terms of K(z).

It is easy to see that an operator as in (#1) is bounded on L*(E) if
E is a smooth submanifold (e.g., C*®, a@ > 0) which is nice at oo, or a
subset of such a submanifold. This is also true if E is a Lipschitz graph
over some d-plane, but it is much harder to prove. For the Cauchy kernel,
this is a theorem of Coifman, McIntosh, and Meyer [CMM], improving an
earlier result of Calderén (which covered the case of graphs of Lipschitz
functions with small norm). The case of general kernels was derived from
this result in [CDM], at least when d = 1, n = 2. The higher-dimensional
case can easily be obtained from this using the method of rotation, just like
the argument in Section 13 of [CMM].

The fact that Lipschitz graphs are O.K. for these operators shows that
the smoothness of E is not the issue, but it is not obvious how wild E can
be. The following two results help to clarify the situation.

The first says that if d = 1, E is a curve, and, say, n = 2 and K is the
Cauchy kernel, then T is bounded on L?(E) if and only if there is a C > 0
such that
(1.4) H'(ENB(z,R)) <CR
for all z € R%, R > 0, where B(z, R) denotes the ball with center z and
radius R. Such curves are often called regular curves. This was proved in
[D1].

The second result goes as follows. Let G be the Cantor set in [0,1]

obtained from the usual construction, except that you remove the middle
half of the interval at each stage. Then E = G x G satisfies (1.4), and also

HY (ENB(z,R)) > C'R

forall z € E, 0 < R < 1, but the Cauchy integral operator is not bounded
on L?(E). This follows from [G1], see also [G2], [D2], [J1], and [Ma3].

These two results suggest that rectifiability plays a role here. To make
this precise it is helpful to recall a couple of definitions and facts from
geometric measure theory.

Let A be a subset of R™ with Hausdorff dimension d. We say that A
is (countably) rectifiable if there is a countable family f; of Lipschitz maps
of R? into R™ such that

w4\ (Un®y)) =o
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so that A is almost covered by the union of the images of the f;’s. It turns
out that this is equivalent to requiring that A be almost covered by a count-
able family of d-dimensional Lipschitz graphs, or even C! submanifolds. 4
is said to be unrectifiable if H4(A N B) = 0 for all rectifiable sets B. A
basic fact is that any set A with H%(A4) < oo can be written as the union
of a rectifiable set and an unrectifiable one.

For example, any subset of a curve of finite length is rectifiable, but it
can be shown that G x G is unrectifiable (with d = 1 in both cases).

References for these topics include [Ma], [F1], and [Fe].

You might hope that if E is rectifiable, and if you have some control
on H? | g (like (1.4), when d = 1), then singular integrals have to be
bounded on L%(E). This is not true, but for a good reason; rectifiability is a
qualitative condition, while estimates on singular integrals are quantitative.
It is not hard to build sets that are rectifiable, but which have pieces that
approximate unrectifiable sets (like G x G) on which singular integrals do
not define bounded operators, in such a way that singular integral operators
are not bounded on the set you’ve constructed.

Thus we need to look for quantitative notions of rectifiability. We give
an example of such a notion after the following definition.

DEFINITION. A set E C R™ is regular (with dimension d) if it is closed and
if

(1.5) %Rd < HYEn B(z,R)) < CR?

for all z € E, R > 0, where C does not depend on z, R.

We shall assume throughout the rest of this paper that E is regular,
and we shall often write |A| for H?(A) when A C E.

It is not hard to show that if singular integrals like (1) define bounded
operators on L?(E), then the right hand inequality in (1.5) must hold. (See
[D5], [S1].) The left hand inequality should be thought of as a nondegen-
eracy condition. Note that it is translation and dilation invariant.

Notice also that if E is closed and if there is a measure o supported
on E for which the analogue of (1.5) holds, then o must be equivalent in
size to H¢ l g and E must be regular. Thus we lose nothing by restricting
ourselves to Hausdorff measure here.

DEFINITION. E has BPLG (big pieces of Lipschitz graphs) if it is regular
and if there exist C, € > 0 so that for every £ € E, R > 0 there is a
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d-dimensional Lipschitz graph I" with constant < C such that
(1.6) HYEnN B(z,R)NT) > eR".

When we say that I' is a d-dimensional Lipschitz graph with constant
< C we mean that there is a d-plane P, an (n — d)-plane P orthogonal
to P, and a Lipschitz function 4 : P — P+ with norm < C such that
F'={p+A(p):pe€ P}.

This condition is a good example of what we mean by a quantitative
version of rectifiability. It is not hard to see that E is rectifiable if it
has BPLG, but the converse is not true; rectifiability only allows you to
conclude (1.6) with an e that depends on z, R.

Notice that if you fix C, € and look at the class of sets having BPLG
with constants C, €, and which also satisfy (1.5) with this same C, then this
class is invariant under translations, rotations, and dilations, and it is also
closed in the Hausdorff topology on closed subsets on R". (In this topology
E; — E if for every ¢, R > 0 and all j sufficiently large we have that each
point in E; N B(0, R) is within € of an element of E, and vice-versa.) We
do not know whether it is true that any class of rectifiable subsets of R"
with these same invariance and closure properties has to be contained in
the class of sets that have BPLG.

It follows from [D1, 3] that if the regular set £ has BPLG, then the
estimate (1.3) holds for all K as before. We do not know if the converse is
true. However, there are some other “quantitative rectifiability” conditions
similar to (and a priori weaker than) BPLG which also imply (1.3), and
for which we are able to obtain a converse. We also obtain other analytical
and geometrical characterizations of these sets.

THEOREM. Let E C R" be a regular d-dimensional set in R™. The follow-
ing conditions (C1)-(C7) are equivalent.

(C1) If K(z) is any smooth odd function on R™ \ {0} that satisfies (1.2),
then (1.3) holds.

Using a standard fact from Calderén-Zygmund theory (Cotlar’s in-
equality — see [JL]) we have that (1.3) is equivalent to

(1'7) E/sup l /En{lz—yl>el} K(z - y)f(y)dy I s C(K)! d

€0

for all f Eb L?(E). [To be honest we should admit that in order to apply the
techniques of Calderén-Zygmund theory we should first observe that E is a

10
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space of homogeneous type, in the sense of [CW], when FE is equipped with
the measure H¢ | p and the Buclidean distance.] Calderén-Zygmund theory
also implies that these L? estimates are equivalent to their L? counterparts,
1< p < oo, ete. (See [JL] again.)

(C2) For each smooth odd function ¥ on R™ with compact support we
have that

(18) > | [ st = vy [ dedsut)

k=—o00

is a Carleson measure on E x R.

Here yi(z) = 27%4)(27%z) and dé,(t) denotes the Dirac mass at s in
t. A Carleson measure on E X R, is a measure y for which thereisa C > 0
such that for every x € E and R > 0 we have

R
/ / du < CRY.
0 B(z,R)

Thus Carleson measures are measures on £ X Ry that behave as though
they are d-dimensional near £ x {0} & E.

This condition is quite natural despite its technical appearance. Be-
cause 2 is odd, fE. Yr(z — y)dy is zero if E is a d-plane; thus this quantity
measures in some way how close E is to being a d-plane.

One can think of (C2) as a geometrical analogue of classical character-
izations of various function spaces in terms of the size of expressions like
' Jra Yr(z — y) f(y)dy ' This geometric Littlewood-Paley point of view is
discussed somewhat more thoroughly in [DS1].

(C3) Bi(z,t)?42e s a Carleson measure on E x R..

For z € E, t > 0 we define f;(z,t) by

L1 dist(y, P)
Bi(z, t =1nf—/ Q9T gy,
(1) P t¢ JpnB(z, i

where the infimum is taken over all d-planes P. Thus f;(z,t) measures how
well E can be approximated by a d-plane.

11
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Peter Jones was the first person (to our knowledge) to look at this kind
of condition. Actually, he worked with an L version, i.e., with fo(z,1),
where

1
. 1 dist(y, P)\? !
(19) ,Bq(.’L‘, t) = lI}lDf (Zd— LnB(z,t) (—{—-—) dy) .

In [J1] he showed how to use the fact that Lipschitz graphs satisfy (C3)
(with foo(z,t)) to give a new approach to the estimates for Cauchy inte-
grals on Lipschitz graphs. He later found a characterization of subsets of
rectifiable curves in terms of a (related) quadratic condition on the fu’s.
In particular he showed that subsets of regular curves can be characterized
by a quadratic Carleson measure condition on the f4’s. Our results give
analogues of this characterization for d > 1.

If we replace 3; by B, in (C3), then we still get an equivalent condition
as long as ¢ < dZsz (¢ £ 0o if d = 1). However, Jones and Fang have
produced 3-dimensional Lipschitz graphs so that (C3) does not hold for
Boo-

There is a classical counterpart of (C3) for functions just as there was
for (C2). Given a function f on R, set

_ (1 (Mw—awl) )
(1.10) 7q(a:,t)—12f (td /B(z,t)( ; ) dy> ,

where now the infimum is over all affine functions. Notice that for Lipschitz
functions the v’s for f are essentially equivalent to the §’s for the graph of
f.

The 4’s can be used to characterize smoothness properties of f, e.g.,
whether f lies in a particular Sobolev space. (See [Do], for instance.)
This is closely related to the corresponding results using second differences
instead (see [St]), which are perhaps more familiar. In Section 19 we shall
give a condition (C8) that is a geometrical version of a second-difference
condition for functions, and we shall show that it is equivalent to the others.

(C4) E admits a corona decomposition.

The precise explanation of this condition is complicated and will be
postponed until the next section. Roughly speaking it means that you can
decompose E x R, into two pieces, the good and the bad parts, with the

12
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following properties. The bad part is not too big, in that it is controllec
by a Carleson measure. The good part can be subdivided into stopping
time regions on each of which E is well-approximated by a Lipschitz graph
There aren’t too many of these regions, in that they satisfy a Carlesor
measure packing condition.

This condition plays a central role for us, acting as a bridge betweer
(C1)-(C3) and (C5)—-(CT7). Although it is awkward to state, it carries a lo
of useful information, and is not so hard to work with.

(C5) E has very big pieces of bilipschitz images of R? inside R™",
n* = max(n,2d + 1).

This means that for every € > 0 there is an M > 0 so that for eacl
z € E and R > 0 there is a mapping p : R? — R™ which is bilipschit:
with constant M, i.e.,

(L1) e~ yl < lp(z) ~ p(v)| < Mz —y| forall z,y € RS,
and whose image almost contains B(z,R) N E, that is,

| BN B(e, B)\ p(R) | < RY
Here we identify R™ with a subset of R® in the obvious way.

(C6) E has big pieces of Lipschitz images of subsets of R%.

This means that there exist ¢, M > 0 so that for every z € E, R > (
there is a Lipschitz mapping p with norm < M from the ball B4(0,R) in
R? into R™ such that

| EN B(z,R)N p(Ba(0, R)) | > eR".

It follows from the main result in [J1] that (C6) is equivalent to the
condition you get by replacing B(0,R) with a subset F' of B(0,R) and
“Lipschitz” with “bilipschitz.” [To apply that result it is useful to notice
that Hausdorff measure is equivalent in size to Hausdorff content for subsets
of a regular set.] Also, if p : F — R™ is bilipschitz, F C R%, then you can
extend p to a bilipschitz mapping on R?, at least if you replace R™ with
R"™, as we shall discuss in Section 17.

13
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(C7) There is an A,-weight w on R? and an w-regular mapping
z: R? — R™*! whose image contains E.

Recall that w(z) is an A;-weight on R? if it is a positive locally-
integrable function such that for each ball B,

1
(1.12) W/Bw < CessBinfw.

It is well-known that this implies that w is an A,, weight, which can be
characterized by the existence of C, § > 0 such that

b () s o

for all balls B. (See [JL] for basic facts about weights.)

As in [D3] we say that z : R — R™! is an w-regular mapping
if w is an A, weight, z has locally integrable distributional derivatives,
|Vz| < Cwi ae., and

(1.14) w(z"!(B(y, R))) < CR?

for all y € R™*', R > 0, where w(4) = [, w.
If 2(+) is w-regular, and B is any ball in R, then

(1.15) diam(z(B)) < Cw(B)3.

This can be derived from |Vz| < Cw? and (1.13) using standard results.
Conversely, it is not hard to show that if (1.15) holds for an A, -weight
w, then 2z has locally integrable distributional derivatives and |Vz| < Cwi
a.e..

It is also not hard to show that if z(:) is w-regular, then its image
E= z(R?) is a regular set, and w is equivalent in size to the pull-back of
Hausdorff measure. Notice that 2(-) is 1-regular if it is bilipschitz.

It is proven in [D3] that (C1) holds for E = z(R%) if z(-) is an w-
regular mapping with w € As. Thus (C7) implies (C1) even if we weaken
the requirement w € A; to w € A

When n > 2d we can replace R"*! in (C7) by R" and still have an
equivalent condition. This is proved using the methods of [D3], Section 5.
The main interest in this observation comes from the case d = 1, n =

14
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2. Notice that when d = 1 we can always take w = 1, because we can
reparameterize z(R) by arclength.

We originally derived the equivalence of (C7) with (C1)~(C6) when
d = 1 from Peter Jones’ [J3] characterization of the subsets of regular
curves in terms of his version of (C3). The equivalence of (C3) and (C7)
when d > 1 provides a higher-dimensional version of his result, at least for
regular sets.

This finishes the statement of conditions (C1)-(C7) (except for (C4)),
whose equivalence is stated by the theorem. Notice that the ambient di-
mension n does not play a serious role.

Let us now describe the routing of implications that we follow in prov-
ing the theorem. It is relatively easy to show that (C1) implies (C2). The
proofs that each of (C2) and (C3) imply (C4) are quite similar and they
constitute the main step in the proof of the theorem. The proof that (C4)
implies (C3) is pretty straightforward but messy. Both of (C5) and (C7)
will be obtained from (C4) by direct constructions. Of course (C6) is a
trivial consequence of (C5). It follows from [D3] that (C1) holds if any of
(C5), (C6), or (CT) do. (In the case of (C6) we also use the result of [J3] as
discussed above.) You can also derive (C1) directly from (C4), as in [S4].

We should point out that our methods for deriving (C5) or (C7) from
(C4) are quite constructive, although somewhat messy. The stopping-time
argument given in Section 7 for producing a corona decomposition (if one
exists) is both constructive and fairly simple, and one could imagine asking
a computer to do it. The difficult part — proving that a corona decompo-
sition does exist if (C2) or (C3) holds — is not the computer’s problem.

A curious feature of our arguments is that we do not know how to pass
from (C2) to (C1) analytically, without going through the geometry. One
can look for analogues of some of the well-known methods for controlling
singular integrals on R™ using square functions (via reproducing formulas,
for example), but we have not been able to make anything like that work
here. Similarly, it is not so clear how to pass from (C6) to (C5), or from
(C5) to (CT), without going through singular integrals.

We also take up a version of the main theorem for fractional dimen-
sional sets. Conditions (C1) and (C2) still make sense in this case, although
(C3)-(C7) don’t. We shall prove that if E is a d-dimensional regular set, d
noninteger, then neither (C1) nor (C2) can hold.

The organization of the remaining sections is as follows. In Section 2
we cover some preliminary material and also give the precise defintion of a

15
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corona decomposition. We prove that (C1) implies (C2) in Section 3. We
derive in Sections 4, 5, and 6 some geometrical consequences of (C2), and
in particular we show in Section 5 that neither (C1) nor (C2) can hold if E
has fractional dimension.

We set up in Sections 7 and 8 the initial machinery common to the
proofs that (C4) holds if either (C2) or (C3) do. We also give an outline
of the argument used to show that (C2) implies (C4) in Section 7, and
the details are carried out in Sections 9, 10, and 11. The proof that (C3)
implies (C4) is given in Sections 12, 13, and 14.

We show that (C4) implies (C3), (C5), and (C7) in Sections 15, 16 and
17, and 18, respectively. In Section 19 we state condition (C8), a variant of
(C2) and (C3), and we indicate why it is equivalent to the other conditions.
We give a counterexample in Section 20 to show that the “weak geometric
lemma” (see Section 5) is not strong enough to imply rectifiability, even if
E is regular. In the last section we discuss some open problems, concerning
the theorem and its proof as well as other related topics. In so doing we
also give some small and partial indications of other work in this general
area. A more substantial overview can be found in [D5].

We should also indicate the interdependence of the sections. Section 2
is essential for most of what we do. Sections 3, 15, (16 + 17), 18, 20, and
21 are all independent of each other and also Sections 4-14, with minor
exceptions. The proof that (C2) implies (C4) is given in Sections 4-11,
while the proof that (C3) implies (C4) uses parts of Section 5 and also
Sections 7, 8, 12, 13, 14, and 11, in that order. The details of Section 19
rely on the proof of the equivalence of (C3) with (C4).

16



2. Dyadic cubes and the corona decomposition

As in [D4] one can build a family of subsets of E that play much the
same role that dyadic cubes do for R%. More precisely, there is a family of
partitions A;j of E, j € Z, into “cubes” @) with the following properties:

(2.1) if j<k,Q € Aj, and Q' € A, theneither QNQ' =0 or Q C Q';

2.2) if Q € Aj, then C7'2/ < diamQ < C2/ and C712/¢ < |Q| < €27,
J

The cubes can also be built in such a way that they have relatively small
boundary, like ordinary cubes in R¢ do:

(23) f @€ A; and 7 >0, then
| {z € Q,: dist(z,E\ Q) < 727} |< CTE 2%,

Of course it is important that the constant C in (2.2) and (2.3) does
not depend on j, @, or 7.

The properties of the ’s and Aj’s given in [D4] are not quite the same
as those above, but the same kind of construction can still be used. For a
slightly better proof, see [D5]. An extension of this result can be found in
[C2].

We shall follow the standard practice of referring to the cubes that
contain a given cube as its ancestors, referring to its subcubes in the next
generation as its children, etc.

Let A = UA; denote the set of all our cubes. We can think of A
as providing a discrete version of E x R4, by letting (z,t) € E x Ry
correspond to the @ € A; with z € @ and 27 <t <2t

17
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We say that E admits a corona decomposition if for each > 0 (think
of n as being small) there is a C = C(n) > 0 such that we can partition A
into a good set G and a bad set B with the following features.

The bad set is not too large, in that it satisfies the Carleson measure
packing condition

(2.4) Y IQISCIR| forall Re A.
QEB
QCR
The good set G can be partitioned into a family F of subsets S of G
such that:

(2.5) each S is coherent, which means that it has a maximal
element @Q(S), and that if @ € S, Q' € A,
RCQ CQ(S), then Q' € S;

(2.6) from the viewpoint of each S, F is well-approximated by a
d-dimensional Lipschitz graph I" with constant < 7, in the sense
that for each @ € S we have

dist(z,I') £ ndiam Q whenever z € E, dist(z, Q) < diam @

(2.7) there aren’t too many of the S’s, in that they satisfy the packing
condition

> IQS)I<CIR| forall R A.
SeF
Q(S)CR

There are a number of places where something like a corona decompo-
sition has been used before. One is the work of Garnett and Jones [GJ] on
the corona theorem for Denjoy domains. Although what they did is some-
what different in details it is quite similar in spirit. Another example is
Peter Jones’ proof of the L2-boundedness of the Cauchy integral on regular
curves [J1], and later in his quadratic estimates on the f’s for rectifiable
curves [J3]. A corona decomposition also arose in [S4] for a certain class of
hypersurfaces in R™, in connection with square function estimates for the
Cauchy integral from Clifford analysis.

In each of these examples something like a corona decomposition was
obtained by applying Carleson’s corona construction to a function that

18



2. DYADIC CUBES AND THE CORONA DECOMPOSITION

somehow controlled the geometry. In our case we cannot apply the corona
construction so directly, but we shall use many of the same ideas.

This notion of a corona decomposition is somewhat technical and com-
plicated, but it is very useful. It includes enough control on the geometry
of E to imply other things, and it is set up in such a way as to make it
amenable to proving it using a stopping-time argument. In fact, there is
sort of a universal stopping-time argument for deciding whether E admits
a corona decomposition, which is described in Section 7. This argument
is universal in the sense that it produces a corona decomposition for E
whenever one exists.

Let us give an imprecise outline of this procedure. To get started you
need to know that E satisfies the weak geometric lemma. This condition
is defined in Section 5; roughly speaking, it means that for most cubes @,
E is well-approximated by a d-plane Pg. The cubes for which this is not
true are put into the bad set, and then you use a stopping-time argument
to partition the good cubes into regions S for which (2.5) holds, the angle
between Pg and Pg(s) is small for @ € S, and such that the minimal cubes
Q@ of S either have a bad son or have angle (Pq, Pg(s)) being not too small.
If you choose the parameters correctly (2.6) holds, and the hard part is to
verify (2.7).

In most of the examples the verification of (2.7) works as follows. Your
hypothesis is some sort of square function condition on E, such as (C2)
or (C3). The main step is to show that if S has lots of minimal cubes
with angle (Pg, Pg(s)) not too small, then there has to be a substantial
contribution to the square function condition on E coming from S. To do
this you push the contribution from S down to a square function estimate
on the Lipschitz graph, and you can usually work with that using classical
results. This gives you control on the Lipschitz graph (namely, control on
the oscillation of its tangent plane) that permits you to show that S can’t
have too many minimal cubes of the above type.

It is natural to ask after seeing the definition of a corona decomposition
whether the graph of a Lipschitz function A necessarily has one. Of course
our main theorem says that it does, but it is not so difficult to prove this
directly, by applying the corona construction to, say, the Poisson extension
of VA. This is similar to the approach taken in [S4], although [S4] applies
in more generality, and can certainly be simplified in this case.

There are a number of variations that we can make in the definition of
a corona decomposition that would still yield an equivalent condition. For
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example, we could replace
dist(z,I') <n diam@ by dist(z,I') < Cdiam@Q.

Because we shall not need this fact we shall content ourselves with merely
an outline of the proof.

Suppose that E admits this weakened version of the corona decomposi-
tion, and let us show that we can find one of the stronger type. We replace
each S € F by a subregion S as follows. We require that if Q € S then
R € S for every cube R in the same generation A; as @ which contains a
point z such that dist(z, Q) < diam . We also require that if Q € S then
all its subcubes for the next m generations lie in S, where m = log %, and
that the cubes R as above also have this property. If we take all the cubes
in S\ S and add them to B for each S , then the resulting augmentation of
B still satisfies (2.4). (This can be checked using (2.3) and (2.7).) It is not
difficult to then decompose the S’s into subregions that satisfy (2.5), (2.7),
and the stronger version of (2.6). (You have to decompose the S’s because
they do not have maximal elements.)

Similarly, in (2.6) we can replace

dist(z, Q) < diam @ by dist(z, @) < kdiam Q

for any given k > 1. Indeed, if E admits a corona decomposition as above,
we can remove the top m layers of each S € F, m = logk, put them into
B, and reorganize what’s left of each S into new coherent regions.

We also don’t really have to require that the Lipschitz graphs I in (2.6)
have small constant. Indeed, if F admits a corona decomposition where the
I’s merely have uniformly bounded constants, then we can build one where
they have small constants by applying the corona decomposition to each of
these I'’s to get new ones with small constants, and combining these corona
decompositions for the I'’s into one for E.

It is also not hard to show that whether E admits a corona decompo-
sition does not depend on the choice of A, as long as (2.1) and (2.2) are
satisfied. (Our second variation of the corona decomposition — the one
with the k& — is helpful in this regard.)

Hopefully these variations give an indication of the flexibility of the
notion of a corona decomposition. In practice it is particularly convenient
that the only requirement on the bad set is (2.4).
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3. From (C1) to (C2)

It is helpful to introduce an intermediate condition.

(C2') Given any smooth odd function 1 on R™ with compact support,

i JE[|E/'/’k($—y)f(y)dy |* dz < CE/lflzdz.

k=—oc0

for all f € L*(E).

That (C2') implies (C2) is well-known, and is obtained by applying
(C2') to characteristic functions of balls. (The converse is not too difficult
either; it is essentially a square function version of the T'(1) theorem.)

To prove that (C1) implies (C2) we use a familiar artiface. Let
denote the space of all sequences w = {w;}, j € Z, of £1’s, with the usual
product topology and the product measure that gives each choice of +1
equal probability. Define ¢; : @ — {£1} by ¢j(w) = w;. As usual we
observe that

(31) [1Y [a@uie-niwa |
Q

j=-m p
= Y | [#ie-wsiwa
j=-m g

for any m. This follows from the orthonormality of the ¢;’s.
We want to apply (C1) to the kernel

m

K(z) = Kp(z,w) = Z €j(w)Yi(z)

j=—m
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(which is certainly odd and satisfies (1.2)) to conclude that

2
62 [ | [Ene-v)i@ay[ e <0 [
E E E

Unfortunately, however, the way we stated (C1) only gives us (3.2) with a C
that depends on m and w. Using a “completeness” argument we shall show
that (C1) actually does imply that (3.2) holds with a C that is independent
of m and w. Once we’ve done that it will follow immediately that (C1)
implies (C2), because of (3.1).

Let N(m,w) denote the smallest constant for which (3.2) holds for all
f. For each m < oo choose w(m) so that

N(m,w(m)) = max N(m,w) =: N(m).

We want to show that
(3.3) sup N(m) < oo.

Suppose not. Choose mj, j =1, 2, 3,..., such that
(3.4) N(mj) > 2™i-1.
Define w(oo) € Q by wi(o0) = wi(mj) whenever mj_; < |i| < m;. It is easy
to see that
(3-5) N(mj) = N(mj,w(m;)) < 2N(m;,w(c0)) + Cm;_;.
This uses only the fact that the number of :’s such that —m; <7 < m; and
wi(m;) # wi(oo) is at most 2m;_; + 1.

On the other hand, we have for any w that

/I/Km(w—y,w)f(y)dy |* de
E E

< C/|f|2d$ + CSUP/ | / Kooz — y,w)f(y)dy | dz,

a>0

E °% En{|z—y|>a}

where C does not depend on w, m, or f. This is not hard to check. Of

course (C1) says that the right side is at most C [ |f|?dz, where now C
E

depends on w but not m or f.
Applying this to w = w(co) and then recombining with (3.5) we find
that there is a C > 0 not depending on j such that
N(m;) < C+Cmj_;.
For j large enough this is incompatible with (3.4). The ensuing contradic-
tion establishes (3.3).
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4. (C2) implies a local symmetry condition

To simplify notations, we’ll use from now on the convention that
(4.1) AQ = {z € E : dist(z,Q) < (A — 1) diam Q}

for @ € A and A > 1.

Given a small number 7, let R(7) denote the set of cubes @ € A such
that there exists two points z, y € 2Q with dist(2z — y, E) > 7diam Q.
Thus if @ ¢ R(7), then for any z, y € 2@Q, the point z = 2z — y is near E,
and z is of course the point on the line through = and y which is opposite to
y about z. In other words, if @ ¢ R(7), then E is approximately symmetric
near ) about each point in Q.

DEFINITION 4.2. We say that E satisfies the local symmetry condition (LS)
if for each 7 > 0 the set of cubes R(7) satisfies the packing condition

(4.3) Y IQISC(MIR| forall Re A

QER(r)
QCR

In the next section we’ll show that if E satisfies (LS), then E is well-
approximated by d-planes around most cubes Q.

PROPOSITION 4.4. If E satisfies (C2), then E satisfies (LS).

Fix 7 > 0. Our strategy for proving (4.3) will be to find a finite family
of 1’s so that each cube in R(7) gives a substantial contribution to (1.8)
for one of these 3’s. This will allow us to derive (4.3) from (1.8).
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Let @ € R(7) be given, and let £ € Z be such that @ € Ay. Let z,
y € 2@ be such that dist(2z —y, E) > 7 diam Q. Denote by Cj the constant
in (2.2).

Set yo = 27%(y — 2) and B = B(yo,7/10Co). Let ¥ = 9o be an odd

C®° function such that
(4.5) supp v CBU(—B),y >0o0n B, and ¢ =1 on B(yo,7/20Cy).

We can even find a finite family ¥ of functions so that for any @ € R(7)
we can take 1g to be an element of ¥. This is because yo € B(0,10C)) \
B(0,7/3Cy) independently of Q.

Let z' be any point of B(z,2*7/40C;). Because of our choice of 9,
Yr(z' — u) > 0, except perhaps when u € B(2z — y,2F7/5C)), and in this
case u ¢ E because of our assumptions. Also, if u € B(y,2%7/40C,), then
Yr(z' — u) = 27%4. Using our assumption that E is regular (1.5) we get

that

2k

/z,bk(z" —u)du>7%/C  forall ' € B(z, m),
E

whence
(4.6) / | /z/)k(z' —u)du |2 dz' > C 17399k,
3Q E

For k and z' given, there are at most a bounded number of cubes @
such that @ € Ag and z' € 3Q. Hence, for any R € A,

dYoRiscrn > /l/(¢q)k(x'—u)du |* da’

R(T €ER
9ER() %R o B
<emy % / | / bi(a' —w)du |* da' < C"(7)R).
Y€V 2:<CdiamR 35 &
The last inequality uses (1.8). This proves the proposition.
REMARK 4.7: Our local symmetry condition implies a slightly stronger
version of itself. For each 7 > 0 and each k > 1, let R(7,k) denote the

set of cubes @ such that there exist z, y € k@ such that dist(2z —y, E) >
7 diam Q. If E satisfies our local symmetry condition, then

(4.8) Y QI C(r, k)R]

QER(r,k)
QCR
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4. (C2) IMPLIES A LOCAL SYMMETRY CONDITION

for all R € A and all 7, k. The proof is not difficult. (If @ € R(r, k), then

there is a not-too-distant ancestor of @ in R(7'), if 7’ is chosen suitably.)
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5. The local symmetry condition (LS) implies the
weak geometric lemma

For @@ € A and 1 < ¢ < 00, define
1

(5.1) 5@ =gt | [ (B2 4 )
2Q

where the infimum is taken over all d-planes P. This is of course a minor
variation of (1.9).
We say that F satisfies the weak geometric lemma if for each € > 0 we

have

(5.2) > QIS C(e)R|  forall R€ A.
Beo (Q)>e
QCR

The name stems from the practice of saying that E satisfies the geometric
lemma. (of Peter Jones) if

(5.3) Y Buo(QPIQI S CIR|  forall Re A.
QCR

Note that if E satisfies our version of the geometric lemma — i.e., (C3)
— then it satisfies the weak geometric lemma. This can be readily derived
from the fact that

(5.4) Boo(z, 1) < CPy(z,20) 1.
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To prove (5.4), let P be the d-plane that realizes the infimum in the defini-
tion of f;(z,2t), and let y be the point in B(z,t) N E furthest from P. Set
D = dist(y, P). If D <t, then

Bi(z,2t) > t~41 / dist(z, P) dz > t~*"' | EN B(y,D/2) | D
ENB(y,D/?)
> CTI(tTID)H! > C7 1 Boo(x, ).

If D > t, then B;(z,2t) > C, and there’s nothing to prove.

PROPOSITION 5.5. Suppose that E satisfies (LS). For each € > 0 let G(¢)
denote the set of cubes @ € A such that there is a d-plane Py with the
following two properties:

(5.6) dist(z, Pg) < ediam @  for all z € 2Q);

(5.7) ifw € Pg and dist(w,Q) < diam @, then dist(w, E) < ediam Q.

Let B(€) = A\ G(¢) denote the complement of G(€). Then

> RIS C(e)R

QEB(e)
QCR

for all R€ A and all € > 0.

Thus the conclusion tells us that E is well-approximated by d-planes
in a stronger sense than the weak geometric lemma. Notice that the con-
clusions of Proposition 5.5 imply (LS).

To prove the proposition we shall first prove two lemmata. We shall
also use these lemmata to prove that neither (C1) nor (C2) can hold if d
is not an integer, and so for their statements and proofs we allow d to be
noninteger.

LEMMA 5.8. Fix Q@ € A, and let (d) denote the smallest integer greater
than or equal to d. Then there exist (d) + 1 points yo,...,yq) in @ such
that dist(yj, Lj—1) > A~'diam@Q for j = 1,...,(d), where L; denotes the
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5. (LS) IMPLIES THE WEAK GEOMETRIC LEMMA

k-plane passing through vy, ..., yr, and where A depends only on d and the
constant in (1.5).

This is obtained using an easy induction argument. Suppose we have
found points yo, y1,...,y; as above for some j < (d). Suppose that there
does not exist a suitable point y;;, so that

dist(y,L;) < A™'diam@ forally € Q.

Then it is not hard to see that we can cover @ by less than (A4 + 1)’ balls
of radius 1§ diam @, say. From (1.5) we then get that

d
QI < C(A +1) (lgﬁ diam Q) i

This is impossible if A4 is large enough, because j < (d), and so y;41 exists.
This proves the lemma.

LEMMA 5.9. Let M be a large integer, and set k = 4(d+1)M. Let R(r, k)
be as in Remark 4.7, and assume that Q ¢ R(r,k). If 7 is small enough
(depending on M), then given an integer £, 1 < £ < (d) + 1, £ + 1 points
Yo,---,Ye of 2Q, and ay,...,ay € 2¢Z N [-M, M|, there is a point z € E
such that

/3
lz={yo+ Y ai(yi —y0)} | £ C(M, €)r diam Q.

=1

We prove this by induction on £, beginning with ¢ = 1. For notational
convenience we take yo = 0.

The point of the proof is of course to use repeatedly the fact that
@ ¢ R(7,k). Taking ¢ = y; and y = 0 in the definition of R(7, k) we
see that there is a point 2, € E such that |22 — 2y;| < 7diam Q. Since
22 € kQ we can take z = 2, and y = y; to get a point z3 € E such that
|zs — 229 + y1| £ 7diam @, so that |23 — 3y1| < 37diam Q. Repeating
this argument we see that for 2 < j < M there is a 2; € E such that
|zj — jy1] £ (277! — 1)7 diam Q. Taking z =0 and y = zj in the definition
of R(r,k) gives a point z_; € E with |z_; + jy1| £ 2/"'7diam Q. That
takes care of the £ = 1 case, with C(M,1) = 2M-1,

Of course, we could also have done the same thing with y; replaced
with any of the other y;’s.
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Assume now that the lemma holds for some ¢, and let us prove it for
241 (if £+1< (d)+1). Let ai,...,ae41 € 2641 ZN[—-M, M] be given. By
induction hypothesis we can find w;, wy € FE so that

£

1
(5.10) |wy =Y 50595 |< C(M, O)r diam Q
Jj=1
(5.11) | wa + aey1yes1 |< 2M 17 diam Q

If 7 is small enough, w; and w, both lie in k@, we can find a point z € E
such that |z — 2w; + wz| < 7diam @, so that from (5.10) and (5.11) we get

041
| z — Eajyj |< C(M, £+ 1)rdiam @,

i=1

where C(M, £+ 1) = 2C(M,£) +2M~1 4+ 1.

Let us now prove Proposition 5.5. For this we require d to be an integer
again. Let € > 0 be given. Let M be large, to be chosen soon, depending
on €, and put k = 4(d + 1)M again. We shall choose 7 after M, depending
on both M and e.

Fix Qo € A. Choose @ C @y so that diam @ ~ ediam @)y, and assume
that Q ¢ R(7, k). Let yo,...,yq be as in Lemma 5.8, and take P = Py, to
be the d-plane that they span.

If 7 is small enough, then (5.7) holds for Qo. Indeed, every point on
P which is at distance < dia.m'Qo from @ is at distance < diam @ from a
point of the form

d
Yo + Zaj(yj — y0), with a; € 29Z,|a;| < Ce™2.
i=1

If M is large enough (M > Ce™'), we can apply Lemma 5.9 to conclude
that any such point is at distance < C(M, d)r diam Q from E. If 7 is small
enough, we see that every point of P which is at distance < diam Qo from
Qo is at distance < Cediam @, from E, so that (5.7) holds for Q¢ with €
replaced by Ce.

Let us now show that (5.6) holds for @, if we assume also that Qo ¢
R(7, k). Suppose not; let y441 € 2Qo be such that dist(yg41, P) > ediam Q.
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Apply Lemma 5.9 to Q¢ and the points y;; 1 < j < d+1, to conclude that

for each a = (ai1,...,a441), a;i € 2¢411Z N [-M, M), there is a 2, € E so
d+1
that if z, = yo + Y. ai(yi — yo), then

=1
| 2o — x4 | £ C(M,d + 1)7 diam Q.

We want to use this to contradict the assumption that E is regular (1.5).

If a # o', then |z, — 20| > Fediam Qo. This is easily checked using
the fact that for each j < d+ 1, y; is at distance > %e diam @}y from the
(7 —1)-plane passing through yq, ..., y;—1. By taking 7 to be small enough,
depending on M and €, we get that

1 .
| 24 — 2zar | > %edlam Qo fora#ad.
Thus the balls B, = B(z,,ediam Qo /4C) are pairwise disjoint. From

(1.5) we get

|kQo | > > | B.NE| > C7' M**' (e diam Qo )*

and also [kQq| < CM%(diam Qo )?. This is impossible if we choose M to be
much larger than e~?. This contradiction télls us that y44; does not exist,
and so (5.6) holds for Q.

Thus we have proved that Qo € G(Ce) if Qo ¢ R(, k), if the associated
cube @ ¢ R(7,k), and if 7, k are chosen correctly. Proposition 5.5 now
follows from Remark 4.7.

Let us now indicate why F cannot satisfy (C1) or (C2) if its dimension d
is not an integer. It is enough to show that E cannot satisfy (LS). Suppose
it did. Let Q¢ be a cube with Q¢ ¢ R(7,k). We use an argument very
similar to the one we just did, but with e =1, @ = Q.

Use Lemma 5.8 to select points yo, y1,...,Yy) in Qo. Given a =
(a1,...,0¢q)), a; € 247 N [-M, M], let z,, z,, and B, be as above (but
with € = 1). If 7 is small enough (depending on M), we obtain once again
that the B,’s are disjoint, and hence

|kQo | 2> | B.NE| > ™' M®(diam Q)*,

while |kQo| < CM?(diam @o)¢. This is impossible if M is large enough
and (d) # d.
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REMARK 5.12: The weak geometric lemma is not strong enough to imply
rectifiability. We shall give a counterexample in Section 20. However, a
modification of an argument of Peter Jones [J2] shows that E has big pieces
of Lipschitz graphs if it is regular, satisfies the weak geometric lemma, and
has big projections. This last condition means that there is a 8§ > 0 so that
for each z € E and R > 0 there is a d-plane P so that |[I(E N B(z, R))| >
6R?, where II is the orthogonal projection onto P. See [DS3] for more
details.

Although the weak geometric lemma is not strong enough by itself to
imply rectifiability, it seems to be a very useful intermediary condition. It
certainly plays that role in proving that (C2) and (C3) imply (C4).

It turns out that (LS) is equivalent to (C1)—-(C7). We hope that this is
as big a surprise for the reader as it was for the authors. The proof will be
given in a separate publication. When d = 1 there is a direct construction
that shows that (LS) implies (C7). This combines with the arguments given
here to provide a much simpler proof of the fact that (C1) or (C2) imply
(C7) when d = 1. The argument for showing that (LS) implies (C1)—~(C7)
when d > 1 is much less direct and it relies in particular on the fact that
(C1) implies the other conditions. Thus it does not enable us to dispense
with what we are doing here and in the succeeding sections.

We conclude this section with an easy lemma which says that the good
d-plane Pg in Proposition 5.5 is almost unique.

LEMMA 5.13. Let Q € A be given, and suppose that P, and P, are two
d-planes such that dist(z, P;) < ediam @ for all z € Q, : =1, 2. Then

(5.14) dist(w, P;) < Cediam Q + Cedist(w,Q)  forallw € P,

(5.15) dist(w, P;) < Cediam @ + Cedist(w,Q)  for allw € P,.

In particular, Angle (P, P;) < Ce.

Let yg,...,ya be the points in ¢ provided by Lemma 5.8, and let P
denote the d-plane passing through them. It is not hard to prove (5.14) and
(5.15) by comparing each of P, and P, to P using the fact that dist(y;, P;) <
ediam @ for 0 < j < d, j = 1,2. [An important point is that this last fact
not only implies that all the points of P are close to P;, but that the points
of P; are also close to P. To see this it is useful to notice that if z;; are
points in P; close to y;, then the z;; generate P;.]
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6. Approximation of FE in measure

From Propositions 4.4 and 5.5 we know that if E satisfies (C2) then
most cubes can be well-approximated by d-planes in the sense of (5.6) and
(5.7). This result can be strengthened, in that the Hausdorff measure on
E will be well-approximated by a constant times Lebesgue measure on the

d-plane. This is what we prove now.
Let k be a large constant. We denote by G(e, k) the set of cubes Q@ € A
such that there is a d-plane Py with the properties

(6.1) dist(z, Pg) < ediam @  for all z € kQ

(6.2) if w € Pg and dist(w, Q) < kdiam @, then dist(w, F) < ediam Q.

If FE satisfies the conclusion of Proposition 5.5, then A\ G(¢, k) satisfies
the usual Carleson measure packing condition for all €, k. This follows from
the observation that if @ ¢ G(e, k) and if @* is an ancestor of @ such that
kdiam @ < diam @* < Ckdiam @, then @Q* ¢ G(e/Ck), where G() is as in
the statement of Proposition 5.5.

Given @} € A and a d-plane P, define a measure ug p on P by

(6.3) na,p(4) =| TT1(4) N (k/2)Q |

for all (Borel sets) A C P, where II denotes the orthogonal projection
onto P. In fancier language, pq,p is obtained by taking the restriction of
Hausdorff measure on E to (k/2)Q and pushing it down to P using II.

Let us call H(e, k) the subset of G(e, k) consisting of those cubes @
such that for each d-plane P with Angle (P, Pg) < 11—0 there is a constant
Ag,p > 0 that satisfies

(6.4) | 1o, p(A) = Ag,plAl | £ €*(diam Q)?
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for every cube A C P with
ediam @ < diam A < diam @, dist(A4,II(@)) < % diam Q.

PROPOSITION 6.5. Suppose that E satisfies (C2). Then for every € > 0
and k > 10 there is a C = C(¢, k) such that

(6.6) > QI < C|R forall Re A.

QEH(e,k)
QCR

By an easy covering argument one sees that (6.4) holds if
(6.7) | kQ,P(4) = Ag,plA] | < 7(diam Q)*
for every cube A C P such that dist(A4,II(Q)) < (k/5)diam @, A has
sidelength exactly 1 diam @, and has sides parallel to a given (fixed) set of

axes, provided that we choose 1 small enough with respect to € and then
choose 7 small enough. To verify (6.7) it is certainly enough to show that

(6.8) | no,p(A) — pe,p(4) | < 7(diam @Q)?/2
whenever A, A’ are two cubes in P that satisfy the properties just listed
and also dist(A4, A’) > diam Q.

Let us prove the proposition. Let 73 be much smaller than 7, to be
specified later. We must show that most cubes lie in H(e, k), in the sense
of (6.6); it is enough to show that most cubes in G(71, k) lie in H(e, k), by
the remarks at the beginning of this section.

Fix @ € G(71, k) and a d-plane P with Angle (P, Pg) < 1L0' We want to
find conditions that imply (6.8) and such that the cubes that don’t satisfy
these conditions satisfy a Carleson measure packing condition. Of course
we want these conditions to be given in terms of something controlled by
(C2). The argument we use is similar to the proof of Proposition 4.4.

Let A, A’ be given. Let p be the center of A and ¢ the point of Py
such that II(q) = p, and define p' and ¢’ similarly. By the version of (6.1)
in this context, II7*(A4) N (k/2)Q is contained in the n-dimensional cube
D centered at ¢ whose projection is A. A similar result is true for A’ and
the corresponding n-cube D'. From the version of (6.2) in this context we
get that there is a point zg € E at distance < 73 diam @ from the midpoint
between ¢q and ¢'.

Let j € Z be such that @ € Aj, so that diam @ ~ 2/, We want to
choose a function 3 so that 2jd¢j(w0 —y) looks a lot like the characteristic
function of D minus the characteristic function of D'. More precisely, we
ask 1 to be odd, C*°, compactly supported, and we want it to satisfy
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6. APPROXIMATION OF E IN MEASURE

(6.92) ¥j(zo —y) =279¢ if dist(y, D) < Cry diam Q

(6.9b) 0 <4j(zo—y) <27¢ if dist(y,D) < 2Cr; diamQ
(6.9¢) ¥j(zo —y) =—277¢ if dist(y,D') < Cry diam Q
(6.9d) —279¢ < ¢j(zg —y) <0 if dist(y,D') < 2C7; diam Q
(6.9¢) ¥j(zo—y) =0 if dist(y,DUD') > 2Cr diamQ.

We can even find a (fixed) finite family ® of functions so that we can
find a ¥ € ® with these properties no matter what @, P, A, and A’ are,
subject to the constraints imposed above. (We allow ® to depend on 7
and all the other constants.)

An argument like the one used in the proof of Proposition 4.4 can be
used to show that if E satisfies (C2), then | [ ¢;(zo — y)dy| is as small as we

E

want except for a class C of ()’s that satisfies a Carleson measure packing
condition. (To be precise, | [ ¢j(zo — y)dy| should be as small as we want
E

for all z that arise from admissible choices of P, 4, A’.) Because of (6.9),
we get that if @ ¢ C, then

(6.10) |BND|<|ENG' | +77(diam Q)"

(6.11) |END'| < |ENG | +37(diam Q)%

where G is the cube concentric with D but whose sidelength has been
increased by 4C'1; diam @, and similarly for G'.
From chasing definitions we see that (6.8) holds if (6.10), (6.11), and

1
(612)  |EN(G\F)| + |EN(G'\F)| < ;7(diam @)’
do. It is not hard to see that (6.12) is true if Q@ € G(r,k) and 7, is small
enough: because
EN(G\F)C{z:dist(2, P N(G\ F)) < 2ry(diam Q},

we can cover EN(G\ F) by less than C7, =1 balls of radius 3r; diam Q,
and then use the regularity of E (1.5) to prove (6.12).

To summarize, we have shown that if @ € G(7,k) and @ ¢ C, where
C satisfies a Carleson measure packing condition, then (6.10), (6.11), and
(6.12) hold, and they imply (6.8), and hence that @ € H(e, k). This com-
pletes the proof of the proposition.
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REMARK 6.13: In this proof, as in many places, we do not use the fact
that we are dealing with d-dimensional Hausdorff measure on F; the same
argument would work if we used any positive Borel measure supported on
E and satisfying (1.5). (Of course such a measure must be comparable to
Hausdorff measure.)

REMARK 6.14: The constants Apg in (6.4) always satisfy C~! < Apg <
C. This is easily seen by applying (6.4) to a cube of diameter < C diam @
that contains II(Q).
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7. Building the stopping-time regions, and some of their properties

In proving that (C2) or (C3) imply (C4) we shall use stopping-time
arguments, and these arguments will be very similar to each other and
have a substantial overlap. In this section we give a construction of the
stopping-time regions that will be used in both cases.

Let E be given. We assume that E satisfies the weak geometric lemma.
Suppose that we are given €, §, 0 < € < §, both of which are as small as
we want, and with §/e large. Let k£ > 0 be large, to be chosen later (but
not depending on € or §). Suppose also that we are given a decomposition
A = B UG, where B satisfies (2.4), and for each cube @ € G there is a
d-plane Pg such that (6.1) holds.

The reader should keep in mind that for us the only important property
that B satisfies is (2.4). Thus we do not mind adding cubes to B as long as
(2.4) is preserved.

LEMMA 7.1. Under the preceeding assumptions we can find a new decom-
position A = B' UG', where G' C G and B' still satisfies (2.4), and where
we can partition G' into a family F of stopping-time regions S such that

each S satisfies (2.5) and also:
(7.2) ifQ € S, then Angle (Pg, Pg(s)) < 6;

(7.3) if Q is a minimal cube of S, then at least one of the children
of Q lies in B', or else Angle (Pg, Pg(s)) > 6/2.

Before proving this — which is not difficult — let us make a few re-

marks about how this fits into the big picture. We want to prove eventually
that if F satisfies (C2) or (C3), then it admits a corona decomposition. To
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do this it is enough to show that for all sufficiently small €, é, the stopping-
time regions S provided by the lemma also satisfy (2.6) and (2.7). We shall
see in the next section that (2.6) is always true under the circumstances of
the lemma, while (2.7) is harder to prove. We shall give some preliminary
reductions in that direction after proving the lemma.

Let us prove the lemma. We start with a slightly simpler version of
it. Given Ry € A, let G(Ry) denote the subset of G of cubes contained
in Ry. We first show that we can partition G(Ry) into a family F (Ro) of
stopping-time regions with the above properties.

This is easy, because there is pretty much only one way to do it. Let
Qo be an element of G(Ry) of maximal size (i.e., Qo € A; for j as large as
possible). It is easy to see that there is a subset .S of G(Ry) that has @ as
its maximal element and which satisfies (2.5), (7.2), and (7.3). (S can be
built using the obvious stopping-time argument.) Remove S from G(R,)
and repeat the process: pick an element of G(Rg) with maximal size, and
then build the associated stopping time region. Repeating this we get our
partition F(Ro) of G(Rp).

For many purposes this localized version of the lemma is adequate, but
it is not hard to prove the more global version either. To do this we need a
sequence {R;} of cubes which are pairwise disjoint, whose union is all of E,
and which have the property that for each £ there are at most C cubes in
A¢ not contained in any of the R;’s. Once we have this sequence of cubes
we set G' = UG(R;), B' = A\ G', and F = UF(R;), and it is not hard to
check that these choices satisfy the conclusions of the lemma.

Let us indicate how to find such a sequence {R;}. If E = R, it is easy
to write down such a sequence of dyadic cubes explicitly, and the general
construction is in a similar spirit.

Fix a point py € E. For each k£ > 0 consider the set of cubes in Ay
which intersect B(po,2¥) or which have a brother that intersects it. (Two
cubes in Ay are called brothers if they have the same father.) If we now
take the union over k¥ > 0 of the cubes so selected, we get a sequence of
cubes which have the desired properties except for being pairwise disjoint.
The minimal elements (with respect to inclusion) of this sequence gives a
new sequence having all the desired features.

That completes the proof of Lemma 7.1. We now give a preliminary
reduction that is useful for checking (2.7).

Give S € F, let m(S) denote the minimal cubes of S. Let mg(S)
denote the set of minimal cubes of S which have at least one child in B’,
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7. BUILDING THE STOPPING-TIME REGIONS

and let my(S) denote the @ € m(S) with Angle (Pg, Pg(s)) > 6/2. Thus
m(S) = mo(S) U ml(S), by (73)
Define Fy, F1, and F; as follows:

Fo={SeF:| |J @|= 1) /4

QEmo(S)

F={SeFr:| |J @z 1) /2
Qem1(S)
F={SeF:|Q\( U Q= IS /4}

Qem(S)

Clearly, then, F = Fo U F; U F.
LEMMA 7.4. Fori:=0,2,

(7.5) Y 1Q(S)| < CIR|  forall R€ A.
SEeF;
Q(SICR

Thus (2.7) holds if we can prove (7.5) for i = 1.

The case ¢ = 2 easily follows from the fact that the sets Q(S) \
U @) are pairwise disjoint in E, which is itself a consequence of the

Qem(S)
pairwise disjointness of the S’s and (2.5). The case : = 0 can be derived

without difficulty from the requirement that B’ satisfy (2.4).
Let us say a few words more about how we’ll show that (2.7) holds

when E satisfies (C2). Similar ideas will be used for (C3).
For each S € F we define a function d(z) on R™ by

(7.6) d(z) = inf {dist(z, Q) + diam Q}.

This function encodes a lot of information about S, e.g., where its minimal
cubes are very small. Also define an associated “summing region” ¢ =

o(S)CExZby

(7.7) o={(z,£) EEXZ: z € kQ(S) and
Y0d(z) < 2° < diam Q(S)},

where the constants ko (large) and 7o (small) will be chosen later. (They
will not depend on €, §. Also, & will be chosen after kg, and will be much
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larger.) One should think of o as an enlarged and smeared-up version of
{(z,€) : = € Q for some @ € SN A,}. Given an odd smooth function 1
with compact support, set

(1.8) wswy=[ ¥ | [ute-vay [ a
E

(z,0)€E0

LEMMA 7.9. Suppose that we are given k, €, é, ko, and vy, and let F be
as in Lemma 7.1. To prove that (2.7) holds if E satisfies (C2), it suffices to
find a finite family ¥ of ¢’s such that for some 7 > 0

(7.10) Z J(S,¢) > 7|Q(S)| whenever S € F;.
YeY

Here 7, ¥ are allowed to depend on all the constants above, but not on S.

This follows from Lemma 7.4 once we show that for any 1,

Y J(S,¢) < C|R| forall R€A.
QS)CR

This inequality is an immediate consequence of (C2) and the fact that
o(S), S € F, have bounded overlap in E x Z. This last fact comes from
the disjointness of the S’s and a little definition-chasing: if (z,£) € o(S5),
then there is a @ € S such that

dist(z, Q) < 75124, 2¢ < diam Q < ;2%

For any given (z,£), there are only a bounded number of cubes with these
two properties, and so there are only a bounded number of S’s with (z,¢) €
a(S).

Thus to prove that (C2) implies (2.7) we want to show that if ko is
large enough and 7o, €, §, and €/ are small enough, then we can find ¥
such that (7.10) holds. The proof of this is complicated but the basic idea
is fairly simple. We first show that there is a Lipschitz function A (on
some d-plane) whose graph approximates E very well on the scale of d(z),
with errors on the order of e. We use this approximation to push down
estimates on J from E to the graph of A, proving eventually that the left
side of (7.10) controls a square function applied to A, modulo terms that
are small compared to §, and that this square function controls the L2 mean
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oscillation of VA. In other words, if the left side of (7.10) is very small, we
show that VA must be almost constant, in a way that is incompatible with
S € Fi. (If S € Fi, then the graph of A cannot be too flat, by definition
of F; and m;(S).)

The proof that (2.7) holds if (C3) does will be very similar in structure,
the main difference being that we have to work with a different kind of

square function.

REMARK 7.11: As we mentioned in Section 2, this kind of procedure will
always produce a corona decomposition for E if there is one. That is, if £
admits a corona decomposition, then it satisfies the weak geometric lemma,
and we can apply Lemma 7.1 (with G taken to be exactly the set of @’s for
which there is a Pg such that (6.1) holds) to obtain the good regions S € F.
The results of the next section imply that (2.6) holds, while Lemma 7.4
tells us that we need only check (7.5) for i = 1 to prove (2.7). This one
can do using the assumption that F admits a corona decomposition, if the
parameters are chosen correctly.

[The reason for this last assertion is that if @ € m,(S), and if E has a
corona decomposition with 1 chosen small enough (depending on §), then it
is not hard to show that there must be a cube R such that @ C R C Q(S),
and such that R is either a bad cube or a minimal or maximal cube for
a stopping-time region associated to the corona decomposition of E with
constant 7.]
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8. The construction of the approximating Lipschitz graph

Throughout this section we use the same assumptions and notations
as in Section 7. Fix § € F as in Lemma 7.1, and set P = Pg(s). Let P+ be
an (n — d)-plane orthogonal to P, and let II and I+ denote the orthogonal
projections onto P and P1. We shall often identify P with R, and in
particular we equip P with dyadic cubes. We denote by L the diameter of
Q(S).

In addition to the function d(z) defined in (7.6), we shall also use the
function D defined on P by
(8.1) D(p) = zGl'}I‘lf(P) d(z) = éréi:g{dlst(p, II(Q@)) + diam Q}.
PROPOSITION 8.2. There is a Lipschitz function A : P — P+ with norm
< Cé such that

(8.3) dist(z, (1(z), A(II(z)))) < Ce d(z)
for all z € koQ(S).

Thus the points of ko@Q(S) are close to the graph of A. As with
Lemma 7.1, we only need to know that E satisfies the weak geometric
lemma for this proposition.

It will be very important that we have an € in (8.3) instead of a é.
When we later try to push square function estimates from F down to the
graph of A, we will need to know that the errors are small compared to §,
and (8.3) is one of the reasons why.

Set Z = {z € E : d(z) = 0}, so that D(p) = 0 iff p € II(Z). We first
define A on II(Z). To do this, we have no choice: we must prove that II is
1-1 on Z, and that its inverse is Lipschitz. We shall even have use for the
following more general result.
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LEMMA 8.4. Ifz,y € 10koQ(S) satisfy |z —y| > 1073 min(d(z), d(y)), then
| I (2) - I (y) | < 26| T(z) - (y) | -
Assume that |z — y| > 107%d(z). Let @ € S be such that
dist(z,Q) + diam Q@ < Clz — y|.
We can replace @ by one of its ancestors, if necessary, to get diam @ ~
|z — y|. By our assumptions in Section 7, there is a d-plane Pq for which
(6.1) holds, and so

dist(z, Pg) + dist(y, Pg) < Celz — y| < élz — y|.

The lemma now follows from Angle (P, Pg) < 6.
From the lemma we see that

(8.5) A(Il(2)) =11 (2) forzeZ

defines a 26-Lipschitz function on II(Z). To define A on the rest of P we’ll
use arguments from the proof of the Whitney extension theorem (see [St]),
and in particular a variation of the Whitney decomposition of P \ II(Z).
For each z € P with D(z) > 0 and z not on the boundary of a dyadic
cube, let R, be the largest dyadic cube in P containing = and satisfying

(8.6) diam R, < 207! iGnlg D(u).
Let R;, ¢+ € I be a relabelling of the set of all these cubes R, without
repetition. Thus the R;’s are pairwise disjoint, they cover P \ II(Z), and
they do not intersect II(Z). [Here we use the convention that dyadic cubes
are closed but are called disjoint if their interiors are disjoint.]
LEMMA 8.7. If10R; N 10R; # @, then

c! diam R; < diam R; < C diam R;.

It is clearly sufficient to check that

(8.8) 10diam R; < D(y) < 60diam R;  for all y € 10R;.
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Because D is Lipschitz with norm 1,

D(y) > rrenél D(u) — 10diam R; > 10 diam R;.

For the second inequality in (8.8) we use the fact that the father R of R;
fails (8.6). Thus there is a z € R such that D(z) < 20diam R = 40 diam R;,
whence )
D(y) £ D(z) + 20diam R; < 60 diam R;.
Let us proceed now to the construction of A on the ball Uy = PN
B(II(zo),2ko L), where z is any fixed point of @Q(.S), and L is still diam Q(S5).
For future use we set

(8:9) U; = PN B(II(z,),2"7keL)  forall j € N.
We also restrict ourselves to the set Iy of : € I for which R; meets Uj.
Given i € Iy, let us choose a cube (i) € S such that
(8.10) C~!diam R; < diam Q(i) < Cdiam R; and
dist(II(Q(?)), R:) < C diam R;.

The existence of such a @(¢) is not a problem. If p is any point of R;, there
is a cube @ € S such that

dist(p, II(@)) + diam @ < 2D(p) < 120 diam R;,

by definition of D(p). We then take Q(:) to be a suitable ancestor of @
(possibly even @ itself).

Note that a single cube @ may correspond in this way to more than
one (but not too many) R;.

Let B; denote the affine function from P to PL whose graph is the
d-plane Pg(;y. Because of (7.2), the Lipschitz norm of B; is < 26.

For each i let ¢; be a C? bump function such that

(8.11) 0<¢i<1,¢; =1o0n2R;, ¢ =0 off 3R;, and
| V4 | < C(diam R;)™% for £=1,2.
Because of Lemma 8.7, there are, for each ¢, at most C' cubes R; with

3Ri N 3R; # 0; in particular the supports of the #: have bounded overlap.

We can define a partition of unity for V = |J 2R; by
i€lo

1

(8.12) $i(p) = $:(P){ Y _ 4i(p) forpeV, i€l

J€Io
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Using Lemma 8.7 again we have that
(8.13) | Vi | < C(diamR;)™¢, £=1,2.
We define A on V by

(8.14) A(p) = _ i(p)Bi(p)-

i€l,

Notice that V NII(Z) = @ (by 8.8), and of course Up \ II(Z) C V, so that
(8.5) and (8.14) combined define A on Uj. Let us prove that A is Lipschitz
with norm Cé on Uj.

We first check that the restriction of A to 2R;, j € Iy, is 36-Lipschitz.
Given p, q € 2R; we have

(8.15)
| A(p)— A(‘I)|<|Z¢-(P){B(P) Bi(9)} | + IZ{¢1(Q) ¢i(p)}Bi(q) |

< 26|p- QI{Z¢:(P)}+|Z{¢:(P) $i(9)H{Bi(a) - Bi(9)} | -

(In the last step we used the fact that 3 (¢i(p) — ¢i(9)) =0.) If 4i(p) # 0

or ¢i(q) # 0, Lemma 8.7 gives diam R,-.~ diam R;, and then we get from
(8.13) that

(8.16) | $i(p) — $i(g) | < C(diamR;)™" |p—gq].

To estimate B;(q) — B;(g) we use the following lemma.

LEMMA 8.17. If10R; N 10R; # 0, then dist(Q(:), @(j)) < C diam R; and
(8.18) | Bi(q) — Bj(q) | £ Cediam R; for all ¢ € 100R;

To prove the first part, pick any z € Q(j) and y € Q(:). We may
safely assume that |z — y| > %diam Q(j), and since d(z) < diam Q(j) by
definition, we can apply Lemma 8.4 to obtain

| I (z) - T1*(y) | < | () — TI(y) | -

Because |II(z)—-II(y)| £ C diam R; by (8.10) (and Lemma 8.7), we conclude
that
aist (Q(3), Q) < |z — y| < C diam R,
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This implies that Q(j) C kQ(z) (if k is large enough), and (8.18) now
follows at once from Lemma 5.13 (with @ = Q(j), P» = Pq(j), P2 = Pg(i))-
Combining (8.15), (8.16), and (8.18) we get
|A(p) — A(9)l £ 28|p— g| + C(diam R;)™" |p — g|e diam R,
(8.19) <36lp—gq| for p,q € 2R,

if €/6 is small enough. We used the fact that there are a bounded number

of ¢’s for which ¢;(p) — ¢i(q) # 0 for fixed p, q.
Next, let us show that

(820)  |A(p)— A(po)l < C8lp—po| ifpo €TI(Z), pe | ] R;.
J€lo
Choose j so that p € Rj, and pick y € Q(j). Thus we have

|A(p) — A(po)| £ a1 + a3 + a3 + a4, where a; = |A(p) — Bj(p)|,
az = |B;(p) — B;(II(y))|,as = |B;(II(y)) — I*(y)|, and
as = |TT*(y) — A(po)!-

Notice that D(p) < |[p—po/|, since D(po) = 0, and so diam R; < [p—po|.
From the definition of A and Lemma 8.17 we get

a; < Cediam R; < Celp — pol.

Next, a; < 26|p — II(y)| < Cédiam R; < Cé|p — po|, because of the 26-
Lipschitzness of B; and (8.10). The definition of B; gives

a3 < 2dist(y, Po(jy) < 2ediam Q(j) < Celp — pol.
To estimate a4 we apply Lemma 8.4 to z = (po, A(po)) € Z and y to get
as = [Tt (y) — I*(2)| < 26|TI(y) — po| < Cblp — pol-

(Here we have used (8.10) for the last inequality.) Combining these various
estimates gives (8.20).

Combining the fact that A is 26-Lipschitz on II(Z) with (8.19) and
(8.20) it is easy to see that A is Lipschitz with norm < Cé on Uy. We
can use the Whitney extension theorem to extend A from Uy to a Lipschitz
function on all of P with norm < C§.

We now turn to the proof of (8.3). If z € Z, then z is on the graph
of A, and there is nothing to prove. For the remaining case we’ll use the
following lemma, which will also be needed later.
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LEMMA 8.21. Let p € Ug and r > 0, D(p) < r < koL, be given, and let
@ € S be such that dist(p,II(Q)) < Cr and C~!r < diam @ < Cr. Then
O-Y(B(p,r)) N 2keQ(S) is contained in CoQ, where Cy depends only on C
a.nd k‘o.

As a consequernce,
Cild(z) < D(W(z)) S d(z) for all 2 € koQ(S),

where 60 depends only on k.

To prove the lemma, pick z € @ and let y be any point in II~(B(p, r))N
2koQ(S). If |z — y| £ diam @, then y € CyQ, as promised. Otherwise, we
can use the fact that d(z) < diam @ to apply Lemma 8.4 to get

[T (2) - I (y)] < [T(=) - TI(y)| < C diam Q.

(The last inequality comes from our hypotheses concerning p, @, and r.)

The second affirmation of the lemma is obvious when II(z) € II(Z);
apply Lemma 8.4, for instance, to see that II™!(II(z)) N ko Q(S) contains
only one point. Otherwise, if II(z) ¢ II(Z), take p = II(z) and r = D(p).
By definition of D(p) there is a @ as above. The first part of the lemma
tells us that « € CoQ, whence d(z) < 50D(H(:1:)). The other inequality
follows from the definitions.

Coming back to (8.3), let z € ko@Q(S) be such that d(z) > 0, and set
p = lI(z). The lemma tells us that D(p) > 0, and so p lies in some R;.
Applying the lemma with r = D(p) and @ = Q(z), we get that z € CoQ(z).

We'll choose k to be much larger than Cp, and so (6.1) gives

It (z) - Bi(I(z))| < 2ediam Q(i) < CeD(p) < Ced(z),

and since |B;(II(z)) — A(II(z))| £ CeD(p), by Lemma 8.17 and the defini-
tion of 4, we get |II+(z) — A(Il(z))| < Ced(z), as desired.

This completes the proof of Proposition 8.2. We end this section with
one more estimate on A.

LEMMA 8.22. |V2A(u)| < Ce(diam R;)™! if u € 2R;.
Indeed, if 0,0p is any second partial derivative,
0a0pA = 0405() _ $:B:)
=3 (0a050:) Bi + Y (0a$i) (3Bi) + Y (954:) (9aB) -
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(Since B; is affine 8,05B; = 0.) Because ) 0a¢:i = 0.(3_ ¢:) = 0, we have
aaaﬂA = Z 6aaﬂ¢,~(B,~ - Bj) + Zaatﬁ,'(apBi - aﬂBj)
+ Z 039i(0aBi — 60Bj).

It is not hard to obtain the desired estimate from (8.13) and Lemma 8.17.

(We also use the fact that |VB; — VBj| < Ce if u € supp (V¢;); this can

be derived from Lemma 8.17, or proved using a very similar argument.)
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9. Pushing square function estimates from E to the graph of A

In this section, and in the following two sections as well, we assume
that E satisfies (C2), and we want to prove that E must then satisfy (C4).
We follow the outline given at the end of Section 7, and we make the same
assumptions and notations as in Sections 7 and 8.

To implement the program described in Section 7 we must first specify
the subsets G and B of A. We take G = H(e, k), as defined in Section 6,
and B =A\G. As we said in Section 7, k is large and will be chosen later,
but it will not depend on ¢, 6.

Let J = J(S,%) be as in (7.8), with 3 fixed. One of the things we
have to do to carry out the program described in Section 7 is to transform
an estimate on J into an estimate for a suitable square function applied to
A, and it is this issue that we begin to take up now.

Let p denote the measure on P obtained by pushing down H¢ I k0 Q(S)
using II, i.e.,

u(F) = [T (F) 1 kyQ(S)].
Define I = I(S, ) by

(r,t)E0,

(01) I= / S| [ e AG) - (0 4@) duto) [,
P

where the “summing region” o; € P X Z is defined by
(9.2) o1={(p,0) EPXZ: pe U, Ci7D(p) <2< L},

Uy is as in (8.9), L is still diam Q(S), C1 > 1 will be chosen soon (large,
and independent of ¢, §, and v ), and dp denotes Lebesgue measure on P.

51



G. DAVID, S. SEMMES

PROPOSITION 9.3. There is a constant C' > 0, independent of § and e, such
that
I < CJ+CeEQ(S),

at least if we assume that supp ¥ C B(0, ko).
Set ag(z) = [9e(z — y)dy and
E

be(z) = / be((Il(2), A(Il(2))) — (L(y), A(I(y))))dy-
E

We first want to replace a; by by in the integral that defines J, with only
small errors. Actually, we shall even ask for less than that, namely,

(9.4) Jy £2J + CE1Q(S)|,
where
(9.5) Jy = > lbe(z)|*dz,
(z,0)€E02
96) or={(z,0)€ExZ: z€ %kOQ(S), Yod(z) < 2¢ < L}.

To see this, we first observe that for (z,£) € o2 we have
ae(@) @ < CIVble [ eld(e) + du))2 2y,
ENB(z, & ko2¢)
If (z,£) € 02 and y is in EN B(z, ll—oko2'), then d(z) < 75 '2¢ and d(y) <
d(z) + k2! < C2¢. Thus we also have |a(x) — be(z)| < Ce, whence
@) -be@P <0e [ o)+ )22y,
ENnB(z, 3 ko2t)

Consequently,

Ji <27 +2 / )" lbe(z) — ae(z)[Pdx

(z,0)€02
<2J+Cé / Z / (d(z) + d(y))2~ 2 dydz
(z,0)€E02 EnB(z,-{—okozl)
< 2J + Cé > 27'd(z)ds + C€* > 274d(y)dy

(z.)€E02 yEkoQ(S) Z‘ZC-ld(y)

<2J + Cé / dz + Cé€® / dy < 2J + Ce¥|Q(S)|,
$k0Q(S) koQ(S)
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as desired.

Next we want to push our integrals down to P. Because the points y
that appear in the definition of b(z) always lie in ko@Q(S) when (z,£) € o,
we have that

(9.7) be(@) = [ (2, AP - (0 A0,
P
where p = II(z). Let us check that
(9.8) g = / S e p)Pdulp) < 4,
(r.t)EO3

where c¢(p) = P[ Ye((p, A(P)) — (¢, 4(g)))dp(q) and

1
(9.9) o3={(p,f) EPxZ: peUs, 50170D(p) <2< L}.

(Thus o3 is a little larger than the region oy used to define I.)

Because of (9.7), we only have to check that if (p,£) € 03 and z €
II7Y(p) N ko Q(S) then (z,£) € o2. Using (6.1) with @ = Q(.S) we see that
such an = must lie in $koQ(S). Also, if 2C} is larger than the constant Co
from Lemma 8.21, then d(z) < 2C,D(p) < 75 2%, and so (z,£) € 0. This
establishes (9.8).

To finish the proof of Proposition 9.3 we have to be able to replace the
measure du(p) in J; by dp. Notice that du(p) > dp on II(Z), whence

(9.10) / S lee(p)Pdp < 7.
n(z) ¥<t

To control the rest we restrict our attention to each R; for which R;NU, # 0
and compare du(p) to dp on R;. Let I = {i: R, NUy # 0}.

LEMMA 9.11. Ifi € I and T is a cube satisfying T C 10R; and diam T >
Mediam R; with M large enough (not depending on € or §), then

5 [ds [dm=c [a
T T T
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Here C does not depend on € or 6.

To prove the lemma we first apply Lemma 8.21 to any p € R; with
r = 60diam R; and @ = Q(i). We get that II"1(10R;)NkoQ(S) is contained
in CoQ(z) for some Cy. The restriction of p to 10R; is therefore the same
as the restriction to 10R; of the measure pg(i),p introduced in Section 6
(see (6.3)), at least if k > Cj.

We chose our good set of cubes G to be H(e, k), so that (6.4) holds for
each @ € G, for @ = Q(7) in particular. We also pointed out in Remark 6.14
that the constant A\; = Ag(;),p satisfies C~! < ); £C. Lemma 9.11 follows
immediately from (6.4) and definition-chasing.

We want to use the lemma to control I in terms of J,. Partition R;
into dyadic cubes T ; such that

Mediam R; < diam7;; < 2Mediam R;,

where M is as in the lemma. Let m denote the minimum of |c¢(p)| on T; ;.
Straightforward estimates of the oscillation of ce(p) over T; ; yield

/ | ce(p) > dp < / [m + Cediam R,~2_£]2 dp

I T'»J
< Cm? / du(p) + Ce?(diam R;)?2~% / dp
T;,; Ti,;
< ¢ [ | cp) I? du(p) + Ce(diam Ri)?22 / dp.
T:,; T ;

Summing this in j we get

/ | ce(p) [P dp< C / | ce(p) |? du(p) + C*(diam R;)?2~2¢ / dp.
R 2,

R;

Before summing this in ¢ we need some notation and an observation.
Let £(i) denote the set of £’s such that (p,£) € o, for some p € R;. If
£ € L(i), then 2 > C1yD(p) > 3C170D(p') for any other p' € R;, and
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(p',€) € 03. Hence

Y @<y Y /lc,<p)|2dp

(p,9)€01 i€, teL(i) R,
PEP\II(Z)
=C Z Z / | ce(p) |2 du(p) + Cé? Z Z 2'”(dia,m R,')z /dp
i€ly eL(i) R, i€l LeL(i) 2.
= C/ > lep) P du(p) +Ce* /dp
(p,t)E03 i€l 2.

< CJr + CE|Q(S).
(For the second to last inequality we used (8.8).)

This last estimate, combined with (9.10), (9.8), and (9.4), finishes the
proof of Proposition 9.3.
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10. Controlling a square function of A in terms of J(S,%)

According to the program outlined at the end of Section 7, we want
to show that for suitable choices of ¢, 8, etc., we can find a finite family
U of ¢’s so that (7.10) holds. To do this we want to show that we can
control square functions of A in terms of J(S,%), modulo certain types
of errors. Proposition 9.3 was a first step in this direction, but we need
something better. The problem is with I in (9.1), in particular its nonlinear
dependence on A and the appearance of dy(q) instead of dg. In this section
we show that if ¥ is chosen properly we can indeed control a more useful

square function of 4 in terms of ) J(3,5).
PEY
We continue to use the same assumptions and notations as in the

preceeding 3 sections. Let us now choose the class ¥ that we shall work
with.

Let Py and Pj- denote the translates of P and P' that pass through
the origin. Pick v € C¢°(P,) which is radial, not identically zero, supported
in B(0, %), zero on a neighborhood of the origin, and satisfies

/ v(p)f(p)dp =0

Py

for all polynomials f of degree < 2.

We shall sometimes commit the following minor abuse of notation.
Given a function on Py, such as v, and a function on P, such as A, we note
by v * A the function on P defined by

/ v(p— ¢)A(g)dg.

P
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To simplify notations we allow our ’s to be vector-valued. Write the
generic element of R™ as (p,w), p € Py, w € Ps-. For our first ¢ we take
any odd, C* function with compact support and values in P;-, and which
satisfies

(10.1) Y(p,w) =v(p)w  for all (p,w) such that |w| < |p|.

This function will give us control on A, but we also need a function to give
us control on the measure dy. For our second 1 we take any function with
values in P which is odd, C, supported in B(0,1), and satisfies

(102) Y(p,w) =v(p)p  forall (p,w) with |w| < |p|.

We can make these choices in such a way that the family of all ¢’s that
arise is finite, by making sure that the set of all Py’s that arise is finite.
This we can do, in a way that depends on e. (We could also use a slightly
different approach in which the family of ¢’s is much smaller. This would
complicate further the notations and presentation of our argument, but it
would not present any serious problems.)

We take for our family ¥ the set of ¥’s just described (in (10.1) and
(10.2)) as well as some of their dilates. That is, we also take the functions
siy(siz), ¢ as above, where s = 27“13, j=1,2,...,mg —1, where mg
is a large integer to be chosen. (It will not depend on E or any of the
other constants; just n, d, and the choices of 3’s above.) We denote these
functions by 17(z), and we take 1/1;(3:) =2~ tdy) (-2%) as always. Define 17,
V{ similarly.

As we said before, we want to control a square function of A in terms

J(S,97), 7 € T. Set

(10.3) =rs)=[ Y.27%| [vie-9Al)ds | dp,
[ [

(r.t)E0y

where

oy = {(p,£) € P x Z : dist(p, II(Q(S)) £ 100L and

10.4
(104) vED(p) < 2¢ < 6L}.

Here 6 > 0 is a small constant to be chosen later (before €).
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PROPOSITION 10.5. Assume that
(10.6) J(S,¥7) < E1Q(S)|

for all pJ € W. If e, 6, 7o, 6, and ky ! are small enough (how small € has to
be will depend on the other constants), then for j =0,...,mg — 1,

(10.7) I < [C€ +C'(30 + 6967 1Q(S)),

where C, C' do not depend on €, 6, or 6, and C' does not depend on v,.

We should perhaps point out that this proposition also depends on mg
being sufficiently large, but this is not important because our choice of my
will not depend on the other constants.

We shall prove Proposition 10.5 in this section, and use it to show that
(7.10) holds (with 7 = €?) in the next section.

Suppose that (10.6) holds, so that Proposition 9.3 can be applied to
conclude that

(10.8) I=1(S,4°) < C&Q(S)|

for each 1/ € U. Let us write down explicitly what that means. For v as
in (10.1), (10.8) becomes

109) [ Y| [ 572 - 0(4) - A@)iu(a) [ dp < CIQS))
P

(p,0)€E0y

while for 1 as in (10.2) we get

(10.10) 3 |5 u) |* dp < CEIQS),
(P.‘)Gal

where #(p) = v(p)p. In both cases j runs from 0 to mg — 1.

To derive (10.7) from (10.9) we want to replace du(q) in (10.9) by dg
with only acceptable errors incurred. To do this we shall use (10.10) to
show that dy can be approximated by dgq. We shall also need the following
lemma to help control the errors.
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LEMMA 10.11. Let r, M be given, 1 <r < 2£ (1 < r < 0 if d = 1),
M > 0. Foreachp € P and £ € Z there is an aﬂine function A, ,: P — P+
such that

(1012) 342 [ |27t A) - 4] [ day dpdbe(t)
¢ PAB(p,M2¢)

is a Carleson measure on P x Ry with norm < C(M)||VA|%, (which is of
course < C(M)82).

See [Do)] for a proof (or [J1] for d = 1). In [Do] the case of VA € L
is not discussed, but this lemma follows immediately from the results for
VA e I2

Notice that the lemma is still true if we also require that A,, be
independent of p for p inside a dyadic cube with sidelength 2¢. This is not
hard to derive from the lemma. [One way to do this is to observe that if
M > 2/d, Q is any dyadic cube in P with sidelength 2¢, and if « is an
affine function so that |@|™* f |A — a| is as small as possible, then for all
p € @ we have

(10.13) sup |4pe —a| < C274 / |A— Ap el
PNB(p,M2¢)

Thus we can replace A, by a without changing much.] From now on we
assume that A, ¢ has this extra property.

There are two easy consequences of this observation that we shall use.
The first is that

(10.14) 3 |27 [A(p) — Ape(p)] |* dpdbye(t)
/4

is a Carleson measure on P X Ry. (Take r = 2 in (10.12) and use Fubini.)
The second is that A, , satisfies

(10.15) I VaAp,e(q) |S Cs, |A(p) — Ape(p)| £ cs2t.

We shall now use (10.10) to replace A in (10.9) by A— A4, .. Afterwards
we use Lemma 10.11 to control the errors that arise when we replace du by
something more convenient.
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LEMMA 10.16. For j =0,1,...,mg — 1,

/ / 59274 (p — 9) [Ap,e(p) — Ap,e(9)l du(a) |* dp < CE|Q(S)].
(r,t)E01

Indeed, because A, ¢(q) is an affine function,

/ $127t](p — ) (Ap,e(P) — Ape(9)) di(q)

P

is, for each p, £, a linear combination of integrals of the form

/ $274(p - 9)(pi — ai)dp(9),

P

with coefficients that are dominated by Cé (because of (10.15)). Here p;

denotes the i** component of p with respect to some basis. This integral is

just the i** component of 7%} * u(p), and so the lemma follows from (10.10).
Combining Lemma 10.16 with (10.9) yields

iy [ ¥ / o (@)dp(a) |* dp < CEIQ(S)]

(r,0)E0y

where
(10.18) o () = s"27}(p — ) [A(p) — A(q) — Ap,e(P) + Ap,e(9)]-

The advantage of (10.17) over (10.9) is that we have better control over
ap¢(q) (coming from Lemma 10.11) than A(p) — A(g), and this will be
needed when we try to replace du(q) by something better.

To analyze p using (10.10) we first need to understand the operator

mo—1 oo

(10.19) Tf=logs Z Z ul*ul*f

J=0 f=—oc0

Here we include a scalar product in the convolution 172 * 17; . (Remember

that ¥ is vector-valued.) Let 5(¢) be the Fourier transform of 7 * .
Because each component of 7 is real-valued and odd, each component

of  is imaginary, and so 5(¢) < 0 everywhere. Also, 7 is radial, because
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v is radial and #(p) = v(p)p. Since we required that v have two vanishing
moments we have that |(£)| < C|¢|?. These properties (and the fact that
7 is rapidly decreasing) imply that

/Ow n(tﬁ)i—t

is a finite negative constant.

mo—1 oo . a
Set A(€) =logs Yo Y n(s772%), so that (Tf)» = Af. We can
J=0 £=—o0

write A as ]
mol oo eTitht
0=y Y [ o

J=0 f=—oc0 izt
As my gets large, A(§) tends to fooo n(té iit-t, and so our previous remarks
now make it clear that there is a constant a > 0 so that

1 3
§a <-=-2< -2-0.
if mg is large enough. (Remember that s = 27"13) We shall assume from
now on that mg is sufficiently large for this to happen. Thus T is invert-
ible, (T~(f))» = A~'f, and T~! can be written as a convolution singular
integral operator such that the j** derivatives of its kernel are dominated
by [p|~%~7.
Set ¢ = T~1(7), so that ( is also vector-valued. We have that

(a) V¢RI S CHA+ )7, j=0,1,...

(10.20) (b) /C(P)a(p)dp =0 for all affine functions a(p).

These properties of ( follow from the fact that 7 is smooth, compactly
supported, and satisfies (b), and the estimates on the kernel of 7~! noted
above.

By definitions we have that

mo—1 oo

(10.21) p=logs Z Z C{*ﬁ{*p,
j=0 f=—o00
where C{ (p) = s7927%((s727%p), and where the series converges in the

sense of distributions. [Again this includes a scalar product in C} * 17{ .] We
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are going to use this formula to split u into three pieces, of which one is
smooth and the other two will produce contributions to (10.17) that can be
controlled. The remaining part of (10.17) (coming from the smooth piece)
will be used to control I; and thereby prove (10.7).

Let Rj, j € I, be the family of cubes from Section 8, with the corre-
sponding partition of unity {¢;} of P\ II(Z).

Let us write ¢ = f + g + h, where

mo—l

fp)=logs 3 > ¢l * 7 * p(p)
(10.22) ’=,:oi>f’

+logs Y N /Cf(p—w)ﬂf*u(w)dw,

5=0 2<L p\y,

mo—1

(10.23) sp)=logs 3o [ 30 cip-w)adx u(w)dw,

('”v‘)EUl

mo—l

(10.24) h(p) =logs Z / Z Cg(p - w)ﬁg * p(w)dw.

]=0 (w,t) €e

For the definition of h we have used e to denote the set {(w,f) € P X Z :
w € Uy, 2! < Cr1voD(w)}, where C is as in the definition (9.2) of 0;. These
sums should be viewed as converging in the sense of distributions.

We want to replace the du(q) in (10.17) by f(q)dg, and so we have to
control the corresponding contributions of ¢ and h. The main point for the
g term is that (10.10) allows us to control the L? norm of g.

LEMMA 10.25. [ g(p)*dp < Ce?|Q(S)|, with C independent of ¢, &, and 6.
P

This is proved using the usual duality argument. Let F' be any function
in L?(P). Then

mo—1

Z/ Z|45*F(w)||ﬁ{*p(w)|dw.

j=0 Y(w.0€q,

|/Fg|§ Clogs
P
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Using (10.10) and Cauchy-Schwarz we can dominate this by

mo--l

Ce |Q(S)|F (logs 3 / |G+ F | dw) < Ce [Q(S)I? [|F .

Jj=0 ¢ P

The last inequality is a standard square function estimate, and in this case
it can be derived simply from Plancherel. This proves the lemma.
Next we use this to control the contribution of g to (10.17).

LEMMA 10.26.

/ Z | / ol (9)9(q)dg I2 dp < Cé |Q(S)),
P P

€=—o00

where C does not depend on ¢, 8, or 6.

Let r € (2, 32_%) be arbitrary, let 7' denote its conjugate exponent, and
set

1

r

Gi(p) =1 [ lvi(p—9)l lg(q)l"dq} :
\/

(10.27) F{(p) =| 27 [A(p) — 4pe(P)] |,

(10.28) HZ(p)={ / wi(p - o) |2—‘[A(q)—Ap,e(q)1|qu} .

P

By Holder’s inequality, the quantity to be estimated is at most
(10.29) ¢ [ ¥ 6ie (Fio) + o)) dp.
We know from (10.12) and (10.14) that

(10.30) > (Fi(p)? + Hi(p)?) dpdéne(t)
[4
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is a Carleson measure with norm < Cé2. Because r’ < 2, we can control
the L? norm of the maximal function

Gi(p)= sup Gi(q)

lg—pl<2!

by the L? norm of g, and so Carleson’s inequality (see p236 of [St]) and
Lemma 10.25 imply that (10.29) is < Ce?6%|Q(S)|. Lemma 10.26 follows.
Next we want to control the contribution of A to (10.17). Set o5 =

{(p,0) € PxZ:pe Uy, 7D(p) < 2¢ < L}. (Recall that U; was defined
in (8.9).)

LEMMA 10.31. There is a C independent of €, §, vo, and 6 such that

/ | / o J(@)h(g)dg |* dp < C182IQ(S)].
P

(P.l)eo’s

The notation h(g)dq is convenient but somewhat misleading, since h
is a priori only a distribution and at best a measure. The idea behind the
lemma is that although h is not very regular, it has a lot of local oscillation
to help its integral against a;’[ (which is relatively smooth) to be pretty
small.

Let us record a couple of simple estimates on O‘:;,e' It is readily seen
from the definition (10.18) of O‘;,l (and also (10.15)) that

(10.32) | &l (@) ]| < C827%, |Val ,(g)] < Co2 D),

and also that supp a;,t C B(p,2%).
Seta=aj , = !a;’[(q)h(q)dq for (p,£) € o5. Thus

mo 1 . . .
a=logs 3 / 5 / o (9)Ch(q — w)dg 7 * p(w)dw
1=0 P

(w,k)ee

by (10.24). We need to get estimates for the interior integral

AZ = AZ(j,p, 4,i, k,w) = / o (q)Ch(g — w)dg.
P
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When k > £ or |p — w| > 24! we have
(10.33) |AZ| < CHy(p)®s,e(p — w),

where

Hyp)=27% / 27 A(9) — Ape(2)ldg + 27¢|A(p) — Ap,e(p)|

B(p,2%)

and @ o(z) = 22%(2% + 2¢ 4 |z|)~4-2. This uses (10.20a). If k < ¢ and
|p — w| < 244! then

(10.34) |AZ| < Cé2k2~Ud+D),

This uses the bound (10.32) on Va:;’e and both parts of (10.20). Let
AZy(p,2, k, w) denote the right side of (10.33) when k > £ or [p—w| > 2¢+1,
and let it be zero otherwise, and let AZ,(p, ¥, k,w) denote the right side of
(10.34) when k < £, |p — w| < 2%, and zero otherwise.

Set e; = {(w,f) €e:k>Lor |p—w| > 24"} and e; = {(w,£) € e:
k < £ and |p— w| < 2¢+!}, and split a into a(1) + a(2) accordingly. Thus

a(1,2) < C D AZq ) (p, bk, w)2 7k / dp(r) dw.
(w.k)€e(y,2) B(w,2*)

We want to show that

(10.35) [ Y la1,2)Pdp < Cra8@(S))

(p,t)E0s

We start with a(1).
By definitions

(WCHG) [ Y [ 20 424 p—u) () d
(wkI€er gy 2k)

If r € B(w,2*) and (w, k) € e, then 2% < Cyy9D(w) [see the definition of
e just after (10.24)] and D(w) < |r — w| + D(r), and so D(w) < 2D(r) if
7o is small enough. Thus 2% < 2C;4,D(r). Also, (w,k) € e; implies that
2¢ < 2% or 2¢*! < |p—w| and this implies that 2% > 2¢ or [p—r| > 2¢ when
|r —w| < 2%. Thus (w,k) € e; and |w — r| < 2* imply that (r, k) € &,
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é1 = {(r,k) € PxZ:r € Us, 2 < 2C17D(r), and either 2 > 2¢ or
|p— 7| > 2¢}, whence

W<CHG) [ 3 [ 2@ 42 k) 2w dutr)
"PEL B(ra2t)

SCHp) [ ) 2%(2* +2'+ p—r)™* du(r).
("v")Eél

To control this expression it will be convenient to break up the r-
integral. Let {R;} be the cubes chosen in Section 8, which cover the set
{q € P: D(q) > 0}. Let I3 denote the set of i such that R;NUs # 0. Then

S CHM Y, [ T 2HF +2+lp =) Pdur).
€L (nkea
T€ER;

Consider [ (2% +2¢+|p—r|)~%"2du(r). If p ¢ 2R;, then the integrand

R;

is roughly constant on R;, and this integral is comparable to the one you
get by replacing du(r) by dr, because of Lemma 9.11. If p € 2R;, then
10diam R; < D(p), by (8.8), and of course 2¢ > 'yO%D(p) if (p,£) € os.
From Lemma 9.11 we get that u(T) = |T| for subcubes T of R; of size 2¢,
at least if € is small enough, depending on 7o. [N.B.: Although we have to
let the choice of € depend on g here, the constant from Lemma 9.11 doesn’t
depend on anything, not € or 7o in particular.] Because (2F +2¢+|p—r|)~¢~2
is roughly constant on the scale of 2¢, we get that

[ 2w p= ) dury ~ [ 24 p =
R; R;

in this case as well.
Let us use this to control a(1). I (r,k) € &, r € R;, then 2F <
C7o diam R; by (8.8), and so

a(1) < CHi(p) ¥ / Y 2| @)

i€ls p. \2¢<Cyodiam R;

< CH(p) Z /7g(diamR,')2 (2'+|p- r|)—d_2 dr.
i€ls p.
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Let Fy(p) denote this last expression without the CH(p) when (p,£) € os,

and Fp(p) = 0 otherwise. To check (10.35) in this case we want to use

Carleson’s inequality and the fact that Y |Hy(p)|>dpd6,(t) is a Carleson
£

measure with norm < C§? (which comes from (10.12) and (10.14)). Thus
we need to control the L? norm of

F.(p)= sup Fyq).
q,¢
lg—pl<2!

The definition of F clearly gives Fi(p) < Csup Fy(p). Because 2¢ >
4

70%D(P) if (p,£) € o5, we have
diam R; < D(r) < D(p) + |p—r| < 75 (2 + |p—r|) whenr € R;,
so that

F(p)SCY. [ dism RY(q diam R; + |p — rl)™*2dr.
i€ls .

To estimate the L? norm of F, we integrate it against an arbitrary L2-
function G and observe that

[rict < ¢Y [rn6rwn,

i€l R;

where G*(r) denotes the Hardy-Littlewood maximal function of G. Of
course the right side is at most Cvo|Q(S)|? ||G||2, and so J F2 < CA2Q(S)|
Thus (10.35) does follow in this case from Carleson’s inequality.

Now we want to prove (10.35) for a(2). We have

a(2) < C ) g2kp=tdNg—kd / du(r) dw.
(w.k)€ez B(w,2*%)
If |lw —r| < 2F and (w, k) € e, then

D(w) < D(r) + |w — | < D(r) + 2% < D(r) + %D(w)

68
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if o is small enough. Thus D(w) < 2D(r), and so 2% < 2C,~,D(r). Hence

a(2) L C / Z 62k~ t(d+1)g—kd / du(r) dw
wEB(p,2¢!) 2’“522’1(‘20D(1') B(w,2%)
<cC Yo s2kam i ay(r)

B(p,2¢+?) 2k <2C1 v D(r)
<C / 570D ()2~ 8Dy (r).
B(p,2¢+?)
As before we want to replace du(r) by dr, and so we decompose
B(p,2¢*?) using the R;’s. Using (8.8) we obtain
a2)<CY / 6v0(diam R;)27 44+ dyu(r).
" Bp2%nR;
If B(p,2*?)N R; # 0, then
diam R; < inf D(r) < D(p) + dist(p, B:) < D(p) + 2447 < 75 Fot4l

when (p,£) € os. In this case we obtain from Lemma 9.11 that
#(B(p,2*%) N R;) < C|B(p,2*?) N 2Ry,

at least if € is small enough. [As before, how small € has to be depends on
Yo, but the constant doesn’t.] This gives

a2)<C) / 6v0(diam R;)2~ 44+ gr

' B(p,2¢+2)N2R;

<C / 670D (r)2~ 44+ ) g,
B(p,2%?)
(We have used the fact that the 2R;’s have bounded overlap.)
Since D(r) < D(p)+|p—r| < 76-%2”1 if (p,£) € o5 and r € B(p,2%+?),
L
we conclude that in particular a(2) < Cév;. Hence

3
2

a(2)? < 082 / D(r)2~ 44+ gy,

B(p,2¢+?)
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Let us plug this into the left side of (10.35). We want to use Fubini to
integrate in r last. Because (p,£) € o5 and r € B(p,2%?) imply that

D(r) < 70—%2”1 and r € Us (since 2¢ < L), we get that

/ > a2? < Co2y3 / > / 244+ gp D(r)dr
(r,)Eas Us 2l+1_>_7(;§ D(r) B(r2+?)
< 0627;%/ E 27D(r)dr < C6%%|Q(S)|.

Us gt41293 D(r)

This completes the proof of Lemma 10.31.
Combining (10.17) with Lemmas 10.26 and 10.31 we conclude that

(10.36) [ 1 [ addoraa [ dp < (€2 + crashia(s))
(p,O)€os P

with C, C' independent of ¢, 6, and 6, and C' also independent of v,. We
now show that f is smooth on Us, and then look at what happens when

you replace f(g) by £(p).
Let us check that f satisfies

(10.37) Ifl £ C, |Vfl £ CL™'  onUs.

The first term on the right side in (10.22) clearly satisfies these conditions.
(Don’t forget that p has total mass < C|@(S)|.) It is not hard to show
that the second term also has these properties, using (10.20a)’

If p € Us, 2¢ < L, then we get

| [ @ ls) - flald | < O824
P

from (10.37), (10.32), and supp oz:;’[ C B(p,2%). Because g4 (defined in
(10.4)) is contained in o5 N {p € Us} if ko is large enough, we conclude from
(10.36) that

/ > | /"‘;,e(q)dq I” 1£()|*dp < (Ce® + C'706%)|Q(S)|
P

(P»l)ed4

+C / ) 622%L72dp < [CE + C'(v0 + 67)6°] 1Q(S)],

(P;‘)Eo’.;
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where C' is independent of ¢, and both C, C' are independent of ¢, é, and
6. This reduces to

- ; 2
w3sg) [ Y| [vie- @ 1o
(P, 0)E0y P
<[Ce® + C'(70 +6%)6°] [Q(S)],

with C, C' as above, because of the definition (10.18) of a;,z and the
vanishing moments assumptions on v.

Comparing this with (10.3) we see that Proposition (10.5) will follow
if we can show that there is a C; > 0 so that

(10.39) f(p) = C;! for all p € P with dist(p, 1(Q(S))) < 100L.

Fix p. It suffices to show that there is a nonnegative smooth function
with integral 1, support contained in the ball with center p and radius

-1
{Cg (sup IVfl+ L‘1>} , and which satisfies
[n(01(da 2 207,

Because of (10.37) we can choose 7 so that ||9]lec < C(C2L71)4,
IVilleo € C(CoL71)?+1. Since du(q) is equivalent to dg at the scale of

ediam Q(S) (by (6.4), or Lemma 9.11, applied to Q(S)), we get that
/ n(q)du(q) > 4Cy

if C; is large enough and € is small enough (e depending on C3, but not
vice-versa). Thus it is enough to check that

(10.40) | / n(g)(9(g) + h(g))dg | < 2C5 .

The contribution of g to (10.40) is certainly less than C; ' if € is small
enough, by Lemma 10.25. For the contribution of h we use the smoothness
of  and the localization and cancellation properties (10.20) of ¢:

| [ atomda | < togs ) | Sl ent 1o+ uw)id
J=0 (w,t) €e

mo—l

< C(Cy)logs Z / Z?lL_d—lh'Jf * p(w)]dw

Jj=0 Y(w.t) €e

<o) 3 ot / du(r) < C(Cy)o.
2‘501’10[/ Ua
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[Remember that e was defined just after (10.24). We have used Fubini ir
the third inequality.] This is < C; " if 4o is small enough. [It is not harc
to compute how C(C;) depends on C;, but we don’t need to know the

answer.]
This proves (10.40), and finishes the proof of Proposition 10.5.
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11. The end of the proof that (C2) implies (C4)

To finish the proof we have to show that (2.7) is true. As we have
said before (see Lemma 7.9 and Proposition 10.5), it suffices to show that
(10.6) implies that S ¢ Fj, which we do in this section. [Recall that F;
was defined just before Lemma 7.4.] The idea is to use (10.7) to control
the oscillation of VA in a way that is incompatible with the lower bound

on the oscillation of VA forced by S € F;.
Assume that (10.6) holds. By Proposition 10.5,

/ > 27| i« Alp) |” dp < TIQ(S)|

(p.t)EC,

for j =0,...,mq — 1, where 7 = Ce? + C'(yo + 62)62, with C, C’ as in the
proposition. On the other hand, using Lemma 8.22 it is not hard to check
that

Yo 27|+ Alp) | dp < CEIQ(S)]
Uo 2'<mD(p)

for a v, which is much larger than 7012‘ (7 = (100n)~! would be 0.K.). [One
way to do this is to observe that V{ * A(p) = 1/{ * (A= Ay(p)), where A, is
the linear Taylor approximation to A at p, and then estimate brutally using
Lemma 8.22.] Thus if we set V = {z € P : dist(z, II(Q(S))) < 100L}, then

we can conclude that

(11.1) / > 27| vl Ap) [* dp < 271Q(S)]

v o2¢<eL

for 3=0,...,mg —1.
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To use this estimate we need a reproducing formula involving the vf ’s.
As in the discussion between (10.19) and (10.20), if my is large enough then
we can find a function a on P, that satisfies (10.20) and also

mo—1 oo

f=logs Z Z a{*y{*f

J=0 {=-o0

for all functions f in L?(P), say, where a{ = §/927tdg(s727¢p). Of course
the convergence is taken in the sense of distributions. In particular we can
apply this to the function A. [In dealing with convergence issues it is helpful
to observe that we can choose A to have compact support.]

We decompose A into two pieces, A = A; + A;, by

mo—l
Ai(p) =log s Z Z aj v} * A(p)
J=0 2¢>6L

(11.2)

mo—l

+logs Y ) / aj(p— q)v} * A(q)dg,

J=0 2'0L p\y

mo—l

a13) M@ =logs Y. 3 [alo- o+ A0

Jj=0 2L §;

From (11.1) we get

(11.4) /!VAzI2 < CT|Q(S)]
P

using a duality argument similar to the one in the proof of Lemma 10.25.
Here C is a constant that doesn’t depend on ¢, §, 7o, or 6. (The same will
be true of the other constants in this section unless stated otherwise.)

We would like to say that A; is smoother than A. This is true inside
V, but not on P\ V. If we set V; = {z € P : dist(z,Q(S)) < 100L277},
then we do have that

(11.5) |[VA;| < C6,|V?A,| < C667'L™" on V.

To check this it is convenient to let 4;; and A;2 denote the two terms on
the right side of (11.2). It is not hard to show that A;, satisfies (11.5),
using |VA|| £ Cé and the fact that a satisfies (10.20a).
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To control (11.5) for A;; it is helpful to make the following observa-
tions. We can write

m°—1
log s Z Z oy * vy = ¢,
J=0 2¢>6L
where h = [log,(6L)] and
mo—1 . .
¢=logsz Z a;*vf.
J=0 2¢>1

By construction we also have that

mo—l
¢ = (Dirac mass at 0) — log s Z Z aj * v},
J=0 2¢t1

with this last series converging in the sense of distributions. It is not hard
to check that ¢ satisfies (10.20a), using the first formula for ¢(p) when
|p| £ 10, and the second when |[p| > 10. From here it is easy to see that
Ay = ¢p * A satisfies (11.5).

We want to use these estimates on 4; and A; to control how well A
can be approximated by affine functions. First we consider the maximal

function

(116) N4 = sup{IBIH(BI [ 14z - mada]),
B

where the supremum is taken over all balls B that contain p and have radius
< L,and mgA; = ]%[ fAz. It is well-known and not hard to see that
B

(11.7) N(A2)?2 £ C [ |VA2]2 < CT|Q(5))-
[rorze]

[You can use the Poincaré inequality

1 1
|B|_L‘1‘;/|A2—mBA2|SCm/|VA2|
B B

to reduce (11.7) to an estimate on the Hardy-Littlewood maximal function
of VA,.] We are going to use this together with the following estimate on
the oscillation of A3 on a ball B.
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LEMMA 11.8. Set osc Ay = sup |Az(p)—mpAz|, and let r denote the radius
PEB

of B. I BC Vi, then osc Az < Cr{r~'mp(|4; - mpA,|)} 675
Let ¢ € B be such that
|A2(q) — mpAs| = ogcAg =: A
Since ||V Az||L=(B) < C6 (because this is true for A, 4;), we have |A2(p) —

mpAz| > 4 when p € B, |p— q| < 5.
If 5—275 < r, then we get that

A/ A \¢
- >Sc-12 | o
/lAZ mpAz| 2 C 2(206)
B

whence A+! < C6§? [ |A; — mp4,|.
B

If ﬁ’}.—ﬁ > r, then |A; — mpAaz| > % over a large portion of B, so that

mp(|42 — mpAz|) > C~'A. Using ||VA; |z (B)y < C6 we also have that
r 'mp(|4A2 — mpA4;|) < C§,
so that
C7X S mp(|42 — mpAs|) = r{r~'mp(|4; — mpd,|)} T
< Cr{r 'mp(|Az — mpA,|)} FHT 6741,

Combining these two cases gives the lemma.

Now we are ready to look at how well A is approximated by affine
functions. Let B = B(po,r) be contained in V;. We assume that r < oL,
where g is a small number to be chosen soon.

LEMMA 11.9. Set F = {p € Vz : N(4;)(p) < 6%8}. I B = B(po,r)
intersects F' and r < roL, then

(11.10) sup |A(p) — A(po) — VAi1(po) - (p — po)| < C{OTEFD 4 166~ }ré.
PE

Indeed, if p € B, then from (11.5) we obtain

|A(p) — A(po) — VAi(po) - (p — po)|
< |Az2(p) — A2(po)| + |41(p) — A1(po) — VA1(po) - (P — po)l
< 2050 Ay +C867 1L

< Cr{r~'mp(|A; — mpA;|)} FT67H + C66~ ror
< Cr{N(Az)(uw)} 675 4+ C86 ™ ror
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for any u € B. Choosing u € BNF', we get that this is at most Crem6+
Cé60~1ror, as desired.
We shall choose 6 small enough, and then ry small enough, so that this
last quantity is less than 7 ré, for some small 5 that will be chosen soon.
Let Hp be the d-plane which is the graph of the affine function

ap(p) = A(po) + VAi(po) - (p — po)-

If B is as in the lemma, T is the graph of A, and the constants are chosen
as we just explained, then
(11.11) sup  r~!dist(z, Hp) < né.

z€lNII-1(B)

We want to show that these estimates on A are incompatible with
S € F1. Recall that S € F; if

(11.12) | U @Qlzlews)/2,

Qem1(S)

where m;(S) is the set of minimal cubes @ of S such that Angle (Pg, P) >
6/2. We are going to show that if Q@ € m,(S), then II(Q) cannot intersect
F, or even get too close, by comparing the Hp’s to the Pg’s. We first need
to check that the cubes in m;(S) cannot be too large.

LEMMA 11.13. Given rq > 0 and a constant M > 0, there is an ¢y > 0 so
that if € < € then Angle (Pg,P) < 6/100 for all Q@ € S with diam @ >
'l‘oL/M.

This is quite easy: given @ € S, let @', @?,...,QT = Q(S) denote the
successive ancestors of @, i.e., Q! is the father of Q, Q? the father of Q?,
etc. By definitions, all these cubes must satisfy (6.1), and so Lemma 5.13
gives Angle (Pgi, Pgi+1) < Ce. Thus

Angle (Pg,P) < C € T < Celog(2L/ diam Q),
from which the lemma follows easily.

LEMMA 11.14. If Q@ € m,(S), then dist(II(Q), F) > diam Q.

Suppose not. Pick any zg € @, set pg = II(zq) and B = B(po,r),
r = 10diam Q). Then B intersects F', and r < r¢L because of Lemma 11.13
(if € is sufficiently small). Notice also that B C V;.
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If z € Q, then
|z — (II(z), A(Il(z)))| £ Ced(z) < Cediam Q

by Proposition 8.2 and the definition (7.6) of d(z), and so dist(z, Hg) <
Cnér (if € is small enough) because of (11.11). Invoking Lemma 5.13 again
we get that Angle (P, Hp) < Cné < 1 if we choose 7 (and also €) to be
small enough.

Let @* be the largest ancestor of @ such that 10diam @Q* < ry. Let
B* be the ball centered at py with radius 10 diam @*. The same argument
gives Angle (Pg.,Hp.) < %. Furthermore, Hg« = Hp, since the function
ap depends only on pyg.

Thus Angle (Pg, Pg+) < 5‘40, and Lemma 11.13 tells us that Angle
(Pg+,P) < &5 (if € is small enough). These two inequalities force Q ¢
m,(5), and the lemma is proved.

We are now at the final step of the proof that (10.7) is incompatible
with S € F;. Because of Lemma 11.14, it suffices to show that (11.12)
implies that there is a @ € m;(S) with dist(II(@), F) < diam@. (Of
course we continue to assume that (10.6) holds.)

We first choose a convenient covering of the set X = |J Q. For
QEm,1(S)
each Q@ € m,(S), pick a point r9 € @, and consider the ball Bg =

(zqg,Cdiam Q). If C is large enough, we can find a subset 7 of m,(S)
so that {Bg : @ € T} covers X and the balls B(zq,3diam @), Q@ € T, are
pairwise disjoint. (This follows from the well-known argument used in the
proof of the covering lemma on p9 of [St].) Hence

(11.15) 1X|< Y [EnBg|<C ) (diamQ)”.
Q€eT QeT

Because B(z g, 3 diam @) are disjoint for @ € T, we can apply Lemma 8.4
(withz = zq, y = z¢') to conclude that the balls Dg = PNB(II(zq), diam @),
@ € T, are also disjoint. In particular | UDgq |2 |X|/C.

T

All of these balls Dq are contained in V3, and none of them intersects
F, because of Lemma 11.14. Since F = {p € V; : N(4;) < 012'5}, we
conclude from (11.7) that

(11.16) 1X| < C||JDq | CIVa\ F| < CO16727|Q(S)|.
T
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Recall that 7 = Ce? + C'(yo + 62)6%, where C, C' are independent of e, 6,
and 6, and C' is also independent of vo. If we choose 6 small enough, then
¥ and 7o, and then €, we get that |X| < $|Q(S)], so that (11.12) can’t
hold.

Thus we have shown that if S satisfies (10.6), then S ¢ F7, at least if
we chose the various parameters correctly. From the arguments in Section 7
it follows that (2.7) holds, and of course (2.6) was proved in Section 8. This
completes the proof that (C2) implies (C4).
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12. The proof that (C3) implies (C4): preliminary discussion

The argument will be very similar to the one used to show that (C2)
implies (C4).

We assume throughout this section and the next two that E satisfies
(C3). As we remarked at the beginning of Section 5, E must satisfy the
weak geometric lemma. Let €, § be given, as small as we want, with €/6
as small as we want also. Let £ > 0 be large, to be chosen later, but not
depending on € or é.

Let G be the set of cubes for which (6.1) holds, and set B = A\ G. We
can apply Lemma 7.1 to get the stopping-time regions, and to prove that
(C4) holds we need only verify (2.7), since the rest of the requirements are
established by Lemma 7.1 and Section 8. Lemma 7.4 tells us once again
that we can reduce (2.7) to the corresponding estimate for F;.

To prove the packing condition for F; we use a variation of Lemma 7.9,
whose particulars are as follows. Let S be one of the stopping-time regions,
and set

(12.1) X ={(z,t) € ExR" : 2 € kQ(S), k™ 'd(z) <t < kL},

where d(z) and L(= diam Q(.S)) are as before. To prove the packing con-
dition for F; it suffices to show that there is an > 0 such that

(12.2) / B (z, kt)2@ > n|Q(S)] when S € Fi,
X

at least if we choose kg, k, €, § correctly. Here 7 is allowed to depend on ¢,

6 or k, but not S.
The proof of (12.2) will be carried out in two steps, in much the same
way as before. In the first step we show how the left side of (12.2) controls
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a similar quantity on the graph of A (4 as in Section 8). In the second step
we use these estimates on A to show that if the left side of (12.2) is small
enough, then S ¢ F;.
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13. Pushing estimates on f,(z,t) from E down to the
approximating Lipschitz graph

Let ko be large, to be chosen later; k; will not depend on €, §, and it
will be chosen before k, in such a way that k will be much bigger than k.
Let A, P, II, R;, Q(3), etc. be as in Section 8, Proposition 8.2 in particular.
Given p € Up and ¢ > 0, set

(13.1) 1(p,t) = inf =4 / %lA(u)—a(u)]du,
B(p,t)

where the infimum is taken over all affine functions a : P — PL. It is easy

to see that if we set

(13.2) 3(p,t) = inf ¢~ / %dist((u, Au)), M)du,
B(p,t)

where the infimum is taken over all d-planes M, then

(133) 23(p,1) < 7(p,) < 23(p,1).

This uses the fact that A is Lipschitz with small norm. Of course ¥;(p,t)
is essentially the same as the analogue of f;(z,t) for the graph I' of A.
This section is devoted to proving the following estimate.

LEMMA 13.4. Set T = koL/10 and

T
- dpdt
(13.5) r=1L d/o /7(p,t)2pT-
Uz
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If k/kq is large enough, then

(13.6) < Ce+CL™ / / By(z, kt)2— d”dt

wilere C does not depend on € or §.

[Recall that X was defined in (12.1).] We restricted ourselves to U; so
that B(p,t) stays inside U; if p € Uz and t < T..

We first estimate y(p,t) for small ¢t. Let R;, I, Iy, etc., be as in
Section 8, and let I denote the set of i € Iy such that R; N U, # 0.

LEMMA 13.7.

diam R;
> / / 7(p,t)* —— dpd < CeLl.

lGIz

The main ingredients for this are Lemma 8.22 and Taylor’s theorem.
From the latter we get

v(p,t) < Ct sup |VZA(u)|,
u€B(p,t)

and so using Lemma 8.22 we get

diam R; diam R; . =3
> / / (p,t) < Ce Z / R/ (diam R;)~*tdpdt

i€l,

ey / dp < CEIQ(S)| < CILA.

Now we need to estimate v(p,t) when p € II(Z) or when p € R; but
t > diam R;. Both cases will be covered if we assume that ¢ > D(p)/60,
because of (8.8).

Let p € Uz and t be given, 1/60D(p) < t < T. Choose z € E such
that z € Q(S), |p—1II(z)| £ Ct. We want to control ¥(p,t) in terms of
Bi1(z, 5kt). Let P,, be a d-plane for which the infimum in the definition
of B1(z, {5kt) is achleved. Taking M = P, in (13.2) we get that

(13.8) v(p,t) £ 2t=41 / dist((u, A(u)), Pp)du < a + z ai,
B(p,t) i€l
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where a = 2¢t7471 fB(p,t)ﬁl'[(Z) dist((u, A(u)), Pp¢)du, I(p,t) is the set of
indices ¢ € Iy for which R; N B(p,t) # 0, and

a; = 2t~ / dist((u, A(u)), Pp,¢)du.
B(p,t)NR;

Let us estimate a first. If u € B(p,t) NII(Z), then z = (u, A(u)) € Z,
and it follows from Lemma 8.4 that |z — z| < Ct and that z is the only
point in II71(u) N ko Q(S). We can lift the integral defining a from II(Z) to
Z C E to get that

(13.9) ax<2t7%? / dist(z, Pp ¢ )dz < CP(z, -ll—Okt)
I=1(B(p,t))NkoQ(S)
Next we estimate the a;. Fix i € I(p,t). We have
(13.10) a; £ C(bi +ci),

where b; =t~%"1 [ dist((u, A(u)), Po(iy)du and
R.nB(p,i) Q( )

ci = t_d'l(diam R,-)d sup{dist(w, Pp¢) :w € Pg(),
dist(w, @(?)) £ C diam R;}.

[The set of w’s over which this supremum is taken is large enough because
dist(R;, II(Q;)) < C diam R;.] Because Pg(;y is the graph of B;,

(13.11) b <t74! / |A(u) — Bi(u)|du < Ce t~%7*(diam R;)**?,

R;NB(p,t)

since |A(u) — Bi(u)| £ Cediam R; by Lemma 8.17 and the definition (8.14)

of A. We can control ¢; as follows.
LEMMA 13.12.

c; <Ce t~ 41 (diam Rg)d"-1

+ Ct~%1 (diam R;)* { |2Q(5)| ™! / dist (z, Pp.1)¥ dz
2Q(i)
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This lemma is similar to Lemma 5.13, and their proofs are quite similar
also. If yo, y1,...,yq are the d + 1 points promised by Lemma 5.8 with

Q = Q(7), then

¢i < C t74 ! (diam R;)* sup {dist (yj, Pp,) + dist (y;, Poi)) } -
0<i<d

To check this we compare P,; and Pg(;) with the d-plane L; generated
by Yo, y1,---,y4- The distance of points on Pg;) to Lg is controlled by

sup dist(y;, Po(iy)- [To see this it is helpful to observe that because this
0<j<d
quantity is small compared to diam Q(¢), the points z; in Pg(;) closest

to y; generate Pg(;).] It is easy to show that sup dist(y;,Pp:) controls
0<y<d
the distance of points on Ly to P,;. Combining these two facts gives the

inequality. Since Q(z) € S satisfies (6.1) we have

¢; < C t7%1(diam R;)? sup {dist (y;, Pp:)} + Ce %7} (diam R;)**1.
0<;<d

Moreover, this inequality remains true if each y; is replaced by any
§; € E such that |y; — §;| < Cy ' diam R;, provided Cy is large enough.
(Indeed, such §;’s would still satisfy the same properties that the y;’s do.)
The lemma follows by taking cubic roots of the inequality, averaging over
such §;’s, and using the regularity assumption (1.5).

We want to combine these various inequalities with (13.8) to get a good
estimate for y(p,t). For this it is important that we took a cubic root in
Lemma 13.12, instead of just an ordinary average, so that we can control
the overlap of the 2Q(¢)’s which enters into the sum in 2.

Let J(7) be the subset of I(p,t) composed of the j’s such that diam Q(5)

< diam Q(?) and 2Q(j) N 2Q(:) # 0. Set Ni(z) = 3. X,q,(¢)- Then
J€J(4)
Y Ni(z)™2 < C for all z (because ) -3y < 00), and

/ N < S ReUI<c T IR < ClQG),

2Q(3) JEJ(3) JEJ(3)
because the R;’s are disjoint and stay at distance < C diam R; from I1(Q;).
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From Holder’s inequality we now get that

(12Q()~ / dist(z, P, 1)} Ni()~3 Ni(z) 3 do)®

2Q(3)
< {2001 [ dist(z, PpoNi(e) 2 dsHI2Q)I [ Ni@yay?
2Q(3) 2Q(9)
SC(diamR,-)“d / dist(z,Pp,t)N,-(w)"zda:.

2Q(¥)

Putting this into Lemma 13.12, and then using (13.8), (13.9), (13.10), and
(13.11) we obtain

~+(p,t) <CBy (z, %kt) +Cet™ %1 Z (diam R,')d+1
iGI(Pit)
(13.13)
4 C i1 Z dist(z, Pp,¢) Ni(z) 2dz.

E€I(p,1) 2q(i)

Because Y N;(z)72, the last term is at most

(13.14) C t~4? / dist(z, Pp,¢)dz.
u2Q(3)
i€l(p,t)

Let us show that this can be dominated by B:(z,:5kt). First note that
diam R; < Ctif ¢ € I(p,t), because D(u) < D(p)+t < Ct on B(p,t). Thus
dist(II(Q:), II(2)) < Ct (because of the various definitions), and this implies
that @; C B(z,Ct). [Pick z € Q(i). By definition, d(z) < diam Q(z) < Ct,
and so if |z — 2| is much bigger than Ct, then Lemma 8.4 implies that

T (z) - I (2)] < 26|T(2) — TI()]-

Because the right side is at most Ct, we get that |z — z| < Ct.] Now it is
immediate that (13.14) is dominated by CB(z, s5kt), and so

(13.15)  ~(p,t) < ChH (z, ilﬁkt> +Cet™1 3 (diam R;)*.
i€I(p,t)

87



G. DAVID, S. SEMMES

Of course the same argument used to prove (13.15) also works with z
replaced by any w € EN B(z,t) and so

2
v(p,t)* <Ct™* / B (w,liokt) dw
(13.16) B(z,t)nE
+C{et™*! Y (diam R;)**'}*.
i€l(p,t)

To finish the proof of Lemma 13.4 we want to use this to estimate

T
=L / / ¥(p, t)zﬁdp-
2 Je=1p@) ¢

Using (13.16) we have that 7, < C(a + b), with

T 2
a=L""¢ // ¢ / B | w, lIct dwﬂdp,

B(z(p,t),t)NE
T
b= ezL—d// t—z(d+1){ Z (diam Ri)d+l }2%dp,
g, 1€71PW@) i€I(p,t)

where z(p,t) = z is the point in Q(S) we chose shortly after proving
Lemma 13.7.

Consider a first. By definitions, for any (w, p,t) that arise in the inte-
gral, we have |[I(w) — p| < Ct and w € koQ(S). Thus

T 2
dt
a<L™ / t—¢ / dp | 61 (w, —l—kt) dwdt

3 10 :
C-D
ko Q(S) ®) €B(I(w),Ct)
T 2
<cL™ / / By (w,ikt) dw®
ko Q(S)

<cL™ / / By (z, kt)? d’”tdt.
X

To estimate b recall that diam R; < Ct if 1 € I(p,t) (because D(u) <
D(p) +t < Ct on B(p,t), and using (8.6)). Thus

Y (diamR)™' <Ct Y (diamRi)* < Gt
i€l(p,t) i€I(p,t)
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This gives us that

T
b< CezL"d/ / E (di:«),mR;)d-*'1 dtdp
_ $d+2
g, “CTPW ier(py

T
dpdt
<CeL™ Z (diam R;)**! ‘/(;_ld‘ . / tfﬁ'
i€l ram dist(p,R:)<t

In interchanging the order of the sum and the integral, we have used the
facts that dist(p, R;) < t when i € I(p,t), and that : € I(p,t) and ¢ >
C~1D(p) imply t > C~!diam R;, and we have let I; denote the set of
i € I such that R; N U; # 0. From here we easily get that

dt
2r—d . d+1 . d
b<Ce’L Z(dla.mR.') / {diam R; + t} prec)
i€h t>C-1'diam R;
< CeétL¢ z (diarnR,-)d < Cé.
i€l

Combining this with our estimate for a we have

1 S CL_d //ﬂl(l‘, l(,‘t)zflj%¢ﬁ +C€2.
X

This and Lemma 13.7 give us the estimate (13.6) we wanted for 7, and so
Lemma 13.4 is proved.
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14. The end of the proof that (C3) implies (C4)

According to Section 12, it suffices to show that (12.2) holds for 5 small
enough. Thus, for example, it suffices to show that if

dzdt

(14.1) / B, kP 2L < 21g()

then S ¢ F;.

The proof of this is very similar to the argument given in Section 11
in proving that (C2) implies (C4): we use Section 13 to turn (14.1) into
an estimate on A, then apply Littlewood-Paley theory to this estimate to
show that VA doesn’t oscillate much, and then check that that prevents
many minimal cubes of S from lying in m,(S).

This step in the proof that (C3) implies (C2) is in fact so similar to
the corresponding step for (C2) that we can simply reduce to our earlier
argument. Assume that (14.1) holds for a fixed S. By Lemma 13.4,

/ / 1,17 2L < 0 lQ(s)|

If Vlj is as described relatively early in Section 10, then 27¢|u] * A(p)| <
Cv(p,t) whenever 2671 < t < 2¢) because of the vanishing moments as-
sumption on v. Therefore, just like for (11.1),

(142) [ 3 i« w) < cla(s),

v 2¢<L

where V is as it was for (11.1). This is even better than (11.1), since there
are no 6, vp around.
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Once we have this version of (11.1), we can use exactly the same argu-
ment as in Section 11 to show that S ¢ F; if €, § are chosen properly. This
completes the proof that (C3) implies (C4).

Of course if we were to do the argument over again there are some
relatively minor changes we could profitably make. For example, we could
replace the discrete square function estimate (14.2) by a continuous one,
namely

L
d
[ [ s awP %= < celas),
4

and then we could use the reproducing formula

f=c/ Vt*Vt*fﬂ
0 t

instead of the more complicated discrete one we used before. There are
other simplifications that could be made, stemming from the absence of
in (14.2) and from the stronger nature of v(p,t) as compared to v, * A(p),
but the main ideas are still the same.
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15. (C4) implies (C3)

As promised in Section 1, we shall actually prove that if E.satisfies
(C4), then

(15.1) Bo(z, 12 924 d:l:dt

1sa.Ca.rlesonmea.sureonExR+forallr< s ifd>2,r<ocoifd=1.
The idea is that the existence of a corona decornposmon will allow us to
reduce to the case of Lipschitz graphs, for which we can use Lemma 10.14.
Let n > 0 be given, small, as in the definition of a corona decomposi-
tion. (The smallness of  will be a convenience that will not play a major
role.) Let B, G, F, S € F be as in Section 2.
Given Q € A, let @ denote the set of (z,t) € E x Ry such that z € Q

and
(10C)? diam Q < t < diam @,

where C is as in (2. 2) It is easy to check that E x Ry = |J Q. Given
SGfsetS—UQ Qea

Q€s
LEMMA 15.2. Let a(z,t) be a bounded, nonnegative function on E x R.

Then a(z,t)dz4t is a Carleson measure if a(z,t)x5(z, 1) dzdt is for each
S € F, with uniformly bounded norm.

Decompose a into ag + a1, where ag = axg, B= U @ It is easy to
Qe€B

check that ag(z,t)%2% is a Carleson measure, because of (2.4).
On the other hand
a; < Z axg

SeF

93



G. DAVID, S. SEMMES

by definitions. Fix z € E and R > 0, and consider

R
dt
(15.3) >, / a(y, )xz(y, )y
0
S€F yeEnB(z,R)

Let ©! denote the sum over the S € F for which Q(S) N B(z,R) # 0
and diam Q(S) < R, and let £2 be the sum over the S’s such that sn
((B(z,R)N E) x (0, R)) # 0 and diam Q(S) > R. We may replace the sum
in (15.3) by ! + X2

By assumptions we have that

Zl / ’ / a(y,t)xg(y,t)@;d—t

0
B(z,R)NE

1 fdiam Q(S) dydt
SZ/O /a(y,t)xg(%t)T

Q(S)
<cY i) < cre.

The last inequality comes from (2.7). To control £? we observe that £2 only
involves a bounded number of S’s. This is because the S’s are disjoint, and
the ones that arise in £? must each contain a cube @ for which QNB(z, R) #
? and diam @Q ~ R. This and our hypotheses on a yield

2 [F dt 2, J
2 a(y, Ox5(s, )y T <CY R < CRA.
0
B(z,R)

This proves the lemma.

In view of the lemma we need only control the 8,(z,t)’s on each S.
Fix S € F, and let T" be the Lipschitz graph over the d-plane P promised
in (2.6). Let P+ be the (n — d)-plane that passes through the origin and is
orthogonal to P, and let A : P — P+ be the Lipschitz function such that
I'={p+ A(p): p € P}. Let I, [T+ be the orthogonal projections onto P,
P+ so that z = II(z) + IIt(z). Define d(z) as in (7.6).

Set

(154)  wlpt=inf et [ 1AW - a(wrd

B(p,t)
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for p € P, t > 0, where the infimum is taken over all affine functions
a: P — PL. We want to control the 3,’s on E in terms of the v,’s.

Let (z,t) € S be given, so that t < L = diam Q(S), and let p be any
point in P such that |p — II(z)| < t. Let a be an affine function for which
the infimum in the definition of v,(p,100t) is attained, and let H = H,;
denote its graph. For y € E, |y — z| < t, we have

dist(y, H) < [I*(y) — AI(y))| + [A(TI(y)) — a(T(y))|
< Cnd(y) + |A(IL(y)) — a(Tl(y))|-

(This uses dist(y,I') < Cnd(y) which can be derived from (2.6).)
We want to use this to control 8,(z,t) in terms of ~v.(p,100¢). For
r = 0o we get that

(15.5)

(15.6) Boo(z,t) < Cnq < sup t_ld(y)) + Yoo(p, 100t)
yEB(z,t)NE

for all p € P with |p—TII(z)| < t. For r < oo we cannot estimate so quickly,
because we might get a very singular measure when we push Hausdorff
measure on E down to P, and so we don’t want to simply integrate (15.5).
Instead we have to smear up (15.5) first. Let § € (0,1) be a small
positive number, to be chosen later, and let By denote the ball in P with
center II(y) and radius éd(y). Because of (15.5) we have for u € By that

dist(y, H) < Cnd(y) + Céd(y) + |A(u) — a(u)|.

(We have used here the fact that A is Lipschitz.) Taking r** powers and
averaging over B, gives

(15.7) dist(y, H)™ < C(n + 6)"d(y)" + C[6d(y)]~* / |A — a|"du.
By

[When d(y) = 0 we interpret the average over By as being the value at y.
Similar liberal interpretations are required below. Alternatively, one can
treat the case d(y) = 0 separately, by simply integrating (15.5).] Hence

dist(y, H)"dy < C(n + 8" / d(y)dy
B(z.t)nE B(z,t)NE

+0 [ e [ 14w - awldudy,
B(z,t)nE B,

(15.8)
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(Don’t forget that y € E, but u € P.)

We want to use Fubini to simplify the last term, but first we need some
preliminary information. We begin by observing that d(z) < Ct because
(z,t) € S, and so d(y) < Ct if y € B(x,t). In particular, dd(y) < t,if
§ is small enough. Next, let us check that if y, 2 € B(z,t) N E satisfy
By, N B, # 0, then d(y) and d(z) are comparable, and that |y — z| < d(y).

Indeed, we certainly have
IM(y) — I(2)| < Cé(d(y) + d(2)),

and also
ly — (IL(y), A(TI(y)))| < Cdist(y,I') < Cnd(y),

and similarly for z. Hence

ly —z| < C(8+n)(d(y) + d(2))-
If n and 6 are small enough we can conclude that
1
Sdly) < d(z) < 2d(y),

because d(-) is Lipschitz.
With these observations we can reverse the order of integration in the
last term in (15.8) to obtain

(8w [ I4w) - a(w)ldudy
B'

B(z,t)NE

< [ aw-awr| [ et | du

B(p,10t) yEB(z,t)NE
©€B,
<¢ [ 1w-awrd.
B(p,10t)
Hence
1 _ r
pat<Clg [ (dw) dy| +COnip100).
B(z,t)NnE
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Combining this with (15.6) we get that

seosc|m [ dw)

B(z,t)NE

inf +(p, 100t
PGB(H(z)yi)7 (v )

(15.9)

for any r < oo, (z,t) € §, t < diam @(S). Let us use this to check that
ﬂr(ar:,t)zxg(:z,',t)stdE is a Carleson measure if 7 < 2 when d > 2, r < 00
when d = 1.

Fix 2 € E, R > 0. To control

R
dzdt
(15.10) / f Br(z, t)zxg(w,t)zT
0 B(z,R)NE
we consider separately the contributions coming from the two terms on the
right side of (15.9), starting with the second. It is dominated by

R 1 g, , dt
(15.11) ; X§($’t)t_d v-(p, 100t) dpd:c?.
B(z,R)NE B(I(2),2)

Of course we want to use Fubini’s theorem.
It is easy to reduce to the case where z € Q(S) and R < diam Q(S).
It is also not hard to check that the set of  in Q(S) such that (z,t) € S
and |II(z) — p| < t (for given p, t) is contained in a ball of radius Ct, and
hence has measure < Ct?. This uses (2.6) and the fact that d(z) < Ct if
(z,t) € S. Thus by reversing the order of integration we see that (15.11) is
at most R
dpdt
e[ [ w00y
0 B(Il(z),2R)
and this is < CR? by Lemma 10.11.
To show that the contribution to (15.10) from the first term on the
right side of (15.9) is at most CR? it is enough to prove that for any cube

TeS,
(15.12) Y M@l ClT|

Qes
QCT

97



G. DAVID, S. SEMMES

if r < 24 (r £ 0o when d = 1), where

1

1 , -
A(Q) = (@2 Z (d(y)/ diam Q) dy)

[To see that this is sufficient it is helpful to notice that the first term on
the right side of (15.9) is < CA.(Q) when (z,t) € Q.] To verify (15.12) it
is useful to introduce a collection of cubes which is like the set of minimal
cubes in S except that it is more regular, in a certain sense, and it is easier
to compute d(z) in terms of this collection.

Let 6(5 ) denote the union of the cubes lying in the same generation
Aj of cubes as @(S) and which intersect 2Q(S). Let n(.S) denote the cubes
N C Q(S) which are minimal among the cubes that also satisfy

(15.13) 200C? diam N > ig}fv d(z),

where C' is as in (2.2). If N is one of these minimal cubes, then none of its
children satisfy (15.13), and so

100 diam N < inf d(z).
zEN

This implies that
sup d(z) <2 inf d(z),
IEP (z) < Iny (z)

since d(z) is Lipschitz with norm 1. Notice that d(y) = 0 when y € Q(5)
but y does not lie in any of the N’s. Of course the N’s are disjoint.

Let us use these cubes N to prove (15.12). Given @, let Q denote the
union of the cubes in the same generation A; as @) that intersect 2Q). For
r = oo we have that

2

diam N |N|2/4
2 ———————
Sow@iesey | s B2 gse Y ¥ e
QES QES NCQ Q€S Nca
QCT QCT \Nen(S) QET Nen(s)

When d = 1 this is at most

c > | X IQI“) INF<C Y IN[<CIT).

NCT \Q: QDN NCT
Nen(S) Nen(S)
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Now suppose that r < co. We may as well assume that r > 2, in which

case

£ %)

2 N[ T
Yow@eizseY | Y al [
Q€S Qes | ncg
QcT QCT \ Nen(s)

2(53+1)
N T
<cd (%) 1Ql
Q€S NcO
QCT Nen(s)
<C Y Y lQIrtENEtE
NCT Q:Q2N
Nen(S)

Ifr< d2__¢12, then 1 — % < ;2_-, and so the inner sum converges and this is

<C > IN|LCIT)

NCT
Nen(S)

This proves (15.12), which is the last step in the proof that (C4) implies
that (15.1) is a Carleson measure for r < 2% when d > 2, r < co when
d=1.
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16. The main step in the proof that (C4) implies (C5)

PROPOSITION 16.1. Let E be a regular set that satisfies (C4). Then for
any € > 0 there is an M > 0 so that for all t € E and r > 0 there is a
compact set F C EN B(z,r) and a mapping f : F — R? such that

(16.2) |EN B(z,r) \ F| < ert

(16.3) M7z —y|<I|f(z) - f(y)| < Mlz—y| forallz,y€F.

Once we prove this proposition all that remains in showing that (C4)
implies (C5) is to find a bilipschitz extension of f~! : f(F) — F to a
embedding of R? into R™. This will be taken up in the next section.

To prove the proposition we first construct F', and then the definition
of f will become natural. The general idea of the proof is that for a good
region S in A as in Section 2 it is easy to choose a map of @(S) onto R?
that is bilipschitz at scales larger than the minimal cubes of S, because of
(2.6) (the approximation of Q(S) by a Lipschitz graph), and we can try to
patch these maps together to get f. The total amount of patching required
will be controlled by (2.7).

Let z € E and r > 0 be given, and let my be such that 2™° < r <
2mo+l  Let Ry be the union of the cubes in A, that intersect B(z,r).
Call these cubes (Qo,;), j € J; note that there are a bounded number of
them. Decompose the set of cubes @ € A such that @ C Ry into a bad
set and a family of good regions S C A in such a way that (2.4), (2.5),
(2.6) and (2.7) hold, with 7 small, to be chosen later (depending only on
the geometry of E, not on €). It is easy to obtain this decomposition from
the one provided by (C4).
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In the construction of the set F' we shall sometimes need to remove
from cubes the part which is too close to the boundary. For each Q € A,,
set

(16.4) o(Q) = {z € Q:dist(z, E\ Q) < 2™},

where 7 is a small constant that we shall choose soon (depending on ).
Thus (@) is the part of @ which is very close to the boundary, and the
measure of o(Q) is controlled by (2.3).

Applying (2.3) with a not-too-small choice of 7 already gives the exis-
tence, for each cube @ € A, of a “center” cg € @ such that

(16.5) dist(cg, E \ Q) > Ci diam O,
0

with Cp independent of e.

We still need a little more notation before defining the set F'. We call
a cube @@ C Ry a “transition cube” if it is a bad cube, the top cube in one
of the good regions S, or a minimal cube in one of the S’s. We denote by
T the set of transition cubes, and by T; = TN A; the ones of generation
j. For each transition cube @, let £(Q) denote the number of ancestors of
Q that are transition cubes. For instance, the () ;’s are transition cubes
such that £(Qo,;) = 0.

Our set F' is defined by

[+
(4

(16.6) F=EnB@rn|Je@]| n| U @],
QeT Qer
(Q)>L

where L is a very large constant whose value will be chosen very soon.
Notice that

Y 1QI < ClR,

QET

because of (2.4) and (2.7). Using (2.3) we can choose 7 so small that

Z lo(Q)| < Cr¢|Ry| < er?/2.

QET
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Similarly, if L is large enough, then A = |J @ satisfies |A| < er?/2,

because QZE:TXQ > L on A, so that e(?fgL

|A| < L7 ) |QI < CL7Ry|.
Q€eT

Thus F satisfies (16.2).

As a first approximation of the map f on F' we shall define a function
g on the set T of transition cubes with values in the set of cubes in RY.
Our mapping will have the following properties:

for each @ € T,,,9(@) is a cube of R? with diameter

(16.7) —4Q)om : .
C, 2™, where C; is a large constant (to be specified),

(16.8) ifQ,Q €T, QCqQ, then g(Q) C %g(Q')

Let us start with the cubes Qg ;, j € J. We pick the cubes g(Qo ;) to
be cubes of size 2™°, at mutual distances between 2™° and C2™°. This is
possible if C is large enough.

In general we define g recursively as follows. Suppose g(@) has already
been defined for some @ € T,,. Assume first that ¢} is a bad cube or the
minimal cube of some good region S. Let C(Q) denote the set of children in
Q, i.e., the set of cubes in A,,_; which are subcubes of (). Notice that they
are all either bad cubes or top cubes of some other good region, and that
UR)=£(Q@)+1if Re C(Q). If C, is sufficiently large, we can easily choose
cubes g(R), R € C(Q), such that each g(R) has diameter C; {9 ~'2m-1 jg
contained in 1¢(Q), and also

(16.9) dist(g(R), g(R’)) > om-1 Cl—f(Q)—l

forall R, R € C(Q), R# R’

Assume now that @ is the top cube of a good region S. We want to
define g(R) for the minimal cubes R of S, but first we need some more
notation. Let I'g be as in (2.6), so that I'g is a Lipschitz graph over a
d-plane Pg, and let IIg be the orthogonal projection onto Pg. Let ¢g be
an affine mapping from Py to R? such that ¢q(Ilg(Q)) € 29(Q) and

(16.10) CCT Plp — ¢ < |9o(p) — d0(a)l < TP |p—q|
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for all p, ¢ € Pg.

If R is a minimal cube of S, and m is such that R € T,,, then we take
g(R) to be a cube centered at ¢g(IIg(cr)) with diameter Cfe(Q)_l2m,
where cp is the “center” of R that we chose before (so that (16.5) holds).

Clearly g(R) C 39(Q)-
We need to estimate dist(g(R),g(R')) for any pair R, R’ of minimal
cubes of S. Observe that

|cr — cr/| > C~'{diam R + diam R’ + dist(R, R')},
because of (16.5). Applying (2.6) to the smallest cube @' C @ that contains
cr and has diameter > |cr — cgr/| we get
dist(cr,T'q) + dist(cr,I'g) < 2ndiam Q' < Ch|cr — cr/|.

If  is small enough this implies that

1
Mg(cr) — Hg(er)| 2 §|CR - crrl,

since I'q is a Lipschitz graph with constant < » over Py. Combining these
estimates with (16.10) we see that if C; is large enough, then

;79" {diam R + diam R’ + dist(R, R')}
(16.11) < dist(g(R), 9(R))
< 749 {diam R + diam R’ + dist(R, R')}.
Now that we have constructed g we are ready to define f on F. If
z € F, then it can only belong to a finite number of transition cubes; let
Q(z) be the smallest one. By the definitions of F' and transition cubes,

Q(z) is the top cube of some good region S(z). [Otherwise all the children
of @(z) are also transition cubes, and they are disjoint from F'.] We take

f(2) = $q@) (M) (2))

with the notations above. Note that f(z) € g(Q(z)).
We want to check the bilipschitz condition (16.3). Let z, y € F be
given, and let @; be the largest cube in Ry that contains z but not y.
Suppose first that ¢); lies in a stopping time region S, but is not its
top cube @(S). In this case y € Q(S) too. Suppose further that there are
two minimal cubes R, R' of S containing z, y, respectively. Of course

|z — y| £ diam R + diam R' + dist(R, R'),
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but because z ¢ o(R), y ¢ o(R') (by definition of F'), we also have

T

. 1] 1 . ’
e diam R' + 3 dist(R, R').

|z —y| > %diamR+
For this pair z, y (16.3) follows from these inequalities, (16.11), and from
7(z) € 9(R), f(y) € g(R') and (R) = £(R) < L.
If z is not contained in any minimal cube of S, then f(z) = ¢¢o(Ilg(z)),
where @ = Q(S) is the top cube of S. The argument used to establish
(16.11) also gives

Cl_t(Q)_l{diam R' + dist (z, R')}
< dist(f(), 9(R'))
< 749 {diam R’ + dist(z, R')}

for such an z, and (16.3) is deduced as before. The same argument works
if y is not contained in a minimal cube of S, or if neither « nor y is.

We are left now with the case where ¢}, is a transition cube which
is not a minimal cube of some good region. This means that the father
@2 of @), is also a transition cube, and it is not the top cube of some good
region. Because @; contains y, we can bound |f(z)— f(y)| from above using
f(z), f(y) € 9(Q2), and we can bound it from below by applying (16.9) to
R = @; and R' = the brother of @, that contains y [since f(z) € g(R),
f(y) € g(R')]. These bounds imply (16.3), because

& dism @1 < |z —y| < Cdiam @

(since = ¢ 0(Q1), y € Q2 \ Q).

Thus we have shown that F' and f satisfy (16.2) and (16.3). If F" hap-
pens not to be closed, then we can replace it by its closure. This completes
the proof of Proposition 16.3.
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17. An extension theorem

PROPOSITION 17.1. Let A C R? be a closed set. Suppose that f : A — R™
satisfies

(17.2) Co'lz —yl < |f(z) = f(y)| < Colz -y

for all z, y € A. Assume also that n > 2d + 1. Then there is an extension
g:R? — R™ of f such that

(17.3) M7z —y| < lg(z) — 9(y)| < M|z —y|
for all z, y € R®. Here M depends only on d, n, and Cj.

That (C4) implies (C5) follows from this and Proposition 16.1. (Of
course the f here corresponds to the f~! from Proposition 16.1.)

It is not clear that the condition n > 2d + 1 is optimal. If we want
g to be a small perturbation of a Lipschitz extension of f that is given in
advance, then we do have to have n > 2d.

The proposition is not hard to prove using the techniques of [D3],
Section 4. (Section 5 of [D3] is relevant to the question of the optimality of
n > 2d+1.) Because the proof requires a rather large amount of notations,
and no new ideas, we shall omit it here, and content ourselves with a slightly

weaker result.

PROPOSITION 17.4. Let A C R? be closed, and suppose that f : A — R™
satisfies (17.2). Then there exist an integer m, a constant M, and an
extension g : RY — R™ of f such that (17.3) holds. The constants m, M
depend only on d, n, and Cj.

This result, together with Proposition 16.1, still prove that (C4) implies
(C5), only with a different value of n*. It is of course still possible to deduce
(C1) from this weaker version of (C5).
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Let us prove the proposition. By the Whitney extension theorem we
know that we can extend f to a map from R? to R™ which is Lipschitz
with norm < Cj, where C§ depends only on Cy and d, and C§ > Cy. Let f
denote this extension also.

We also need a Whitney decomposition of 2 = R? \ A. Let @;, i € I,
be the maximal dyadic cubes in  with

diam @; < 1072 dist(Q;, A).

For each i € I choose ¢; : R? — R%*! such that:

(17.5) ¢; is supported in 3Q;, |¢:;| < C; diam Q;, and |Véi| < Cy;

(17.6) |$i(2) — $i(y)| > CT Mz —y| for z,y € 2Q;;
(17.7) l6i(2)| < —;—dia,m Qi,  fors ¢ 20
(17.8) |$i(x)| > diam @, for z € Q;.

The constant C} is a geometric constant that depends only on d.

It is quite easy to construct these functions ¢;. We added one more
coordinate so that (17.8) can be satisfied too.

The idea of the proof is to add the functions ¢; to f, to increase
f(z) — f(y) when necessary. We shall put the functions ¢; in different
dimensions, so that they never interfere with each other, or with f.

For each ¢ € I let V() denote the set of indices j € I such that

(17.9) 107? diam @; < diam @, < 10% diam Q;, and
(17.10) dist(Q:, @;) < 10°(Cp)?*{diam Q; + diam @, }.

Thus j € V(2) if and only if : € V(j), and there is an integer N such that
V(z) has less than N elements for each i. Let X be a set with N elements.
There is a function a : I — X such that a(i) # a(j) whenever j € V(z) but
j # 1. [One way to find such a function is to arrange the elements of I in a
sequence and then define a(z) recursively in such a way that this property
always holds.]

Set m = n+1+(d+1)N, and identify R™ with R™ x R x (R4+1)X.
We define g : R — R™ by

(17.11) go = f, where gg is the R"™ coordinate of g,
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(17.12) gi(z) = dist(x, A), where g; denotes the R-coordinate of g, and

(17.13) da(z)= Y ¢i(z), a€X
il
a(i)=a

Clearly g is M-Lipschitz for some M. To check the other part of (17.3)
let z, y € R? be given, z # y, and let us distinguish a few cases.

Suppose first that z and y both liein Q, z € @4, y € @;. We may
assume that diam Q; > diam Q.

Case 1 dist(Q:,Q;) > 10°(Cy)? diam Q;.

Thus @; and @; are much further away from each other than they are
from A (by the way we chose the @);’s). We shall use (17.2) to find a lower
bound for |go(z) — go(y)|. Choose u, v € A as close as possible to z, y, so
that

|z —u| <3-10°diam @, |y — v| < 3-10° diam Q; < 3 - 10° diam Q;.
Then |u —v| > 2|z — y|, and
|f(z) = f(¥)] 2 |f(u) = f()| = |f(z) = f(u)| = |f(y) = fF(v)I
> Cy ' |lu — v| — Cylz — u| = Cyly — v

1
> =C; |z — y| — 6+ 10°Cy diam Q;.

By assumption the last term is at most

6
100
and so |f(z) — f(y)| > (10Co)~?, as desired.
Case 2 dist(Qi, Q;) < 10°(C})? diam Q;, and diam Q; < i diam Q;.
Thus dist(Qi, @;) is not too large compared to the distance of Q; to
A, but @; is closer to A than @; is. In this case we have

=1 5 6 -
(Co)™" dist(Qi, 5) < 755 (Co) ™" Iz = wl,

g1(z) > dist(Q;, 4) > 10% diam Q;,
91(y) < dist(Q}, A) + diam Q; < 3-10% diam Q; < gl()s diam Q;,

by definition of our Whitney cubes. This provides an adequate lower bound
on |g(z) — g(y)|, because |z — y| < 2-10%(C})? diam Q;, by assumption.
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Case 3 dist(Q;, @,) < 10%(C})? diam Q;, and diam Q; > % diam Q;.

Thus the distances between Q;, @;, and A are roughly comparable
to each other. Under these conditions we have k£ € V(i) if 3Q; meets
@j; thus ga(i)(y) = #i(y), because of (17.13) and the properties of a(-). We
have g,(i)(z) = ¢:i(z) for the same reason. We can bound |g,(i) () —gaci)(¥)|
from below using (17.6) when y € 2Q;, and (17.7) and (17.8) when y ¢ 2Q);.
This lower bound is good enough because |z —y| < 2-10°(Cj)? diam Q;, by
assumption.

These three cases take care of the situation where z, y both lie in 2.
If z € Q and y € A, then we can use the same arguments as in Cases 1
and 2 above, depending on whether dist(y,@;) is larger or smaller than
105(Cy)? diam ;. When both z and y lie in A we can apply (17.2) directly.
This completes the proof of Proposition 17.4.
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The idea, roughly speaking, is that the corona decomposition permits
us to realize F as a subset of a countable union of Lipschitz graphs, with
a lot of control on how these graphs fit together, and we shall build our
w-regular mapping by connecting up pieces of these Lipschitz graphs.

Before beginning our construction we first address a technical point
that will be needed later, concerning the “connectedness” of A. A finite
sequence @, ...,Q¢ of cubes in A will be called a path if for each j, 1 <
J <£€—-1, Qj is either a son or the father of @;4;. A subset of A is said to
be connected if any two points can be joined by a path in the subset.

A useful fact which is easy to verify is that A is connected if and only
if every pair of elements has a common ancestor.

If A is the set of dyadic cubes in R™, then A is not connected; it has 2"
components. In general A will always have only finitely many components.
However, it is not hard to modify A slightly in such a way that A is
connected, as follows.

Let A be as in Section 2, and let A be the set of subsets of E defined by

A= U Zi]-, where @ € Zj if @ € Aj and @ does not intersect B(0,27),

j=—co

or if @ is the union of the R € A; that intersect B(0,27). Clearly each &j
is a partition of E, and A still satisfies (2.2) and (2.3). It is not hard to
check that A also satisfies (2.1); the main point is the trivial fact that if
Qe A(), Q e Ak),j <k, QCQ', and if Q intersects B(0,27), then Q'
intersects B(0,2¥). Of course A is also connected.

In view of this we may as well assume that A is connected, since we can
replace it by A otherwise. This change in A will not upset the condition
that E admits a corona decomposition. Indeed, we noted in Section 2 that
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the existence of a corona decomposition does not depend on the choice
of A as long as (2.1) and (2.2) are satisfied. In this particular case it is
even easier to transfer a corona decomposition for A to one for A. For
example, you can take all the cubes in A that were changed and put them
into B without disturbing (2.4), and then take the S’s with the changed
cubes removed and reorganize them into regions that satisfy (2.5), (2.6),
and (2.7).

Let us now proceed with the construction of an w-regular mapping
whose image contains E. Let n > 0 be small, to be chosen later. Its value
will only depend on geometric constants. Let B, G, F, S be as in Section 2.
Given S € F, (2.6) tells us that there is a Lipschitz graph I" over a d-plane
P = Ps which well-approximates E with respect to S. Let II = IIs denote
the orthogonal projection onto P, and let T'(S) denote the part of I" whose
projection onto P is the closed ball B(II(z), 20 diam Q(S)), where z is any
point of Q(5).

We observe first that FE is contained in the union of the I'(S)’s, S € F,
except possibly for a set of measure zero. To see this let Q;(y) denote the
element of A; that contains y. Because of (2.5), Q;(y) € B for at most
finitely many j’s, except for a set of y’s of measure zero. Similarly, (2.7)
tells us that for almost all y, @;(y) is a @Q(S) for only finitely many j.
Hence for a.a. y there is an S € F such that y € @Q(S) and every @ C Q(S)
with @ 3 y lies in S. For such an y we have y € I'(S) because of (2.6).

We are going to modify the I'(S)’s to make it easier to connect them
together. We also introduce an additional dimension and work in R"!
instead of R™; this will be needed to ensure that the mapping z : R% —
R™*! that we define eventually is indeed regular. (Of course we identify
R™ with the subspace of R"*! where the last coordinate is zero.)

Fix a stopping time region S. In addition to the notation that we’ve
already recalled, let d(z) be as in (7.6), and let P+ be the (n — d)-plane
that passes through 0 and is orthogonal to P in R™. Let A: P — PL be
the function whose graph is I'. We shall construct a surface I';(S) which is
vaguely reminiscent of a pair of trousers with many legs (see Figure 1), and
which is better to work with than I'(S). Doing this requires quite a bit of
notation, unfortunately.

Let ¢;(S) denote the (d — 1)-sphere in P with center II(z) and radius
20diam Q(S). (Remember that z € Q(S) is the point selected in the
definition of I'(S).) Also let b,(S) be the closed d-ball in P bounded by
c1(S), and let a;(S) be the (d — 1)-sphere in R"*! that is parallel to ¢;(S5)
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but which is centered at
(II(z), A(Il(z)), 2diam Q(S)) € P x P- x R~ R

(Here we identify P x P+ with R™ via the map that sends (p,q) to p+q.)

2, Q) 4
TS
PoLen o To®
Q) r'(S)
$t— ¢/)
P Ot < D(S)=b, (S\U
> 1O Q)

Figure 1. A symbolic picture of I';(S). The vertical direction
contains both P+ and the (n + 1)*®-co-ordinate axis.

For each minimal cube @ of S we make the following construction.
For each child @; of @ select a point z; € @; at distance > 10diam Q;/C
from E \ @;. We can do this if Cp is large enough, because of (2.3). Let
co(@;) be the (d — 1)-sphere contained in P with center II(z;) and radius
2diam Q;/Cq, and let bo(Q:) be the open ball it encloses.
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Let I(S) denote the set of all @;’s, where @ runs over all minimal cubes
of S. If 5 is small enough, we get (using (2.6)) that

(181)  dist (0(Q0)b0(Q))) 2 g [diom Qi+ diam @
(182)  dist (bo(Q:),x(S)) > diamQ(S)

for all 7, j € I(S), ¢ # j. We also let ao(Q:) be the (d — 1) sphere in R™*?
that is parallel to co(@;) but is centered at

(Ti(z:), A(TI(z:)), 2diam Qs).

Set D(S) = b,(S) \ (RGLIJ(S) bo(R)) and

To(S) = {(u, A(w),d'(v)) : u € D(S)} S R™,

where d'(u) = d((u, A(u))), d(z) as in (7.6). Almost every y € E lies
in T'y(5) for some S. Indeed, for almost every y there is an .S such that
y € Q(S) and such that @ € S whenever @ C Q(S), y € @, and for such
an S we have y € I" and d(y) = 0. We also have II(y) € D(S) because of
the way we chose the by(Q;), and because of (2.6).

We define I'; () by taking I'g(S) and adding some pieces to it; to wit,

I'1(8) =To(S)UTi(S) U ( U To(Qi)) ,

Qi€I(S)

where T1(.S) and Ty(R) are defined as follows. We take T;(S) to be the
“tube” obtained by joining each point (u, A(u),d'(u)), u € c1(S5), to

(u, A(II(z)), 2diam Q(S)) € a1(S)

by a straight line. Similarly, if Q; € I(S), we take To(Q:) to be the tube
obtained by joining (u, A(u),d'(u)) to

(u, A(T(z:)), 2 diam Q) € ao(Q:)

by a straight line for each u € ¢o(@Q;).

It is not hard to see from our construction that there is a bilipschitz
map of D(S) onto I';(:S) which sends ¢;(S) to a;(S) and ¢o(@Q;) to ag(Q:)
for all Q; € I(S).
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Next we want to do a similar (but simpler) construction for cubes @ in
B. To simplify notations we associate to each @ € B a new stopping-time
region S = S(Q), where S has @ as its unique element (and so @Q(5) = Q).
We let F denote the union of F with {S C A: S = S(Q),Q € B}. Given
Q@ € B, select any z € @ and any d-plane P that passes through z, and
let ¢;(.S) be the (d — 1)-sphere in P with center z and radius 20 diam @Q; as
before, we take b;(.S) to be the closed ball in P enclosed by c;(.5).

Let @; be the children of @, and let I(S) denote the set_of these Q.
For each Q; € I(S) choose a point z; € by(S), and let co(Q;) be the (d—1)-
sphere in P centered at z; with radius 2diam @;/Cy. The reader will most
likely be unsurprised to learn that by(Q;) denotes the open d-ball enclosed
by co(@:). If Cp is large enough, we can choose the z; in such a way that
(18.1) and (18.2) hold. [In this case we do not need to take the points z;
inside II(Q;); when @ is a bad cube, we don’t have to respect the geometry,
because the geometry is bad.

We now set D(S) =b;(S)\( U 060(Q:)) also in this case. We view
Qi€lI(S)

D(S) both as a subset of P and as a subset of R". We take I';(.S) to be
the translation of D(S) inside R"*! by 2diam @Q(S) in the last variable:

I'1(S) = {(u,2diam Q(S)) € R"*! : u € D(S)}.

We let a,(.S) denote the “exterior” boundary of I';(S), and, for @; € I(S),
we take ao(Q;) to be the image of co(Q:) by the same translation of
2 diam Q(S) in the last variable.
Thus, just like when S € F, I';(S) is a “nice” surface with boundary
a1(S)U( U ao(Q@i)), and there is a bilipschitz map of D(S) onto I'1(S).
Q:€I(S)

We can now glue the various I';(S)’s together without much difficulty.
For S € F let T5(S) be a “tube” that joins the sphere a;(S) to ag(Q(S)).
In writing ao(@(S)) we must keep in mind that @(S) is not only the top
cube in S, but it is also the son of a bad cube, or of a minimal cube
of an element of 7. We can choose T5(S) C R"*! in such a way that
C~!'diam Q(S) £ yYnt1 < Cdiam Q(S) for all y € T5(S), and also so that
there is a mapping zg of D(.S) onto I';(.S) = I'1 (S)UT3(.S) with the following
properties:

(18.3) zg is 1-regular, uniformly in S, and in particular, C™! < |Vzs| < C
a.e.;
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(18.4) the restriction of zg to ¢;(S) is an affine function that sends the
sphere ¢;(.5) onto ag(Q(S)), and, for each i € I(S), the restriction
of zs to ¢o(Q;) is an affine map onto ag(Q;). These affine maps
are all compositions of translations, dilations, and rotations.

A few comments are perhaps in order concerning (18.3). We can split
D(S) into the union of a not-too-large spherical shell near the outer bound-
ary and the remaining subregion of D(S). We can map the latter onto I'1(S)
in a bilipschitz fashion. We can’t always map the spherical shell onto T5(S)
in a bilipschitz manner, because it could be that a,(5) and ao(@Q(S)) inter-
sect, but we can certainly do it using a 1-regular mapping.

Although our definition of w-regular mappings considered only the case
of maps defined on all of R?, it can easily be extended to subdomains of
R?. In the case of 1-regular maps, for example, one has to decide if the
condition |Vz| < C a.e. should be replaced by the requirement that z be
Lipschitz on its domain. Fortunately in our case this is not an issue; we can
certainly build zg so that it is Lipschitz, and in any case Vz € L implies
z is Lipschitz on a domain like D(S).

Note that (18.3) implies that T3(.S) is chosen so that I';(S) satisfies
the regularity condition

C'R? < |B(z,R)NTy(S)| < CR?

whenever z € T'z(S) and 0 < R < diam@Q(S), and that diamI';(S) <
C diam Q(S).
Set E = |J T'2(S). We certainly have that E \ E has measure 0; we
SeF
already checked this for E\ ( |J T'o(S)). Before constructing a parameter-
SEF
ization of E let us check that it satisfies (1.5).
We begin by showing that for any z € R®*! and R > 0 we have

(18.5) |B(z,R) N E| < CRY,
starting with the case where z,41 = 0.
Let S € F be such that I';(S) N B(z,R) # 0. Assume first that

S = S(Q) for some @ € B. Then diam @ < CR; otherwise, we have
Ynt1 > R for all y € T'y(S), so that y ¢ B(z,R). This implies that
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@ C€ B(z,CR), and so

|B($,R)ﬂ( U Fz(S)) < ) TSI ). CIQISCRY
SEF\F QeB QeB
QCB(z,CR) QCB(z,CR)
by (2.4).
Similarly, we can bound by CR? the total mass of the I';(S)’s for
which S € F, Q(S) C B(z,CR). This leaves the S € F such that I';(S) N
B(z,R) # 0 but Q(S) € B(z,CR). For each such S we certainly have

IT2(S) N B(z, R)| < CRY,

let us show that there is only a bounded number of these S’s. To do this
it suffices to show that there is a @ € S such that dist(z,@) < CR and
R < diam @ < CR, because there are only a bounded number of such @’s,
and because the S’s are disjoint subsets of A.

For one of these S’s we must have diam @Q(S) > R, since otherwise
Q(S) C B(z,CR) (if C is large enough). Because of this we are reduced
to finding @ € S with dist(z, @) < CR and diam @ < CR; we can replace
@ by an ancestor if necessary to get diam ) > R. We may as well assume
that diam @Q(S) > CR, since otherwise we can take @ = Q(5).

To find such a @ we use the assumption that I';(S) N B(z, R) # 0.
If R~!diam Q(S) is large enough we have T5(S) N B(z,R) = 0, and so
B(z, R) must intersect I'1(.S). Suppose that B(z, R) intersects I'g(.5), and
that y € R™*! lies in the intersection. Write y = (¥',yn+1), ¥’ € R™. Then
[yn+1] £ R, and yn41 = d(y'), where d(-) is as in (7.6) (for this S). Thus
diy') £ R, y' € B(z,R)NR", and the definition of d(y') provides us with
the @ that we want.

Suppose now that there is a y = (y',yn41) in B(z,R) N T1(S). By
definition T}(S) is a union of line segments, and there is a A € [0,1] such
that

y = Ay, A(u), d'(u)) + (1 = A)(y, A(l(z5)), 2diam Q(S))

for some u € ¢1(S), where zg denotes the point selected in the definition of
I'(S) (which we called z before). Because |yn+1| < R and R™! diam Q(S)
is big, we must have that d'(v) < R and that

1- ) < R(2diam Q(S))*.
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This implies that |y’ — (u, A(u))| < CR, by using the fact that
|A(u) — A(Il(zs))| < 20 diam Q(S)

in the above formula for y. Since d'(u) = d(u,A(u)) < R and d(-) is
Lipschitz, we have that d(y') < CR, and so we are in the same situation as
before.

The only remaining possibility is that there is a y = (y',yn41) in
B(z, R)NT,(Q;) for some @; € I(S). By definition y lies on the line segment
that joins (u, A(u),d'(u)) to (u, A(II(z;)), 2diam Q;) for some u € co(Q;).
If diam @; < CR, then we can take Q = @;; if not, the same argument as
the one we just used implies that d(y') < CR, and this again provides us
with the sort of ¢} that we want.

Combining all these cases we get that (18.5) holds when z,4; = 0.
Let us show that this is still true if z,4; # 0. We may as well assume
that z,4; > 0, since yp41 > 0 whenever y € E. We can also require that
ZTpt1 > 2R, since the other possibility can easily be reduced to the case
where x4, = 0. Write ¢ = (', 241).

Let S € F be such that T'5(S) intersects B(z, R). If § = S(Q) for some
Q € B, then diam Q ~ 41, and dist(z’,Q) < Cz,41, and there are only
a bounded number of @’s like that. If S € F, then diam Q(S) > C~'z,41,
and an argument like the one we gave in the z,4; = 0 case shows that there
can only be a bounded number of these S’s as well. (For each such S you
prove that there is a @ in S with diam @ ~ z,4; and dist(z', Q) < Czp41.)
Since

|B(z, R) NT5(S)| < CR?

for any S € F, we get that (18.5) is true in this case also. Altogether now
we have proved (18.5) for all z € R™*1.
Actually, our proof gives a bit more: for each z € R**! and R > 0 we

have

(18.6) ) |B(z, R)NTy(S)| < CR%.

SeF

This controls the overlapping of the I';(.S)’s.
Let’s check the lower bound, i.e., that

(18.7) |EN B(z,R)| > C™'R*
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whenever = € E, R >0.
Notice that {y € E : yo41 = 0} is exactly E modulo a set of measure
zero. Indeed, we have

EnR"= | (To(S)NR")
SeF

and I'o(S) N R™ C E by definition, and we have already seen that E \ E
has measure zero. From this it follows that (18.7) holds if 2,4, = 0, since
we are assuming that E satisfies (1.5).

Suppose now that ¢ = (z',Znt1), Tat1 > 0. Choose S € F so that
z € I'y(S). By construction we have

Tpt1 + dist(z', Q(S)) £ C diam Q(S).

If R is large enough compared to diam Q(.S), then there is a point y € Q(S)
such that y € B(z,1R). Hence B(z,R) 2 B(y,3R), and since y € E
and E \ E has measure zero, we can derive (18.7) from (1.5) again. If
R < Cdiam Q(S), then we have

|B(z, R)N E| > |B(z, R) NT3(S)| > C~'R?.

This completes the proof that E satisfies (1.5). We now construct our
parameterization z(-) of E.

For each S € F we are going to choose a mapping hs : Ds — R which
is the composition of a translation, rotation, and a dilation. We shall define
z(+) on hs(D(S)) by 2(z) = zs 0 hg'(z), where zs : D(S) — I'5(S) is the
map we chose earlier (satisfying (18.3) and (18.4)). We need to choose the
hs’s in such a way that we can do this coherently.

Fix Sy € F, and let hg, be any map of D(S;) into R? that is the
composition of a translation, rotation, and a nontrivial dilation. For each
Qi € I(S,) there is exactly one choice of hg(g,) [S(Q;) is the element of F
whose top cube is Q;] such that hs,(co(Q:)) = hs(q;)(c1(S(Q:))) and such
that zg(g;) © hg(lQi) agrees with zg, o hgol on that set. By repeating this
procedure we choose hg for all S € F with @Q(S) € Q(So). We can also
run this process backwards to choose hg for all S € F with Q(S) 2 Q(S),
and then run it forwards again to get all S € . We do indeed reach all
S' € F, because of the connectedness of A.
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Set @ = |J hs(Ds). (Remember that each Dg is closed, by construc-
SeF
tion.) Thus © C R¥, and we can define z : @ — R"*! by 2(z) = z50h3'(z)
if £ € hg(D(S)). This is well-defined by construction. In particular, the
interiors of the hs(Dg) are pairwise disjoint.

We need to understand € better. By definitions, hg(Dgs) = fs \ vs,
where (s is a closed ball and g is a countable union of open balls. One
can check that y¢ C %ﬂs; this follows from the corresponding inclusion
back on Dg, and the fact that hg does not distort relative size. Hence if B
is a ball in 75, 10B C fs. Our construction also gives that for S, S’ € F,

(18.8) Bs C Bs' when Q(S) C Q(S"),
Bs N Bs =0 when Q(S)NQ(S') = 0.

These observations imply that 8s C {58s: when S, S’ € F, Q(S) C
Q(S'), and S # S', and also that

(18.9) 1085 C Bsr.

It now follows that |J Bs = R%. Indeed, if S j is any sequence in F such
SeF
that Q(S;) € Q(Sj+1), Sj # Sj+1, for each j, then 85, D (10)/~13s,.
Next let us show that M = R?\ Q has measure zero. Let S € F be
given. Let S x be an enumeration of the S(Q)’s with @ € I(S). Repeat
this process; if we have chosen Sj; € F, k = 1,...,N(j), for a given j,
we let Sj11,¢ be an enumeration of the S(Q)’s that arise from @ € I(S;),
k=1,...,N(j). This process may terminate after a finite number of steps.
Set Bjk = Bs; ,-
From (18.9) we obtain

(18.10) > 1Bj1l < 1—10 > 185xl-
k k

In particular, [ (U ﬂj,k) has measure zero. This set contains M N s, and
J k
so we conclude that M has measure zero, since S is arbitrary.
We can extend z(-) so that it is defined on all of R?, not just . Fix
z € M, and choose S € F so that z € Bs. Let S; i be as above, and for
j=1,2,..., let k(j) be the index such that = € f; x(j).- (Notice that there

must be infinitely many S; x’s that contain z if z € M.) Then Q(S; ;) is
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a decreasing sequence of closed sets whose diameters tend to zero, and so
their intersection consists of a single point, which we take to be z(z).
Observe that z(M) has measure zero; if y € 2(M), then y € Q(S) for
infinitely many S € F, and the set of such y has measure zero because of
(2.4) and (2.7).
Let us check that this extension of z(-) to R? is continuous. By con-

struction,

(18.11) diamT5(S) < C diam Q(S), dist(T'2(S), Q(S)) < C diam Q(S).
Combining this with (18.8) it is easy to see that

(18.12) diam z(8s) < C diam Q(S), dist(2(8s), Q(S)) < C diam Q(S).

From this it follows easily that z(-) is continuous even at points of M.

This is a pretty good time to show that z(R?) D E. We already know
that () = E contains almost every point in F; the same argument shows
that 2(8s \ M) = U{T'2(S") : Q(S’') C Q(S)} contains almost all points
in Q(S). Hence 2(Bg) contains all points with positive lower density in
Q(S), because 2(8g) is compact. From here and (1.5) it follows easily that
z(R?%) = Uz(Bg) 2 E.

It remains to show that z(-) is w-regular for some A4,-weight w on R
By definitions z(-) is locally Lipschitz on §2, and so Vz(z) is defined almost

everywhere. _
Let us show that for any z € E and any R > 0 we have

(1813) C~'|B(z,R)NE| < / V(y)|*dy < C|B(=, R) N E|.
z=*(B(z,R))

Notice first that we don’t have to worry about M or z(M), since they both

have measure zero. We know that the analogue of (18.13) holds for z, E

replaced by zg o hgl, I'2(S), because each zg is 1-regular, and because hg
is just a composition of a translation, rotation, and a dilation. Hence

Va(y)ltdy = 3 / (V(y)|dy
z=1(B(z,R)) S€F :-1(B(z,R))N(Bs\7s))

~ Y |B(z,R) NTy(S)|.

SEF
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The desired estimate now follows from (18.6) and (18.7).

Next we want to check that w(z) = |Vz(z)|? is an A;-weight. Let
B = B(z,R) be a given ball in R?. Choose S so that B C B¢ and so
that @Q(.S) is minimal with this property. Let §(S) € R4 denote the factor
by which hg dilates; this makes sense, because hg is a composition of a

translation, rotation, and dilation.
Observe that

(18.14) |Vz(z)| > (C8(S))™! a.e. on fs.
To see this notice that

(18.15) C18(5) < §(S(Q)) < %6(5)

whenever § € F and Q € I(S), because hs(co(Q)) = hs(@)(c1(S(Q)) and
¢o(@Q) is much smaller than ¢;(S(Q)), although not excessively smaller. In
particular 6(S") < 6(S) if Q(S’) C Q(S), and (18.14) now follows from this,
(18.3), and the definition of z [z = zg 0 h5' on hg(D(S))).

To finish the proof that w is an A;-weight we need to show that

(18.16) w(B) < C§(S)~“R%.

In view of (18.13) and (18.5) we need only show that z(B) is contained in
a ball of radius C§(S)™'R.
Set as =Bs\vsand B =BN{asU( U aseq,)} Of course B
Q:€I(S)

intersects ag, since otherwise S is not minimal. Let yo be a point in this
intersection.

We know that z is Lipschitz on By, with norm < C§(S)™!, because of
(18.3), the remarks concerning (18.3) given after (18.4), and (18.15). Hence
2(By) C B(yo,Cé(S)"'R).

Suppose that B\ By is not empty. Let Q; € I(S) and @ ; € I(S(Q:))
be such that B intersects ag(q, ;). Since as(q, ;) € %ﬂS(Q.-) and B inter-
sects the complement of 85(g,), we have that

R> % radius fg(g;) = C~'6(S) diam Q;.

Because we also have diam 2(8g(qg;)) < C diam @; from (18.12), we conclude
that

2(Bs(@n) € {y : dist(y, 2(Bo)) < C8(S)™' R} € B(yo, C'8(S)™' R)
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if C' is large enough. It now follows that z(B) C B(yo,C'6(S)™*R). This
proves (18.16), and hence that w € A;.

Combining (18.16) and (18.14) we get that w(B)?¥ is comparable to
6(S)™'R, and putting this fact together with the one we just proved gives

(18.17) diam z(B) < Cw(B)?

for all balls B C R?. This implies that 2 has a locally integrable distribu-
tional gradient on R%, not just on €. Indeed, the distributional directional
derivatives of z can be given as weak limits of t~!(z(z + tv) — 2(z)), and
(18.17) implies that for 0 < ¢ < 1 these functions are uniformly dominated
by

Thus the distributional directional derivatives must be locally integrable.
This argument also gives |Vz| < Cw? a.e., but of course |Vz|? = w a.e. by
definition of w.

This completes the proof that (C4) implies (C7), and hence of the
theorem stated in Section 1.
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19. A variant of (C2) and (C3)

Set

(191) syee,t) = | 7 / / (1 dist(2y — w, E))"dydw

B(z,t)NE B(z,t)NE

for 1 < r < oo. This measures the extent to which E is symmetric about
each of its points. In particular, if sy.(z,t) = 0 for all z, ¢, then E must be
symmetric about all of its elements. The variant of (C2) and (C3) that we
shall consider is the following:

C8) syy(z,t)?492% i3 o Carleson measure on E x R
t +

This condition is equivalent to the others, and this is still true if we replace
r=1lbyanyr,1<r< -'% (1 £r L0 ifd=1). We are going to indicate
the proofs of these results in this section.

One can think of sy;(z,t) as a geometrical version of an average of
second differences of a function. When F is a Lipschitz graph it is not hard
to make precise the relationship between sy;(z,t) and averages of second
differences of the function being graphed.

Let us first check that (C8), with » = 1, implies our local symmetry
condition (LS) from Section 4. Let 7 > 0 be given, as in Definition 4.2.
Suppose that @ € R(7), so that there are y, w € 2@Q such that

dist(2y — w, F) > 7 diam Q.
If we can show that this implies that

(19.2) sy1(z,t) > C~ 12441
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for any = € @ and any ¢ such that 3diam @ < t < 4diam @, then it is easy
to derive (4.3) from (C8).

Fix any such z and ¢. It is easy to check (19.2) using the definition
(19.1) and the fact that

dist(2y' — w', E) > 1T_o diam Q

for any y' € B(y, 1557t), w' € B(w, 7557t).

From here it is not too difficult (but rather tedious) to prove that
(C8) with r = 1 implies (C4) by modifying the arguments used to show
that (C2) and (C3) each imply (C4). We omit the details, because they
are somewhat messy, and because we now know that (LS) itself implies
(C1)-(C7), as mentioned just before Lemma 5.13.

Assume now that F satisfies (C4) and consequently the conclusion of
Proposition 5.5 as well, and let us show that (C8) must hold, and even the
stronger version where r = 1 is replaced by r < d_z_d_2 (r<ooifd=1).

Let n > 0 be small and let £ > 0 be large, to be specified later. Let B,
G, F, S € F be as in the definition of a corona decomposition.

Let G(n, k) be as defined in the beginning of Section 6. We want to
modify the corona decomposition slightly, so that all the good cubes also
lie in G(n, k). Thus we replace B by BU(A\ G(n,k)) and G by GNG(n, k).
By assumptions (2.4) is not disturbed, but (2.5)—(2.7) notice the change.
However, if for each S € F you subdivide SN G(7n, k) into maximal regions
that satisfy (2.5), then the resulting family of regions also satisfies (2.6)
and (2.7). Thus we may as well assume that our corona decomposition has
G C G(n, k).

The argument we use to show that (C8) holds is quite similar to the
one in Section 15. We shall use the same notations also, and the reader
may find it helpful to review that section.

By Lemma 15.2 it suffices to show that, for r < %,

dzdt
(193) Sy.,.(:L',t)ZXS(.’D,t)—‘t——

is a Carleson measure for each S € F, with norm bounded independently
of S. We may as well replace S here by §1, where 5, = {(z,t) € S:t<
10~2 diam Q(S)}; the contribution to (19.3) coming from S\ 5| can easily
be controlled using sy.(z,t) < C.
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Fix S € Fand r < d—2_d—2. As in Section 15 we let I' be the Lipschitz
graph over a d-plane P as promised in (2.6). We also let P be the (n — d)-
plane that passes through the origin and which is orthogonal to P, and we
let A: P — P be the function whose graph is I'. We denote by IT and IT+
the usual projections of R™ onto P and P, and we define d(z) and D(p)
by (7.6) and (8.1), as always.

In order to show that (19.3) is a Carleson measure we are going to
estimate sy,(z,t) in terms of an L"-average of second differences of A, plus
error terms arisinE from the approximation of E by T.

Fix z, t € S;. Given y € R", set § = (II(y), A(II(y))) € I. If
y € 2Q(S) we have |y — 3| < Cnd(y), because of (2.6). Hence

syr(z,t) < ¢ / / (t"1 dist(2y — w, E))r dydw

(19.4) B(z,t)nE B(z,t)NnE

+Cn |t / (t_ld(y))rdy
B(z,t)nE

The first term on the right side of (19.4) can be dominated by

(19.5) [t / / (¢! dist(24 — 3, E))" dA(q)dA(s)
B(p,2t)nP B(p,2t)nP

where p = II(z), § = (¢, A(q)), $ = (s, A(8)), and A is the measure obtained

by pushing H¢ |2Q(S) down to P using II.

We want to replace A by Lebesgue measure in (19.5). Of course A is
comparable to Lebesgue measure on II(Z), and so we need only look at
P\ II(Z), which is the set of points ¢ € P such that D(q) > 0. In this
region we have that A is comparable to Lebesgue measure at the scale of
5nD(q), at least if you stay close to II(Q(.S)). More precisely, we claim that

(19.6) C~'(nD(q))* < M(B(qg,51D(q))) < C(nD(q))*

for all ¢ € P such that

(10.7) dist(q, T(Q(S))) < 75 diam Q(S).
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(Actually, we need (19.7) only for the first inequality in (19.6).)
Before checking (19.6) let us record and verify the useful fact that

(19.8) C~'d(u) < D(I(u)) < d(u) when u € 2Q(S).

We have seen this sort of thing before, in Lemma 8.21, but the circum-
stances were somewhat different there. The second inequality in (19.8) is a
direct consequence of the definitions, and so we need only concern ourselves
with the first. Let u € 2Q(S) be given, and choose v € Q(S) such that

| I(u) — I(v) | + d(v) < 2D(II(u)).

This we can do, because of the definitions of D(-) and d(-) in (8.1) and
(7.6). We can control |u — v| by projecting onto I', as follows:

u = v < fu = () + [(T(w))* = ()] + |v = (T(v))"]
< Cnd(u) + C|II(u) — I(v)| + Cnd(v)
< Cnd(u) + CD(II(u)).
It is easy to obtain the first half of (19.8) from these inequalities together

with d(u) — d(v) < |u — v|, if 5 is small enough.
Now let us check the right side of (19.6). It suffices to show that

(19.9) 7% (B(q,57D(g)) N 2Q(S)) C B(4, CnD(q))-

Let u be an element of the left side of (19.9). Then u € 2Q(S), and so
lu = (M(u))*] < Cnd(u).

From (19.8) we have

d(u) < CD(I(u))
< CD(q) + C|T(u) — g
< CD(g),

since u lies in the left side of (19.9). Thus

lu = g] < |u— (T(w))] + |[(T(u)" - ¢
< CnD(q) + C|lI(u) — q|
< CnD(g).
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This proves (19.9), and also the right side of (19.6).
Next we verify the left side of (19.6). By definition of D(q) we can find
a @ € S such that

(19.10) dist(q,II(Q)) + diam @ < 2D(q).

By replacing @ by an ancestor if necessary we may also assume that
(19.11) D(q) £ Cdiam Q.

Because @ € S, @ is a good cube, and in particular @ € G(n, k). Thus @
satisfies (6.2), with € replaced by . We want to use this to produce a point
in %Q(S) whose projection onto P lies near q. We shall then use that and
the regularity of E to get the first inequality in (19.6).

Let us begin by observing that

(19.12) Angle(P, Pg) < Cn.

This is a minor variation of Lemma 5.13; the point is that every element of
@ is within Cndiam @ of both Pg and I', and I' is a Lipschitz graph over
P with constant < 7. The argument used to prove Lemma 5.13 can also

be applied in this case.
Let w be the element of Py such that II(w) = ¢, and let @ be the

projection of @ onto Pg. Then
(19.13) dist(w, Q) < (1 + Cn) dist(g, II(Q)) + Cn diam Q.

Indeed, let y € @ be such that |¢ — II(y)| = dist(q,II(Q)), and let § be the
projection of y onto Pg. Then |y — §| < ndiam @, and

dist(w, Q) < |w — |
(by (19.12)) < (1+ Cn)[I(w) — II(7)]
<1+ Cn){lg — T(y)| + |M(y) — TI(F)I}
< (1+ Cn){dist(q, II(Q)) + n diam Q}.

In particular we have dist(w, Q) < C'diam @, by (19.10) and (19.11). Be-
cause w € Pg and (6.2) holds with € replaced by 7, we get that there is a
point u € E such that

(19.14) |u — w| < ndiam Q.
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(This is the place where we need k to be reasonably large.)
From (19.14) and (19.10) we obtain

(19.15) [TI(u) — q| < 29D(q),

and hence

I7'(B(q,57D(q))) 2 B(u,nD(q)).

To prove the first inequality in (19.6) it is enough to show that
(19.16) B(u,7D(g)) N E C 2Q(S),

since A(B(q,571D(q))) = |I7(B(g,57D(q))) N 2Q(S)| (by definition of \).

To prove (19.16) it suffices to check that dist(u, Q(S)) < %diam Q(S)
if n is small enough, since nD(¢q) < L&ndiam Q(S) < 1 diam Q(S) if 7 is
small enough (and if ¢ satisfies (19.7)). Using (19.14) and (19.13) we have

dist(u, Q(S5)) < |u — w| + dist(w, Q(S))
< ndiam @ + dist(w, Q)
< 2ndiam @ + dist(w, @)
< Cndiam Q + (1 + Cn) dist(q, II(Q)).

This is less than 2 diam Q(S) if 7 is small enough and ¢ satisfies (19.7).
[We are using here the fact that @ C Q(S).]

This finishes the proof of (19.6). Let us use this to analyze (19.5).

It is not hard to show that

(19.5)<C |7 / / (t7' dist(2§ — §, E))" dgds
B(p,3t)nP B(p,3t)nP
(19.17) +C |t f (nt~'D(q))"d\(q)
B(p,3t)nP

We shall only sketch the argument. The first step is to find a covering
of II(2Q(S)) by II(Z) and a countable family of balls that have bounded
overlap and which are of the form B(a,57D(a)). This is similar to the
story about the R;’s in Section 8, and it is not difficult. To derive (19.17)
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19. A VARIANT OF (C2) AND (C3)

you use this covering to break up the integrals in (19.5), and then you
control the pieces separately using the following three facts. First, the
oscillation of dist(2§— 3, E) in q or s over a ball B(a, 57D(a)) is bounded by
CnD(a). Second, we know that A and Lebesgue measure are comparable on
II(Z), and that they give the balls B(a,5nD(a)) comparable mass. Third,
since (z,t) € § we have Ct > d(z) > D(p). This implies that if B(p,2t)
intersects B(a,57D(a)), then Ct > D(a). This ensures that our covering is
thick enough to be useful for controlling the integrals over B(p,2t). More
precisely, it implies that B(a,57D(a)) C B(p, 3t) if B(a,5nD(a)) intersects
B(p,2t) and 7 is small enough.
The last term in (19.17) is dominated by

1
clet [ etdwydy
B(z,Ct)nE
To show this it is enough to check that
(19.18) I~ (B(p,10t)) N 2Q(S) C B(z,Ct),

because of (19.8) and the definition of A\. The proof of (19.18) is similar to
that of (19.9), and we omit the details. It is important to use the fact that
Ct > d(z), which holds because (z,t) € S.

Putting these inequalities back into (19.4) we obtain

1
syr(y,t) < C | t72¢ / / (¢t~ dist(2¢ — 3, E))" dgds
B(p,3t)NnP B(p,3t)NP
(19.19) son|rt [ @twyra
B(z,Ct)nE

To deal with this we observe that

dist(24 — 8, E) < 2§ — § — (2¢ — s)"| + dist((2¢ — s)*, E).
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Of course 2§ — § — (2¢ — s)*| = |2A(q) — A(s) — A(2¢g — 3)|, and so its
contribution to the first term on the right of (19.24) is at most

=

c|lt™ / / (t71A(29 — ) + A(s) — 2A(q)|)rdqu

B(p,3t)NP B(p,3t)NP

< C7r(p7 6t) < c B( inf 71'('7 ]-Ot)v

I(2),t)

where v,(p,t) is as in (15.4). Thus

=

Az,t) < C inf ., 10t ¢ t~1 dist(a, E))"d
(eSO int (10040 |ed [ @ dis(a, B)rdu
B(p,9t)NnP

1

r

(19.20) +Cn |t / (t~1d(y))"dy
B(z,Ct)nE

Let us show that the middle term on the right can be controlled by
the last term. To see this we first check that

1

t~¢ / (¢! dist(d, E))"du

B(p,9t)NP

1=

(19.21) <c |t / (¢! dist(@, E))"d\(u)
B(p,10t)NnP

el Fat / (nt =2 D(u))"dA(u)
B(p,10t)nP

This can be proved using the same sort of covering argument as used to
get (19.17): dq and dA(q) are comparable on the scale of 5nD(u), and
dist(g, F) oscillates by at most CpD(u) on a ball of radius 57D(u), because
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19. A VARIANT OF (C2) AND (C3)

it is Lipschitz. It is also important that D(p) < d(z) < Ct and that ¢ <
1073 diam Q(S), which are true because (z,t) € S,. The second condition
is needed to ensure that (19.7) holds in the relevant cases.

Next we convert the integrals on the right side of (19.21) into integrals
on E. Using (19.18) and the definition of A we obtain

(19.22) left side of (19.21)

1=

scled [ @ ), M), E)dy
B(z,Ct)N2Q(S)

T N B O
B(z,Ct)NE

We have also used the fact that D(II(y)) < d(y). The first term on the right
is dominated by the second, because of (2.6), and because all the relevant
y’s lie in E.

From (19.22) it follows that the middle term on the right side of (19.20)
is indeed dominated by the last term, so that

(19.23) syr(w,t)scB(riIr(lf) o Yr(5108)+Cn ¢ / (¢t~ d(y))"dy
’ B(z,Ct)nE

The remainder of the proof that (19.17) is a Carleson measure with bounded
norm if r < dz__d2 is exactly like the corresponding step in Section 15 (begin-
ning at (15.9)).

This finishes the proof of the result stated at the beginning of the
section, that (C8) is equivalent to (C1)~(C7), even if r = 1 is replaced by
any r such that 1 <r < a—%.
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20. A counterexample

Although the weak geometric lemma (5.2) is a useful auxiliary con-
dition, it is not strong enough to imply rectifiability properties of the set
in question. We shall now construct a 1-dimensional set E in R? which
satisfies the weak geometric lemma but not much else. On the other hand,
we shall show in [DS3] that a d-dimensional regular set that satisfies the
weak geometric lemma and another geometrical condition (big projections
on some d-planes) has big pieces of Lipschitz graphs, and satisfies (C1)-(C8)
in particular.

We use a minor modification of the Van Koch snowflake. The set E
will be obtained as the limit of a sequence E,, of sets, with each E,, being
the union of 4™ line segments of length 4~".

Given a sequence {a,} of small real numbers we construct the E,’s
recursively according to the following recipe. We take Ey to be the unit
interval on the z-axis. Suppose E,_; has been constructed. To construct
E,, we replace each line segment L of E,,_; by four segments L,, L, L3,
L4 with the following properties. (See Figure 2.)

(20.1) Thelengthof L; is4™™,i=1,...,4.
(20.2) The endpoint of L; is the initial point of L;4q,¢ =1, 2, 3.

(20.3) The L;’s make the angles 0, a,, m — a,, and 0, respectively,
with L.

(20.4) The midpoint of L is also the midpoint of the segment that joins
the initial point of L; to the endpoint of L.
The a,’s are allowed to be quite arbitrary, for the moment anyway,
although we do ask that they be small enough so that the various segments
do not cross each other. (|a,| < 35 for all n will do.)
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Ly AL3
L Ly
..... _/\_/\/\/\_/\_
Figure 2

Let E be the set obtained in the limit from the E,’s, using the Haus-
dorff metric, for instance. It is not hard to see that E is (locally) regular; if
B is a ball centered on E with radius 4™, then the total length of E,,N B is
about 47", and taking further generations does not alter this significantly.

It is also not hard to check that E satisfies the weak geometric lemma
if and only if @, tends to 0.

If La? < oo, then E is contained in a curve of finite length: the
distance from the initial point of one of the segments of E,_; to the initial
point of the corresponding piece of E, is about a%24~™", and similarly for
the endpoints, and so you can connect the various pieces of E together and
get a curve which contains E and has finite length (and is even chord-arc).

If a2 = oo, then the curve you get from the method just described
has infinite length. Moreover, any curve that contains £ must have infinite
length. This follows from the theorem of Peter Jones in [J3] and the fact
that the measure p = B1(z,t)24% on E x Ry [as in (C3)] satisfies

#(B x (0, R)) = o0

for any ball centered on E and any R > 0.

Even more is true. If £a? = 400, then |I'N E| = 0 for any rectifiable
curve I', so that E is totally unrectifiable in the sense of geometric measure
theory. It suffices to check this for Lipschitz graphs, because any rectifiable
curve is contained in a countable union of C! curves, except perhaps for a
set of length zero. (See [Fe], for example.)

Suppose that I' is a Lipschitz graph and |[ENT| = 7 > 0. For each
n, E is naturally divided into 4™ parts E(n,i), 1 < i < n. This is easily
seen from the construction of E; these 4™ parts of E correspond to the 4"
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20. A COUNTEREXAMPLE

components of E,. Because Y |I'N E(n,?)| = 7, there is an ¢ such that
;

TN E(n,i)| > 74" = 7|E(n, i)|.

Since any E(n,i) can be obtained from any E(n,j) by a rigid motion, we
conclude that for each n, j there is a Lipschitz graph I'y ; such that

ITn,; N E(n,5)| 2 7|E(n, j)|-

In other words, we can use the self-similarity of E to pass from the
positivity of |ENT| to E having big pieces of Lipschitz graphs. In particular
FE must satisfy (C6), which implies that E is contained in a regular curve
and that the measure u is a Carleson measure, both of which we know to
be false. This proves that |E NT'| = 0 for all Lipschitz graphs I'.
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21. Some open problems

There are three omissions in the theorem that are particularly glaring.
The first is that we don’t know if we can restrict ourselves to a “small”
collection of kernels in (C1), e.g., to K(z) = m’-}"n, i=1,...,n. A partial
result in this direction is given in [Fg]. A related result is in [Ma2].

We also don’t know so much about restricting ourselves to small sets
of ¥’s in (C2). Our arguments in Sections 4,5, and 6 (for proving Propo-
sition 6.5) relied heavily on much flexibility in the choice of 3’s. However,
we really didn’t need so many ’s in Sections 9, 10, and 11, although it
simplified the proof substantially. We used the fact that we could choose
’s that satisfy (10.1) and (10.2) in order to obtain (10.9) and (10.10). We
could have used much less special (and much smaller) families of 3’s to get
versions of (10.9) and (10.10) with €? replaced by €2 + §*. Roughly speak-
ing, the reason for this is that you can split ¥((p, A(p)) — (g, A(q))) into the
part that is linear in A and the remainder, and the latter is controlled by
Cé? using the fact that the Lipschitz norm of 4 is < Cé.

The second omission is that we do not know whether “E has BPLG”
is equivalent to our other conditions. (Of course it implies (C6).) In some
sense (C5) and (C7) are not so far from this, since we know from [D4] that
images of R? under bilipschitz or w-regular maps in R™ have BPLG.

The third is that the theorem does not say anything about the case
when E is not regular. On the other hand, the theorem of Jones [J3]
characterizing the subsets of planar curves with finite length in terms of
quadratic conditions on the f.,’s does not need the set to be regular. Of
course for this it helps that you are working with 8., instead of §, for
g < 00, and, as we’ve pointed out, Jones and Fang found a counterexample
to show that such quadratic conditions on the f,’s need not hold for higher-
dimensional Lipschitz graphs.
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A natural conjecture concerning non-regular sets that might be prov-
able using current technology is that qualitative versions of (C1)-(C3) imply
that E is rectifiable. For example, if H%(E) < co and if

s [ K-y |
En{lz—y|>€}

is finite a.e. on E for all K as before and all f in some reasonably rich class
(e.g., bounded measurable functions with compact support), then is it true
that E is rectifiable?

Mattila [Ma2] has obtained a result related to this problem. Roughly
speaking he gives a characterization of rectifiability of one-dimensional sets
in the plane in terms of the existence of principal values for the Cauchy
kernel.

The natural qualitative versions of (C2) and (C3) are given in terms of
the finiteness a.e. of square functions. For (C2) this would be the require-
ment that for all ¢ as in (C2),

Y o / I/z/zg(y—z)dz |* dy < oo

€20 B(z29)nE E

for a.e. € E. The counterpart to (C3) is

1 dt
/ t4 / Bi(y,t)*dy— < oo
0 B(z,t)NnE

for a.e. ¢ € E. One can formulate a qualitative version of (C8) similarly.

This possible relationship between the finiteness a.e. of these square
functions and the rectifiability of E is analogous to the classical results that
characterize the existence of limits or derivatives a.e. by the finiteness a.e.
of square functions, as in Chapters 7 and 8 of [St]. There are already results
in geometric measure theory that are reminiscent of the characterizations
of a.e. existence of limits or derivatives in terms finiteness a.e. of maximal
functions. For example, there are results that relate rectifiability (which
is equivalent to the existence a.e. of approximate tangent planes) to the
existence of cones at a.e. point in the set which contain most of the mass
of the set asymptotically as you shrink down to the given point.

There are other questions like these which show up in connection
with harmonic measure estimates and the Ahlfors distortion theorem. (See
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Chapter 1 of [B], especially p 33-34, or [BCGJ].) One formulation goes as
follows. Let I' be a Jordan curve in the plane, not necessarily rectifiable,
with complementary components §;, Q;. Given z € ', t > 0, let 6;(z,t)
denote the length of the largest component of 0B(z,¢) N Q;, ¢ = 1, 2. Thus
if T is a line, 6;(2,t) = 7, and in general

e(2,1) = max |1 — (2, 1)

measures how close I is to being a line.
Let E be a closed subset of I' of finite length. If

1
/ e(z,t)zﬂ < 0o
0 t

a.e. on F, does that imply that E is rectifiable, as a 1-dimensional set in
the plane?

Notice that €(z,t) is quite similar to sy,(z,t) (defined in Section 19);
syq(z,t) is an integrated version of €(z,t). However, we do not know how to
show that quadratic conditions on €(z,t) imply rectifiability properties of
E, even if we make quantitative versions of these assumptions, i.e., that E
is regular and €(z,)2dz4 is a Carleson measure on E x R. The problem
is that €(z,t) is not stable enough to apply the methods of this paper.

Another basic issue is to find and understand more simple geometrical
sufficient conditions on F for singular integrals to be bounded on E. Some
things are known (see [D4], [DJ], [DS3], [S1, 3, 5]), but it is quite easy to
generate questions of this type that we do not know how to answer.

Here is an example. Let E be a d-dimensional regular set in R".
Suppose that there is a constant C so that for each z € E, R > 0 there is a
relatively open subset U of E which is homeomorphic to a ball in R and
satisfies

ENB(z,R)CUC ENB(z,CR).

Does this imply that (C1) holds for E?

This can be thought of as a higher-dimensional version of the chord-
arc condition for curves. When d = 2 it is shown in [S2] that if you make
a priori smoothness assumptions about E, then there is a quasisymmetric
parameterization of F (by a plane) which is w-regular for some w € A,
with estimates that do not depend on the a priori assumptions. We don’t
know anything for d > 2; for d = 2 we also don’t have any direct geo-
metrical understanding of this condition. (The result was proved by using
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uniformization to get a conformal map from the plane to E, and then esti-
mating extremal length.)

A productive method for generating questions of this sort is to take
a book on geometric measure theory ([Fe] for instance, or [Ma]), look at
some of the known results concerning rectifiability, and try to find quanti-
tative versions. For example, it is known that A is rectifiable if and only
if H(Ily B) > 0 for all measurable subsets B of A with H%(B) > 0, and
almost all d-planes V', where IIy B denotes the orthogonal projection of B
onto V. We would like to have a version of this theorem with estimates.

Another group of problems pertains to (C7) and the existence of good
parameterizations. An obvious question is whether in (C7) we can do any
better than A; weights, e.g., is (C7) equivalent to being able to find a
l-regular mapping whose image contains E7 At least one of the authors
thinks that the answer should be no, but neither knows how to prove it. We
don’t know any good geometrical invariants to help us distinguish between
l-regular and w-regular mappings.

We observed in the introduction that (C7) is equivalent to the version
of itself with A; replaced by A,,. Is there a more direct way to see this?
One could hope that an w-regular mapping for w € Ao could be “repa-
rameterized” somehow to get an @-mapping, @ € A;. An optimist might
hope that this could be done by composing with a quasiconformal mapping
on R?. This leads us to the old and difficult problem of understanding
which A,, weights can arise as the Jacobian of quasiconformal mappings,
modulo multiplication by a function which is bounded and bounded away
from zero. The paper [DS2] is related to this problem.

One can also ask for a characterization of the A, weights w for which
there is an w-regular mapping. This is probably easier than the correspond-
ing problem for quasiconformal mappings. We do know some partial results
for this question, including the fact that there does exist an w-regular map-
ping when w is an A; weight.
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RESUME

L'objet de ce texte est l'étude de relations entre certaines propriétés
analytiques d'un sous-ensemble E de R? (notamment, la continuité-L2
d'opérateurs définis par des noyaux singuliers comme le noyau de Cauchy ou le
potentiel de double-couche) et des propriétés plus géométriques de E . Nous
supposerons toujours que E est un ensemble de dimension d régulier au sens
d'Ahlfors, c-a-d. tel que, pour toute boule B(x,r) centrée sur E , la mesure de
Hausdorff d-dimensionelle de ENB(x,r) est comprise entre C-1rd et Crd . Le
résultat principal est 1'équivalence de diverses conditions, analytiques ou
géométriques, portant sur E .

La premiére condition est la continuité sur LZ(E) de I'opérateur d'intégrale
singuliére défini par tout noyau K(x-y),ou K est impaire et a des dérivées
d'ordre j inférieures 2 C Ix-yl-d-J . La plupart des conditions géométriques peuvent
étre vues comme des formes plus fortes, et quantifiées, de rectifiabilité. Par
exemple, l'une des conditions équivalentes est que E est contenu dans une surface
I' admettant un paramétrage "w-régulier” (en dimension d=1, cela veut dire que T’
est une courbe réguliére au sens d'Ahlfors ; dire que E est rectifiable signifierait
seulement que E est contenu, 2 un ensemble de longueur nulle prés, dans une
union dénombrable de courbes rectifiables). D'auires conditions sont obtenues en
mesurant, de diverses maniéres, 1'écart entre l'intersection de E avec chaque boule
centrée sur E et un plan affine de dimension d , et en demandant une certaine
intégrabilité du résultat obtenu. Ce point de vue est inspiré du résultat de P. Jones
sur le probleme du voyageur de commerce. On peut aussi voir certaines des
conditions équivalentes comme des analogues de conditions de Littlewood-Paley,
ou de différences symétriques, utilisées pour décrire la régularité des fonctions.

Les techniques utilisées sont des techniques de variable réelle. La partie la
plus délicate de la démonstration repose sur un argument de temps d'arrét trés
proche de la construction dite "de la couronne" introduite par L. Carleson, ou 1'on
cherche a bien approximer E par des graphes lipschitziens sur des régions de
ExR* les plus grandes possibles.
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