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On the Andre-Quillen Cohomology 
of Commutative F2-algebras 

by Paul G. Goerss* 

In the late 1960's and early 19705s the authors Michel Andre and Daniel 
Quillen developed a notion of homology and cohomology for commutative 
rings that, in many respects, behaves much like the ordinary homology and 
cohomology for topological spaces. For example, one can construct long 
exact sequences such as Quillen's transitivity sequence [21] or a product in 
cohomology [2]. They further noticed that this homology could say much 
about the commutative ring at hand. Again, for example, Quillen conjec
tured that the vanishing of homology groups implied that the ring was of a 
particularly simple type and, recently, his conjecture has been born out by 
Luchezar Avramov [3]. 

One can approach the subject of the homology and cohomology of 
commutative rings from two points of view. The first is from the point 
of view of commutative algebra. Many authors have been interested in 
the following situation: let A be a commutative, local ring with residue 
field k. Then the quotient map A —+ k allows one to define the Andre-
Quillen homology .ff*(A, k ) . In this case i?*(A, k ) is of concern to local ring 
theorists, and squarely in the province of commutative ring theory. This is 
a traditional point of view. Certainly it was adopted by Andre and Quillen 
— who, if k was of characteristic 0, could effectively compute .ff*(A,k) in 
terms of Tor£(k, k) — and more recently, by such authors as Avramov and 
Stephen Hadperin [4]. 

In this work, however, we take another viewpoint — that of homotopy 

* The author was partially supported by the National Science Foundation 
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P. G. GOERSS 

theory. The starting point is other work of Quillen [20] on non-abelian 
homological algebra and homotopical algebra. One of the many advances of 
this work of Quillen's was to isolate exactly what was required of a category 
C so that one could make all of the familiar constructions of homotopy 
theory in C. If C satisfies the resulting list of axioms, then C is called 
a closed model category. If, in addition, C has a sub-category of abelian 
objects AB(C) and the inclusion functor AB(C) —* C has a left adjoint, 
then one can define the homology of objects in C 

The model for this sort of set-up is the category of spaces; that is, the 
category of simplicial sets. The abelian objects are the simplicial abelian 
groups, and one obtains the usual homology with integer coefficients. 

In this paper, we will consider the category sA of simplicial, supple
mented, commutative F2-algebras. A commutative F2-algebra A is supple
mented if there is an augmentation € : A —• F2 so that the composite 

F 2 - ! + A - ^ F 2 

is the identity. Here 77 is, of course, the unit map. An object in sA is 
then a sequence of supplemented algebras An, n > 0, linked by face and 
degeneracy maps that satisfy the simplicial identities. The category sA 
is a closed model category, with a notion of homotopy and homology. In 
fact, the notion of homology is exactly that of Andre and Quillen. We 
will explore homotopy and homology together and use them to illuminate 
each other. Indeed, the work of A.K. Bousfield [5] and the work of William 
Dwyer [11] imply that we know much about homotopy in sA and we can 
use their results as a foundation for our study of homology and cohomology. 

Since Andre and Quillen define homology and cohomology using sim
plicial resolutions and the like, it is a natural step to studying the category 
sA. 

The efficacy of this approach is this: by studying simplicial objects 
A G sA and the homology H^A and cohomology HQA, we can not only 
take advice from the commutative algebra, but also from homotopy theory 
— and two angles axe better than one. For example, homotopy theory tell us 
that cohomology should support a product, and because we are working in 
characteristic 2, something like Steenrod operations. This is indeed the case 
and it is exactly these operations that explain why Quillen's fundamental 
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INTRODUCTION 

spectral sequence — the main computational tool of [21] — does not collapse 
in characteristic 2, as it did in characteristic 0. By studying the product and 
operations, we systematize this difficulty and then can proceed to compute. 

In the end we find that we will have a situation very unusual in ho
motopy theory: we will understand all primary homotopy operations in 
sA, and all primary cohomology operations in sA, but neither homotopy 
or homology will be in any sense trivial. That is to say, we will have a 
category rich in structure, but we can understand, appreciate, and exploit 
that structure. I hope you will find the answer pleasant. 
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Notation and Conventions 

1.) F2 is the field with two elements, and vF2 is the category of vector 
spaces over F2 

2.) If C is any category, we let 

nC = the category of graded objects in C 

and 
sC = the category of simplicial objects in C. 

The exceptions are nF2 and sF2, which are the categories of graded and 
simplicial objects in the category of F2-vector spaces, respectively. 

3.) If V is a simplicial F2 vector space, we define the homotopy of V 
to be the homotopy of V regarded as a simplicial set. This is the same as 
the following familiar calculation. Let V = {Vn} and 

u 

d^^dilVn-tVn-l 
i=0 

be the sum of the face operators. (Working over F2 means that we do not 
need the alternating sum.) Then d2 = 0 and 

7r*y *m*(v,d). 

We can, and will, write C(V) for the chain complex associated to V with 
the differential d. 

4. ) Following the conventions in 2.), ssF2 is the category of simplicial 
simplicial vector spaces, which we will call bisimplicial vector spaces. Thus 
an object V 6 ssF2 is a sequence of vector spaces Vp^q, one for each pair of 
non-negative integers (p, g), equipped with horizontal face and degeneracy 
operators 

di - Vp« Vp-Uq and 8$ : Vp^q -+ F p + M 
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and vertical face and degeneracy operators 

d] : Vp.q - » Vp^.i and s1- : VM -> V P f 9 + 1 . 

This specifies vertical and horizontal direction in V — we will reserve the 
first variable "pM for the horizontal direction and the second variable for the 
vertical direction. The vertical and horizontal maps commute. 

For fixed p we have vertical homotopy 

*qVP9.9tHq{Vp^d") 

and. for fixed g, horizontal homotopy 

nPv.,q*iHp(v.,q,dh). 

5.) If V 6 5 5 F 2 , we have the total chain complex of V given by 

C(V)n — ®p+q=nVp,q 

and 
d^dh + dv :C(V)n^C(V)n^. 

We can filter C(V) by degree in p and obtain a spectral sequence 

7rp7rqV Hp+qC(V). 

There is also the diagonal simplicial vector space diag(V) with 

diag(V)n = Vn%n 

and the Eilenberg-Zilber-Cartier Theorem implies that the existence of a 
chain equivalence C(V) —• C(diag(V)). Thus we obtain one of our most 
useful tools, a spectral sequence 

npftqV 7rp+qdiag(V). 

If we filter C(V) by degree in g we obtain the other spectral sequence of a 
bisimplicial vector space 

Trq7rp 7Tp+qdiag(V). 

6.) A graded vector space W is of finite type if W is finite in each 
degree. 
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Chapter I: Overview and Statement of Results 

In this chapter, we draw the outlines for the homotopy and homology 
theory of simplicial algebras. Like an architect's sketch, this section is 
intended to make clear the form of things to come, but without smothering 
ideas in a welter of details. We leave these details to the later sections. 
The justification for this approach is that amidst the dust and smoke of the 
actual construction — say, section 7 or 15 — the architect's dream may 
become obscured, and it will be well to have it firmly in mind beforehand. 

We end the chapter with some historical notes, with credits to other 
authors. 

To begin, let A be the category of commutative, supplemented algebras 
over the field F2. Then let sA be the category of simplicial objects in A; 
that is, A G sA is a simplicial, commutative, supplemented F2-algbera — 
simplicial algebra, for short. Quillen [20,11.4] points out that sA is a closed 
model category. The details of this observation are contained in section 
1, but, for now, it is sufficient to know that for an object A G sA, we 
have a notion of homotopy groups w*A — indeed, 7c*A is the homotopy 
of A regarded as a simplicial vector space — and a we have a notion of 
what it means for two morphisms f,g : A —> B in sA to be homotopic. 
Furthermore, we can make all the usual constructions of homotopy theory 
in sA and, hence, we know what we mean by the homotopy classes of 
morphisms from one object .4 in sA to another object B. We will call the 
set of homotopy classes of maps by the name [-4, B]s^. 

An advantage of the category sA is that homotopy groups have rich, 
but understood, structure. This is in contrast to the homotopy groups of 
spaces which, although laden with structure, represent virtually uncharted 
territory to the homotopy theoretic explorer. 

To be specific, if A G sA, then 7r*A is a graded, commutative, supple
mented F2-algebra, equipped with an augmentation 

6 : 7T+A —» F2 

where we regard F2 as concentrated in degree 0. Of course, 7TQA becomes a 
supplemented algebra and we could recover much of the concerns of Andre 
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and Quillen by concentrating on the case where ir+A = noA; that is, TT*A is 
concentrated in degree 0. However, as we shall see, this would be severely 
limiting. 

Homotopy in sA is a representable functor: there is an object S(n) G 
sA for n > 0 and a class i n G 7r n 5(n) so that for all A G sA, the map 

[S(n),A]sA —• irnA 

given by 
/ i — > 7 T . / ( t n ) 

is an isomorphism for n > 0 and defines an isomorphism 

[S(0),A]sAeUxoA 

where IKQA = ker{e : woA —• F2) is the augmentation ideal. This is anal
ogous to the situation for topological spaces; indeed, these isomorphisms 
virtually demand that we refer to S(n) as the ra-sphere in sA. 

A computation of 7r*5(n) for all n would be a computation of the 
homotopy groups of spheres and a calculation of all primary homotopy 
operations. This is possible. Many authors have worked on this, of which, 
perhaps, the most notable include Cartan [8], Bousfield [5], Dwyer [11], and 
Tom Lada (unpublished) — and, of course, Quillen [21,22]. The work of 
these authors combines to prove the following result. 

Theorem A: Suppose A G Then there are natural operations 

6{ : 7cnA —> 7 r n + t A , 2 < i < n 

so that 
1.) Si is a homomorphism 2 < i < n and Sn = 72 — the divided square 

— so that 
Sn(x + y) = Sn(x) + Sn(y) + xy; 

2.) the operation Si acts on products as follows: 

Si(xy) = x2Si(y) if x G 7r0A 

= y2Si(x) if y G 7c0A 

= 0 otherwise. 
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OVERVIEW AND STATEMENT OF RESULTS 

3.) if i < 2j, then 

6i6j(x)= V )6i+j-sss(x). 
i+l/2<s<i+j/2 ^ J ' 

Because the top operation 6n : nNA —> 7T2NA is the divided square, 
these operations are called higher divided squares. We define, for a fc-tuple 
of integers J = ( ¿ 1 , . . . , ik) with > 2 for all £, 

Si — Sit - - • 6ik 

to be the composition, when defined, of the operations Sit. Define 6{ to be 
admissible if it > 2it+\ for all t. Theorem A.3. implies that we may write 
any composition of the operations 6{ as a sum of admissible operations. 
Define the excess of / by the formula 

e(I) = i\ - i2 i f c. 

Then we have the following computation of the homotopy groups of spheres. 
Let A(-) denote the exterior algebra on the indicated elements. 

Theorem B: Let tn 6 TrnS(n) be the universal homotopy class. Then, 
if n > 0, there is an isomorphism of graded algebras 

7r.S(n) S A(6 / (0 : e(I) < n) 

where 6/ must be admissible. 7r*iS(0) = F2[to]? a polynomial algebra on one 
generator concentrated in degree 0. 

It is the purpose of section 1 through 3 to define and understand the 
structure of homotopy in 5^4. There we will discuss Theorems A and B, 
and more. This structure will be extremely useful in later sections. 

The primary concern of this work, however, is not homotopy, but ho
mology and cohomology. In section 4, we will define, for every A £ sA, 
the Andre-Quillen homology H®A and cohomology HQA. These will be, 
initially, graded F2-vector spaces, but it is our larger purpose to uncover 

11 



P. G. GOERSS 

as much structure in H®A and HQA as we can. We will immediately see 
that H®(-) has some of the good properties that homology should have; 
for example, we can construct cofibration sequences in sA and a cofibra-
tion sequence yields a long exact sequence in homology. Also, there is a 
suspension functor 

£ : sA —• sA 

with the properties that for every A, B G sA, [£A,B]SA is a group and 
H$Y,A =i H^A and H^EA = 0. 

It is worth pointing out that ir+HA is almost never concentrated in de
gree 0, so that to restrict ourselves to simplicial algebras with that property 
would be to deny ourselves the flexibility of this vital tool. 

We begin almost immediately to impose further structure on HQ(-). It 
is the purpose of sections 5 and 7 to prove the following results. 

Theorem C: For A G sA, there is a natural commutative, bilinear 
product 

[ , ] : HQA ® HQA -> H^+n+1A 

and natural homomorphisms 

P{ : HQA -> Hg-^A 

so that 
1.) [ , ] satisfies the Jacobi identity: for all x,y, z G HQA 

[y, A] + \z-> \ x , y]] + [y> l>>x]] = 0; 

2.) P{ = 0 if i > n and Pn{x) = [x,x\, 
3.) for all x, y G HQA and all integers i, [a:, Ply] = 0. 

The will not seem unnatural to homotopy theorists used to deal
ing with the Whitehead product. Indeed, the construction of this product 
owes a great deal to the work of Bousfield and Daniel Kan [7] who, in that 
paper, are concerned exactly with the Whitehead product. The operations 
PL are "Stecnrod operations" for HQ and Theorem C.2 is an unstable con
dition on these operations. 
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OVERVIEW AND STATEMENT OF RESULTS 

After we have defined the product and operations, we become con
cerned with their structure. For this, like Quillen, we must study a spectral 
sequence that passes from H®A to 7r*A. This is an Adams-type spectral 
sequence quite analogous to the lower central series spectral sequence in 
the homotopy theory of spaces that was studied by Bousfield, Curtis, Kan, 
Rector, Quillen, and others. We devote section 6 to fitting the operations 6{ 
of Theorem A and the operations and product of Theorem C into Quillen's 
spectral sequence. Then, in section 8 we supply some applications — in
cluding the facts that the product [ , ] and operations P% are non-trivial 
(which is good!) and that P% = 0 if i < 2. Then in section 9 we prove the 
existence of Adem relations. 

Theorem D: For A G sA, x G HQA, and i > 2j there is an equation 

FiP*(x)= ]T ( ^ " ^ ^ P ^ - ' P ^ x ) . 
s=i-j+l V 5 / 

Then, as a last application of Quillen's spectral sequence, we discover 
and examine a final operation defined only on HQA. 

Theorem E: Let A G sA. Then there is a natural quadratic operation 

/3 : HQA - » HQA 

so that 
1.) /3(x + y) = 0(x) + (3(y) + [ar, y]; 
2.) for all x G H^A and y G H%>A, 

\P(*),V] = [*, [*,!,]]• 

This result is one of the purposes of section 10. 

Now, in calling /3 the "final" operations, we are implicitly stating that 
Theorems C, D, and E encode all the structure of H^(-); or, put another 
way, that there are no universally defined operations except those implied by 
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these results, and that there are no further relations except those implied by 
these results. This is, in fact, the case, and the final five sections are devoted 
to proving this result. The method is a time-honored one: compute the 
cohomology of the universal examples. For spaces, we would be computing 
the cohomology of Eilenberg-MacLane spaces; for simplicial algebras, we 
wish to compute the André-Quillen cohomology of abelian objects in s A. 

If y is a simplicial F2-vector space, we can define a simplicial algebra 
V+ by setting, as a vector space, V+ = V © F2, requiring that F2 be the 
unit, V the augmentation ideal, and V2 = 0. Thus, V+ could be called a 
trivial simplicial algebra. For A G s A, 

HomsA(A,V+) *Ê HomsF2(QA,V+) 

where QA = I A/{I A)2 is the vector space of indécomposables of A. Since 
HomsA(A, V+) is a group, V+ is an abelian object in s A. We will compute 
that for A E s A, 

[A, V+]sA = HomnF2(H?A, 

Thus, if we choose a simplicial vector space K{n) so that 

7T*K(n) ^ F 2 

concentrated in degree n, we will have 

[A,K(n)+]sA ~ [H®A]* = HQA. 

Here [•]* denotes the F2-dual vector space and the last equality will be, in 
fact, the definition of the Aiidré-Quillen cohomology group. The exact form 
of this isomorphism is the usual one: there is a universal cohomology class 
¿n € HQK(n)+ so that the map 

[K(n)+,A]SA—>HQA 

given by 
/ —> HQf(tn) 

is an isomorphism. 
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OVERVIEW AND STATEMENT OF RESULTS 

Thus K{ri)+ represents cohomology and computing HQK(TI)+ for all 
n would yield all natural cohomology operations in one variable. This we 
can do. For a sequence of integers i" = ( ¿ 1 , . . . , is) of integers, let 

pi pii . . . pis 

be the appropriate composition of the operations P%t. Call this composition 
allowable if it < 2it+i for all t and define the length of J by / ( / ) = s. The 
length can be 0, in which case I is empty and PI(x) = x for all x. The 
reader is invited to contrast these definitions and the following result with 
the definitions and conclusions surrounding Theorem A. 

Theorem F: Let n > 1 and let /„. G HQK(TI)+ be the universal 
cohomology class of degree n. Then a basis for HQK(n)+ is given by all 
allowable compositions 

Pl(ln)=Pi> •••Pi'(ln) 

with s > 0, it > 2 for all f, and is < n. For n = 0 we have 

Я£Л-(0) + ^ { F 2 , if n = 0, generated by ¿0 ; 
F 2 , if n = 1, generated by f3io; 
0, otherwise. 

The computation of H&K~(0)+ is done in section 9. The computation 
of HQK(TI)+, for n > 0, is this work's most lengthy project, consuming 
section 12 through 15. The core idea is a spectral sequence due to Haynes 
Miller [16, Section 4] that passes from 7r*A to HQA — a reverse Adams 
spectral sequence, if you will. Since Tz*K{n)+ is an exterior algebra on a 
single* generator of degree n. we have the input computed and reaching the 
output is a theoretically simple matter. Practically, however, there is a 
smothering welter of details and, hence, the numerous sections. 

Theorem F, it turns out, is the crucial calculation, and we can par
lay that result into other computations. To see how, we use the Hilton-
Milnor Theorem of [12]. If we have a sequence of non-negative integers 
/ / 1 . th2. nsn we may consider the abelian simplicial algebra 

[K(nx) x • • • K(n*)]+ G sA 
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obtained by taking the product of the relevant simplicial vector spaces 
K(rii). Then, for A £ sA 

[A, [A-(m) x . . . x K{ns))+)sA 9* H%A x . . . x H%A. 

Therefore a computation of HQ[K{TII) X • - • x K{n8)\+ would compute all 
natural cohomology operations in s variables. We make this computation 
by considering the homotopy type, in sA, of E[A'(ni) x • - • A(n 5 ) ]+ , where 
£ is the suspension functor above. The projections 

[KM x . . . x A'(n 5)]+ K(nk)+ 

with 1 < k < s and the universal classes tk E HQkK(rik)+, define classes 

t f c G ^ f c [ % x . . . x % ) ] + . 

Let L be the free Lie algebra on the s generators tk and let B C L be a 
basis of monomials in the i^. If b E 5 , the b is some iterated bracket in 
the generators ik\ let jk(b) be the number of appearances of tk in b and 
let £(b) = YlJk(b). Then, for b £ 5 , the elements tk and the product of 
Theorem C define a map in the homotopy category 

fb : [A"(ni) x . . . x A~(ns)]+ -+ A'(rc6)+ 

where 

nb = J2^(b)nk + e(b)-l. 

Then, by suspension, we get a map 

E/ f e : E[Jif(ni) x . . . x K(n8)]+ S A > 6 ) + . 

And then, using the fact that [E-A, Z?]+ is a group for all A, i? £ 5^4, we get 
a map 

/ : E[A"(ni) x . . . x K(na)]+ -+ ®beBZK(nb)+. 

The Hilton-Milnor Theorem says that this map is a weak equivalence in 
sA. Thus, using the fact that suspension commutes with cohomology and 
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OVERVIEW AND STATEMENT OF RESULTS 

that cohomology takes tensor products to products, we may conclude that 
there is an isomorphism 

H*Q[K(nx) x . . . x K(n.)]+ Si xbeBH*QK(nb)+ 

and we can finish the computation using Theorem F. The Hilton-Milnor 
Theorem is explored more thoroughly in section 11. 

We can now write down the two main structure theorems of this paper, 
including their proofs — the only proofs of this introduction. 

We now define a category W that will be the target category for HQ. 

Definition G: An object W G W is a graded vector space W = { W n } 
equipped with 
1.) a commutative, bilinear product 

[ , ] : Wm ® Wn — W m + n + 1 

satisfying the Jacobi identity; 
2.) homomorphisms 

p* : wn —• T y n + i + 1 

so that i.) P* = 0 if i < 2 or i > n, and Pn{x) = [x, x]\ 
ii.) [x, Pl(y)\ = 0 for all x, y and i; 
hi.) if i > 2j, there is an equality 

Pipj= ^ (^s~^~l\p^-aPs-
s=i-j+l \ s 3 / 

3.) a quadratic operation /3 : W° —> W1 so that 
i.) fl(x + y) = P(x) + p(y) + [x,y]; and 
ii.) [3(x),y] = [x,[x,y]]. 

Morphisms in W commute with the product and operations. 

Then we have 

Theorem H: Andre-Quillen cohomology defines a functor 

HQ(-) : нЛ -» w. 

17 
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Proof: This follows from Theorems C, D, and E. 

Such a result, by itself, has no teeth — after all, HQ also defines a 
functor to graded vector spaces. Theorem F gives this theorem some force, 
but the next result puts real weight behind Theorem H by stating that, in 
some sense, W is the best possible category. 

The forgetful functor W —> nF2 from W to graded vector spaces has 
an evident left adjoint U. If W G nF 2 has a basis {wQ}, then U(W) has a 
basis given by the union of 

1.) a basis of monomials B for the free Lie algebra on {w^} graded by 
requirements of Theorem C; 

2.) P*'1 - - .P i f c (6) where b G B, k > 1, i k < deg(b), and, for all *, 
2 < u < 2it+i", and 

3.) /3(wa) if wa is of degree 0. 
The structure of U(W) as an object in W is determined by Theorems C, 
D, and E. 

Theorem I: Let V G sF 2 be a simplicial vectors space so that wmV = 
W is of finite type — that is, 7rnV is a finite vector space for each n. Then 
there is a natural isomorphism 

H%V+ ^ U(W*). 

W* is dual to W. 
Proof: If W is finite there is a weak equivalence 

v+-[/c(m)x---x K(ns)]+ 

for some set of non-negative integers {ni , , . . , n , } . In this case the result 
follows from the Hilton-Milnor Theorem and Theorem F. If W is not finite, 
we write V as a filtered colimit of simplicial vector spaces VM C V so that 

_ Vm ~ [ *nV, if n < m; 
7 1 ~ \ 0 , if n > m . 

Then we use the fact that H^V^ ^ limff^V^. 
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OVERVIEW AND STATEMENT OF RESULTS 

The finite type hypothesis is a familiar one: the ordinary cohomology of 
topological Eilenberg-Maclane spaces becomes troublesome if the homotopy 
groups of the Eilenberg-MacLane space are not finitely generated in each 
degree. 

We close this chapter by explaining the relationship between this work 
to the work of others. 

Historical notes: Andre-Quillen cohomology was defined — in its 
full strength — by, of course, Andre and Quillen, but several authors fore
shadowed them. Most notable among these are, perhaps, Lichtenbaum and 
Schlesinger. Other authors have picked up the thread of studying Andre-
Quillen cohomology as a sub-field of local algebra - Avramov and Halperin, 
for example. And, of course, there is the work of Luc Illusie [25] where many 
of the definitions of chapter 1 of this work appear, and which constitutes a 
globalization of the work of Andre and Quillen. 

Andre would probably prefer to regard our algebras as rings augmented 
to F2; that is, for A € sA, he would emphasize the augmentation c : A —* F 2 

and define HQ(A, F 2), using derivations. We will show in section 4 that, in 
fact, 

HQ(A,F2)^HQI:A 

so that 

HQ{A,F2)^HQ-XA. 

In a paper I studied often for inspiration [2], Andr6 defines a product 

( , ) : H$(A, F 2) ® HQ(A, F 2) - HQ

+M(A, F 2) 

and, using his construction, one could define (although he does not) Steen-
rod operations in HQ{A, F 2). We will show in Appendix A, that if d : 
HQ~XA —* HQ(A,F2) is the isomorphism above, then 

d[x,y] = (x,ij). 

Thus our product could be computed by his and visa versa. Andre's product 
is more pleasant in its definition — and thus has the advantage of aesthetics 
over ours — but it is not clear to me how to put his operations into Quillen's 
spectral sequence and, hence, to prove the Adem relations of Theorem D. 
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Finally, I learned of the importance of André-Quillen cohomology from 
Haynes Miller's Sullivan Conjecture paper [16], especially sections 3, 4, and 
5 — this paper is a gold mine, liberally studded with glittering ideas. The 
reverse Adams spectral sequence I use here first appears in section 4 of that 
paper, the suspension appears in section 5, and the key technical device of 
almost-free algebras appears in section 3. I cannot overemphasize my debt 
to that paper, or the importance of several highly productive conversations 
with Haynes Miller. 
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Chapter II: The Homotopy Theory of Simplicial Algebras 

1. Preliminaries on simplicial algebras 
Iu this section we describe a closed model category structure on the category 
of simplicial algebras and give Illusie's canonical factorization of any map as 
a cofibration followed by an acyclic fibration. At the end of the section, we 
discuss the homotopy category associated with this closed model category 
structure. This section details much of the language that we will use in 
the rest of this paper. There is little new in this section; indeed, we are 
compiling results of Quillen [20}, [21], Illusie [25], and Miller [16]. 

First, if V is a simplicial F 2 vector space, we define the homotopy of 
V to be the homotopy of Tr regarded as a simplicial set. This is the same 
as the following familiar calculation. Let V = {Vn} and 

il 

д — ̂ 2di ' V„ —• T n - i 

be the sum of the face operators. (Working over F 2 means that we do not 
need the alternating sum.) Then d2 = 0 and 

тт. Г = Я.(1л S). 

We now turn to the closed model category structure on the category 
of simplicial algebras. Recall that A is the category of commutative sup
plemented F 2 algebras and sA is the category of simplicial objects in this 
category. Then sA has a structure of a closed model category in the sense 
of Quillen. There are weak equivalences, fibrations and cofibrations satis
fying the axioms CM1-CM5 of [20]. We now supply the definitions. Notice 
that for A G sA, we have that TT*A is a graded, commutative, supplemented 
p2-algebra, and that that 7To -4 G A. Furthermore, 7To-4 is a quotient of ,4o 
and the quotient map 

.4o —• 7To-4 

defines a map of simplicial algebras 

6 : .4 —• 7TQA 
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where TTOA is regraded as a constant simplicial algebra. This construction 
is natural in A, so that if / : A —• B is a morphism in sA, we obtain a 
diagram 

A —* TTOA 
if l*of 
B 7T0B 

and hence a canonical map in sA 

(f,€):A->B X^BTTOA 

where the target is the evident pullback. The morphism / will be called 
surjective on components if this map is a surjection. 

Definition 1.1:1.) A morphism / : A —• B in sA is a weak equivalence 
if 

7 r * / : 7r*A —» n*B 

is an isomorphism. 
2.) / : A —> B is a fibration if it is a surjection on components; / is an 

acyclic fibration if it is a fibration and a weak equivalence. 
3.) / : A —» B is a cofibration if for every acyclic fibration p : X —• Y 

in sA, there is a morphism B —> X so that is the following diagram both 
triangles commute: 

A ^ X 
If S 1* 
B Y 

As specializations of these ideas we have fibrant and coGbrant objects. 
We write F 2 for the terminal and the initial object of sA. Then we say that 
A G sA is cofibrant if the unit map rj : F 2 —• A is a cofibration. Similarly, 
we say that A is fibrant if the augmentation e : A —• F 2 is a fibration. Every 
object in sA is fibrant, so we say no more about this concept. 

The following now follows from Theorem 4, pll.4.1 of [20]. 

Proposition 1.2: With the notions of weak equivalence, fibration, 
and cofibration defined above, sA is a closed model catgory. 
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Of course, cofibrations are somewhat mysterious objects and difficult 
to recognize at this point. We will now be more concrete. 

Let S : VF2 —• A be left adjoint to the augmentation ideal functor. 
S is, of course, the symmetric algebra functor. We will call a morphism 
/ : A —> B in sA almost-free if, for every n > 0, there is a sub-vector space 
Vn C IBn and maps of vector spaces 

6i:Vn-+Vn-U l<i<n 

° i : v n -»v; l+i, 0 < i < n 
so that the evident extension 

An®S{Vn) -» Bn 

is an isomorphism for every n and there are commutive diagrams, with the 
horizontal maps isomorphisms: 

An®S(Vn) Bn 

I di®S6i I di 

- 4 n - i ® 5 ( y n _ i ) j B n _ ! 

for i > 1 and e -

An®S(Vn) Bn 

An+x ® 5 ( F n + i ) J 3 n + i 

for i > 0. Only do is not induced up from n p 2 - The following results 
(which are implicit in Quillen, section II.4) can be proved exactly as the 
corresponding result in section 3 of [16,17]. 

Theorem 1.3:1.) Almost free morphisms are cofibrations. 
2.) Any cofibration is a retract of an almost free morphism. 
Proof: The first statement is proved by Miller, using a "skeletal fil

tration" of the morphism. The second follows from Definition 1.1 and the 
next result. 
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Proposition 1.4: Any morphism / : A —> B in sA may be factored 
canonically as 

drg х ^ в 
with i almost free and p an acyclic fibration. 

We will give the proof of Proposition 1.4, as the construction will prove 
useful in the later discussion. To begin, we say a word about cotriples. The 
composite functor 

S = SoI:A->A 

has the structure of a cotriple on A. That is, for A € A there are natural 
transformations 

e A : 5(A) A 

r 7 A : 5 ( A ) - * 5 2 ( A ) 
and these are related in such a manner that we may form the simplicial 
object S.(A) G sA. To be specific, 

5 n ( A ) = 5 n + 1 ( A ) 

and 
d 1 : 5 n ( A ) - ^ 5 n . 1 ( A ) 

is defined by 
d1 = 5 t € S n ~ \ 0 < z < n 

and 
5 , - : 5 n ( A ) ^ 5 n + i ( A ) 

is given by 
si = S ^ S ^ " " 1 0 < i < n. 

Now 5. (A) is an augmented simplicial object in the sense that e induces 
map 

6 A : 5 0 (A) A 

such that edo = ed\. More than this, e induces an isomorphism 

7r*5.(A) ^ A 
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concentrated in degree 0. The retraction that guarantees these isomor
phisms is given by the inclusions in vF 2 

IA — /5(A) 

adjoint to the identity. 
This idea can be greatly generalized. For example, let A e A Then we 

may define the category A/A to be the category of objects under A; that 
is, objects r € A equipped with a morphism A —» V in A making V into 
an A-algebra. The augmentation ideal functor J : A/A —• vF 2 has a left 
adjoint 

SA(V) = A<g)5(V). 

This pair of adjoint functors yields a cotriple 5 A :A/A —>A/A and, as above, 
this yields an augmented simplicial object 

5.Ar — T 

for any object T £ A/A. If A = F 2 , this is exactly the situation above. 

Proof of 1.4: Let / : A —» B be a morphism in sA. Then the last 
paragraph yields an augmented bisimplicial algebra 

(1.5) S*B -» B 

with 
S£qB = (SA<y+1Bq. 

Let 
SAB = diag{SA.B) 

be the resulting diagonal simplicial algebra. Thus, we have factored / : 
A B as 

(1.6) A -+ SAB -+ B. 

The first map is almost free, the second map is a fibration, and the construc
tion is canonical and functorial in / . We need only show that SAB —• B 
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is an acyclic fibration. But, since SAB is the diagonal simplicial algebra 
of SAB, we may filter SAB by degree in q to obtain a spectral sequence 

converging to TT*SAB. But since ir*S*QBQ = BQ, and the isomorphism is 
induced by the augmentation, the result follows. 

The great strength of the construction of (1-6) is precisely that SAB is 
the diagonal of a bisimplicial algebra. This allows the construction of many 
spectral sequences. 

As a bit of notation, if / = r\: F 2 —• B we abbreviate SF*B as S.B. 
Next we come to the notion of homotopy. Notice that in sA, tensor 

product is the coproduct and if A G sA> then the algebra multiplication 

fj,: A <g> A —• A 

is the "fold" map; that is, multiplication supplies the canonical map from 
the coproduct from A to itself. Factor ¡1 as a cofibration followed by an 
acyclic fibration 

A ® A-i-+Cy(A)-£+A. 

By Proposition 2.4 this may be done functorially in A. Cy(A) is a cylinder 
object on A. Then two morphisms f,g : A —• B in sA are homotopic if 
there is a morphism H making the following diagram commute 

A® A Cy(A) 
i fvg i H 

B -=4 B 

where fVg = / i ( / ® g). If / = g and we let H be the composite 

Cy(A)^A-^B 

we obtain the constant homotopy from / to itself. The reader is invited 
to prove that homotopy defines an equivalence relation on the set of maps 
from an object A to an object B. 

We can specialize these notions somewhat. If h : C —* A is another 
morphism in sA and f,g:A—+B are two maps, then we say that / and g 
are homotopic under C if fh = gh and there is some homotopy from / to 
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g which restricts to the constant homotopy on fh. If q : B —> D is a map, 
then there is a corresponding notion of a homotopy over D. 

The following, then, is the lemma that we need to show that many of 
our definitions are well-defined.The proof is in [21] as Proposition 1.3. 

Lemma 1.7: Let / : A —• B be a cofibration and p : X —• Y be an 
acyclic fibration. Then any two solutions B —» X in the diagram 

A —> X 
if S iP 
B Y 

are homotopic under A and over Y. 

1.8: The homotopy category. Associated to sA and the closed 
model category structure we have on sA there is an associated homotopy 
category. This category has the same objects as sA and morphisms 

[A, B]SA = HomSA{X, B)J -

where ~ denotes the equivalence relation generated by homotopy and p : 
X —• A is an acyclic fibration with X cofibrant. Lemma 1.7 implies that 
[A, B]8J\ is well-defined. A morphism in the homotopy category may be 
represented by a diagram 

AJ^-XMB 

and an isomorphism in the homotopy category is such a diagram where / 
is a weak equivalence. This homotopy category is relatively simple because 
every object in sA is fibrant. 
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2. Homotopy operations and the structure of homotopy 
In subsequent sections we will use detailed information about the structure 
of 7r*A, where A G sA. Of course, n*A is a graded commutative, supple
mented F 2 algebra, but it turns out that it supports much more structure 
than this. We first work theoretically — using the language of triples, then 
more concretely; that is, we choose bases to continue the discussion. For 
triples, see [14, Chap VI], where a triple is called a monad. 

The next section is devoted to the interior details of much of the dis
cussion of this section. 

To begin, it might help to give a definition of the category A. Consider 
the symmetric algebra functor S : vF 2 —> A left adjoint to the augmenta
tion ideal functor. By composing with the forgetful functor A —> vF 2 and 
abusing notation, we may regard 5 as a functor S : vF 2 —• vF 2 . Then 
S has the structure of a triple; that is, there are natural transformations 
/i : S2 —• S and r\ : 1 —• S so that certain diagrams commute. Then an 
object A G A is a iS-algebra in the sense that there is a map of graded vector 
spaces c : SA —• A which behaves correctly with respect to fx and rj. A mor
phism in A commutes with the structure maps e; thus, an object A G sA 
comes equipped with a morphism of simplicial vector spaces c : SA —• A. 

To apply this language and the functor 5, we recall a result of Dold's 
[9]. 

If B is a category, let F ( B ) be the category of "endo-functors" of B ; 
that is, the objects of F ( B ) are functors 

F : B - + B 

and morphisms are natural transformations. The category F ( B ) has a 
composition functor 

o : F ( B ) x F ( B ) F ( B ) 

with 
GxF\—>GOJF:B->B. 

The results of Dold's paper, especially section 5, can be used to prove the 
following result. Let nF 2 be the category of graded vector spaces. 

Proposition 2.1: There is a functor 

^ : F(vF2) - > F (nF 2 ) 
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so that 
1.) 4>(G o F) = tp(G) o 

2.) V(i) = 1; 
3.) if V G sF2 is a simplicial vector space, then there is a natural 

isomorphism 
n*F(V) ^ i/>(F)(ir*V) 

We will abbreviate ip(F) to T to shorten notation. Then we have, for 
2.1.3 

**F(V) 2¿ J-(тг .П 
Property 2.1.3 determines the functor T, because, for any graded vector 

space W € nF2, there is a simplicial vector space V € sF2 so that 7r* V = W. 
This can be proved by using the normalization functor on simplicial vector 
spaces; see [15, Section 22]. Indeed, the last two sentences constitute an 
outline of the proof of 2.1. 

We now apply 2.1 to the functor S. Thus there is a functor © : nF2 —• 
nF2 so that for V G sF2 

6(7C*V) S 7T*S(V). 

The fact that 5 is a triple on vF2 and 2.1.1 and 2.1.2 show that © is a 
triple on nF2. Let AV — the notation to be explained below — be the 
category of ©-algebras. An object in AV is a graded vector space W with 
a structure map e : ©W —> W; morphisms in AV commute with structure 
maps. The following is nearly obvious. 

Proposition 2.2: If A 6 sA, then ir+A E AV. 
Proof: The structure map is given by 

7r*e : 7T*SA = ©(7r*A) —• 7r*A, 

where e : SA —> A is the structure map for A e sA. 

However theoretically pleasing this result may be, we can make few 
computations until we have more detailed information about © - just as 
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we can do little in A until we understand S, and stipulate the existence 
of a commutative, associative ring multiplication. The next step, then, 
is to draw on the work of Cartan, Bousfield, and Dwyer to make some 
observations about 7r*A, with A € sA. 

The first observation is the existence of divided power operations. 
These are due, principally, to Cartan. 

Proposition 2.3: [8] Let A € sA. Then there exist divided power 
operations 

7i : *nA —• 7rniA 

for i > 0 and n > 2 so that 
1.) 7o0*0 = 1 G TTQA and ji(x) = x\ 

2.) 7s(a?)7j(a?) = (?*3)7i+j(x) where (£) is the binomial coefficient; 
3.) Jk(x + y) = E t-+ i = f c7*(«)7i(«); 
4.) 7t(arj/) = rc27t(y) = 7t"0*)v2; and 
5.) 7«(7iW) = Jggi7«W-

These are easy to define, and give a taste of the next section. If V is 
a simplicial vector space and C(V) is the chain complex with C(V)n = Vn 

and d = ^2d{ — so that H*C(V) = TT*V — then there is a choice of 
Eilenberg-Zilber chain equivalence 

A : C(V) <g> • • - ® C(V) -> C(\^ ® - • • ® V) 

where the tensor product is taken i times in both domain and range and so 
that in degrees bigger than zero 

Д = J2 *A(0* _ l 

s€£< 

for some homomorphism of graded vector spaces 

A(t) : C(V)W — C ( V 0 i ) 

and where the symmetric group E2- acts on both the domain and the range 
by permuting coordinates. The map A(i) is not a chain map, and the 

30 



THE HOMOTOPY THEORY OF SIMPLICIAL ALGEBRAS 

deviation of A(i) from being a chain map is important (it is one of the 
topics of the next section), but we can say this: if A 6 sA and 

/i : A ® • • • ® A —» A 

is the multiplication, and if x G nnA is represented by a cycle a G An = 
C ( A ) n , then 

ti,A(i)(a ® • • • ® a) G Am
is a cycle and the residue class of this cycle is ji(x). Notice that if x G nnA 
is represented by a G An, then x% is represented by 

//A(c* ® - • • ® a) = ^ ^ flfA(i)(a ® • • • ® a) 

= ta!A(t")(a® • • • ® a). 

Thus x* = i\ji(x). Hence the name "divided power." Also if i > 2, i\ = 0 
mod 2, so rr l = 0. This argument works for x G 7r n A, n > 2, however the 
conclusion is also true if ra = 1, as was known to many people. We record 
this as a proposition. 

Proposition 2.4: Let A G sA and x G 7r n A, rc > 1. Then x2 = 0. If 
i > 0 and 7i is the divided power operation, and if i > 2, then 

' x^iiy), if a: G 7r 0A 
7i(^y) = < yS0*0, i f ! / 6 *oA 

^ 0, otherwise. 

Proof: This is a consequence of the above remarks and 2.3.4. 

Now, a moment's thought will show that if k = 2̂ ' + i, 0 < i < 2 J , then 

7k(x) = 72* 0*07*0*0 • 

This follows from 2.3.2. Further, 2.3.5 implies that 

72(72J 0*0) = 7 2 i + i ( * ) -
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Thus the action of the divided powers on 7r*A is determined by the action 
of 72 and the algebra structure of 7r* A. Thus this operation is paramount. 
The next result details operations that generalize 72. Because of 2.5.1 we 
will call them "higher divided powers." 

Theorem 2.5: ([5],[11], and Lada) Suppose A 6 sA. Then there are 
natural higher divided power operations 

6{ : 7rnA —• 7 r n + t A , 2 < i < n 

so that 
1.) 6{ is a homomorphism 2 < i < n and Sn = 72 - the divided square 

— so that 

6n(x + y) = Sn(x) + 6n(y) + xy; 

2.) the operation Si acts on products as follows: 

Si{xy) = x26i(y) if x 6 7TQA 
= y2Si(x) if y e TT0A 

= 0 otherwise. 

3.) if i < 2j, then 

6i6j(x) = E 
» + l / 2 < 5 < * + i / 3 

ет-г) 5a(x). 

Remark 2.6:1.) Bousfield's work extends to odd primes, but the 
relations analogous to 2.5.3 have not been worked out in admissible form; 
hence, we choose to concentrate on p = 2. 

2.) We define a composition 

à 1 = £ » 1 • • • £tfc 

to be admissible if it > 2it+i for all i. Then the relations of 5.3.3 imply 
that if SiSj is not admissible, then we may rewrite this composition as a 
sum of admissible operations. The usual argument then shows that any 
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composition of higher divided powers may be rewritten, if necessary, as a 
sum of admissible operations. 

3.) The range of summation in 2.5.3) differs from Dwyer's in that it 
always returns an admissible answer. The fact that the sum can be written 
as we say was first proved by Tom Lada (unpublished). 

We will discuss how the operations 6,- are defined in the next section. 
Now, the functor & above must reflect all this structure. In fact, if 

W G 71F2, then &W will be the algebra on generators 6i(w), w G W 
subject to the relations implied by 2.5. Two specific ingredients go into this 
calculation. 

First, as remarked above, for every W € nF2, there is a V € sF2, so 
that 7T+V == W. Thus &W = w*SV and, hence, SW supports an action of 
the higher divided powers, subject to the axioms suggested by 2.5. 

Second, it is sufficient to compute &W when W is one-dimensional 
over F2 . This is because if W is arbitrary, then W is the filtered colimit 
of its finite dimensional subspaces and if W is finite dimensional, then W 
is the direct sum of one-dimensional vector spaces. Then one notices that 
since S commutes with colimits and since 

S(V1®V2)9*S(V1)®S(V2), 

the naturality of Dold's result implies that & commutes with colimits and 

e(w1 e w2) = e ( w i ) ® e(w2). 
Now, we have already seen (2.6) what it means for a composition Sj 

to be admissible and that any composition may be rewritten as a sum of 
admissible operations. Define the excess of / = ( ¿ 1 , . . . , %k) by the formula 

e(J) = ¿1 - ¿2 i k . 

Let A( ) and T( ) denote exterior and divided power algebra respectively 
and let F(n) 6 nF2 be the graded vector space that is one-dimensional over 
F 2 , concentrated in degree n. 
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Proposition 2.7: Let i G F(n) be the non-zero element. Then, if 
n > 0, there is an isomorphism of graded algebras 

6 № ) ) = A(67(0 : e(I) < n) 
^r(6/(t) : e ( / ) < n ) 

where 6/ must be admissible. &(F(0)) = F 2[*], a polynomial algebra on 
one generator concentrated in degree 0. 

Proof: This is in [5], Section 7, or [11], Remark 2.3. 

The action of the higher divided powers is the obvious one suggested 
by the notation of 2.7 and the axioms of 2.5. Proposition 2.7 allows us to 
compute &W for all W G nF 2 . 

We can now give a more concrete description of the category AV. The 
notation is meant to be suggestive: the A stands for algebra, and the V for 
higher divided powers. By combining the definition of AV as the category 
of ©-algebras and Corollary 2.7, we have that A G AV is a graded algebra 
with an action of the higher divided power operations 

Si : A n —• A n+« 

so that the axioms suggested by 2.5 hold. A morphism in AV is an algebra 
map that commutes with these operations. 

Notice that, in a sense, Proposition 2.7 gives a calculation of the homo
topy groups of spheres in sA. To see this, Let K(n) G sF 2 be a simplicial 
vector space so that 7r*K(n) = F 2 concentrated in degree n. Then, in the 
homotopy category of simplicial vector spaces 

[K(n),V]8F2**7rnV. 

Here we use that a map of simplicial vector spaces is determined up to 
homotopy by the map on homotopy. This is proved in May's book [15]. 
Then, using the adjointness between the augmentation ideal functor and 
the symmetric algebra functor, we have for A G sA 

[S(K(n)),A]aA [K(n),IA]sF3 

^ irnIA. 
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But TT*IA = Iir*A , so 

- j A csf / *nA, if n > 0; 
\ / 7 r 0 A , ifn = 0. 

Thus S(K(n)) represents homotopy and deserves to be called the rc-sphere. 
And, of course, 

*.s(K(n)) = efaK((n)) = e№)) 
is calculated by Proposition 2.7. 

3. Homotopy operations and cohomology operations 
For future applications, we need to know how the homotopy operations 6{ 
of the previous section are defined. Following Dwyer, this is handled by 
investigating the symmetries inherent in one of the Eilenberg-Zilber chain 
equivalences. This contrasts with the usual definition of cohomology op
erations, which investigates the deviation of the other chain equivalence 
from being commutative on the chain level. We will compare these two 
definitions at the end of the section. 

We now give Dwyer's definition [11], reserving Bousfield's definition 
until later. If V is a simplicial vector space, let C(V) be the associated 
chain complex obtained by taking the differential to be the sum of the face 
operators. If V and W are simplicial vector spaces, define 

K : C(V) <g> C(W) -> C(V ® W)9 n>0 

to be the map of degree (—n) that is zero on [C(V) ® C(W)]m for m ^ 2n, 
and given in degree 2n by the projection onto one factor: 

[C(V) <g> C(W)]2n = ®P+q=2nvp ®wq-+vn® wn. 

Let T denote any map that switches factors. 

Lemma 3.1: [11] Let V, W be simplicial vector spaces. Then there 
exist natural homomorphisms 

A* : [C(V) <g> C(W)]m - [C(V ® W)]m.k 
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for k > 0 and defined when m > 2k so that 
1.) A 0 + TA°T + 0o = A is a chain equivalence; 
2.) 5 A * - 1 + A*""^ = Ak + TAkT + <f>k for fc > 0, whenever both sides 

of the equations are defined. 

Dwyer proves that the maps Ak are essentially unique, as we will see 
below. Also, A 0 was called A(2) in section 2, where we were discussing the 
definition of the divided powers. 

If A 6 sA, then A has commutative multiplication fj,: A (g> A —• A, and 
we can define a map 

0,- : C(A)n — C ( A ) n + f - , 1 < i < n 

by, for n — i > 0 

(3.2.1) ©,(a) = A*A n - \a <g> a) + / i A n - * - 1 ( a <g> 5a) 

and, for t = n, 

(3.2.2) © n ( a ) = //A°(a <g> a) . 

©i is defined for n — i — 1 > 2n or 1 < i < n. Taking boundaries we have 

(3.3.1) dOi(a) = ©,(5a), 2 < i < n 

(3.3.2) den(a) = /xA(a ® 5a) 

and 

(3.3.3) 50 i ( a ) = 0 i (5a ) + a 2 , for ra > 2. 

Now the 0,- are not homomorphisms, but are quadratic: 

(3.3.4) e{(x + y) = 0i(x) + 0 t - (y) + S/iA 7 1 " 1 "- 1 ^ ® y), 2 < i < n 

and 

(3.3.5) 0 n (a: + y) = en(x) + 0 n ( y ) + /iA(ar <g> y). 
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Thus, if a is a cycle representing x G 7cnA, then the residue class of 0 , (a) 
defines an element 

Si(x) G 7 r n + l A , 2 < i < n. 

This defines the operation 6,-. Notice that if i is not between 2 and n, then 
6i is not defined on 7 r n A The formulas of (3.3) will be useful later. Indeed, 
(3.3.4) and (3.3.5) immediately imply 2.5.1. 

Bousfield's definition is more functorial. Let V be a simplicial vector 
space and let S2V G sF2 be the quotient of V <g) V by the action of E 2 that 
permutes factors. S2V is the vector space of coinvariants of this action. 
Then, notice that the homomorphisms Ak of 3.1 define maps 

6i : 7rnV —» 7 r n + l - 5 2 V , 2 < i < n 

by sending x, represented by a 6 Vn, to 6i(x) represented by the residue 
class of 

An-{(a (8) a) 

in 5 2 ^ . If A G sA, then the commutative algebra multiplication A® A —• A 
defines a map 

¡1: S2A —> A 

and the operations 6,- is the composite 

(3.4) 7rnA-^7cn+iS2A^+7cn+iA. 

Thus, to define the operations 6,-, it would be sufficient to compute ir*S2A. 
This is what Bousfield does. In fact, we can read his calculations off of 
Proposition 2.7. To see this, let V G 5F2 and let SnV denote the coinvari
ants of V®n under the action of S n that permutes the factors. Then, by 
Dold's result (2.1) 

ir*snv ^ en(**v) 
for some functor &n : nF2 —» nF2. Furthermore, since the symmetric 
algebra on V can be decomposed 

S(V) * ®n>0SnV 
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where SQV = F 2 regarded as a constant simplicial vector space, we have 

hgrbn * Ф„>0вп(7Г.У). 

A spanning set for &(7r*V) as a graded vector space is given by products 

Xj1 . . . Xjn 

where Xjt is of the form Xjt = Sj(v) and v £ 7r*V. We define a weight 
function on this spanning set by 

wt(v) = 1 if v £ TC*V 

wt(xy) = wt(x) + wt(y) 
wt(6i(x)) = 2wt(x) 

Then Bousfield proves the following [5]: 

Proposition 3.5: &n(n*V) is spanned by the elements of weight n. 

In particular, &2(n*V) is spanned by elements of the form vw where 
v,w £ n*V and if v £ 7rnV with n > 0 then v ^ and by elements 

i; G ̂ V . As a further specialization, if K(n) £ sF 2 is the simplicial 
vector space so that 

7r*K(n) 2 F 2 

in degree n generated by i, then 7r*52.K"(n) = ©2(-F(ra)) where F(n) is as 
in 2.7, and &2(F(n)) is generated by 6,-(0» 2 < i < n. If V € sF 2 , there is 
an isomorphism 

[ ^ ( n ) , y ] 5 F 2 - ^ ^ o m n F 2 ( 7 r . / ^ ( n ) , 7 r . y ) ~ 7 r n y 

given by nbdfhognv 

where [ , ] S F 2 is the homotopy classes of maps in sF2. If A G sA and 
x G 7r n A choose a map / : K(n) —• A so that 7r^f(t) = x and consider the 
composition 

7r.S 2/*r(rz)- ^nmS2Am*mA. 
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The image of 6i(i) under this composition is 6{(x). This definition agrees 
with the previous one, as Dwyer proves that 6i(t) (as in (3.4)) is non-zero, 
and hence 

6i(i) = 6i(t) e ir*s2K(n). 

For this reason we will drop the notation "6 t " . Additionally, we see that 
Dwyer's definition of the Si is independent of the choice of maps A f c of 3.1. 
Finally, notice that Si defines an operation 

6i : 6 » ( V ) - » B2n(V). 

We now contrast the definition of the operations Si with the construc
tion of Steenrod operations, stressing the general situation. In this case, we 
have simplicial vector space C equipped with a cocommutative coproduct 

$ : C -> C ® C 

in the category of simplicial vector spaces. Then we use the following result. 

Lemma 3.6: For simplicial vector spaces V and W, there are natural 
homomorphisms of degree k 

Di : C(V ®W)-+ C(V) (2) C(W) 

so that 
1.) Do is a chain map, a chain equivalence and the identity in degree 

0; and 
2.) S A ' + i + A + i d = Di + TDiT. 

Of course, T is the switch map. This is proved in Dold's paper [10]. If 
( )* denotes the F2-dual, then we can define natural operations 

Sq* : 7 r n C* -+ 7 r n + i C * 

when C is a simplicial vector space equipped with a cocommutative coprod
uct. 

7r*c* = H\c,d*) 
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where d* = : ~"> Cn+i- K ^ € 7 r n C * is represented by the cocycle 
a G C*, then Sqf (or) is represented by the cocycle 

il>*DZ_i(a ® a). 

Of course, Sq n (x) = x2 in the graded algebra 7r*C*. 
The operations Sq1 are always homomorphisms; therefore, when 7r*C 

is of finite type, we obtain dual operations 

(.)Sq* : 7CnC — wn-iC 

which we write on the right. Thus if a; € 7rnC, we have xSq% 6 7r n _ iC . 
These operations can be defined directly — without the use of the double 
duals — as follows. Since V ' C —» C ® C is cocommutative, we get an 
induced map 

i/>:C-> S2C 

where 
5 2 C = ( C ® C ) E a 

is the vector space of invariants under the action that permutes the coordi
nates. Thus it makes sense to compute n*S2C and then to examine 

7 r * ^ : 7r*C —> TT+S2C. 

So let V be a simplicial vector space. If V = K(n), then we know that 

Trn+iS2K(n) ^ F 2 , if 0 < i < n 

generated by a class a^t). The method of universal examples used above 
now defines, for all simplicial vector spaces V, a natural operations 

Oi : 7cnV -> 7rn+iS2V. 

In addition, if we define 

(1 + T):V®V ->V®V 
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by 
(1 + T)(x ®y) = x®y + y(g)x 

then we have a map 

7T*(1 + T) I 7T+V ® 7T*V -> 7C*S2V. 

Proposition 3,7: Let V be a simplicial vector space. Then 7 r * 5 2 V is 
spanned by the classes 

<7 t(x), 0 < i < n 

where x G nnV and 
n*(l + T)(x®y) 

where x, y E 7c+V and x ^ y. All these classes are non-zero if x ^ 0 and 

y 7* 0. If 
/ 9 : 7 r . S 2 y - - + 7 r . F ® 7 r * V r 

is the map induced by the inclusion S2 V Ç V ® V, then 

/97r*(l + T)(x Qy) = x®y + y<2)x 

p<jn{x) = x 0 x 

p<Ji(x) = 0, 0 < ¿ < n 

for x E -KnV. 
Proof: This is a consequence of Adem's work or a modification of 

Dwyer's techniques [11. Section 5]. 

Thus, if xp : C —+ C % C is a cocommutative coproduct, then under 

TT+^ : 7T.C - > TT*S 2 C 

we have 

Í3.8) ^ ( x ) = ]T TT*(1 + T)(yj ® + ]T <7¿(xSq¿). 
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Immediately we see that xSq' = 0 if 2i > n — the usual unstable condition 
equivalent to the condition that 

0 = Sq*' : 7TnC* - + 7 T n + , ' C * 

if i > n. We also note that we can recover coproduct 
n/2 <g> xSqn/2 + ^ ys <g) ^- + ^ 

using Proposition 3.7. Applying p we obtain, for x in degree ra, 

7r*tf>(x) = x S q n / 2 <g> x S q n / 2 + ^ ys <g) ^- + ^ ® j/j G 7T.C <g> 7r*C 

where x G 7 r n C and Sq n^ 2 = 0 if n is odd. 
A final technical note is this: if we consider 

(1 + T) : V <g> V — 5 2 F 

we have 
(1 + T)(x <g> y) = (1 + r)(y <g> x) . 

Therefore, we get an induced map 

tr : S2V S2V. 

Lemma 3*9: Under the map 

*r. : w*S2V 7 r . 5 2 y 

we have, for x G 7 r n V 

<r*(5i(x)) = <7,(x), 2 < i < n 
tr+(xy) = ^„(1 + r)(x ® y). 

Proof: The statement about tr*(6j(x)) follows from the universal ex
ample V = iiT(n), once we know that 

*r. : iç*S2K(n) 7r . 5 2 i f (n ) 
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is an injection. But this follows from Dwyer's work [11, Section 5] and 
Adem's calculations. The statement about tr*{xy) is a simple calculation. 

Notice that Lemma 3.9 implies that tr* is an injection in positive de
grees and that there is is a commutative diagram. 

*nV - i t . irn+iS2V 
I = 1 I R * 

*nV -Si* 7 T n + i S 2 F 

whenever it makes sense; that is, for 2 < i < n. 
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Chapter III: Homology and Cohomology 

4. Homology, cohomology, cofibrations, and the suspension 
In this section we define the Audre-Quillen homology and cohomology of our 
algebras and discuss when there is a long exact sequence in homology. Then 
we define one of the most important tools of this paper - the suspension of 
a simplicial algebra. Finally, since our definition is different than the one 
that. Andre and Quillen give we show that ours yields the same groups as 
theirs, with a degree shift. 

Homology is, for Quillen, the derived functors of abelianization. Thus 
we wish to determine the abelian objects in sA. So we turn to the study 
of group objects in sA; that is, we examine objects B G sA so that 
Honis^(A,B) is a group for all A G sA. For this we need the categori
cal product in sA. If A, B G sA, define 4 X p 2 B by the pull-back diagram 
of simplicial vector spaces 

A x F a B -> B 
i i € 

A F 2 

where e is an augmentation. A x^2 B is easily seen to be the product of A 
and B in sA. There is a canonical map 

p : A® B -> A x p 2 B 

given by 
p(a <S> b) = {aqe(b), 7]€(a)b) 

where ?] is the unit map. 
Therefore, if B is a group object in sA, then there is a multiplication 

m : B X F 2 B 

and a commutative diagram 

(4 .1 ) 

B B x c . B 
i ii I m 
B -=+ B 
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Here fi is the algebra multiplication. Hence, if IB is the augmentation ideal 
of B, we have IB2 = 0. Thus 

B ^ (7B)+ 

where ( ) + : sF2 —• is the functor from the category of simplicial vector 
spaces which sets 

V+ = V®F2 

with F2 the unit, V the augmentation ideal, and V2 = 0. In other words, 
V+ is a trivial algebra in the sense that all non-trivial products are zero. 
In particular, it is now obvious that B is is an abelian group object in sA. 
Therefore, we have proved the following. 

Lemma 4.2: Let AH(sA) be the sub-category of sA whose objects 
are abelian group objects and whose morphisms preserve the groups multi
plication m of (4.1). Then 

1.) ( )+ : sF2 —» AH(sA) is an isomorphism of categories; and 
2.) every group object of sA is an abelian group object. 

There is, for A E sA and V G sF2, an obvious isomorphism 

HomsA(A, V+) « HomsF2(QA, V) 

where QA = I A/1 A? is the indécomposables functor. Or, more succinctly, 
the indécomposables functor Q is left adjoint to ( )+ and deserves to be 
called the abelianization functor on s A. Since, for Quillen [20, Section 
II.5], homology is the derived functors of abelianization, we have the next 
definition. 

Definition 4.3: Let A e sA. Define the Andre-Quillen homology of 
A as follows. Choose an acyclic fibration p : X —• A with X cofibrant in 
sA and set 

H?A = n*QX. 

The cohomology of A is given by 

H*QA = (H?A)* ^ 7r*(QX)*. 
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Proposition 4.3:1.) Hf-A and HQA are well-defined and functorial 
in A; 

2.) if / : A —* S is a weak equivalence in s,4, then 

H?f : H?A — H?B 

is an isomorphism; and 
3.) if V e sF 2 , then 

[A, V+]sA ~ i î o m n F 2 (H®A, ir*V) 

where nF2 is the category of graded vector spaces over F2. 
Proof: Parts 1 and 2 follow from the properties of cofibrant objects 

and Lemma 1.7. Part 3 follows from the isomorphisms 

[A, V+]sA *< HomsA(X, ~ 

^Homs¥2{QX,V)/ ~ 

^ Homn¥2{^QX^V) 

where X —> A is an acyclic fibration with X cofibrant, ~ denotes homo-
topy, and we use the fact that a map between simplicial vector spaces is 
determined up to homotopy by its effect on homotopy groups. This follows 
from Proposition 2.1.1. Homotopy in sF2 is defined in a manner similar to 
homotopy in s A. The model category structure on sF2 is explored in [20, 
Section 11.4]. 

Example 4.4:1.) Let K(n) 6 sF2 be a simplicial vector space so that 
7r*iiT(n) = F2 concentrated in degree n. Then, by 4.3.3, 

[A,K(n)+]sA S HomnF2(H?A,7r*K(n)) 

9ÉH%A. 

Thus K(n)+ € sA represents cohomology, similar to the way that Eilenberg-
MacLane spaces represent the cohomology of spaces. Hence l/^/if (ra)+, as n 
varies, gives all cohomology operations of one variable. Furthermore, since 

[A, (A'(n) x K(m))+]sA » H%A x HQA 
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we have that HQ(K(TI) X JK"(m))+ , as n and m vary, gives all cohomology 
operations of two variables, such as products. We will show how to com
pute the cohomology groups HQK(TI)+ and HQ(K(n) x 2T(m)) + in later 
sections. 

2.) Let A € A be regarded as the constant simplicial algebra that is A 
in each degree and with every face and degeneracy map the identity. If we 
perform the construction of 1.6 on A we obtain a simplicial resolution 

e : S.A —> A 

with 7r*5.A = A concentrated in degree 0. Of course, S.A is almost free 
and, hence, cofibrant. Thus 

H?A 7C+QS.A. 

But 7rNQS.A is often called the nth derived functor of the indécomposables 
functor with respect to the cotriple obtained from the symmetric algebra 
functor S] hence we write 

H?A~LfQ(A). 

We now give an example of the flexibility that general objects in s A 
supply. This is the long exact sequence of a cofibration in s A — a long exact 
sequence related to Quillen's transitivity sequence [21]. Let / : A —• B be 
a morphism in s A. Using the construction of (1.6), form the commutative 
square 

S A idL C R 

I P A ^ l PB 

A B 
and factor 5 . / as an almost free map followed by an acyclic fibration 

S.A-^X^+S.B. 

Then define the mapping cone of the morphism / by the equation 

M ( / ) = F 2 ®S.AX. 
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M(f) is almost free and, hence, cofibrant. Lemma 1.7 implies that M(f) 
is well-defined up to homotopy equivalence and functorial in / in the ho
motopy category. (A homotopy equivalence is a weak equivalence with a 
homotopy inverse.) We could use the construction of (1.6) to make M ( / ) 
strictly functorial. 

Proposition 4.6: There is a long exact sequence in homology 

. . . - H?AH-±JH?B - H?M(f) -> H°_XA - . . . 

and a long exact sequence in cohomology 

• H ^ A - * HQM(/) -+ H ^ B ^ H ^ A 

Proof: The cohomology result is obtained from the homology result 
by dualizing. To prove the homology result, notice that since S.A is almost 
free and i is an almost free morphism, the sequence of simplicial algebras 

S.A-UX - > F 2 ®gmAX 

yields a short exact sequence of simplicial vector spaces 

0 QS.A ^QX^ Q(F2 ®S.A X)^0 

Since p : X —> S. B is an acyclic fibration and the composition of cofibrations 
is a cofibration, we have that 

7T+QX S H?B 

and the result follows. 

The higher homotopy of M(f) is often non-trivial, even if ic*A and 
7C+B are concentrated in degree 0. For computational purposes, we have 
the following result, from [20, Theorem II.6.b)]. Let / : A —• B be a 
morphism in sA. 

Proposition 4.7: There is a first quadrant spectral sequence of alge
bras 

Tor;*A(F2,ir*B)Q = • 7 r p + , M ( / ) . 
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Notice that if / : A —• T is a map of constant simplicial objects in sA, 
then this result implies that 

r:*A(F2,F2)=>7rA = 0 = JJ 

Of particular interest is the case where B =. F 2 is the terminal object 
in sA and / = e : A —> F 2 is the augmentation. Because the cofiber of a 
the map to the terminal object deserves to be called a suspension, we define 
the suspension of A by the equation 

S A = M(c) . 

Since Jyj?F2 = 0, 4.6 says that there are isomorphisms 

(4.8) 
A = 0 = JJn 1 

H%ZA 9* H^A n 

and 
i f 0

Q £ A = 0 = J J Q E A . 

The suspension has other properties that are worth recording here. For 
example, from [12] we have that there is a homotopy associative coproduct 

i/> : £ A - + S A (g> E A 

that gives 7r*EA the structure of a Hopf algebra that is connected in the 
sense that 7r 0 £A = F 2 . This coproduct can be used to turn the spectral 
sequence, obtained as a corollary to Proposition 2.12 

(4.9) T o r : * A ( F 2 , F 2 ) = > 7 r * E A 

into a spectral sequence of Hopf algebras. 
To specialize even further, if we regard A G A as a constant simplicial 

algebra, then the spectral sequence of (4.9) collapses and we obtain an 
isomorphism of Hopf algebras 

7 r . E A ^ T o r £ ( F 2 , F 2 ) . 
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Finally, the work of Miller [16,Section 5; 17] implies that if B{A) is the bar 
construction, then there is a weak equivalence is sA 

S A - > B(A). 

Thus the suspension is not so unfamiliar after all. 
The following result records some initial observations about Hp A. Re

call that if A 6 5-4, then 7TQA G A. 

Lemma 4*10: Let A , B G s A. Then 
1.) H^A S QTTOA; and 
2.) H? preserves coproducts: H?(A (g) B) ^ H?A 0 H?B. 
3.) Let V G sF2 and S(V) G s A the resulting simplicial symmetric 

algebra. The H?S(V) *t w*V. 
Proof: The first part follows from the fact that the indécomposables 

functor is right exact; that is, Q preserves surjections. For the second, if 
X -+ A and Y —* B are acyclic fibrations with X and Y cofibrant, then the 
induced map 

X <g> Y -> A <g> B 

is an acyclic fibration. Since the coproduct of cofibrant objects is cofibrant 

H?(A ® B) & ir*Q(X <g> Y) 
S n*QX 0 n*QY ^ H?A 0 H?B. 

For the third statement, notice that S(V) is almost-free (in fact, "free") 
and that QS(V) V. Hence H?S(V) 2 **QS(V) Si T T . V . 

Remark: If K(n) G sF2 is so that n+K{ri) = F 2 concentrated in 
decree n. then 

n*QX 0 n*QY ^ H? (A (g) B) ^ H?A 0 H 
0, otherwise. 

Since S(K(n)) is the n-sphere in sA, this homology is not surprising. 

Quillen and Andre, taking a more general viewpoint, define cohomolog 
slightly differently. We end this section by explaining that our definitk 
agrees with theirs, with a dimension shift. 
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Let A be any commutative ring, V a A-algebra, and M a T-module. 
Then define the module of derivations 

£>erA(I\M) 

to be the A-module of A-module homomorphisms 

d:T-*M 

so that 
d(xy) = yd(x) + xd(y). 

Now let A G sA. Factor € : A —• F 2 as a cofibration followed by an 
acyclic fibration: 

A — X-UF2. 

Then André and Quillen define 

(4.11) H*(A,F2) = **DerA(XtF2) 

where F 2 is regarded as an X-module via the augmentation. However, one 
easily checks that 

DerA(X, F 2) ^ Horn8p2(Q(F2 ®A X),F2) 

so that 

(4.12) Hn(A, F 2) s # s # e _ 1 A 
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5. Products and operations in cohomology 

This section is devoted to constructing a commutative product 

[ , ] : H£A <g) HQA — # 2 + m + 1 A 

and operations 
Pi : HQA Hff-WA 

for A G sA. We will show that Pn(x) = [x, x] for x G HQA, but will leave 
the proofs of the other properties of the product and operations until later 
sections. 

In the homotopy category associated to our model category structure 
on sA, any simplicial algebra A is isomorphic to an almost free simplicial 
algebra. Since homology and cohomology are functors on the homotopy 
category, by 4.3.2, we may as well assume that A is almost free in sA. 
Then for all s > 0, 

A8 = S(V3) 

for some graded vector space Vs. Of course, S : vF2 —• A is the symmetric 
algebra functor left adjoint to the augmentation ideal functor. The vector 
space diagonal 

A:Va-+Va®Va 

yields, after applying 5, a coproduct 

x/>s = SA:As = S(VS) S(VS) ® S(VS) = AS®AS 

that gives As the structure of a commutative, cocommutative Hopf algebra 
with conjugation in A. In particular, for any A G .A 

HorriA(As, A) 

is a group; indeed 

HomA(As,K) 2 HomA(S(VXK) 

9ÉHomVF2(VS,IA) 
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and all isomorphisms are group isomorphisms. Hence HomA(As, A) is an 
F 2 vector space. Now, because A is almost free, 

di : A8 —* A a _ i , 1 < i < 8 

and 
S{ : A8 —• A 5 + i , 0 < i < 8 

are maps of Hopf algebras. Only do is not necessarily a map of Hopf al
gebras; hence, it makes sense to measure the deviation of do from being a 
Hopf algebra map. Define 

(5.1) f : A8 A8-i ® A8-i 

to be the product (which is the same as difference), in the group 

HonriA(As, As-i <g) A a _ i ) , 

of 
(d0 <g) d0)i/>8 : As —* As-i ® Aa-i 

and 
i/>s-ido : As —* A 5 _ i (8) A a _ i 

The morphism £ actually factors through a subalgebra of Aa—i ® A 3 _ i . If 
B , C 6 s.A, let B X p 2 C be the product defined in the previous section and 
p : B ®C —• B X p 2 C the canonical map from the coproduct to the product. 
Define B A C by the pull-back diagram (of simplicial vector spaces) 

B AC -> B (8 )C 

F 2 BxF2C 

Then B AC & sA. As an aside, notice that if X and y are pointed spaces 
with smash product X AY, then 

H*(X A y, F 2) S i T (X, F 2) A JT (y, F 2). 

54 



HOMOLOGY AND COHOMOLOGY 

Then, for A E s A almost free, there is a factoring 

(5.2) 
As As-i A As-i 

As — • A s _ i <8) A*_i 

To see this, one need only check that the two composites 

As-^As-i <8> A 5 _ i ^ i A a _ i 

and 
As-^->As-i <8> A a _ i ^ A f i _ i 

are the trivial map 
r/€ : A 5 A 5 _ i . 

For the morphism € (8) 1, say, this is equivalent to showing that 

(e (8) l)(do <8> ¿ 0 ) ^ 5 = (e <8> 1 )^5-1^0 : ^ « —* ^ « - 1 -

But this is obvious. A similar argument can be given in the other case and 
that completes the definition of the map £ of (5.2). 

To define the product on cohomology of the simplicial algebra A € 
s A, we need the following lemmas. Let Q( ) denote the indécomposables 
functor. 

Lemma 5.3: For B,C £ s A, there is a natural map 

Q(B AC)-+QB®QC 

Proof: The map B AC —• B <8) C induces a map 

I(B AC)^IB®IC 

where / ( ) is the augmentation ideal functor. The result follows by inves
tigating this map. 
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For the next lemma, we need some notation. If / , g : A3 —• A with 
A € sA almost free, let / * g denote the product of / and g in the group 
Homji(A8, A); that is, / * g is the composite 

A3^A8 <g> Aa^A ® A — A 

where the last map is multiplication. Notice that 

(5.4). Q(f *9) = Qf + Qg- QA* -> QA 

Thus, the next result will allow us to compute boundary homomorphisms 
in various chain complexes. 

Lemma 5.5: Let A G sA be almost free. Then if 

f : Aa —• As-i A As-i 

is the map of (5.2), we have 
1.) (d* A di)£ = fd»+i, i > 1; and 
2.) (d 0 AdoK = Krfo]*Kd1]. 
Proof: These are simple consequences of the simplicial identities; we 

will do 2.) 
It is sufficient to show that for 

f : As -+ As-i ® A s _ i 

we have the equation 

(d 0<g>d 0)£ = 

This is because the map 

ffom^(As, A 5 _ 2 A As-2) —• HomA(Aa> A3-2 ® -¿«-2) 

is an injection. However, 

f = [(d0 ® d 0 )^ ] * [Ho] 
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where the coproducts ij)s and V^-i Q 3 : e abbreviated to xj). Now, since A is 
almost free, the coproduct if> commutes with dt- for i > 1: 

(di ® di)tp = \j)di, i > \ . 

Thus we may compute, using the facts that HorriA(Aa, A) is an F2-vector 
space and that dodi = dodo' 

\(d0 <g> d0)£l * [Wi] 

= [(d0 ® d 0 ) V] * [(do ® d0)ipd0] * [(d0 ® d 0 ) ^ i ] * [Vxfodi] 

= [(d0 ® d0)
2V>] * [ ( ¿ 0 ® doV'do] * [(d0 ® d 0)V] * [M)d0] 

= [(d0 ® d 0 )^d 0 ] * [xfrdodo] 

= & 0 . 

The result follows. 

If V is a simplicial vector space let C(V) be the associated chain com
plex. The following is now an immediate consequence of the previous result. 

Corollary 5.6: If f : AS —• A 5 _ i A A 5 _i is the map of (5.2), then f 
induces a chain map of degree —1 

Q£ : C(QA) -> C(Q(A A A)). 

We now use f to define a product in the cohomology of a simplicial 
algebra. Let A G sA. Since A is weakly equivalent to an almost free object, 
we may assume that A is almost free. Applying Corollary 5.6, we know 
that f induces a map of degree —1: 

(5.7) QA-^Q(A A A ) - » QA 0 QA. 

Let us call this map tjjA. By (5.3) and 5.6, we know that these are maps of 
chain complexes. We now define a product 

[ , ] : H%A 0 HQA — H%+M+1A 
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as the map induces by the map of cochain complexes 

QA* ® QA* —• (QA ® QA)*^QA*. 

The first map is the canonical homomorphism from V* ® W* to (V ® W)* 
and we use the Eilenberg-Zilber Theorem to give a natural isomorphism 

TT*(QA* ® QA*) 9* H*QA ® H*QA. 

The product is commutative on the chain level. We record this fact in the 
following result. If V is any vector space, let T : V ® V —• V ® V be the 
switch map T(w ® v) v ® iz. The next result follows from the definitions. 

Lemma 5.8: We have equality between the following morphisms: 

tl>A = Ti/>A :QA-+QA®QA 

Proof: For A € s-A almost free the Hopf algebra diagonal map 

tpa : Aa -* A8 ® Aa 

is cocommutative; that is, ips = Ti/>a> The result now follows from the 
definition of £. 

Corollary 5.9: The product 

[, ]:H*QA®HQ

QA^H*+Q+1A 

is bilinear and commutative. 

We now use Lemma 5.8 to define the operations. Let A € &A be almost 
free, and Q£ as in (5.7). Let {Dk} be a collection of higher Eilenberg-Zilber 
maps as guaranteed by Lemma 3.6. Define a function 

6 * : QA* QA* 

of degree i + 1 by setting, for a of degree n 

(5.10) e > ) = r A D n - i ( . < x ® < * ) + ® &*: 
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Here we let Dk = 0 if k < 0. Then one easily checks, using Lemma 5.8, 
that 

(5.10.1) de{(a) = il>*AD*n+i-i(d<x ® d a ) = ©'"(&*). 

Let 

(5.10.2) P1" = 7r*e l : # £ A -> ff£A. 

If A € is not almost free, choose an acyclic fibration X —+ A and define 
the operations in HQX = -HQA. 

Lemma 5.11: If x € HQA, then P*(ar) = 0 if i > n and 

Pn(x) = [x,x]. 

Proof: Do is the Eilenberg-Zilber chain equivalence and Dk = 0 if 
k < 0. 

As a first application, let / : A —• B be morphism in s>t and 

9 : # Q A - H$xM(f) 

the boundary map in the long exact sequence of the resulting cofibration 
sequence, as in Proposition 4.6. We would like to know how this map 
behaves with respect to the product and operations. 

Lemma 5.12:1.) Let x € HQA. Then, for all i 

8P\x) = P\dx). 

2.) For all x e H^A and y G ff^M(/) 

[dx,y] = Q 

Proof: The map d is the connecting homomorphism obtained from a 
short exact sequence of cochain complexes. See 4.6. Part 1.) follows from 
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investigating formula (5.10.1) and part 2.) follows from the naturality of 
the homomorphism Do of Lemma 3.6. 

Corollary 5*13: Let A € sA and let HA be the suspension of A. Then 
for all x, y G HQLA 

p\x) = 0 for i > deg(x) 

and 
[x,y] = 0. 

Proof: This follows from the fact that 

d : HQA — J7£ + 1 EA 

is an isomorphism and the previous lemma. 
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Chapter IV: Quillen's Fundamental Spectral Sequence 

6. Quillen's spectral sequence 
In his seminal work on the homology of commutative algebras, Quillen ([21] 
and [22]) described an Adams-type spectral sequence passing from the ho
mology of a simplicial commutative algebra to its homotopy. Then he used 
this spectral sequence to study homology — for example, in characteristic 
zero, there is a simple situation under which the spectral sequence col
lapses and computes homology. The situation is different in characteristic 
2, mostly because of the existence of the operations of the previous section. 
However, we still study this spectral sequence and gain useful information. 
For example, in section 8 we show that the product and operations of the 
previous section are non-trivial, and we can prove the Adem relations among 
the operations. 

Before defining the spectral sequence, we make some computations. 
Let A 6 A be an algebra with augmentation ideal I A. Then we can filter 
A by powers of the augmentation ideal: 

FSA = (JA) S C A. 

In particular, if A = S(V) — the symmetric algebra on a vector space V 
— t/hpn 

FSS(V)/FS+1S(n>0 

where Sn(V) is the vector space of coinvariants of V®n under the action of 
the permutation group S n that permutes the factors. Then 

FSS(V) = (IS(V))S = (Bn>sSn(V) 

so that the filtration quotient is 

E°SS(V) = FSS(V)/FS+1S(V) Si SS(V). 

Or, because the associated graded vector space of a filtration of an algebra 
given by an ideal is a graded algebra, we can say that E°S(V) is the graded 
symmetric algebra on the vector space V concentrated in degree 1. 
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Now suppose that A 6 sA is almost-free; that is, for each t, At = S(Vt) 
for some vector space Vt. Then the composite 

Vt-£+IS(yt) S* IAt — QAt 

is an isomorphism. Then, if we filter A by the powers of the simplicial 
augmentation ideal, we have that the associated graded algebra E° A is the 
simplicial symmetric algebra on QA; that is, E%A Si Sa(QA). In particular, 
Efl A = QA. If we apply homotopy, we obtain a spectral sequence 

(6.1) E\yiA St irtÉ°aA SÉ 7CtSa(QA) => ntA 

with differentials 
dr:E

r

a9tA-+Er

s+rjt_1A. 

This is Quillen's spectral sequence. 
In section 3, we gave a description of n*Sa(QA). There is a functor 

& a • rcF2 —• n F 2 , so that 

*.Sa(QA) Si 6s(H?A). 

Here we use the fact that since A is almost-free, n+QA = Hp A. We will 
write 

es(H?A)t 

for the elements of degree Then we have 

es(H?A)t SÉ 7TtSa(QA). 

The pairing 

Ss(QA) <8> Sa,(QA) - Sa+AQA) 

that induces the algebra product S(QA) induces a pairing 

EltA<8>E\, t,A = 6s(H?A)t <g> eAHfA)^ 
nseg25+/-5lkjgnsnshivji 
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that turns E1 A into a bigraded algebra and (6.1) into spectral sequence of 
algebras. Again EXA has a succinct description: if 

& : nF2 —» nF2 

is the functor so that TT*S(V) ^ &(n*V) for V 6 sF 2, then EXA is the 
associated graded algebra obtained from &(HpA) by filtering by powers of 
the graded augmentation ideal. 

Theorem 6.2: (Quillen's spectral sequence) For A € sA, there is a 
natural spectral sequence of algebras 

EltA9*es(H?A)t=inrtA. 

This spectral sequence converges if H^-A = 0. 
Proof: If A is almost-free, the existence of the spectral sequence is 

the content of the previous paragraphs. For a general A, choose an weak 
equivalence X —» A with X almost free and define the spectral sequence 
for A to be the spectral sequence for X. This is well-defined by 1.7. For 
the convergence statement, Proposition 3.7 implies that if -ff<pA = 0, then 
es(H?A)t = 0 for t < s. Thus 

E'A ~ EZA 

if r is sufficiently large. The result follows. 

Remark 6.3: If H^A ^ 0, one can compute the spectral sequence 
for SA instead. Then H%Y,A ^ H^_XA and ff0

QEA = 0. For example, if 
A = A is a constant simplicial algebra, then 

H®HA = Hn(A, F2) 

by the dual of (4.12) and 

7r .EA^Tor^(F 2 ,F 2 ) . 

Making these substitutions into (6.2) yields Quillen's spectral sequence, as 
he wrote it down. 
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The next step in understanding this spectral sequence is to put in the 
higher divided power operations of section 2. The operations of sections 
2 and 3 induce operations 

(6.4) Si : e*(H?A)t -> e2s(H?A)t+i. 

We claim that these operations extend to the spectral sequence and abut 
to the operations on ic+A. Unfortunately, the operations on ErA are only 
defined up to some indeterminacy, which we now define. Let 

Bt,tA C EZjA, q > r 

be the vector space of elements that survive to E^^A but have zero residue 
class in E^jA. An element y € E^tA is defined up to indeterminacy q if y 
is a coset representative for a particular element in E£tA/B>%tA. 

We now define operations 

Si : E^A - EZa,t+iA 

of indeterminacy 2r — 1. These will agree with the operations of (6.4) where 
r = 1. Notice that when r = 1 there will be no indeterminacy. 

Let © t be the quadratic functions of (3.2). Then restricts to a 
function 

0T- : (IA)S — (IA)2s. 

Now let y 6 Est A. Then, modulo ( J A ) a + 1 , y is represented by an element 
a e (IA)3 so that da £ ( J A ) a + r . The class of a in not unique, even modulo 
( J A ) 3 + 1 . It may be altered by adding elements 

83 G (IAY 

so that /?e(/A)*" r + 1 . 
Define Si(y) G E^a t + 1 A to be the residue class of ©«•(«). Since 

ae t ( a ) = e{(a) e ( / A ) 3 + r , 2 < i < t 

and 

det(<x) = /iA(a (g) da) 
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6i(y) is an element in E^tA\ indeed, it survives to E^tA if 2 < i < t. It 
is not well-defined, however, because of the possible choices of a. But an 
easy calculation using the formulas of (3.3) shows that the indeterminacy 
of Si(y) is 2r — 1. 

The next result shows that how the operations behave with respect to 
the differentials in the spectral sequence. It is to be understood that the 
various formulas that we write down are true modulo appropriate indeter
minacy. 

Proposition 6.5: For 1 < r < oo there are operations 

6i : E^A EÏ^A, 2<i<t 

of indeterminacy 2r — 1, satisfying the following properties: 
1.) if r = 1, then 64 is as in (6.4); 
2.) if x G ErA and 2 < i < *, then Si{x) survives to E2rA and 

dorSi(x) = Si(drx)* 2 < i < t 

drSt(x) = xdx 

modulo indeterminacy; 
3.) the operations on ErA, r > 2 are induced by the operations on 

Er~~1A. The operations on E°°A are induced by the operations on ErA 
with r < oo; and 

4.) the operations on E°°A are also induced by the operations on 7r* A. 
Proof: This follows from the definition of as given above, and the 

formulas of (3.3). For example, if x G E^tA, then there is an a G (IA)8 so 
that da G (IA)s+r and the residue class of a is x. The residue class of da 
is, of course, drx. Then (3.3.2) says that 

dQt(a) = //A (a <g> da) 

so that the residue class of <90 t(a) is xdrx. This proves one of the assertions 
of part 3. The rest are left to the reader. 

Remark 6.6: Notice that there is not indeterminacy for the operations 
at E°°A. Therefore, the operations are well-defined there. 
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Proposition 6.7: Up to indeterminacy, the operations 

6i : Er

SjtA -> E^^A, 2 < i < t 

satisfy the properties of Theorem 2.5. In particular, if i < 2j , then 

nvkysf ( J - i + S - l \ c 6 , . 
'-^ \ 1 — S 1 

i + l / 2 < e < i + i / 3 x J ' 

Proof: This is true at r = 1, by 6.5.1. So the result follows from 6.5.3. 

Because of Proposition 3.7, EXA is generated as an algebra by compo
sitions 

H>A:QA-+ S2Q?A — E\A ^ &*(H 

with x € H®A. Therefore, we could go a long way towards computing this 
spectral sequence by computing 

di : E\A ^ H?A — E\A ^ &*(H?A) 

and then applying Proposition 6.5. This we now do. 
As in any Adams-type spectral sequence, this differential depends only 

on the product and operations in cohomology, or, in our case, on the co-
product and operations in H®A. At the end of section 3 we explained how 
the product and operations in cohomology could be defined using homology. 
We recapitulate this idea in our new setting. 

Let A 6 sA be almost-free and let 

%I>A:QA^QA® QA 

be the chain map of degree —1 of (5.7) used to define the product and 
operations. Because of Lemma 5.8, I^A induces a map 

il>A:QA-+ S2QA = (QA <g> QA) E> 

where the target is the vector space of invariants under the action the 
permutes coordinates. Thus, we get a map of degree —1 

(rf>A)*:H?A^ir*S2(QA). 
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By Dold's Theorem (2.1), ir^iQA) is a functor of icmQA 9* H?A. Fur
thermore, as in (3.8), we have that for x € H$A 

(6.8) (tf A ) . ( * ) = Ç + T ) ^ - ® zj) + Ç < 7 , ( z P * ) 

7 Î 

where 1 + T : QA ® QA —> S^Q-A is the averaging map. This equations 
defines operations 

= xP**1
 <g> xP**1 +^2yj 

which we write on the right and which are dual to the operations of the 
previous section. By composing with the map p : w+S2QA —• ic+QAQir+QA 
induced by the inclusion, we recover the coproduct 

(V>A) . : H ? A -> H ? A ® H ? A . 

Namely, for x G H$A 

(M*(x) = xP**1
 <g> xP**1 +^2yj® Zj + Zj <g> yj 

j 

where xP**1 = 0 if n is even. 

Proposition 6.9: Let dx : El A ^ H$A - * E\A ^ G*{H$A) be the 
differential in Quillen's spectral sequence. Then, for x G H%A with n > 1, 

d i ( * ) = £ y ; * i + I > ( * n = xP**1
 <g> xP* 

i t>2 

where 
(M*(x) = Ç 7r . ( l + T ) ( W (8) + Ç c r , ( * P » " ) . 

The rest of this section will be spent in proving this result. Or, more 
exactly, we will spend the time proving the following result, which implies 
6.9. Let 

<r* : n*S2{QA) ir*S2(QA) 
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be the map of Lemma 3.9. 

Proposition 6.10: There is an equality of homomorphisms 

<r.dx = (Vu). : H?A - > T T . S 2 ( Q A ) . 

Proof o f 6.9: If x G H^A, then we apply (6.8) to compute (tpji)m(x) 
and then use 6.10 and and Lemma 3.9 to compute di(x). It is crucial that 
tr+ is an injection in positive degrees. 

We begin the proof of 6.10 with a technical lemma about if;A '• QA —• 
QA ® QA. Let A G sA be almost-free and, for each t 

t/> : At -+ At® At 

the resulting Hopf algebra coproduct. V commutes with d,-, i > 0, so that 
if d is the sum of the face operators dt-, then 

(6.11.1) dip + tpd = (d0 <g> d0)V> + *l>d0 : At - > (g) At_i-

If a: G /At, then (dtf> + i/>d)(x) G IAt-i <8> /At - i and we have a map H that 
completes the commutative diagram 

(6.11.2) 
IAt IAt-x <g> IAt-i 

A t ^ - 4 At-i ® At-i 

Lemma 6.12: There is a commutative diagram 

IAt /At - i ® IAt-i 

QAt ^ QAt-i (8) QAt-i . 

where the vertical maps are the projections. 
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Proof: In (5.1), (5.2), and (5.6) we constructed a diagram 

IAt I(At_iAAt_i) — IAt-! <g> IAt-t 

IAt I(At-i®At-i) 

and the top row was used to compute Vu- To compute £, it is sufficient to 
compute f. Since A £ sA is almost-free, A = 5(Vi) for some vector space 
Vi; indeed, the composite 

V 4 - £ . I 5 ( V « ) - , QAt 

is an isomorphism. This to compute it is sufficient to examine £(v) 
for v G Vi. However v G Vi is primitive in the Hopf algebra A* = 5(Vi); 
therefore, 

= xP**1 <g> xP**1 +^2yj 
by the definition of f. The result follows. 

Now let x G H?A be represented by a G Let v eVfC IS(Vt) ¥ 
/At be the unique element that passes to a under the isomorphism Vi = 
QAt. Then, if H is as in 6.12 

H(v) = (dtp + tpd)(v) G IAt-i <8> IAt-\. 

Since or G Q-At is a cycle, we may write d(v) G IAt-\ as a unique sum 

(6.13) d(v) = w1 + w2 

where wi G S^Vi-i and w2 G © n > 2 5 n V i - i . Let 

tr : S2Vt-! -> Vi-i (8) Vi-i = 5iVi_i © 5 iV i_ i 

induced by the averaging map (1 + T) : Vt-i © Vi_i —• V*_i ® Vi_i. 

Lemma 6.14: H(v) = tr(w\) + y where 

y G 0 = xP**1 <g> 
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Proof: First of all, 

dil>(y) = d(v) ® 1 + 1 0 d(v) 

because v is primitive. On the other hand, 

i/>d(v) = ^(wx) + i/>(w2) 
= d(v) ® 1 + 1 (8) + <r(wi) + t/>(w2) 

where 
i/>(w2) = 1^2 0 1 + 1(8)^2 + ^(^2)-

Here we use the fact that if z 6 S^O^-i), then 

^ ( 2 ) = z ® 1 + tr(z) + 1 0 z. 

Since W2 £ ©n>25 n T^_i , ip(w2) has the property required of y. 

Proof o f 6.10: If wi is as in (6.13), then w\ is a cycle in S2(QA) 
whose residue class is d\x. Since restricting the range of 

tr : S2(QA) QA® QA 

to S2QA yields tr, Lemma 6.14 says that we need only identify the projec
tion to QA 0 QA of H(v). However, the diagram of Lemma 6.12 implies 
that this projection is if)A{v). The result follows. 
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7. Ramifications of the Jacobi identity 
In section 11 we will prove that the product [, ] on HQ satisfies the Jacobi 
identity; that is, if A € sA and x, y, z G HQ A, then 

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0. 

The proof uses the method of the universal example. In this section we 
give a chain level proof of this fact. We do not embark on this exercise 
gratuitously, but because we can use the constructions to provide a proof 
of the following fact: if y G HQA, then 

[*,P*y] = 0 

for integers i. If i = degr(y), then [x, Ply] = [x, [y, y]] and this claim follows 
from the Jacobi identity. The other cases are more problematic and ne
cessitate the approach taken here. The crucial technical input is provided 
by the lemmas of the previous section, which explains the location of these 
arguments. 

The product [, ] on HQA is determined by the cocommutative coprod
uct 

%I>A : QA —• QA ® QA 

of section 5, and we use the notation and ideas of that section freely. Of 
course, we are assuming that A G sA is almost-free. To actually compute 
[ , ] we must use an Eilenberg-Zilber chain equivalence 

Do : C(QA <g> QA) — C(QA) ® C(QA). 

Here we are writing C(V) for the chain complex associated to a simplicial 
vector space V, and C(QA) ® C(QA) is the tensor product of chain com
plexes with the usual Leibniz differential. Then, of course, the product [, ] 
is defined by dualizing the composition 

C(QA)^C(QA <g> QA)-^C(QA) <g> C{QA). 

It will be useful to make a standard choice for D0. If V is a simplicial 
vector space, define 

d*-% :Vs->Vi 
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to be the composition 
ds 1 = o • • • o da 

where the dj are the face operators in V. Define d%

0 : Va —• V^-» to be the 
composition of the respective do face operators. Then, for any simplicial 
vectors spaces V and W we can define 

Do : C(V ® W)s - [C(V) ® C(W% 

by the formula 

(7.1) 
S 

D0(v ® w) = ^ ® <Qw. 
1 = 0 

This is called the Alexander-Whitney chain equivalence. It is useful to fix 
this choice for .Do? and we do so. 

Now in discussing the Jacobi identity and related matters, we are con
fronted with the following composition 

C(QA)^C(QA®QA) 
-^C(QA) ® C{QA) 
t^c(QA ® QA) ® C(QA) 
D^C(QA) ® C(QA) ® C{QA). 

This may be written as 

(7.2) (Do ® l)(rbA ® l)Do^A. 

To simplify our calculations, we claim that V A ® 1 and Do commute as 
follows. 

Lemma 7.3: (Vu ® 1)A> = A > ( V A ® do). 
Proof: We refer freely to Lemma 6.12 and diagram 6.11, including 

the notation established there. To prove the result at hand, we proceed as 
follows: since IA —• QA is a surjection, it is sufficient to prove that 

(H ® 1)D0 = Do(H ® do) : C(IA ® I A) C(IA ® I A) ® C(IA). 
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Since IA —» A is an injection it is sufficient to prove that 

[(dt/> + tpd) ® 1]A) = D0[(dif> + %l>d) ® d 0] : C(A ® A) —• C(A ®A)® C(A). 

Since, for i > 1, di commutes with i/> : A —• A ® A, we have that 

(dV> + № ) = (d 0 ® d 0)V + V^o-

The result now follows from a routine calculation with the simplicial iden
tities, using the formula of 7.1. 

To exploit this lemma, we proceed in the following manner. For a 
simplicial vector spaces E7, V, and W, let 

T:U®V®W -+W®U®V 

be the permutation of factors given by 

T(U ®V®W) = W®U®V. 

An acyclic models argument shows that there is a chain homotopy 

T(D0 ® 1)D0 ^ (A) ® 1)A>r. 

Combing this fact with Lemma 7.3, we see that the Jacobi identity will hold 
if we can prove that 

(1 + T + T 2 ) ( V A ® d0)V>A : C(QA) -* C(QA ®QA® QA) 

is chain null-homotopic. 
We can actually build an explicit homotopy. 

Lemma 7.4: Let A 6 sA be an almost-free simplicial algebra. Then 
there is a homomorphism 

F : C(QA) — C(QA ®QA® QA) 
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of degree —1 so that 

dF + Fd = (1 + r + T 2 ) ( V A ® < W A 

Proof: Since A is almost-free, we have a group 

í í o m ^ ( A í + i , At ® At ® At). 

In this group, let £ be the product of 

(V ® l)(do ® do)V 

r(V ® l)(do ® do)xp 

r 2 ( V ® l ) ( d 0 ® d 0 ) V 

and 

( V ® 1 )M) = (1+r + r2)(tb ® l)Vdo-

The last equality is a result of the fact that the coproducts V are cocom-
mutative and coassociative. 

Now one easily argues that there is a factoring 

At+i — • At A At A At 

* e * 
At+i — • At ® At ® At. 

Therefore, using 5.3, we obtain a map 

F : QAt+i - » QAt ® QAt ® QAt. 

We would like to compute dF + F9. Arguing as in the proof of 6.12, we 
obtain a diagram 

(7.6) 
QAt+i « - /At+i —• At+i 

4, f i n i u 
QAt ® QA t ® QAt <— /At ® /At ® JA t —> At ® At ® At 

where 
G = (1 + T + r2)[(V> ® l)(d0 ® d 0)V + (V ® l)V¿o]. 
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To show the result, it is sufficient to show that 

ÔG + Gd = (1 + T + r2)[(0V> + №) ® d 0](3V + tl>d). 

However, 

d ( V ® l )(d 0 ® d 0 ) V + ( V ® l )(d 0 ® do)xj)d. 
= (d 0 ® do ® d 0 ) ( V ® l)(^o ® do)$ 

+ ( V ® l)(d 0 ® do)(#V + tl>d) 

and 
d(ip ® l)ipd0 + (V ® l)Vdo# = (d 0 ® d0 ® d 0)(V ® l)V<*o-

The result now follows from the fact that 

dip + ipd = (d 0 ® d 0 ) V + V^o-

The Jacobi identity written down at the beginning of this section fol
lows from the next result, using the commutativity of the product [ , ] . 

Corollary 7.7: If A 6 sA and ar, y, z £ then 

ipd0 + (V ® l)Vdo# = (d0 ® d0 ® d0)(V 

Proof: We may assume that A is almost-free. Then the result follows 
from the sequence of chain equivalences 

(1 + r + r2)(D0 ® 1)(VA ® 1 ) A ) V A 

= (1 + r + r 2 ) ( A > ® 1)A>(V>A ® d 0 ) V A 

- ( A > ® 1)A>(1 + r + T 2 ) ( V A ® do)VA 

~ 0 . 

Before proceeding, we remark that the maps constructed in the proof 
of 7.4 actually have more properties than we first demanded of them. Since 

V A : QA QA ® QA 
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is cocommutative, there is a diagram 

QA ^ QA®QA (QA®QA)**®QA 

QA ^ QA®QA QA ® QA ® QA 

and 
(QA® QA)** ® QA 1+-Iir2 (QA ®QA® QA)** 

QA ® QA ® QA 1 t l iT 2 QA®QA® QA 

where VG are the invariants. The map 

F : QA -> QA ® QA ® QA 

of Lemma 7.4 actually restricts to a map 

(7.8.1) F : QA -» (QA ®QA® QA)*3. 

so that 

(7.8.2) dF + Fd = (1 + r + r2)(ipA ® dQ)xl>A. 

To see this, consider the diagram (7.6). There 

G = (1 + r + r2)[(V> ® l)(d 0 ® d0)rp + (V ® 1)M>] : At A t ® At ® At. 

Since tp is cocommutative, ( V ® l)(do ® do )V a-11*! ( V ® l ) V ^ o define maps 

At (At <g> A t ) E 2 ® At. 

Hence, G restricts to a map 

G : At+i (At ® At ® At)*3. 

Therefore 7i (see 7.6) restricts to a map 

H:IAt-> (I At ® I At ® I At)113. 
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And so F restricts as required by (7.8.1). Since the invariants from a sub-
vector space of QAf3, (7.8.2) follows from 7.4. 

We now approach the computation of 

[x,Piy] = [Piy,x]eH*QA 

for x, y 6 HQA and i an integer. For this we must consider the composite 
chain map 

C(QA)^C{QA <g> QA)-^C(QA) <g> C(QA) 

+*2?C(QA <g> QAf* ® C(QA) 
D-^{C(QA) ® C{QA))*2 ® C(QA) 

where Dk is an appropriate higher Eilenberg-Zilber map and VG is the 
vector space of coinvariants. This composition, by 7.3, can be written as 

(Dk ® A ® < W A : C(QA) — (C(QA) <g> C ( Q A ) ) S a <g> C(QA). 

We can write this out as 

C(QA)^C(QA <g> QAf^CHQA <g> QAf> <g> QA) 
C(QA <g> QAf* ® C(Q® d0 ® d0)(V 

^ ( C ( Q A ) <g> C(QA))s 2 <g> C(QA). 

To deal with this, we first state some generalities about simplicial vector 
spaces. Let V be a simplicial vector space. Define, for every non-negative 
integer fc, 

D'k = (1 + r + r 2)(£> f c ® 1)Z)0 : C(V ® y ® F) — C(V) <g> C(V) <8> C(V) 

and 
-Dît = (-Dfc <8> l)£>o(l + T + r 2 ) : C(V <g> V ® V) C(F) <g> C(V) <g> C ( ^ ) . 

I f T : V ® V - > V ® V o r T : C(V) <g> C(V) -> C(V) ® C(V) is the switch 
map, then using the Alexander-Whitney DQ of (7.1), we compute that 

(T ® l)I>o = D0(T ® 1) : C(V <g> V ® V) —• C(V <g> V) ® C(V) 
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and, hence, D'0 and DQ are chain maps and for k > 0, 

8D'k + D'kd = + (T ® ® 1) 

and 
+ z>£a = £>£-i + ( T <g> i)uiLi(T ® i). 

The method of acyclic models now demonstrates the existence of a map 23* 
so that EQ = 0 and for fc > 0, 

dJEfc+i + ^fc+i^ = ^ + ( r ® ® 1) + D'K + D%. 

Therefore, there is a chain homotopy between the chain maps 

(7.9) D'k, D'k': C((V ® V ) E » ® V) - (C(F) ® C(V))=, ® C(F) . 

Theorem 7.10: Let A 6 sA. For all integers t and all x, y € HQA, 

[Piy,x) = 0. 

Proof: We may assume that A is almost-free. Then it is sufficient to 
show that 

(DK ® l)A>(tf A ® 1)VA : C(QA) -> (C(QA) ® C(QA))s 2 ® C(QA) 

is null-homotopic for all fc. Let 1 + r + r 2 stand for the composite 

C(QA <g> QAf* ® C(QI>A ® do)VA = ® 1)A>(1 + r + T2)(VA A) ® C(Q-A 

By 7.8.2, 

D%(*I>A ® do)VA = ® 1)A>(1 + r + T 2 ) ( V A ® rfo)VA 

as a map from C(QA) to (C(QA) ® C(Q-A))s 2 ® C(Q-A) is null-homotopic. 
Hence, by 7.9, 

DkU>A ® <*O)VA = (1 + r + r 2 ) ^ ® 1)£> 0(VA ® d0)ipA 
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is null-homotopic. Thus we have a chain homotopy 

(Dk <g> l)Do(tpA ® do)VA ^(r + r2)(Dk ® l)D0(tpA ® <*O)VA 

of maps from C(QA) to (C(QA) <g> C(QA))v2 ® C(QA). Now, for any 
simplicial vector space V, there is a diagram 

(C(V) ® C ( V ) ) E a <g> C(V) (C(V) ® C ( y ) ) E a ® 
4. ( i+T)®i 4. T + T " 

C(V)<g>C(V)<g>C(V) ( C ( y ) < 8 ) C ( F ) ) E a ® C ( F ) . 

Hence 

(£>fc ® l)A>(iki ® < W A ^ (r + r 2 ) (D f c ® l)D0(lf>A ® « W A 
= r[(l + T) ® l](£>fc ® 1)£>O(V'A ® d0)tl>A  

= r [ ( £ > f c + TDk) ® 1 ] A , ( ^ A ® doJV'A 
= T [ (aD f c + i + ® i ] A > ( ^ A ® - < f e ) ^ 

Thus (I?fc <g> \)DQ(II)A ® do)rl>A is null-homotopic. 
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8. Applications of Quillen's spectral sequence 
We give a number of results that depend either on the spectral sequence of 
the previous section, or, perhaps, on the technical result 6.12. We postpone 
the proof of the Adem relations among the operations P* until the next 
section. 

We begin with a Whitehead Theorem for the category sA. Call a 
simplicial algebra A connected if ITQA = F2 generated by the unit in the 
algebra 7r* A 

Proposition 8.1: Let / : A —• B be a morphism between connected 
objects in sA. Then / is a weak equivalence if and only if 

H?f:H?A-+H?B 

is an isomorphism. 
Proof: If / is a weak equivalence, the H®f is an isomorphism by 4.3.2. 

On the other hand, if H®f is an isomorphism, then the spectral sequence 
of 6.2 implies that / is a weak equivalence. 

The next result is a Hurewicz theorem. But first, some notation. Let 
A G s A. Choose and acyclic fibration X —• A with X cofibrant. Then 
7T+X = 7T*A. The projection from the augmentation ideal to the indécom
posables 

IX-+QX 

induces, for every A G s A, a natural Hurewicz homomorphism 

K : ITT*A ^ H?A. 

Since nnIA = wnA for n > 0, we get maps for n > 1 

(8.2.1) K : 7r n A - » H®A 

and, dually, 

(8.2.2) h* : HZA — (7TnA)* ^ 7rnA*. 
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It is a simple exercise with the definition of Quillen's spectral sequence to 
see that the edge homomorphism 

JTT.A E?A C El A St H?A 

is the Hurewicz homomorphisms h*. 

Proposition 8.3: Let A € sA. Then 
1.) h* induces an isomorphism QiroA = -ff<pA, and 
2.) if A is connected and 7rkA = 0 for 1 < k < n, ft* induces an 

isomornhism 
/i* : nnA—>H®A. 

Proof: The first result is 4.10.1. The second follows immediately from 
Quillen's spectral sequence. 

Remark on universal examples: Because of the naturality of the 
product and operations in HQ, we can often prove general properties by 
considering specific examples. In Example 4.4.1 we produced an object 
ifT (n)+ € sA so that for all A € sA 

[A,K(n)+]sA*éHQA. 

Indeed, there must be a universal cohomology class in G HQK(n)+ so that 
this isomorphism is defined by 

/ 1 — HQf(in). 

Furthermore 7r*jRT(rc)+ = A(xn) — the exterior algebra on one generator of 
degree n. 

Similarly, we can consider the object 

K(m)+ x F a K(n)+ ^ (K(m) x K(n))+ 

in s A. Then 

[A,(K(m) x K(n))+].A S [A,K(m)+]aA x [A,K(n)+]aA 

Si H%A x HQA. 
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This isomorphism, too, can be made explicit. The two projections on factors 

P l : (K(m) x K(n))+ K(m)+ 

and 
P2 : (K(m) x K(n))+ -+ K(n)+ 

define classes t m G H%(K(m) x K(n)+ and t n G HQ(K(m) x -K"(n)+ re
spectively and the isomorphism is given by 

/•—№/(*.»),*£/('«))• 
In addition, operations applied to the pair ( t m , in) are universal operations 
in two variables; for example, [t n, im] is the universal product in HQ. 

The projections p± and P2 have sections that are often of useful. For 
example, define, in sF2 

/ 1 : K{m) -+ K(m) x K(n) 

to be the inclusion on the first factor: 

/i(x) = (x,0). 

Then / 1 induces a map 

/ 1 : K{m)+ (K(m) x K(n))+ 

so that pifi is the identity and HQfi(in) = 0. Similarly, there is a map 

h : K(n)+ -+ (K(m) x i f (n))+ 

so that P2/2 is the identity and H g ^ C t m ) = 0. 

For contrast to 8.3, we note that the product and operations in HQ are 
not detected by cohomotopy. Let h* be as in 8.2.2. 

Proposition 8.4: Let A G sA. For all x, y G HQA 

h*[x,y] = 0 
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and 
h*P\x) = 0. 

Proof: It is sufficient to show this for the universal examples. For the 
product, let x G HQA and y G HQA. Let K(n)+ be the universal example 
of 4.4.1. and i n G HQK(n)+ the universal cohomology class of degree n. 
Then there are unique maps 

/ : A — K(m)+ 

and 

g : A—* K(n)+ 

in the homotopy category associated to s A so that 

HQf(Lm) = a and HQg(i>n) = y. 

The maps / and g induce a map 

fxg:A-> K(m)+ x F a AT(n)+ ^ (K(n) x lT(m)) + 

and [x, y] can be computed by the equations 

H ? U x 0)[*m,ln] = [*,V] 

where [tm, tn] G HJ?(K(m) x iïT(ra))+ is the product of t m and t m under the 
inclusions 

flSJST(m)+ - H*Q(K(m) x JT(n))+ 

and 

flSir(n)+ - flS(Jf(m) x JST(n))+. 

The naturality of the Hurewicz map shows that it is only necessary to 
demonstrate that h*[im9in] = 0. However 

] € H?+m+1K(m) x K(n))+ 
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The assertion about the operation is proved in the same manner. 

This does not mean that the product and operations are identically 
zero. In fact, we have the following result. Let A = (K(m) x IT (n))+ be 
the universal example of 4.4.1. Furthermore, let t m G HQ A and t n G HQA 
be the image of the universal cohomology classes under the maps induced 
in cohomology by the projections 

A = (K(m) x iT(n)) + - » K(m)+ 

and 
A = (K(m) x K(n))+ — K(n)+. 

Proposition 8.5: Let m, n > 0. Then 

k , (n) x K(m))+. 

Proof: We first assume that n > 0 or m > 0. If n = 0 or m = 0, we 
have not proved that Quillen's spectral sequence converges for this example; 
however, formulas 6.9 holds and this is all we will use. Let A = (K(n) x 
i i r ( m ) ) + . If u G 7r*K(m) and v G ir*K(n) are the non-zero classes, then 
TT*A = A(ti, v)/(uv), where A( ) denotes the exterior algebra. The inclusion 

K(m)+ -> (m) x # ( n ) ) + 

provides a section for the projection above and show that if 

K : I**A -> H?A 

is the Hurewicz map, then h*u ^ 0. Indeed (cm, h*u) ^ 0 in the pairing be
tween HQA and H®A. Similarly, (in, h*v) ^ 0. Thus in Quillen's spectral 
sequence 

EXA = B{H^A) w+A 
the product class 0 =̂  h*u • G i?2-4 survives to This is because 
we have a spectral sequence of algebras. However, uv = 0 in w+A. So there 
must be a class 

2 6 -Ei.m+n+l — i ? m + n + 1 A 
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so that 
diz = h*u • h*v. 

Since n + m > 0, 6.9 implies that under the coproduct 

(фА)* : H?A -+ H?A <g> # , ?A 

we have that 
(ФА)*(^) = h*u ® + Л*г; ® Л*г/. 

Since the coproduct is non-trivial, the product (which is dual) must also be 
non-trivial. In particular, because of the pairings above, [ ¿ m , ¿ n ] ^ 0. 

In the case n = m = 0, we must appeal directly to Lemma 6.10, instead 
of 6.9. However, that is sufficient to complete the argument along the same 
lines above. 

Next we decide that some of the operations are identically 0. 

Proposition 8.6: Let x G HQA for n > 0 and let i < 0. Then 
Pl(x) = 0. 

Proof: We may assume that A is almost-free. If x is represented by a 
cocycle a G QA*, then P%(x) is the residue class of 

W u ) . ^ - ¿ ( < * < g > a ) . 

With a good choice of the higher Eilenberg-Zilber maps Dk, such as the 
choice given by Singer in [S] (see before 3.10), then we know that 

Dk(pc® a) = 0, к > n. 

So we have the result for i < 0. For i = 0, we note that this choice of 
Eilenberg-Zilber maps also has 

Dn(a ® a) = a ® a. 

So we can show that (Vu)*(<* ® &) = 0 to complete the result. Combining 
6.11 and 6.12 and dualizing, we get a diagram 

QA* ® QA* QA* 

4, 4, p 
I A* <g) I A* —> I A* 

A* ® A* (*^ô)* À*. 
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Since A* —• I A* is a split surjection and p* is an injection, it is sufficient 
to show that 

d*ip*(v ®v) + t/;*d*(v ®v) = 0 

for all v G A*. Because we are assuming that A is almost-free, we have that 
At = S(Vt) for some vector space Vt. Indeed, At is a primitively generated 
Hopf algebra. Thus, A* is an exterior algebra with multiplication given by 

Thus tp*(v ® v) = 0. Also 

i(>*d*(v <g) v) = ® = 0. 

This proves the result. 

The previous result combined with the next result shows that we can 
claim that Pi = 0 for all i < 2. 

Proposition 8.7: Let A G s A and x G H%A. Then Px(x) = 0. 
Proof: For n = 0 this follows from 5.11. So assume that n > 1. It is 

enough to consider the universal class 

x = Lne H%K{n)+ 

where K(n)+ is the universal example of 4.4.1. Then ir4lK(n)+ = 
where u G 7rnK(n)+. In Quillen's spectral sequence 

E^Kin)* Si 6(H?K(n)+) *.K(n)+ 

one easily see that 

EltK(n)+ Si eJH?K(n)+)t = 0 

of s > 1 and t < n + 2. For this one can use 3.7. If P1(x) ^ 0, then 
there would be a non-zero class z G H^m2^{n)+ — ^ i , n + 2 - ^ X n ) + - Since 
irn+2K(n)+ = 0, there would have to be some r so that drz ^ 0 in Quillen's 
spectral sequence. Since this cannot happen, we must have Px{x) = 0. 

We can also demonstrate that, often, the operations P1 are non-trivial. 
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Proposition 8.7: Let in G HQK(n)+ be the universal class. If 2 < 
i < n then 

P\tn) * 0 

in H*2K(n)+. 
Proof: If n < 2 then the statement is vacuous. So we assume that 

n > 2. Let u G E\nK(n)+ = Hn

2K(n)+ be dual to in. The class u survives 
to E°°K(n)+ in Quillen's spectral sequence; therefore, Proposition 6.5 now 
implies that 

«<(«) e Eln+iK(n)+ St 62{H?K(n). 

also survives to E°°K(n)+. In addition, ^ 0 in E1K(n)+. Since 
7r*iiT(n)+ = A(ti), there must exist a class y G i ? J > n + 1 + 1 l i r ( r i ) + so that 
d\y = £t-(u). But 

£ Ì , „ - H + I * («)+=^a .« + 1 jsr(n) + 

and Proposition 6.9 implies that yP% = w. Dualizing, we obtain that 

P\in) ¥= o . 
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9. The proof o f the A d e m relations. 
We now come to the proof of the Adem relations among the operations P*. 
This is a further application of Quillen's spectral sequence. 

Theorem 9.1: For A G sA, x G HQA, and i > 2j there is an equation 

Р*Р»"(ж) = E 
S = ¿—j+1 

Г;-4;1) j > < + i - * j > - ( x ) . 

Before starting the proof, we make some observations about Quillen's 
spectral sequence. 

The first is that the following is a special case of Proposition 6.5. If 
A G s A and x G E1 A has the property that d \ X = 0, let [x] be the residue 
class of x in JE? 2 A. 

Lemma 9.2: Let x G E\^A and d\x = y G JSi+ift_i- Then 

di6t(x) = xy 

and for 2 < i < di6i(x) = 0 and 

{Sif>j(wij)} Q EljA 

Proof: This follows from the definition of the S{ in the spectral se
quence (see before 6.5) and the formulas of 3.3. 

The second observation is a remark on compositions 

SiSj : E\A E\A. 

The computations of 2.7 and 3.5 imply the following. If we have x G El^A, 
let the degree be given by the formula deg(x) = 

Lemma 9.3:1.) Let {Sif>j(wij)} Q EljA be a set of elements so that 
i > 2j and i — j < deg(wij). Then this is a linearly independent set; that 
is. and eauation 

-H+I* («)+=^a.«+1js 
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implies that 6i6j(wij) = 0 for all pairs under consideration. 
2.) 6{6j : E\t —» E\ t + t + j A with i > 2 j and i — j < t is an injective 

homomorphism. ' 

Remark 9.4: A consequence of this result is that if we have an equa-
-Hrm 

X ; ^ ( « ; , i ) = 0 

where the sum is over a set of pairs so that i > 2j and i—j < deg(wij), 
then W{j = 0 for all pairs (z, j) under considerations. It will be our business 
to produce such an equation. 

We can do a little better. Since the product 

E\A <g> E\A SÈ ei(H?A) <g> 6 2 ( ^ A ) — 6s(H?A) S E\A 

is onto, and since Quillen's spectral sequence is a spectral sequence of al
gebras, we can conclude that if y G E^A, then d\y G E\A is decomposable 
in the algebra EXA. However, 6i6j(x) is always indecomposable in E\A. 
Combining this observation, 9.2, and 9.4, we have the following result. 

Lemma 9.5: Given an equation in E!iA 

-H+I* («)+=^a.«+1js 

where the sum is over pairs (i, j) so that i > 2j and i — j < deg(wij), the] 
W{j = 0 for all pairs ( t , j ) under consideration. 

The third observation is a reduction. It is not necessary to prove Theo 
rem 9.1 for all x G HQA and A G but merely for the universal exampl 
x = i n £ HQjfiT(n)+. Define, for i > 2j and A G sA, a homomorphism 

9 i j : H^A HZ+i+i+2A 

by 

9 i i = Р*Р* + 
5 = 2-jH-l 4 J 7 

pi+j—spa 
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Lemma 9.6: For all n and i > 2j 

<g> E\A SÈ ei(H?A) <g> 62(^A) — 6s(H?A) S E\A 

We give the proof after we supply the following. 

Proof of 9.1: If x G HQA with n < 1, then the conclusion of Theorem 
9.1 holds since both sides of the equation are zero. This follows from 5.11, 
9.6 and 9.7. So assume that n > 2. Then there is a unique map in the 
homotopy category associated to sA 

/ : A - * ( » » ) + 

so that HQf(cn) — x. Since gij(in) = 0, we have 

(9ij)(x) = Hy(gij(in)) = 0. 

The result follows. 

Proof of 9.6: To avoid intricacies involving the top operations £,* and 
to eliminate some of the summands of the formula given in 6.9, we use the 
suspension. Combining 4.8 and 5.13, we see that it is sufficient to prove 
that 

0 = 9 i j : Eir(n)+ - J f f S + ' + J + 3 S i T ( n ) + 

There is a dual homomorphism, we we will write of the right 

ij)(x) = Hy(gij(in?A) <g> 62(^A)A 

given by, for i > 2j, 

,voisebi ' 1 ^ 2 f2s-i-l\ 

s=i-j+l v J ' 

( . )P»+J -«P« 

and it is sufficient to show that / y = 0. Consider Quillen's spectral sequence 

(«) e Eln+iK(n)+ St 62{H?K(n). 
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We compute, using 5.13 and 6.9, that 

dlX = ^S^xP4). 
i>2 

Here we use that all products vanish in HQl2K(n)+ so that the coproduct 
must be trivial in H®YiK(n)+. Using 9.2 and the fact that the residue class 
of d\x in E2HK(n)+ is zero, we have 

o=d 2(2>(*p«)])=j2MM*n)] 
i>2 i > 2 

i>2 j>2 
8г65{хР*Р>)]. 

Here we use that the top operation P% vanishes in HQEK(n)+. Thus, using 
Proposition 6.7, we can write 

0 = £ [MiCxF***)] 
* > 2 j > 4 

+ E E f i "! . + '" 1 ì [«« . i -A(*p < p') ] . 
2 < ¿ < 2 j ¿ + l / 2 < f c < i + j / 3 4 J ' 

Substituting i = a, and j = b into the first summand and j = s, A; = 6, and 
i = a + b — s into the second summand, we find that 

0 = Yl [6a6b(xfab)]. 
a>2b>4 

Here we use that in HQLK(ri)+, if xfab ^ 0, then a — b < deg(xfab). This 
follows from the fact that the top operation P% vanishes in the cohomology 
of suspension. Finally Lemma 9.5 implies that for a > 26 

xfab = 0 

in H^12K(n)+. In particular xfa = 0 and we have proved the result. 
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10. Projective extension sequences and a quadratic operation 
In this section we define and discuss a natural quadratic operation 

ß : H%A - HX

QA. 

This operation, will have the property that 

(10.1.1) ß(x + y)= ß(x) + ß(y) + [*, y] 

where [ , ] is the product on HQA and that 

(10.1.2) №(y),x] = [yAy,x]] 

for all x G H^A and y G H^A. 
The best way to define this operations is first to consider the Andre-

Quillen cohomology of certain algebras, and to use that calculation in the 
definition. So we begin with a general computation. Let V^,Vi be vector 
spaces — not simplicial vector spaces — and 

/ : S(V0) - S(Vi) 

a map of algebras so that 
10.2) S(Vi) is a projective 5(Vb) module. 
Note that 10.2 implies that the morphism / is an injection. 
We are interested in computing the cohomology of the algebra 

A = F 2 ®5(v 0) S(Vi). 

That is, we regard A as a constant simplicial algebra and compute HjfA. 
We will say that A is defined by a projective extension sequence and we will 
often write that there is a projective extension sequence of algebras 

F 2 - » 5 ( V 0 ) - 5 ( V i ) - A - . F 2 

to indicate that this is the case. 
To begin the computation, regard S(VQ) and S(Vi) as constant simpli

cial algebras. Then, since S(V0) and SCVi) are almost-free, we have that 

H$S(V0) S VQ and JST0

ö5(Vi) 9È VX 
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and 
H?S(V0) = 0 = H?S(yi) 

for i > 0. Compare 4.10.3. If we factor / : S(Vo) —• S(Vi) as a cofibration 
followed by an acyclic fibration 

S(V)+ X62{H?K(n). 

then we get a diagram 

S(y0) X - F 2 ( 8 > s ( V o ) X 

5(Vb) 5 (Vi) - F 2 ®5(v.) W ) = A. 

Proposition 4.7 and the hypothesis of 10.2 imply that p is a weak equiv
alence. Since F2 ®5(Vb) X is the homotopy cofiber of / , Proposition 4.6 
yields an exact sequence 

(10.3) 0 -> H^A^VQ^JV! - » iJ 0

QA - 0. 

For example, if A(x) is the exterior algebra on a single generator a:, 
there is a projective extension sequence 

F 2 - F 2 [y]-^F 2 [x] -v A(ar) - F 2 

where f(y) = a:2. Hence 

(10.4) H?A(x) ~ F 2 S JT^ACx) 

and 
H?A(x) = 0 

for i > 1. 
It is instructive to follow in Quillen's [21] and Bousfield's [6] footsteps 

and to compute Quillen's spectral sequence for an algebra A defined by 
a projective extension sequence. To be precise, notice that if we use the 
suspension functor £ defined in section 4, then (4.9) implies that 

7r + EA^Tor£(F 2 ,F 2 ) . 
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For A G s A, let Q(7c*A)n denote the indécomposables of degree n in the 
graded algebra n+A. 

Proposition 10.5: Let A be defined by a projective extension se
quence. Then Quillen's spectral sequence 

5 ( V b ) 5 ( V i ) - F 2 ® 5 ( v . ) W ) = A . 2 ^ 2 ) 

collapses and 
H?A9eTor*(F2,F2) 

and 
H?AÇ*Q(Torî(F2,F2))2 

Proof: This follows from the isomorphism Hf*A = i f ^ E A and 
Proposition 6.5. In fact, we can write down an isomorphism of divided 
power algebras 

Tor$(F2, F 2) Si E(H?A) ® r(JT«A) 

where E and Y denote the graded exterior and divided power algebra re
spectively. 

The proof of 10.5 suggests the following generalization, due essentially 
to Andre [1]. Let A G sA and consider the composition 

5(Vb) 5(Vi) - F2 ®5(v.) W) = A. 

Call this composite g*. The following is proved by examining Quillen's 
spectral sequence* 

Proposition 10.6: 0* induces natural isomorphisms 

F2 ®5(v.) W) = A. 

and 
Q(7c.HA)2-2+H? 
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We now define the operation /3, using the method of the universal 
example. If x G H^A, then there is a unique morphism in the homotopy 
category associated to sA 

/ : A - t f ( 0 ) + 

so that if ¿0 G HQK(0)+ l s ^ e universal class, then HQ/^LO) = x. Thus, to 
define a natural operations 

ß : HQA -> H^A 

it is sufficient to stipulate /3(¿o) € H^K(0)+. However K(0) G sF2 is the 
constant simplicial vector space that is F 2 in each simplicial degree; hence, 
K(0)+ = A(x), where the exterior algebra on the generator x is regarded as 
a constant simplicial algebra. Thus (10.4) implies that HQK(0)+ = F 2 = 
H^K(0)+ and H1QK(0)+ = 0 for i > 1. The non-zero class 

to G H°QK(0)+ 

is the universal cohomology class of degree I 

(10.7) ß(iQ) G HX

QK\ 

be the non-zero class of degree 1. This defines the operation /3. 
To discuss the operations /3, we note that it can be detected in homo

topy. Or, to be precise, consider the dual Hurewicz homomorphism 

h* \H%ZA-+(IiçmYlAy. 

Since 7T*£.A is a Hopf algebra (see before 4.9), we have that 7r*EA* is a 
Hopf algebra, at least when TC*A is of finite type. Also, since HQSA = 0, 
we have a factoring of h* as 

Vb) 5(Vi) - F2 ®5(v.) W) 

Proposition 10.8: Let A G sA be so that TT*A is of finite type. Let 
x G HQA Si HQEA and p(x) G HQA 9É H^XA. Then 

h*ß(x) = (h*x)2 
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in 7T*EA*. 
Remark: Since h* : H^HA —• 7r 1EA* is an isomorphism and h* : 

H^BA —* 7r2E>l* is an injection (both because of 10.6), this is an effective 
method for computing /3. 

Proof: Since a map / : A —• B in s A induces a map of Hopf algebras 

TT*E/ : TT*EA -> ir*EB 

it is only necessary to show this result for the universal example A = -RT(0)+. 
However. 

* * E t f ( 0 ) + SE | T o r * w ( F 2 , F 2 ) ] * 
( F 2 , F 2 ) 9.-F2[y] 

where 2/ e JSa;t^i|.j(F2, F 2 ) . We apply 10.5. Since h*i0 = y and h*/3(i0) ^ 0, 
we must have that 

F2 ®5(v.) = yé~2 

We can now prove the following. 

Proposition 10.9: Let A e sA and a:, y 6 -HQ^- Then 

j8(* + y) = /3(z) + P(y) + [*, y]. 

Proof: It is sufficient to do this for the universal example 

A = (K(0) x K(0))+ 

and x = L1 and y = i? where these classes axe the two cohomology classes 
induced from the universal cohomology class by the two under the two 
projections 

(K(0)+ x nsuyebsivue 

We claim that HfeA is of dimension 3 over F 2 and that a basis for HQA is 
given by the three elements ^(i 1 ) , /3(t 2 ) , and [t1, i2]. To see this and to pre
pare for the rest of the argument, we argue as follows. 7r*A = A(ii, v)/(uv) 
and, using this fact, it was proved in [12] that there is an isomorphism of 
Hopf algebras 

TT'EA = i ? < . A ( F 2 , F 2 ) <* T ( y i , y 2 ) 
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where T( ) denotes the primitively generated tensor algebra. Furthermore, 

h* H0A= i?<.A(F2,F2) <* F2F2) 

is an isomorphism and tfi1 = yi and h*i2 = y2 • Dualizing 10.6 and letting 
P( ) denote the primitives we have that 

h* : H^QA-* P(Extl.A(F2,F2))
2 

is an isomorphism. Therefore, HQA is of dimension 3. The previous result 
now implies that 

h*P(,}) = yl and fc*/3(t2) = y 2. 

Next consider the two projections 

H*Q(K(0) x K(0))+ -+ H*QK(0)+ 

induced by the two inclusions onto factors 

K(0) — K(0) x K(0). 

The element [i1, t2] G HQA goes to zero under both these projections. On 
the other hand, [ i 1 ,* 2 ] in non-zero, by 10.5. Thus we have 

/i*^V2] = 3/^2 + ^ 1 

in Ext^ A(F29 F 2 ) . Now we compute using 10.8: 

h*3U1 + t2) = (y1+y2)
2 

= Vl + Vl + yiî/2 + îfeî/l 

= £ W ) + /^ 2) + ['V2]). 

Since h* is an injection on HQA, the result follows. 

Finally, we append here the following result, although, in its proof, we 
will reference results of later sections. 
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Proposition 10.10: Let A G s A, x G H%A, y G H^A. Then 

[P(y),x] = [y, [y,x]]. 

Proof: Again, it is sufficient to examine the universal example 

A = (K(0) x K(n))+ 

with y = ¿0 and x = tn. In [12] it was proved that there is an isomorphism 
of Hopf algebras 

**VAe£T(yUV2) 

where T( ) is the primitively generated Hopf algebra and 

2/1 = h*i0 G t i ^ E A 

y 2 = h*in G 7 T N + 1 E A 

We are still using the Hurewicz map h* given by the composition 

H%A 9* H^A ^ 7 T M + 1 E A * . 

Now we will prove in 10.8 that 

(10.11) h*[x,y] = h*(x)h*(y) + h*(y)h*(x) 

in 7r*Syl*. Furthermore in 10.11 we will prove that for A = (K(0) x K(n))+ 

# £ + 3 £ A 9É F 2 . 

Thus to prove the result it is sufficient tò prove that 

**[*o[«o»*n]]^0 

h*[pi0,in]j:Q. 

But we compute, using 10.5 and 10.11, that 

h*[ßl0,Ln] = h*(ßl0) h*(in) + h*(in)h*(ßl0) 

= vìvi + y*y\ 
=h*[i0,i02) <*e0 ,en ]]. 

The result follows. 
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In section 4 we determined that all abelian simplicial algebras in our 
category sA were of the form V+ where V is a simplicial F2-vector space 
and ( )+ is the trivial algebra functor. In addition, we computed that for 
A G sA. 

[A, V+]SA Si HomnF2(H?A,7T.V). 

Thus the objects G sA behave exactly as Eilenberg-MacLane spaces 
do in the category of spaces. Of particular interest are the cases where 
V = K{n) and V = K(m) x K(ri). Recall that K+K{n) = F2 concentrated 
in degree n . Then 

[A,K(n)+]sAÇ*H£A 

[A, (K(m) x K(n))+]sA & HQA x H%A. 

Thus HQK{7I)+ and HQ(K(m) x iiT(n))+ represent, respectively, all coho
mology operations of one and two variables. 

Our computation of HQV+ will proceed in stages. In section 11 we will 
compute HQV+ for for a finite product of iiT(n)'s: 

V = iif(rci) x K(n2) x • • • x K(nk) 

assuming the computation of HQK{TI)+ for all n. It will be the purpose of 
the remaining sections to do the latter computation. 

11. Applications of a Hilton-Milnor Theorem 

The purpose of this section is to give some computations of HQV+9 

assuming that we have computed HQK(n)+ for all n. Along the way we 
will draw some corollaries about the structure of HQA for general A 6 s A. 
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To be up front with what will be postponed, let A G s A and x G HQA. 
Then we know that the cohomology operations P% have the property that if 
i > n, then P%{x) = 0. In addition, consider the composition of operations 

pi _ pil pi* . . . pik 

defined for some sequence of integers I = ¿ 2 , . . . , ik)- I might be empty, 
in which case P1 is the identity. Call such a composition allowable if it < 
2i*+i for all t. The empty composition is allowable. If J is not allowable 
then the relations of Theorem 9.1 permit us to rewrite P1 as a sum of 
allowable compositions. Finally, if P1 is allowable and ia < n, then 

H < H V is + ^ 

for all *. Thus, if a: G HQA, the set of elements 

EA = i?<.A(F2,F2) <* T(yi, 

with P1 allowable, it > 2, and ik < n span the sub-vector space of HQA 
generated by PJ(x), with PJ running over all possible compositions of the 
operations P%. Notice that since J may be empty, x itself is in this sub-
vector space. 

One of the principal results of this paper is that the allowable P1 with 
ik < ^ can be linearly independent as well. 

Theorem 11.1: Let n > 1 and let tn G HQK(JI)+ be the universal 
cohomology class of degree n. Then a basis for HQK(TI)+ is given by all 
allowable compositions 

PI(Ln)=Pil--'Pik(ln) 

with k > 0, it > 2 for all *, and is < n. 

This will be proved in later sections. See 14.3. 

Remark 11.2.1.) This computes H^K(n)+ for all n > 0, as H%K(0)+ 
was computed in section 10. In fact, HQK{0)+ has basis ¿0 and P^o G 
Hx

QK{n)+. 
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2.) One consequence of this result is that there are no universal rela
tions among the operations P 8 except those that are implied by Theorem 
9.1. 

3.) Notice that HQK(1)+ = F2 in degree 1, generated by ¿1. We 
knew this anyway, as the unique non-zero map SK(1) —* -RT(1)+ is a weak 
equivalence. 

To extend the computation of HQK(n)+ to a computation of HQV+ 
for other simplicial vector spaces V, we need the Hilton-Milnor Theorem. 
Let 

E : s A —» s A 

be the suspension functor of section 4. And let V\,V2 G 5F2- Then the 
Hilton-Milnor Theorem discusses the homotopy type of 

x F a a E[(Vi x y 2 )+] 

in s>t. 
We need some further notation. The category 5F2 is a category of 

modules and, as such, is equivalent to a category of chain complexes [15, p. 
96]. Therefore, it is easy to construct a suspension functor 

a : sF2 —• sF2 

so that there is a natural isomorphism for V G sF2 

7CnaV = 
f i T n - i V ; i f n > l : 
\ 0; if n = 0. 

The functor a has an adjoint CJ so that there is a natural isomorphism 
V 9* UJGV for all V e sF2 and if 7r0V = 0, then 7r no;F ^ fl"n+iV\ 

Now let L be the free algebra on two elements x\,x2. Let B be the 
Hall basis for L. Then b G B is an iterated Lie product in the elements x± 
and x2. Let 

ji(b) = the number of appearances of x\ in 6 

j2(b) = the number of appearances of x2 in 6 

i(b)=ji(b)+j2(b) 
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and if VuV2e sF2, define ^(6) 6 sF2 by 

(11.3) V(b) = c j [ ( a V i ) 0 , W ® (ay 2 )®^ 6 ) ] 

where means the tensor product of W with itself k times. 

Theorem 11.4 (Hilton-Milnor)[12]: Let V\ and V2 be objects in sF2. 
Then there is a weak equivalence in sA 

S[(Vi ) + x F a (V2)+] - <g>66BE[V(&)+]. 

This equivalence is natural with respect to maps V\ —• Wi and V2 —• W2 

in 5 F 2 . 

Remark 11.5: This theorem is useful for computations as follows: 
notice that if A, B G then there is a natural isomorphism 

Q(A ®B)**QA®QB 

and, hence, a natural isomorphism 

H*Q(A ®B)^ H^A x HQB. 

Thus there is a sequence of isomorphisms 

H*Q[(VI)+ X F 2 (%)+] a Ä g ^ E « ^ x F , (V2)+] 

and 
ÄSE[(Vi)+ x F , (V 2 ) + ] s x 6 6 B l f £ E V ( & ) . 

and 
i)+ xF, (V2)+] s x i?<.A(F2,F2) <* T(yi,y 

So that 
= cj[(aVi)0,W ® (ay i)+ xF, (V2)+] s x 

As an example and application, we consider the Hilton-Milnor Theorem 
in the case where V\ — K(m) and V2 = K(n), where ir*K(m) = F2 and 
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ir*K(n) = F2 concentrated in degrees m and n, respectively. If b € B C L 
is a word in the Hall basis, let 

nb = mh(b) + nj2(b) + £(b) - 1. 

Then, using the fact that there are weak equivalences in sF2 

K(i)®K(J)~K{i + j) 

and 
aK(i) ~ K(i + 1) 

we see that thé Hilton-Milnor Theorem yields a weak equivalenc 

(11.6.1) E(iT(m) x K(n))+-^+ ®b€B XK(nb)+ 

Therefore 
H%E(K(m) x JT(n))+ SÈ xb€BH&:K(nb)+ 

Si JT^"1 Jr(n 6)+ 

and, using 11.1, we have effectively computed HQ(K(m) x K(n))+. To be 
more concrete in our description, we must develop the relationship between 
the elements of B Q L and the product [, ] of section 5. Let 

i,m, t n G H*Q(K{m) x K(n))+ 

be the universal classes. Consider the composition, which we call g*: 

Hr>K(m + n + l)+-^HÏ,+1ZK(m + n + 1)+ 

— • / № £ ( A Y m ) x K(n))+ 
^H*Q(K(m) x K(n))+ 

obtained by considering the word b = [xi, x2] G B. Let t m + n + i e HQK(m+ 
n + 1)+ be the universal class and let [, ] be the product on HQ. 

Lemma 11.7: 0 * ( * m + n + i ) = [*m,* n]-
Proof: g*(i<m+n+i) 7 ^ 0 because g* is an injection. But if 

fi : K(m)+ -> (lf(ro) x if(n))+ 
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and 
h : !T(n) + - (JT(m) x IT (n))+ 

are the inclusion into the first and second factors respectively. Then the 
naturality clause in the Hilton-Milnor Theorem implies that 

A*9*(Wn+l) = 0 = /2 <7*(*m+n+l). 

Similarly, 8.5 implies that [ t m , tn] ^ 0 and 

/ l [ l m j In] = 0 = /2 Um> ^n]« 

Now the calculation of 11.6.2 implies that there is a unique class 

x E H^+N+1(K(m) x K(n))+ 

with these properties: that x ^ 0, but f%x = 0 = /2 x. The result follows. 

The following corollary to this result is useful for calculation. Let 
A G sA be so that TT*A is of finite type. Consider the degree shifting 
Hurewicz homomorphism 

h* : HQA H ^ A T T * E A * . 

Let x, y G #£>-A and [ar, y] G HQA their product. Also, let 

( , ) : 7 T * £ A * <g> T T * I ! A * - + T T * S A * 

be the commutator product 

(a, 6) = a& + ba 

in the possibly non-commutative Hopf algebra 7 r * E A * . 

Proposition 11.8: h*[x,y] = (to*(ar),/i*(y)). 

Proof: It is only necessary to consider the universal example A = 
(K(m) x iT(ra))+, and x = t m and y = ¿ n . But then it is clear from 
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the decomposition of 11.6.1 that fe*ff*(tm+n+i) = (̂ *0*0> where 
<7*(tm + n+i) is as in 11.7. Since 

[ ^ m ^ n ] = ff*(*m+n+l) 

, the result follows. 

We next consider an arbitrary finite product, which we label K+: 

K+ = (Kim) x K(n2) x • • -K(nk))+. 

We can use the Hilton-Milnor Theorem and induction to study Let Lk 
be the free Lie algebra on symbols x\,x2,... and let Bk C Lk be the 
Hall basis. If b G then 6 is an iterated Lie bracket in the symbols ar,-, 
and we define, for 1 < i < fc, 

J t(6) = number of appearances of X{ in 6 

and 
t(b)=j1(b) + ..- + jk(b). 

Then we let 
nb = ii(6)ni + • • - +jk(b)nk + 1(b) - 1. 

Then, using Theorem 11.4, 10.6.1, and induction, we have a weak equiva
lence 

E l T + - = + <8>6€B* E l * r ( n 6 ) + . 

In fact, using 11.8, we can give an explicit description of this weak equiva
lence. Let b G Bk] then, we may write 6 as a Lie product 

6 = [Xit [xi2 • • • [Xi^, xit] • • •] 

where I = £(b). Let vn. G HQK+ be the universal classes, define, in the 
homotopy category associated to sA, 

gh:K+-+ K(nb)+ 
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by the requirement that 

(ïl-9) g*inb = ta ta • • • ta_,, ii£] • • •]. 

Then, applying the suspension functor, we obtain a map 

= cj[(aVi)0,W = cj[(aVi)0,W+ 

and then, using the coproduct Eiîf+ —• E.K+ ® we obtain a map 

g : E-RT+ <g> 6 € B f c £lir(n 6 )+. 

Proposition 11.10: The morphism g is a weak equivalence. 
Proof: Let T( ) denote the primitively generated tensor Hopf algebra. 

In [12] it was proved that 

[xÌ2 • • • ,
 0,W ® (ay 

where a : sF2 —• sF2 is the shift functor defined before 11.4. Therefore, 
11.8 implies that n*g* is an isomorphism. Since TC+IJK+ is of finite type, 
the result follows. 

Remark 11.11: It follows from 11.1, 11.9, and 11.10 that a basis for 
HQK+ is given by the elements 

P J I - - - p a t a t a • • • [ ' . • < _ , , * * « ] • • • ] 

where 
6 = [xit [xÌ2 • • • , xi£] • • •] e Sfc, 

P J is allowable, jt > 2 for all * and j 8 < rib, and tbe elements 

/*(*..) 

when n,- = 0. 

We state some further corollaries of 11.10. The first was used in the 
proof of 10.10. 
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Corollary 11.12: Let n > 0. Then 

Hg-3(K(0) x iT(n)) + ^ F 2 

generated by [¿05 [*o5 ^n]]-
Proof: This follows immediately from Remark 11.11. 

We can also prove that the product [ , ] on HQ satisfies the Jacobi 
identity. 

Theorem 11.13: Let A G sA and x,y,z E HQA. Then 

[x, [2/, z]] + [z, [x, y]] + [y, [z, x]] = 0. 

Proof: We need only prove this for the universal example 

A = [K(m x K(n2) x iT(n 3)]+ 

and x = t n i , y = £ n 2 , and z — tn3. Let 

fij : (i^n*) x K(nj))+ A 

with 1 < i < j < 3 be the three "monotonie" inclusions and 

M = ker(ft2) fl fcer(/r3) n fcer(/2*3) C l l £ + w » + w * + 2 j i . 

Then, using 11.8, 11.10, and 11.11, we have that the composition 

M-^H^A^UK^A* 

is an injection. Since 

<* = [*rn, [*n 2 , * n 3 ] ] + [̂ na, [ t n r , *n 2 ] ] + [*n 2 , [ ^ n s ^ m ] ] £ -M 

and h*(a) = 0, by 11.8, we have that a = 0. 

We finish with a uniqueness result about the operations P%. 
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Proposition 11.14: Suppose that for all A € sA and all non-negative 
integers j and n there is a natural operations 

P 1 : H%A -> 

so that 1.) Pn(x) — [x9x], and 
2.) P 7 commutes with the suspension isomorphism 

[xÌ2 • • • , 

Then for all j and n, Pj = Pj. 
Proof: Because both P J and P 7 are natural, it is only necessary 1 

prove that 

P ' (6 n ) = P ' (* n ) 
where tn € HQK(n)+ is the universal cohomology class. By Theorem 11.1, 
there are elements a j € F2 so that 

n)+ ^H*QY,n-iK(n)+ ^H*QY,n-iK 

where the sum ranges over all allowable monomials 

P1 = P*1 . -. P*» 

where s > 1 and ¿1 + h + J + 1- This last condition implies that 
is < j-

Consider the map in the homotopy category associated to s A 

/ : V»-'K(j)+ - K(n)+ 

so that Hcyf^in) ^ 0. Then, under the composite 

H*QK(n)+ ^H*QY,n-iK(j)+°—>H*QK{j\ 

we have that in maps to ¿¿ and, then, 

P*{i3) = atjP^tj) + J2<*iPI(tj). 
Fiirthfirm ore. as a consecmence of 1 1 . 1 . the induced mat) 

n)+ ^H*QYajhj, Lj] +y 

is an injection. Thus, we have 

[ij, 14] = ajhj, Lj] +yaIP
I(ij). 

Hence we may conclude that otj — 1 and aj = 0 for all other / . 
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12. A reverse Adams spectral sequence for computing HQA 
In this section we begin the computation of HQK(TI)+ by producing a 
spectral sequence that passes from 7r*A to HQA for A € sA. This spec
tral sequence is a reasonable tool to consider as we often regard IT* A as 
computable. The spectral sequence is due to Miller [16, Section 4] and [18]. 

As a look ahead, we remark that this spectral sequence will have a 
particularly nice form when 7r*A is the graded algebra underlying some 
graded Hopf algebra. This will be the case when, for example, A = Y»B is 
the suspension for some object B 6 sA or if A = K(n)+. 

To begin, let AV be the category of graded algebras over the higher 
divided square operations 6», as defined in section 2. Then homotopy defines 
a functor 

7T* : s A —• AV 

and 
e : AV -* AV 

is the functor underlying a cotriple on AV. 
Thus, if A G AV, we have a simplicial object &.A in AV and, for 

r E AV, we may define 
ExfA1>(A,r) 

by the equation 

(12.1) Exts

AV(A, T) = 7TS Horn AD ( ©. A, T). 

Now let A n 6 AV be the exterior algebra on a single generator xn of degree 
n, with the evident action of the operations 6,-. Notice that 

7r*K(n)+ ~ A n . 

Here is the reverse Adams spectral sequence. 

Theorem 12.2: Let A G sA be a simplicial algebra. Then there is a 
spectral sequence 

Extp

AV(7r*A, Ac) Hp+qA. 
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Before proving this we remark that because of the complexity of 7r* A as 
an object in AV and the complexity of the functor ©, this spectral sequence 
doesn't necessarily appear as a step forward. It is the purpose of some the 
auxiliary results of this section and of the next section to explore various 
ways one might compute with this spectral sequence. 

Proof of 12.2: Let SA = SF*A A be the acyclic fibration with SA 
almost-free produced in the proof of 1.4. Then 

HQA = n*QSA*. 

Now, 
SA = diag(S...A) 

where 5.,.A is the bisimplicial algebra produced in section 1: SP9qA = 
Sp+1Aq. The observation that makes this proof go is that if we fix p, 
then 

7 r . 5 p + 1 A ^ 6 p + 1 ( ^ ) 
In other words, by taking homotopy in the simplicial degree q - thereby 
leaving the simplicial degree p - we obtain the canonical acyclic almost-free 
resolution of 7r*A as an object in AT>: 

G.faA) —• n*A. 

The argument proceeds as follows: Form the bi-cosimplicial object B 
with 

B™ = Q 5 p + 1 A * . 

Filtering B by degree in p, we obtain a spectral sequence 

7rpwqB wp+qdiag[QS...A*]. 

But, since 
diag[QS.,.A*] = Q(diag(S.9.A))\ 

we have that 
7cp+qdiag[QS.9.A*] ^ Hp+qA. 
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Thus the spectral sequence abuts to the promised object and we need only 
identify the i^-term. However 

Ep'q Sé ir4QSp+1A* 

Hornos* A,F2) 

9È HomF3(irqS
pA,F2) 

SÉ Я о т Р з (6 P 0r.A)„F 2 ) 
2 HomA<p(ëp+1(**A),Aq). 

Hence 
E™ £ 7rp2Jom W S . ( 7 r . A ) , A.) 

ajhj, Lj] +y 

This identifies the £"2-term and completes the proof. 

In order to make this spectral sequence more accessible, we now develop 
methods for approaching the the i?2-term. The first such method is to 
produce a composite functor spectral sequence. For this we need some 
notation. First we note that if A G sA then w*A is an algebra over the 
higher divided power operations of section 2. Because, for x, y 6 ft*A, 

8i{xy) = x26iy if x 6 7r 0A; 

= y26{X if y € A] 

= 0 otherwise 

we have that the graded vector space of indecomposables Qn+A is actu
ally a module over the higher divided power operations. We could define 
the category of such modules by some suitable cotriple, but it seems more 
natural to do the following. 

Definition 12.3: Define the category UV of unstable modules over 
the higher divided squares as follows: M G UV is a graded vector space 
equipped with homomorphisms 

Si : Mp M p + t - , 2<%<p 
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so that the relations of Theorem 2.5 hold. That is, if i < 2j , then 

6i6j(x) = 
fl/2<8<*+j/ CT-r1) 

A morphism in UV is a vector space map that commutes with the operations 
Si. 

Examples 12.4:1.) If A 6 sA, then Qn+A G UV. 
2.) If A, T G AV then A ® V G W£> via the formula 

6i(x (g) y) = x2 <g) 6t-('y) if x G A 0  

= £,-(*) ® y * if y e T 0  

= 0 otherwise. 

Then, if A € AV the multiplication map A <g> A —• A is a morphism in AV. 

Now, if W € n F 2 and ©(W) 6 >W? is the resulting free algebra over 
the operations 6,-, that Q&(W) G UV is projective; indeed 

HomUv(Qe(W),M) S ffamnF2(W,M) 

so the functor V( ) = Q©( ) i s left adjoint to forgetful functor. Hence UV 
has enough projectives. 

Next, if r G AV, let LpQY be the left derived functors of the indé
composables functor with respect to the cotriple induced by ©; that is, 

LfQT S TCsQêT 

where &.V —• F is the canonical simplicial resolution of T. 
Finally, let S n F 2 € UV be the trivial module of dimension one over F2 

concentrated in degree n. Here is the composite functor spectral sequence. 
It is based on the observation that 

HomA7>( ,An)^Homuv( , E n F 2 ) o Q ( ) . 
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Proposition 12.5: For T € AV, there is a spectral sequence 

ExtlniLf QI\SnF2) ExtflgÇT, An). 

Proof: The argument, which I saw first as Proposition 2.13 of [16], is 
standard. The forgetful functor UV —§ nF 2 has left adjoint V, as described 
above. Let V : UV —• UV be the resulting cotriple. Then if N E UV, we 
may form the augmented simplicial object P.(N) —• N and 

Ext^(N,M) = Tr*Homu<D(V.(N),M). 

Now let r G and —• V be the acyclic simplicial resolution of T, and 
form the bi-cosimplicial vector space C with 

= ifom W 2>(7yQ6 gr),E nF 2). 

Filtering C by degree in p, we obtain a spectral sequence with 

Ef* S #om W 2 >(^ , (L©r) ,£ n F 2 ) . 

This ioliows from the tact that A7 is an exact functor and the dehnitions. 
From this we conclude that the E% term of the spectral sequence is as 
described in the statement of the theorem. To determine what the spectral 
sequence abuts to, filter C by degree in q. Then we get a spectral sequence 
with 

ajhj, Lj] +yajhj, Lj] 

Since QGqT is projective in UV E{,q = 0 if p > 0 and 

E^q <* HomWp(Q6,r,E nF 2) 
^HomA7>(êoT, An) 

Thus ££ ' 9 = 0 i f p > 0 and 

) = Tr*Homu<D(V.j, Lj] +y 

This completes the argument, 
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Notice that there is an edge homomorphism 

Ext^(QT, S"F 2) - Extp

AV(T, An). 

We would like to know when this is an isomorphism. 
Now, the spectral sequence of 12.5 would not be a step forward except 

for the fact that there is class of algebras for which LpQ vanishes for q > 0. 
These will include 7r*£A, where 5L4, A G s A is the suspension of A. The 
first point to make is that these functors depend only the algebra structure 
of the argument. Define a triple T : 71F2 —> nF2 by 

T(W) = S(W0) <S> [® P>oA(W p)] 

where S( ) and A( ) are the symmetric and exterior algebra respectively. 
Notice that, by Proposition 2.7, &W isomorphic, as an algebra, to T(VW). 
Since T is a triple, we have a category T of T-algebras and T : nF2 —» T 
is left adjoint to the forgetful functor. We may regard T as the category 
of graded algebras T so that if X G T p , p > 0, then x2 = 0. There is a 
forgetful functor AV —• T. Finally, if T G T, we can form the vector space 
QT of indécomposables and we can form the derived functors 

L?QT. 

Proposition 12.6: Let Y G AV. Then there is an isomorphism of 
vector spaces 

LfQY SÈ L\QV. 

In particular, if there is an isomorphism of algebras T = TW for some 
LfQY = 0 for g > 0 and 

LpQY SÈ QY. 

Proof: The second clause follows from the first. The first isomorphism 
is a direct consequence of Proposition 2.11 of [16]. The proof goes, in outline, 
as follows: Let © and T denote the obvious cotriples. Form the bisimplicial 
obiect 

Q ( T p + 16 9 + r). 

114 



THE COHOMOLOGY OF ABELLAN OBJECTS 

Filtering by degree in q we obtain a spectral sequence with E^q = 0 if p > 0 
and E^q 9* LpQ(T). Here we use the fact that &W ^ TW for some W. 
Then, filtering by degree in p, we obtain a spectral sequence with E*q = 0 
if q > 0 and = LjQ(T). Here we use that 7r*©.A = T via a canonical 
contraction and, hence, that T&.T has a contraction. 

When we have an algebra T G AV so that there is an isomorphism 
of algebras V = TW for some W, then 12.6 guarantees that the spectral 
sequence of 12.5 collapses and yields an isomorphism 

Ext^QT, E"F 2 ) « Extp

A7>(T, A n ) . 

This is obviously a simplification, returning the right hand-side of this equa
tion to the realm of abelian homological algebra. In addition, under the 
hypothesis that n*A = TW for some W, the spectral sequence of 12.2 
becomes 

(12.7) ExtlviQv+A, E«F 2 ) H*+qA. 

This will be the case for 5L4, A G s A. Indeed, if T G AV is the algebra 
underlying a graded Hopf algebra that is connected in the sense that To = 
F2 generated by the unit, then Borel's structure theorem for Hopf algebras 
implies that F = TW for some graded vector space W. We will explore 
computing the i?2-term of the spectral sequence (12.7) in the next section. 

Remark 12.8: Let r G A be a commutative F2-algebra. Regard T as 
a constant simplicial object in s A. Then 

7r . S r ^ T o r r ( F 2 , F 2 ) 

and 
n xkdjfyzib 

Thus 12.7 yields a spectral sequence 

Ex%v(QTorl(F2, F 2 ) , E«F 2 ) Bg<-xI 

This is similar to the spectral sequence written down by Miller in [18]. 
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As an interesting contrast, Andre and Quillen worked out the HQT 
in characteristic 0 — that is, for some field k of characteristic 0 — and 
obtained that 

HqT= Tr*Homu<D(V. 

(from the definitions) and 

H?re<[QTorl(k,k))n+1; 

that is, the indécomposables in Tor in degree n + 1. Thus -ff^r is dual to 
indécomposables in Tor. There are no higher divided power operations in 
characteristic 0, so there is no need for a spectral sequence as in (12.7). 

13. A Koszul resolution for computing Extuv 

In the previous section we saw that we could often approach HQA through 
the computation of Ext in the category WD. In this section, we apply the 
work of Priddy [19] to produce a canonical chain complex for computing 
these Ext groups. 

Let V : nF2 —* WD be the left adjoint to the forgetful functor and 
V : WD —• WD the resulting cotriple. Then, for M € WD, we compute 
Extl(T>(M,51qF2) by the equation 

Extv

ul>{M^F2) = irpHomuv{V\M)^F2). 

Now E 9 F 2 € WD is simply the trivial module of dimension one over F2 

concentrated in degree q. By allowing q to vary, we obtain a graded object 
££i£^,(Af,F 2 ) with 

Extl(M,F2)
q = ExftviM^F^. 

It is this object that the Koszul resolution will compute. Note that we can 
similarly define HomuT>{M,F2). 

Dually, we have a notion of Tor in WD. For M G WD, we specify two 
canonical map P(M) —> M. The first is the usual projection e : V(M) —* M 
adjoint to the identity M —• M in nF2. The second is obtained as follows: if 
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V G nF 2 we may regard V G UV as a trivial module and obtain a projection 
e : V(V) —> V. Applying this to M regarded as an object of 71F2 we obtain 
a projection e' : P(M) —• M in nF^. Then we define F2 ®UT> M by the 

i:„ J : 

(13.1) V(M)^d>M -+ F 2 <g>wx> M. 

Then we have 

(13.2) Tor^(M, F 2 ) = *-„F2 <g>MÏ, P. (M) 

and 
[Tor^(M,F2)Y = i a r i ^ M . F : , ) . 

If V is a bigraded vector space, we can define a filtration on V(V) by 

(13.3) F«V(V) = {6il...6m(x) : i 6 V a n d m < g } . 

Notice that F?V(V) Ç. F?+1V(V) and 

6iF?V(V) Ç F?+1V(V). 

Therefore, the associated graded (actually bigraded) object EQV(V) has an 
antion bv the onerations 

6i:E$V(V)-+E*+1P(y). 

increasing filtration degree by one and subject to all the axioms of (13.3). 
We call the category of such modules EQUV. 

Furthermore, if V is itself filtered by a filtration 

. . . Ç F$V Ç FQ+1V Ç . . . Ç V, 

we can define a filtration on V(V) by 

FQV(V)= ^2 E^V(F^V)CV(V) 
a+b=q 
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where F\ is the filtration above. Thus, if M e WD, we can recursively define 
a filtration on PP(M) = P*+1(M) by 

FSV0(M) = F"V(M) 

as in (12.3) and 

FSVP(M) = ^ F°'P(FhVp-1(M)). 
a+b=s 

It is simple to check that the face and degeneracy operators 

di:Pp(M)^Pp^(M) 

and 
Si:Pp(M)-+Pp+1(M) 

preserve these nitrations and the associated graded yields a simplicial object 
EQP.(M) in EQUV. Furthermore, the canonical contraction of P.(M) also 
preserves this filtration, so we have 

7c*EoP.(M) ^ M 

concentrated in TTOEOP.(M) and filtration degree 0. In fact, if we regard M 
as an object in EQUV concentrated in filtration degree 0, then 

EQP.(M) M 

is the canonical projective simplicial resolution of M in EoUV. In EoliV, 
M i s a trivial module because the operations 6* shift filtration degree. 

Therefore, if we define F 2 ®E0UV ( ) by analogy with (13.1), then 

?r PF 2 ®E0ui> E0P.(M) = T o r f UV(F2,M) 

Denote bv 
Torj?°»V(F2,M)q 

the elements of filtration degree q. Then the filtration above yields a spectral 
secmence 

E™ = T o r f ° W 7 ? ( F 2 , M ) , TorJ r 2 >(F 2 , Jl 
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with differentials 

dr : E™ -> E?-1*-'. 

Dualizing, we get a spectral sequence 

Extp

EoUV(M,F2)q ExtliviM^z). 

Priddy's results, suitably adjusted, include the following. 

Proposition 13.4: If p ^ 9 , then 

Torful>{M, F 2 ) 9 = 0. 

We Priddy's argument applies immediately to prove this result. In 
addition, the argument for this case can be adapted immediately from the 
argument given in [13]. The next result follows immediately from the spec
tral sequence above. 

Corollary 13.5: Define a cochain complex for M e UV by 

C*(M) = Ext*EoUV(M,F2)p = Elp 

and 
d* = d1 : Cp(M) -+ C p + 1 ( M ) . 

Then 
JJ*(C(M),eT) 2 ExtZv(M,F2). 

To give specific details about the chain complex in 13.5, we need to 
develop some notation. Recall that a composition 

(13.6) « 1 = ^ . - . ^ 

is admissible if ik > 2ik+i for all k. The excess of I was defined in section 
3. Define the length of 6j to be m. 
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For M G WD, V{M) is spanned by elements which we will write 

omu<D(V. 

where, if x G M has degree t, then Sj is admissible and e(J) < t . If i" = <f>, 
we write Then E$P(M) is spanned by elements of the form 

omu<D(V. 

with x G M , the operation admissible, e(J) < deg(x), and length exactly g. 
If x has degree then this element has degree 

(13.7) t + J2*k. 

Then, recursively, we see that EQVP(M) is spanned by elements of the form 

[*/.l*/,l — l*/,W 

with x £ M , the operations admissible, excess determined by the case p = 0 
and the sum of the lengths of the 6jk exactly q. Prom this it follows that 
(F2 ®EQU7> EoVp(M))q — the elements of filtration degree q — is spanned by 
the residue classes of elements of the form 

(13.8) [\6h\...\6Ip\x] 

subject to the same conditions; in particular, if x has degree £, then 

(13-9) e(I f c) + 
r>k 

where we write ^ i" for i r with I = ( ¿ 1 , . . . , i m ) . 
It remains only to give a basis for C*(M) and a formula for d*, so that 

one can compute with the cochain complex of 13.5. First of all, 

C°(M) = M* 

is the graded F2-dual of M . Next consider the case where M = E*F2 is 
of dimension 1 over F2 concentrated in bidegree *. Let 1 € £*F2 be the 
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non-zero element. Then one easily sees that Ext^oliT>(EiF2, F 2 ) has a basis 
given by the residue classes of 

7\i*) = [l\Si\i]\ 2<i<s 

These have filtration degree 1. Then these elements define linear operations, 
for all M G UV and p > 0 

Y : C*>(M)* =EXI*EQUV{M9F2)(PA 

) r*Homu<D(V.) = [l\Si\i]\ + U H 

for 2 < i < t. 

Proposition 13.10: Let {xa} C M* be a homogeneous basis for the 
p2-dual of M G W. Then a basis for CP(M) is given by all elements of the 
form 

Y1 •••7* P (*a) 

with xa in the basis and 
1.) 2 < ik < 2ik+i for all k; 
3.) if xQ has degree then ip < t. 

Furthermore, if xa has bidegree t then this element has degree 

t + U H h ip. 

This can be proved exactly as in section 3 of Priddy's paper, or one 
can use the exact same argument as outlined in [13]. 

This result suggest that there are relations among the operations 7*; 
following Priddy's line of argument we see that these relations are: 

Lemma 13.11: If i > 2j , then 

)* =EXI*EQU 

i+j-2 )* =EXI*EQU )* =EXI*EQU 
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This is, of course, the same formula as for the relations among the 
operations P1 in HQ 

Finally, we can determine the differential d* : CP(M) —• C P + 1 ( M ) . 
First we consider the differential 

d* : C p (E*F 2 ) — C P + 1 ( £ * F 2 ) . 

One can easily check that if p = 1, then 

(13.12). «JV(A*) = 0 

This formula follow from the Adem relations of Theorem 2.5.3 and a stan
dard dualization argument. Then, for p > 1, d* "acts as a derivation"; that 
is, 

^ V ) = E ^ - - - ( d v f c ) - - - 7 ^ ( o 
or 

(13.13) < * V ( 0 = o . 

for all J. 
One can apply the relations above for further computations. Now, for 

general M G W2>, the operations 6,- : M —+ M determine dual operations 

6i : (M*) t -> (M*) t_,-

We write these operations on the right. Thus, for example, if x € M* is of 
degree *, then x6i is of bidegree t — i. Then d* : CP(M) —• C P + 1 ( M ) is now 
determined by the formula 

(13.14.1) d*(7 /(^)) = E7V(̂ ) 
»>2 

and the relations above. In particular, d* : M* —•> C 1 (Af) is given by the 
formula 

(13.14.2) d*(x) = J T , ' ( ^ ) . 
i>2 
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Remark 13.15:1.) This is a "lambda algebra" for computing ExtwDj 
very similar to the lambda algebra often used to make calculations of Ext 
in the category of unstable modules over the Steenrod algebra. 

2.) If x € CP(M) is a cocycle in this cochain complex, then 7 ' (x) £ 
CP(M) is also a cocycle. Thus we have an induced operation 

Y : Extlv(M,ZqF2) — ^ ^ ( M . E ^ + T a ) . 

Computation 13.16: Let J*T(n)+ £ sA be the universal object rep
resenting cohomology. We wish to compute HQK(TI)+. Consider Miller's 
spectral sequence 

Extp

AV{<K*K(n)+,Aq) HgQK{n)+. 

Now 7T* A~(n)+ = A(a:71) — the exterior algebra on an element of degree n. 
Thus, if n > 1 12.5 and 12.8 imply that 

Ex1?A1>(*mK(n)+,Aq) a £ * < & p ( E w F 2 , E * F 2 ) . 

Since E n F 2 is a trivial module in UT>, the differential of 13.14 is zero and 
we have an isomorphism 

^ % ( E " F 2 , F 2 ) £ C ( S " F * ) . 

Thus a basis for £ 'a-^ X ) (E"F 2 , E 9 F 2 ) is all elements of the form 

7' 1 •••7*'(**) 

where /* is the non-zero element in E n F 2 , 2 < ik < 2ifc+i for all A* , and 
Lp < n. Thus, if wo can show that Miller's spectral sequence collapses in 
this case, we have proved Theorem 11.1. 

We now write down and study an explicit chain equivalence 

(13.17) $ : HotniW(T.(M)9F2) = [F 2 CSVVP V.(M))m —> C*(M). 
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If M € WD and 6j = 6jj • • • <5,a is an admissible composition of higher 
divided squares, then we can define an injective homomorphism 

61 : M * —• V{M)* 

by 

{6I{y)A6j\x]) = fO, i f / ^ J ; 
[ ( î / .x ) , i f / = J. 

Here ( , ) is the pairing between a vector space and its dual. In this formula 
J might be empty, in which case we write 81 = 1. Notice that there is a 
factoring 

M — [F 2 ®uv V(M)\* 
i _ i 

M* V(M)* 

so that, by restricting the range, 1 defines an isomorphism 

1 :M* — [F2®UT>P(M)]*. 

Then, arguing as in 13.8, we see that 

[F2®uvPP(M)]* 

is spanned by elements of the form 

1 o 6Tl o • - • o 6Ip(y) 

where y G M*. Let us agree, for now, to write this element as 

6*1 o • • • o6Ip(y), 

dropping the "1" at the beginning. 
We now define 4> as in 13.17 by 

(13.18.1) ^(S{l o • • • o 6ip(y)) = 7*'1 •. -7^(1 / 

and 
(13.18.2) &(6Tl o . • - o 6Ip(y)) = 0 otherwise. 
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To see that $ is a cochain map is a matter of routine, if lengthy calcula
tion. We will gleefully leave this to the reader after supplying a few pointers. 
(The less intrepid, can look up the dual calculation in [19], section 4). We 
have the following formulas for 

dt : [ F 2 ®U<D VP(M)\* - > [ F 2 ®Uv PP+i(M)]*. 

(13.19.1) <R(6Jl o . . . o ^ ( j / ) ) = l o 6 Z l o - . - o o V y ) 

(13.19.2) d ; + 1 ( 6 Z l o •. • o 6J*(y)) = J26llo'-° 6 P & № 1 ) 
I 

and, for 1 < * < p 
(13.19.3) 
dï(6ri o . . - o ^ ( y ) ) = J2a(J>K>I*)6ll°'''o6lt'~1 0&J o6K

 ° - - -o6 J *(y) . 

In the last equation, a(«7, K^It) € F 2 are numbers determined by the equa
tions 

)* =EXI*EQU*)6ll°''' 
and the sum in (13.19.3) is over all admissible sequences I and J, including 
the empty sequence. The sum in (13.19.2) is over all admissible sequences, 
also including the empty sequence. Of crucial importance to any calculation 
proving that the map $ is a chain map is the case where It = {hj}- Since It 
is admissible i > 2j. Then it is a calculation similar to the one done in the 
proof of 9.6 to show that we have the following specialization of (13.19.3) 
in the case where It = 

d*(6h o . - . o ^ ( y ) ) 

= 6Tl o - - • o S1*-1 o 6If o 1 o - . . o p(y) 

+ 6h o . . . o 6 J*-i o 1 o 6If o - . . o p(y) 

+ 6Tl o . • • o 6 7*- 1 o 6* o 6*? o •. • o (y) 

+ ] C ( . W 1 o . . . o 6 J t - i o 6 , , + ^ o 5 5 o . . . o 6 ^ ( j / ) . 
s=i-j+l ^ S ~~ 3 / 

It is exactly this formula that is needed to make <& a chain map. 
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The fact that $ is a cochain equivalence follows from the facts that 
1.) [F2 ®UT> *P'•(•)]* C*(-) are exact functors to the category of 

cochain complexes, 
2.) H*[F2 ®UT> P.{M)]* = H8C*(M) = 0 if M i s projective in UV and 

s > 0, and 
3.) $ : H°[F2 ®WD P.(M)}* -> H°C*(M) is an isomorphism for all 

M euv. 

We can now use 4> to give another description of the operatic 

(13.20) 7*" : Exilant, E«F 2 ) — ExtvJ^{M, E « + i F 2 ) 

of 13.15.2. For a fixed i, 6% defines a map 

6* : 7>P(M)* — VP+1(M)* 

and thus we get a commutative diagram 

Vp(M)* 7>* + 1 (M)* 
1 1 1 . 

[F2®uvPp(M))* -£+[F2<S)uvPp+i(M)]*. 

In fact, this diagram and the fact that the vertical maps are isomorphisms 
defines 6%. 

Now, let x G CP(M) be a cocycle and 

y e [F 2 ®WD VP{M)Y 

a cocycle so that $(y) = x. Then a calculation with the formulas of 13.19 
shows that 

5 * ( Ï / ) E [ F 2 ® W 7 > 7 > P + 1 ( M ) ] * 

is a cocycle and the definition of $ demonstrates that 

E«F2) — ExtvJ^{M, E*)6ll°''' 
Hence 

(13.21) £*' : [F 2 ®uv PP(M)Y - Fa ®wx> VP+i(M)]* 
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induces the operation 7* of 13.20. 
It will be useful to have a formula for for £*, and we obtain one right 

from the definition (see after 13.17). If 

* = I • • • \Sip\x] e F 2 ®Uv 7 V n ( M ) , 

then 

(13.22) < ^ ^ > = { < ¿ , [ 1 | ^ | - | ^ W > , 
if 1гф { г } ; 
if J1 = { ¿ } . 

14« Operations in the reverse Adams spectral sequence 

In section 12 we constructed, for A € sA, a reverse Adams spectral sequence 

Extp

AV(irU,Aq) Hp+qA 

and a spectral sequence 

Ext^LpQ^A^^) Extpj£{?*A, Aq). 

The latter spectral sequence degenerated under favorable conditions. In 
section 13, we produced a chain complex for computing 

^ t ^ ( M , E 9 F 2 ) . 

We complete the circle of ideas by putting enough structure into the reverse 
Adams spectral sequence to insure that it will collapse in interesting cases. 
The method will be this: let 

P{ : HQA -> 

be the operations in HQ. We will describe how these operations are detected 
in the spectral sequence and use that information to make a computation. 
We will use the work of W. Singer [23]. Most of the section wil be spent 
proving the following. 
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Theorem 14.1: Let A G sA. There are operations 

P 1 : Extp

A7,(w*A,Aq) -> ExtPJ£(7c*A,Aq+i) 

so that 
1.) if a: G Extp

A7>{iç*A, Aq) survives to Eoo in the reverse Adams spec
tral sequence, then Pl(x) survives to E^] and 

2.) if a G H%fqA is detected by x G Extp

AV^A, Aq), then P ' (a) G 
H^~q+i+1A is detected by Pl{x) G ExtP££(<K+A,Aq+i). 

To make computations possible we need to know how the operations 
of 14.1 commute with the edge homomorphism 

e : Ext^Qir+A, E 9 F 2 ) Extp

AV{n+A, Aq). 

Theorem 14.2: Let 

7* : ExtftviQiv.A^Fi) niuydrnvg215891+-/ 

be the operations of the previous section. Then 

e( 7*0r)) = P'(e(*)). 

We can use these two results to prove Theorem 11.1, which we now 
restate. 

Theorem 14.3: Let n > 1 and let i n G HQK(TI)+ be the universal 
cohomology class of degree n. Then a basis for HQK{TI)+ is given by all 
allowable compositions 

P ^ n ) = P ^ . . . p ^ ( t n ) 

with s > 0, it > 2 for all t, and ifc < n. 
Proof: Consider Miller's reverse Adams spectral sequence 

Extp

AV(<**K{n)+, Aq) Hp+qK{n)+. 
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Since n > 1, n*K(n)+ = A ( x n ) , an exterior algebra on a generator of degree 
n, and 

e : £ : ^ ( E n F 2 , E « F 2 ) — Extp

A7,(ir*K(n)+, Aq) 

is an isomorphism. By 13.6, a basis for the target of e is given by all symbols 
of the form 

7*i - .-7 i f c(t*) 

with the composition allowable, s > 0, it > 2 for all *, and i& < n. Here, of 
course, 

L* G i£z$x>(E n F 2 ,X ! n F 2 ) 

is the non-zero element. Since ¿* detects t n G HQK(TI)^, 14.1 and 14.2 to
gether imply that j % 1 'm '7tk(1*) survives to and detects P%1 • • - P , f c ^ n ) . 
So the reverse Adams spectral sequence collapses, and the result follows. 

We now must prove 14.1 and 14.2. The rest of the section will be 
taken up with the proof of 14.1 and most of that proof will be taken up 
with making the proper definition of the operations at JE? 2. Then 14.2 will 
be proved in the next section. 

The spectral sequence discussed in 14.2 is that of 12.2; it is obtained 
by analyzing the bisimplicial vector space QS.9.A, where 

(14.4.1) QSp,qA = QSp^Aq et IS*Aq 

More explicitly, the spectral sequence of 12.2 is given by 

(14.4.2) np7cq(QS.,.A)* =• np+qdiag(QS.,.A)*. 

We then identified the JK2 term and the abuttment. We will work with this 
description. 

Implicit in the description of the spectral sequence of 14.4.2 is the 
relationship between the total chain complex of a bisimplicial vector space 
and its diagonal. If we let C(QS.y.A) be the total complex of QS.9.A and 
C(diagQS.9.A) the chain complex of the simplicial vector space diagQS.,.Ay 

then there is a chain equivalence 

A : C(QSWA) -> C(diagQSwA). 
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In fact, this is true of any bisimplicial vector space and A can be written 
down explicitly in terms of (p, g)-shuffles — which are defined using the 
horizontal and vertical degeneracy operators in a bisimplicial vector space. 

The first step, then, is to define a coproduct on C(QS.,.A) and to 
explore its properties. Since, for a fixed g, S.9q = S.Aq is an almost-free 
simplicial algebra, we obtain a coproduct from section 5 

(14.5.1) xj>§.Aq : C{QS.,qA) - C(QS,qA ® QS.,qA) 

of degree —1. Since this is natural in Aq, we obtain a coproduct 

(14.5.2) ^s.RA ' C(QS.,.A) C(QS.,.A ® QS.9.A) 

of degree — 1 in p and degree 0 in q. 
In addition, let B = diagS.^.A. Then B is an almost-free simplicial 

algebra and, hence, supports a coproduct 

ipB : C(QB) -> C{QB <g> QB) 

of degree —1. Since 

QB = QdiagS^.A = diagQS^.A 

this is relevant; indeed, this coproduct is used to define the product and 
operations on HQA. The following result says that the coproduct (14.5.2) 
can be used to study this coproduct on the diagonal. 

Lemma 14.6: There is a chain homotopy commutative diagram, 
where the vertical maps are an Eilenberg-MacLane chain equivalences 

C(QSA) *^>A C(QS.9.A®QS.9.A) 
i A I A 

C(QB)) 22* C{QB®QB). 

Here B = diaqS.9.A and 

QB <g) QB = diag[QS.9.A <g> QSA]. 
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Proof: In fact, if we take A to be the map defined using (p, g)-shuffles, 
the diagram will actually commute. To see this, recall that ^s.Aq^ 3 8 ™ 
(14.5.1) is defined by taking the product of 

(do ® do)VvdoV> G HorriA(SpAq, Sp^Aq <g) Sp-\Aq) 

where ip : S.Aq —• S.Aq <g> S.Aq is the Hopf algebra diagonal, is defined 
similarly. Since the shuffles are defined using the degeneracies, a routine 
diagram chase, the simplicial identities, and the definitions imply the result. 

To apply this result and to prove Theorem 14.1, we need to define the 
operations in the spectral sequence 14.4.2. To do this, we use the method 
of Singer, who construct chain level higher Eilenberg-Zilber maps for the 
chain complex associated to a bisimplicial vector space. 

First a convention: let V € ssF2 be a bisimplicial vector space. Then 
V = is set of vector spaces, one for each pair of non-negative integers 
(p,q), connected by various face and degeneracy operators. Let 

• v —• V ! 

be the horizontal face operators and 

dv. • V —>V 1 

the vertical face operators. This establishes a horizontal and a vertical 
direction in V. So, for example, the sum of the horizontal face operators 
yields a horizontal differential dh : VPiq —• Vp-i9q. 

Now let {Di} be a set of natural higher Eilenberg-Zilber maps, as in 
3.6. Then, for bisimplicial vector spaces V and W, if we fix p, we have that 
VPy. and W P j . are simplicial vector spaces. Therefore, Di determines a map 

DV : C(VP, <2> Wp,) C(VP,) <8> C(WP,) 

so that DQ is a chain equivalence and for i > 0, 

dvD? + D?dv = Dvi_x + T£>JLiT. 
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Here T is the switch map. Since this is a natural construction 

dhDv

{ = D?dh 

for all i. Also, for fixed j and k, V.j and W.9k are simplicial vector spaces, 
so D{ determines a map 

A* : C(V.j <S> W.,k) - C(V.j) ® C(W.^) 

so that I>o is a chain equivalence and for i > 0, 

9ft£>? + D?a h = + TD^T. 

Again, this is natural in j and k. Thus, following Singer, if we define 

Ki : C(V <g> W) -»• C(V) <g> C(W) 

by 

(14.7) Ki = ^ T ^ T ' D ? 

we easily compute that K0 is a chain equivalence and for i > 0 

asr, + = i f , - ! + TKi-tT 

where d denotes the total differential. 
Now let A € sA and 5.,.A the associated bisimplicial algebra. Define 

operations 

(14.8.1) Pi : HnC(QS.,.A)m -> Hn+i+1C(QS.,.A)* 

as follows. Let ips. .A be the chain map of 14.6 and define 

0*' : C{QS.,.A)* C(QS.,.A)* 

by 

(14.8.2) 0*(or) = rs.rAKZ-i(a <g> a) + V ^ . ^ - . + i C " ® &*) 
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for or of total degree n. Then G* is a quadratic chain map and induces the 
homomorphic operations of 14.8.2. Compare 5.10. 

That these operations are the correct object of study is a consequence 
of the following. 

Proposition 14.9: Let 

A* : H^A & H*QdiagS...A* -> jrC(QS.,.A)* 

be the Eilenberg-Maclane isomorphism. Then 

A*pi = piA* 

Proof: Consider the following diagram, where V and W are bisimpli-
cial vector spaces: 

C(V ®W) ^ C(V) <g> C(W) 
i A J, A ® A 

C(diagV <g) diagW) C{diagV) ® C(diagW). 

In light of 14.6, the definitions of 14.8 and the definitions of 5.10, it is 
sufficient to construct maps 

Ei : C(V ®W)^ C(diagV) <g> C(diagW) 

so that EQ and for i > 0 

dEi+1 + Ei+rf = Ei + TEiT + (A ® A)K{ + A A. 

Then we could set V = W = QS.^.A. To see the existence of the Ei we 
use a standard acyclic models argument. First note that since A is a chain 
map, we have that DQA and (A ® A)Ko axe chain maps and for i > 0, 

ô A + i A + A + i Ad = A A + T A AT 

and 

d(A ® A)Ki+1 + (A <g> A)Ki+!d = (A ® A)K{ + T (A ® A)KiT. 
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Now one proceeds exactly as in the proof of Lemma 9.5 of [24]. Incidentally, 
if F2 A[p] e sF2 is the standard p-simplex, so that 

HomsF2(F2A\p],U)9*Up 

then the bisimplicial vector spaces 

F2A[p]<g)F2A[g] 

with 
(F2A[p]<8)F2A[q]) s, t = F2A\p]s <g) F 2 A[g] t 

are the acyclic models in the category ssF2 of bisimplicial vector spaces; 
indeed, 

Hom88¥2{F2A\p]®F2A[q),V) ^ Vv«. 

We'd next like to see how the operations Px of 14.8 behave with respect 
to the filtration of C(Q5.,.A)* used to produce the spectral sequence of 
14.4.2. This was filtration by degree in p. To do this, Singer points out the 
existence of "special" higher Eilenber-Zilber maps; that is, he notices that 
for simplicial vector spaces U\ and U2 we can make a choice of maps 

Di : C(Ut <g> U2)n -* [C(U!) ® C(U2)]n+i 

so that 
Di = 0 

if i > n. Now let V be a bisimplicial vector space and filter C(V)* by 
degree in p. Denote this filtration by F*V. Then if we use the special 
Eilenber-Zilber maps to define the homomorphisms Ki of 14.7, then we can 
conclude that 

K?F2pC(V)* <g> C(Wy C FpC(V <g> Wy 

so that the maps ©* of (14.8.2) induce maps 

(14.10.1) & : FpC(QS.,.A)* — F P + 1 C(Q5. , .A)* 
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and, hence, operations 

(14.10.2) Pi : 7rp7rq(QS.9.Ay -> 7r p + 1 7r* + , ' (QS . , .A)* . 

Proof of 14.1: The operations are defined in 14.10. Theorem 14.1.1 
follows from that fact that 0* is a chain map. Theorem 14.1.2 follows from 
14.9. 

To finish this section and prepare for the next, we examine an alter
native definition of the operations at E2 — that is, of the operations in 
14.10.2. If we fix p, then the naturality of the construction of ^ 5 . . A implies 
that we obtain a map of simplicial vector spaces 

4>S.,.A ' QSp+i,A - QSP, -A ® QSP,.A. 

This maps is cocommutative, so we obtain operations 

Sq* : Tr«(QSp,A)* -> ir«+i(QSp+1,A)*. 

These operations are natural. Singer ([23], Theorem 5) the implies that 

(14.11) Pi = 7T*Sq1' : 7rp7rq(QS.rAy - > 7 r p + 1 7 r 9 + i ( Q 5 . , . A ) * . 

If we preferred, we could work directly with homotopy, rather than dualiz
ing. Using the methods of section 3, we see that tf>§m .A induces a map 

K^S.^.A
 : n+QSp+^.A 7c*S2QSp,.A 

and we could write 

(14.12) **1>S.9.A(*) = + TKyi ® z^ + J2<Ji(xScli) 

for some yj,zj € 7r*QSP9.A. The dual of the (-)Sq* could then be used in 
the formula 14.11 to define P% at E2. 
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15. The proof of Theorem 14.2 

We devote this section to proving the following result, which is a restatement 
of 14.2. 

Theorem 15.1: For all A G s A and all t, there is a commutative 
diagram 

Extp

uv{Q^A, S«F2) Extp

A7>(<jr*A, Aq) 
i 7* i Pi 

Extp£(Qir*A^+iF2) Extp£{**A,Aq+i) 

Given that the relations among the 7* (13.11) and the relations among 
the P% (9.1) are identical, and that e is an isomorphim in the case of the 
universal example K(n)+ when n > 0, it would be surprising if some result 
such as 15.1 were not true. However, it is quite tedious to prove. The 
difficulty is that we do not have a very good hold on e — it is defined in 
terms of a filtration on a bisimplicial vector space — and that the definition 
of the operations P% is rather complicated. We begin our attack on 15.1 by 
rectifying the former of the two problems. 

Let r G AV. Then the natural map iT —* QT from the augmentation 
ideal to the indécomposables induces a natural map 

er = 6(/T) - G(QY) 

and, hence, a natural map defined by the composition 

Qër - Qe(QT) s P(QT). 

Thus we set a natural transformation of functors 

p:Që(-)->P(Q-). 

We'd like to extend this to a morphism of simplicial objects 

(15.2) p..Q&.T^P.(QT). 
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To do this let 
e : 6 —> 1 and rj : & -+ &2 

and 
€ : P 1 and r\\P -+P2 

be the structure maps of the cotriples © and 7> respectively. The simplicial 
objects of (15.2) are determined by these structure maps. Compare the 
proof of 1.4. 

It is a simple matter to show that there is a commutative diagram 

Q&Y P{QY) 
(15.3.1) iQe l* 

QY ^ QY. 

Now define a map p\ by the composition 

Q&2Y = QG(&Y)^P(Q&Y)^P2{QY). 

The definitions now imply the existence of a commutative diagram 

Q&Y P{QY) 
(15.3.2) iQv _ iv 

QG2Y V2(QY). 

Suppose, recursively, that we have defined a map 

Pn : QGnY -> Pn(QY). 

Then, define pn+i to be the composition 

(15.3.3) Që„+ir = Q 6 ( 6 » r ) ^ ( g è » r ) ^ ( ^ „ ( g r ) ) = Pn+i(QT). 

Set po = p. Then the diagrams of 15.3.1 and 15.3.2 imply that we have 
defined a map of simplicial objects 

p.:Q&.Y^P.(QY). 

Now for any T G AV, there is a natural isomorphism 

HomUT>{Q&Y, E*F2) a HomAV{G.Y, Aq). 
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Therefore the following is at least plausible. 

Proposition 15.4: Let V G AV. Then the edge homomorphism 

e : Ext^(QT^F2) - Extp

AV(T, Aq) 

is induced by the map 

Pr : Hamuv{PXQT)^F2) Homuv{QG.(T)^F2). 

Proof: Consider the bisimplicial module P.Q&.ÇT) used in the proof 
of 12.5. We refer to that proof freely here. Then 

[P.Që.(T)]p,q = PpQëq(T). 

We will call p the horizontal direction and q the vertical direction. Then 
there is a horizontal augmentation 

eh : V.QG-(T) — Q&T 

that induces a chain equivalence between the total complex of this bisim
plicial vector module and the chain complex associated to the simplicial 
module Q&.T. This can be proved as in 12.5; we will construct a specific 
chain homotopy below. There is also a vertical augmentation 

ev :V.Që.(T) -+P.{QT) 

and the edge homomorphism e is defined by the diagram 

Harnu<D{P-{QT), F 2 )
( ^Vom^(^.Q6.(r), F 2 )£THom U v (QêT , F 2) 

using the fact that the second map induces a cochain equivalence. 
For a simplicial (or bisimplicial) vector space V, let C(V) be the chain 

complex (or total complex) associated to V. To prove the result, we define 
and investigate a chain map 

P : C{Q&.T) -> C{P.QG.(Y)) 
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that is chain inverse to eh. 
Since, for any A E we have an isomorphism Q&A = P{IA)^ the 

projection 
€ : VQ&A -> Q&A 

has a section 
5 0 : Q6A VQ&A 

so that eso = id. Then, we can define 

S n + i : PnQ&A Pn+iQ&A 

by = PN+1SQ. As the name would indicate, s n +i acts as an extra 
degeneracy in the simplicial module P.Q&A; thus, it is routine to check 
that 

dsn+i + snd = id : PnQ&A PnQ&A. 

Therefore we have defined a contraction of P.Q&A. These maps sn+i are 
natural in A. Thus, for every g, we obtain maps 

* n + i : Pn&qA — Pn+i&qA 

that commute with 

dvi : VnQeqA — VnQ6q-iA 

when 1 < i < g. These maps do not neccesarily commute with dg- I* is the 
existence of these maps that show that eh defines a chain equivalence, 
as asserted above. 

Recursively define, for 0 < k < g, maps 

p\ : Q&qT - PkQeq-kA 

by Pq = $Q and Pq = sjfedo/9^"1- We next inductively show that 

dhpk

q

+1=d»P

k

q + P

k

q_1. 
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This is true for k = 0 by direct calculation and for k > 0 by 

jhdebviuz 554sdskh 

= sh

kdldhpk

q+dlpk

q 

= s jdsavj - 1 + s№oP

k

qz\+dish

kdipk

q-i 

= dvpk

q + pk

q_1 

making liberal use of the simplicial identities and the fact that sk commutes 
with df for * > 0. Now define 

P : Q&qT -> C(V.Q&-A) = ®kPkQeq-kh 

by 
P{X) = (p5(*),...,/»|(*)). 

The tedious calculation above shows that p is a chain map 

p : C(Qe.r) -+ C(V.Qe-A). 

Since 
ehp = id : C(Qe.T) -+ C(QeT) 

we have that p is a chain equivalence and that 

cvp:C(QeT)-*C(V.(QT)) 

can - after applying Homuvi'^2) - be used to compute the edge homo-
morphism. However 

e°p = e°p\ = pq 

where the last map is as in 15.3.3. So the result follows. 
We now embark on the proof of 15.1. This will occupy the rest of the 

section. 
Let A € sA be a simplicial algebra and 5.,. A the associated bisimplicial 

algebra. In 14.11 we noticed that there were operations 

(15.5.1) Sq1' : T T « ( Q S P , . A ) * - > ^(QSp+^.A)* 
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that could be used to compute the operations P% on Extj^p{ir^A^ A*). Now, 
for any A 6 sA, there is a natural isomorphism 

TT*QSA 2 F 2 ®uv Q6(TT. A). 

Thus we get naturally defined operations 

(15.5.2) Sq* : [ F 2 ®U<D QeP(n*A)]* — [ F 2 ®U7> QeP+i(**A)]*. 

Since, for any M G UV,vre have 

HomU<D(M, E 9 F 2 ) K ffomNF3(P2 ®wi> M, E « F 2 ) 

these are exactly the operations that we want to study. 
The operations 7* on Extuv(Q7r^A^ F 2 ) were defined in 13.15.2; in 

addition, we showed that the could be computed using the naturally defined 
homomorphisms of 13.21: 

(15.6.1) # : [ F 2 ®UT> Pp(Q**A)]m -+ [ F 2 ®U<D PP+I(QTT*A)]* . 

In fact, there is a commutative diagram 

[ F 2 ®UT> Pp(Qn*A)]* [F2®U<DPP+I(QK*A)]* 

(15.6.2) | * . i * 
C*(QxmA) -3U Cp+\Q7c*A). 

Here 3> is the canonical cochain equivalence and 7* induces the operations 
7* on Extuv- Thus, to prove 15.1 we must contemplate the diagram 

Cp(Qn*A) CP+\QK*A) 
T * T * 

(15.7) [ F 2 ®uv PP{QK*A)]* [ F 2 ®uv PP+I{QK*A)]* 
le? , IPT 

[F 2 ®uv Q&pi^A)]* -2* [P2®wi>Q6p+i(x.A)]*. 

As far as I know, this diagram does not actually commute, which means that 
we have to resort to subterfuge to show that it commutes up to homotopy. 
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The crucial observation is this: we noted that there were isomorphisms 

F 2 ®ит> 6p+i(7T.A) ^ K*QSP+1A 

^ TV J SPA 

~ 7c.ISP+1A. 

There is a canonical split inclusion for any simplicial vector space V 

S2V-^->IS(V) 

where S2V is the vector space of coinvariants of V <g> V under the action 
of E 2 that switches the factors. Therefore, for A € there is a split 
inclusion 

(15.8.1) i : 5 2 / 5 M - i / 5 p + 1 A . 

Hence, there is a split inclusion 

(15.8.2) j : ( 5 2 ) p + 1 / A - ^ / 5 p + 1 A 

Applying homotopy we obtain a split inclusion 

j * : ( 6 2 ) P + 1 ( J ^ ) ^ 7 r . ( S 2 ) p + 1 J A - iz+IS^A & F 2 ®U<D 6 p + I ( T T . A ) 

or, by dualizing, a split surjection 

j* : [ F 2 ®uv e P + i ( 7 r . A ) ] * [(62)p+1(/TT.A)]*. 

Here &2 is the functor so that for any simplicial vector space V, nvS^V) 
6 2 ( 7 r . y ) . 

Lemma 15.9: There is a map 

A : CP+\Q**A) - [62(/TT.A)]* 

so that the following diagram commutes 

[Y2®UT>PP+\Q**A)]* [ F 2 ®UT> QeP+i(v.A)* 
J. $ I j* 

C+1(Q**A) [etHlv.A)]*. 
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Proof: We need only show that if &(y) = 0, then j*p*(y) = 0. This 
follows from the definition of $ (13.18) and the description of © 2 given in 
3.5. 

Because of this lemma, we can extend the diagram 15.7 to a diagram 

C*>(QnU) №2 ®uv ^ [F2 ®uv QëP(n.A)]* 
17* . i # . iSq* 

C*+\Q*MA) ^ - [F2®uvPP+i(Q**A)]* [F2®uvQep+i(*.A)]* 
I = i * i j* 

C*+\Qn*A) CP+1(Qn*A) [éPHl**-*)]*-
Theorem 15.1 now follows immediately from this diagram and the following 
lemma. 

Lemma 15.10: j*SqVr = A$£*. 
Proof: We actually prove slightly more. Since A$ = j*p*, it is suffi

cient to show that j*Scfp* = j*p*6*. Now, since 

j : S P + 1 I A I S P + 1 A 

factors as 

SP+1IA S2IS
PA — I§r+1A 

we have that j* factors as 

[ F 2 ®uv Q&P+I(K*A)]*^[62(F2 ®UT> Q6p(ir*A)]* — • [ © ^ ( I ^ ) ] * -

We will show that 
J*SqVr nniber 

But © 2 ( W ) was computed in 3.5; it is spanned by all elements of the 
form 

uv and $j(v) 

where tz, v G W. Let ( , ) be the pairing betwen a vector space and its 
dual. If we can show that for all z G [ F 2 ®uv *Pp(Q'**A)Y and all tz, v G 
F 2 ®uv QGP(K*A), that 

(15.11.1) <7*SqV(*), tit;) = 0 = (J 
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and 

(15.11.2) (J'SqVr (*), 6j(v)) = Q'plHz), *j(«)> 
fO, i f t ^ j ; 
\ (pTz,v), iti = j 

then we will have accomplished out goal. These formulas will be verified in 
Lemmas 15.12 and 15.14 below. 

Lemma 15.12: For all z and u,v 

Q*p:S\z),Uv) = 0 

,ncze,nrgrgg io, if s jfc ¿; 
\{p*z,v), iîi = j . 

Proof: Let j * be the map whose dual is j * : 

J* : 6 2 ( F 2 ®UT> Q(6P(TT.A)) - > F 2 ®UT> Q(&p+i(n*A)). 

Then p.j*(uv) = 0 and 

n kjhyeoruz / О , гфг, 
\{z,p.v), i = j 

by 13.22. The result follows. 

The proof of the other half of the equalities of 15.11 requires that we 
have a formula for the composition 

[ F 2 ®uv QeP(**A)]*^[F2 ®U-D QeP+i(ir*A)]* 
-^[6 2 (F 2 ®uv QeP(v*A))]*. 

Lemma 15.13: For all w and u, v we have 

(j*Sc£(w),uv) = 0 

0 - S q W i M > V i t * 
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The proof is below. 

Lemma 15.14: For all z and u,v, we have 

Q*ScCpr(z),uv)=0 

ö - S q V W , i i W ) = { ^ ( z ) i „ ) ) 

if i Ф j ; 
if г = j . 

Proof: This second formula follows immediately from Lemma 15.13 
by setting w = p*{z). 

Proof of 15.13: By 13.12, the operations can be defined by consider
ing 

***/>S.,.A : n*QSp+i,.A 7c*SzQSPj.A 

and using the formula 

(15.15) * r . l t e . , . A ( * ) = + (8) + Ç ^ C x S q * ) -

Thus to study j*Sqf, we must consider the composition 

S2QSpAq-^Q§p+1Aq^^S2QSpAq 

for fixed p and g. We claim that 

4>S.,.AJ = *r : S2QSpAq — S2QSpAq 

where *r : S2V -> S2V is the map induced byl + T:V<g>V—>V®V. If 
this is the case, then 

**(fl>S.,.AJ)(X) = 

Then Lemma 3.9 implies that 

(15.16) 
п*(Фз. .AJ)(UV) = тг.(1 + T)(u <g> v) 

njh-b,nbiu 
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Then the result will follow by comparing the formulas 15.15 and 15.16. 
To prove xl)§, mA2 = <r, we will construct a commutative diagram 

(15.17) 

S2QSpAq -iU §p+1Aq

 a t ï i a S2BpAq 

S2QSpAq ISp+1Aq SPlSpA,, 

S2QSpAq -Ì+ QSp+iA, S2QSpAq 

where 
15.17.1) the squares of the right column axe constructed using Lemma 

7.12; 
15.17.2) if) : S.Aq —> S.Aq ® S.Aq is the Hopf algebra diagonal that 

commutes withh all face and degeneracy maps except do; 
15.17.3) dip + i/>d= (d0 <g> do)%l> + M>5 and 
15.17.4) if x G S2QSpAq, then 

k(x) G PSp+xAq 

where P denotes the primitives and 

d0k(x) = xe S2QSpAq ^ SiISp-xAq C SpAq. 

Only the existence of k and the properties of 15.17.4 axe not an imme
diate consequence of Lemma 7.12. Assuming, for the moment that we have 
constructed fc, we can proceed as follows: let x G S2QSpAq. Then we may 
write 

X = E y? 

i inuyf 
where y%,Wj, Zj G QSpAq. Then, using 15.17.4, we can compute that 

ipd0k(x) = xl>(*T V? + Yl w*zi) 

= x®l + l®x + w j (g> Zj + Zj ® Wj 

and 
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(d 0 ® d0)ipk(x) = (d 0 ® d0)(fe(a?) ® 1 + 1 ® fc(x)) 
= x ® l + l ® £ . 

Hence 
(dip + ij;d)(k(x)) = ^ Wj <g> 2^ + *j ® 

= *r(ar). 

Therefore, the result will follow from the diagram 15.17. 
To construct fc, we record the following observations. 

QSp+1Aq et ISpAq 

= e n > i 5 r

n ( / 5 p - i A q ) 

= @n>iSn(QSpAq) 

and j is defined by inclusion into the factor n = 2. Furthermore 

ISp+iA, S © n > i 5 n ( / 5 p A q ) . 

We define 
k : S2QSpAq —• 7 5 p + i A q 

by the composition 

S2QSpAq-UlSpAq = SiClSp-A^-^+JSp+iA, 

and we define by the diagram 15.17. That diagram certainly commutes 
and 15.17.4 follows from the facts that 

V = Si C PS(V) 

for any vector space V, and that the composite 

IA = SxIA C S(A)-^A 

is the inclusion of the augmentation ideal. 
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Appendix A : Andre's product on HQLA 
In [2], Andre defined a product, for A 6 s<4, 

< , > :Я££А<8> nsert/-+,rggd2287 

where E : sA —• sA is the suspension functor. This product is bilinear, 
commutative, and satisfies the Jacobi identity. Furthermore, using the iso
morphism H^A 2 # £ + 1 E A , we see that this product defines a product 

H%A ® H%A H%+N+1A. 

We will show that this product is the same as ours. 
We begin with a recapitulation of Andre's results. In section 4, we 

noted that HQLA could be computed using derivations. In like manner, 
it can be shown that H^TtA can be computed using Kaehler differentials. 
Specifically, let A € sA. Then, factor the augmentation e : A —• F2 as 

A-UX-UF2 

where i is almost-free and € is an acyclic fibration. This may be done 
functorially in A. Then let J(X) be the kernel of the ^-multiplication 

X ® A X — X 

and define the Kaehler differentials by 

Q(X) = J(X)/J(X)2. 

We should really write QA(X) for Q(X) to emphasize that Q(X) is functo-
rial in Л as well as in -X", but we prefer the lighter notation. 

Andre proves the following result. 

Lemma АЛЛ.) J(X) is both a left and right X-module. 
2.) These two module structures agree on Q(X). 
3.) If we define d : X —• Q(X) by letting d(x) be the residue class of 

the element x ® 1 + 1 ® ж, then d is an A-derivation: 

d(xy) = xd(y) + yd(x) 
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and 

d(ax) = ad(x) for all a E A. 

4.) The homomorphism 

Homx(Sl(X), W) -+ DerA(X, W) 

given by 
fi-*fod 

is a natural isomorphism for all TCQX == F2 modules W. 

If W is a TTQX = F2 modules, then the composition 

Xn—>Xo —• 7To-XT = F2 

makes W an -X"n module. Of course, this composition is just the augmen
tation. The isomorphism of A. 1.4 is an isomorphism of simplicial vector 
spaces. Notice that A. 1.4 says that differentials represent derivations, as 
they should. 

Now we make a computation. If W is a noX = F2 module, since W is 
an X-module via the augmentation e : X —• F2, we have that 

Homx(Q(X),W) Q£ HomF2(F2 ®x &(X),W). 

Furthermore, 

DerA(X, W) S £>erFa(F2 <8U X, W) 

9áHomF2(Q(F2 ®A X),W). 

Thus, A. 1.4 implies the following result. 

Lemma A .2 : There is a natural isomorphism of simplicial vector 
spaces 

F2 ®x Sí Q(F2 ® A X) 

so that 
7T*F 2 ®x O(X) Si H?VA. 
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Proof: By definition, EA = F 2 <8U X. 

But Andre notes that the situation is actually somewhat simpler than 
one might have hoped. We will use the following lemma repeatedly; it is 
due to Quillen. 

Lemma A.3 : [20,II.6.6.b] Let A € sA and let N be an almost-free 
simplicial A-module. Let M be a simplicial A-module. Then there is a 
spectral sequence 

TorZ*AfaM, K*N)q 7 T p + q M <g> A N. 

Lemma A.4 : If A € sA is almost-free, the quotient map 

Q(X) F 2 ®x fi(^) 

induces a natural isomorphism in homotopy, and there are natural isomor
phisms 

H?XA 2 ir*Q(X) 

and 
H%ZA ^ 7r*fl r om F 2 (n(A:),F 2 ). 

Proof: If A is almost-free, then X is almost-free and each Xn is a 
free F2-algebra. Thus Andre's calculations [2,Corrollaire 2] implies that we 
have an isomorphism of Xn -modules 

Q(Xn) ^Xn® Q(F 2 ® A n Xn). 

This isomorphism is natural with respect to maps of free algebras so that 
Q(X) is an almost-free simplicial Jf-module. So Lemma A.3 applies and 
and we have 

*mQ(X) 9t T T . ( F 2 ® X &(X)). 

The isomorphisms about homology and cohomology follow from A.2. 

Because of the hypotheses of this last result, we work freely in the 
homotopy category associated to sA, so that we may replace, at will, any 
object in sA by an almost-free object. 
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We can use Lemma A.4 to give a description of the Hurewicz map 

h : IT^LA H?XA. 

Consider the exact sequence 

0 J(X) —• X ®A X —• X —• 0. 

Since 7r*X = F 2, we have that 7r* J(X) = Iir*X ®A X. If A is almost-free, 
then the quotient map 

€ <g> 1 : X ®A X F 2 ®A X = EA 

is a weak equivalence, by Lemma A.3. Thus, 7T* J(X) = l7r*EA. The 
quotient map J(X) —* Q(X) now induces the Hurewicz map. 

To define his product, Andre first defines a coproduct in homology, then 
dualizes. We have noted that 7r*EA has the structure of a Hopf algebra. 
The diagonal is obtained as follows. We just saw that the quotient map 
X ® A X —» F2 ® A X is a weak equivalence in sA. The same will be true of 
the composite 

l<g>€<g>l : X®AX®AX -* X®A^2®AX ^ X®AF2®F2®AX 9* EA<g>EA. 

Then in [12] it was proved that the diagonal in 7r*EA obtained by 
applying homotopy to the map 

l®r)®l:X®AX -+ X ®AX ®AX 

produces a Hopf algebra structure on 7r*EA Here r\ : F 2 —* X is the unit 
map. The induced diagonal 

V> : 7r*EA —> 7r*EA ® 7r*EA 

is not necessarily cocommutative; therefore we obtain a possibly non-trivial 
commutator coproduct 

<p = if) + Txj) : 7c*HA —• 7T.EA ® 7r*EA 
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where T is the switch map. Since, for x € iV+E-A, we have 

tfr(x) = x®l + l®x + ^ yi ® Z{ 

we see that 

0̂*0 = Vt ® + *t ® Vi G ^ * S - A ® / 7 r * E A 

so that induces a map 

<p : / 7 r * E A —• / 7 r * E A ® J 7 r * E A 

Now recall that n+J(X) = I T ^ E X , where J(X) is the kernel of the multi
plication map. We could use this fact to construct cp directly. 

Define the reduced diagonal 

t/5 : 7r*EA —» 7T*EA ® 7r*EA 

to the homotopy of 

£ = [l®ri®l + ri®l®l + l®l®ri]:X®AX-*X®AX®AX. 

One checks that if ip(x) = x ® 1 + 1 ® x + ^2 yi ® £t

a, then 

</> = 5^y« ® t̂-

Hence the name. Notice that 

^ + = 0 + Tz/> = <p. 

Now we claim that there is a commutative diagram 

J(X) - 1 . J(a?) ® X J ( X ) 

i , i 
X®AX X ®Ax ®x x ®AX 2 X®AX®AX 
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where the vertical maps are induced by the inclusions. To see this, let 
]£ Xi ® yi e J(X). Then X) Xiyi = 0 and 

f GC X i ® V») = x * ® 1 ® + 1 ® ® ̂  + ® ® 1 

= V V - ® 1 ® 1 ® V i + 1 ® a?,- ® 1 ® yt-

+ x,- ® 1 ® yi ® 1 + 1 ® a:,- ® y,- ® 1 

= J ^ * 1 ' ® 1 + 1 ® ^f) ® (yi ® 1 + 1 ® yi)-

This implies the existence of the diagram, and we may take (p to be map 
obtained by applying homotopy to the composite 

J(X)Mj(X) ®x J(X)^J(X) ®x J(X). 

Next we claim that there is a morphism 

/i : Q(X) -+ Q(X) ®x 

so that the following diagram commutes: 

J(X) J(X)®XJ(X) 
(A.6) i 1 

Q(A) O(-Y) ®* n(X). 
To construct /LA, consider 

d ® d : X ®A X —• ® x tl(X) 

where d is the universal derivation of A. 1.3. We will see that on J(X)2 

(1 + T ) ( d ® d ) = 0. 

If this is the case, the we obtain an induced map n and a quick glance at 
the formula (A ,5) implies the commutativity of diagram A.6. 

To prove the claim, we compute. Let 

^ Xi ® yi, ]T) Wj ® zj e J(X). 
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Then 

(d ® d)(^T XiWj ® yiZj) = 53 Vidfa) ® wjd(zj) + 53 zJd(wi) ® xid(Vi) 

= 53 xid{yi) ® d(wj)zj + 53 wjd(zj) ® d(xi)Vi 

= 53 z i d (v»o ®
 xid(wj)+53 ® wjd(xi) 

= T ( d ® )̂(53 ® 0t*i)-

This is exactly what was needed. 
Notice that, by construction, this coproduct // is commutative; that is, 

// = TAX : -> O(-Y) ®x 

Notice also that Lemmas A.3 and A.4 imply that the quotient map 

p : Q(X) ®x 0(X) -> F2 ®x tl(X) ®x Q(X) 
= Q(F2 ®A -X) ® Q(F2 ®A X ) 

induces an isomorphism in homotopy. 
We now come to the product defined by Andre. 

Definition A .7 : Define a product 

( , > : HQ£IA ® H^EA -+ HQEA 

as follows: if y G HQEA are represented by or, /3 G Q(F2 ®A -X")* respec
tively, then (a:, y) is represented by 

/iV^o(*®0) 
where JDO is an Eilenberg-Zilber chain equivalence. 

We can also define operations 

Sq*' : H%ZA -> JT^+'EA. 

As always, this is done by defining a quadratic chain map 

el* : Q(F2 ® A Xy Q(F2 ® A X ) * 
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by 

6 * (a) = n*p*D*n_i(a ® a) + H* p* D*_i+1(a <g> 3a) 
where a € Q(F2 ® A X ) * is of degree n and Z>jb are higher Eilenberg-Zilber 
maps. Then 0* induces Sq* in cohomology. 

Of course ( , ) is commutative, bilinear, and adds degree: 

< , > : HQIIA <g> H%LA -> Hg-MXA. 

The operation Sq* is a homomorphism and 

Sql'(:r) = { (rr,x), if t = deg(x); 

0, if i > deg(x). 
This product could be called a Samelson product, just as we called [, ] 

on HQA a Whitehead product. We would like to show that there is some 
relation between the Whitehead product and the Samelson product. The 
first thing we must do is show that the Samelson product is non-trivial. 

Lemma A . 8 : Suppose 7r* A is fo finite type and let (,) stand for both 
the product of HQLA and the commutator product on 7T*EA*. If 

h* : HQEA - > TT*EA* 

is the Hurewicz homomorphism, then 

h*(x,y) = (h*x,h*y). 

Proof: This follows from A .6 , using the description of the Hurewicz 
homomorphism give after A.4. 

If we take A = (K(m) x K(n))+ to be the universal example and 

jm,jn G JHQEA 

to be the suspension of the universal classes i m and i n respectively, then 
we say in 11.8, that (h*jm,h*jn) ^ 0. Hence ( j m , j n ) ^ 0. 
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Now for any A G sA let 

d : H%A . f f£ + 1 £A 

be the natural isomorphism. Let [ , ] be the Whitehead product on HQA. 

Proposition A.9 : For all y G -HQ-A 

dfol/] = (dx.dy). 

Proof: Because both products are natural, we need only show this 
result for the universal example A = (K(m) x iiT(n))+ and x = i m and y = 
LN. In 11.7 we proved that there was a unique non-zero class in iiZ*Q + n + 1A 
that passed to zero in HQ under the maps induced by the two inclusions 

/ 1 : K(m)+ -* (K(m) x tf(n))+ = A 

/ 2 : i*T(n)+ — (# (m) x K(n))+ = A 

Since the classes ^ m , t n ] and d"1(dirn^dtn) both statisfy these conditions, 
the result follows. 

A similar result holds for the operations. However, we must state a 
lemma first. 

Lemma A . 10: The operations Sq* commute with the suspension iso
morphisms 

8 : i y S £ A ^ f f £ + 1 £ 2 A ; 

that is, 
d$c£(x) = Sq*'(&r). 

The proof of this lemma is rather involved - although very similar to 
the proof of 5.12. We postpone the argument until after we state and prove 
the result that we really want. 
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Proposition A . l l : Let P% be the operations of HQA and let Sq* 
be the operations derived from Andre's product on HQEA. Then for all 
xeH^A 

dP\x) = Sq ' + 1 (0x) . 

Proof: We apply 11.14. Define for A G sA and x G HQA 

P«(a:) = a-1Sq ,'+ 1(aa:). 

Then if x G HQA 
P"(X) = d~1Sqn+1(dx) 

= d~x(dx,dx) 
= [x,x] 

by A.9. Also 
aP , '(X) = Sq ,'+1(dar) 

= d-1Sci

i^1(d2x) 
= P\dx) 

by the previous lemma. Thus 11.14 implies that Pl(x) = Pl(x) and the 
result follows. 

To prove Lemma A. 10, we have to make specific some of our gen
eral constructions. We will use the Eilenberg-MacLane ^-construction, as 
spelled out in [17]. 

Lemma A.12: There is a functor 

W : sA —• sA 

equipped with a natural transformation i : 1 —* W so that: 
1.) if A G sA is almost-free, then 

A^UWA-UF2 

is an almost-free map followed by an acyclic fibration; 
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2.) if / : A —» B is an almost-free morphism in sA, then 

Wf : WA 1TB 

is an almost-free morphism; 
3.) if W( ) is the functor WA = F 2 <8U WA then there is a weak 

equivalence 
£A - VTA : 

4.) and if / : A —• B is an almost-free morphism, then 

: WB 

is an almost-free morphism. 
Proof: This follows by inspection of the definition of WA given in 

[17]. The fact that £ A ~ WA follows from part 1. 

The upshot of this lemma is that we may use WA for X in the definition 
of Q(X). So, in particular, 

# £ E A 9* <K*Sl(WA) 

for A G sA almost-free. 
Now consider the diagram, for A G sA almost-free: 

A WA —• WA 

WA ^ 4 W2A —• WW A 
i 

F 2 ®WA WW A. 

By Lemma A. 12, all the labeled maps are almost-free. Since 

WW A ~ EWA 

and TT*WA = F 2 , we have that 

6 : WW A F 2 
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is an acyclic fibration. Thus we have a weak equivalence 

F2 ® W A WW A ~ E2A. 

Since W%A is almost-free, there is a short exact sequence 

0 _> QWAQ^AQWWA — Q(F2 ® W A WW A) -+ 0 

and the dual of this sequence may be used to compute 

d : HQEA -* 2 f £ + 1 E 2 A 

In fact, upon dualizing, we obtain a diagram 
(A13) 

0 Q(F2 ® W A WW AY -> QWWA* QWA* 0 

Q(WWAY Q(W2A) M Q(WAY 

The vertical maps are all weak equivalences and the bottom row, although 
not exact, has the property that g is an injection, / is a surjection, and 
fg = 0. Let K be the kernel of / . Then there is an injection 

Q(WWAY — K 

and the five lemma and A. 13 imply that 

7C*K ^ HQE2A. 

Hence the short exact sequence 

o — K -+ n(w2Ay-L>n(WAy -+ 0 

may also be used to compute d : HQEA —• HQE2A. 

Proof of Lemma A.10: Let x G HQEA be represented by a G 
QWA*. Then, using Definition A.7, Sq^rr) is represented 0*(a). Choose 
(3 G QWWA* that maps to a and 7 G Q(F2 ®WA WW A)* that maps 
to dp. Then dx G J H Q + 1 E 2 A is represented by 7 and, hence, Sqt(dx) is 
represented by 0 l ( 7 ) . Now a simple calculation using fact that 50* = 0%d 
shows that dSq%(x) is also represented by 0 ' ( 7 ) . The result follows. 
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Appendix B: A n EHP sequence 
With an eye to future applications, we use this section to write down and 
examine a cofibration sequence of simplicial algebras that is analogous in 
many ways to the EHP sequence in classical homotopy theory. We compute, 
among other things, the associated long exact sequence in cohomology and 
show that it is in fact, short exact. 

Let K(n)+ E sA be the universal example for cohomology. 

Theorem B . l : In the homotopy category associated to sA, there is a 
cofibration sequence for n > 1: 

EK(2n - l)+-2->Y,K(n - 1 ) 4 

kn+bkjd 

where 

E e [T,K(n - l)+,K(n)+]sA = H%EK(n - 1 ) + S< H^K^n - 1)+ ~ F 2 

is the unique non-trivial map. 

We prove this at the end of the section, preferring to forge ahead 
with applications. Because of Theorem B.l, the homotopy cofiber of E 
is E2K(2n — 1)+ and we have a homotopy cofiber sequence 

EK(n - l)+-^K(n)+-Z+Z2K(2n - 1 ) + . 

Let W be the category of Definition G, Chapter 1. 

Corollary B.2: If n > 2, there is a short exact seqeunce in W: 

0 H*2Z2K(2n - l)+^H*2K(n)+-^H*2XK(n - 1 ) + -+ 0. 

Indeed, if tm € HQ K(m)+ is the universal cohomology class of degree m 
and P1 = P%1 - - - P%A is some sequence of cohomology operations, then 

jE7*P /( t n) = P / ( 4 n _ 1 ) 
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and 
P * P 7 ( * 2 n - l ) = P J P n (*n) 

= P J [ l n , l n ] . 

Corollary B.2: There is a short exact sequence in W: 

0 - ^ i i C ( l ) + ^ ^ S i i f ( 0 ) + ^ ^ S i i f ( l ) + -> 0. 

Both B.2 and B.3 are obvious from B.l and the calculations of the later 
sections of this paper. In fact B.2 may be strengthened. There is a weak 
equivalence 

£ t f ( 0 ) + - ^ i i r ( l ) + <g> E iT( l ) + 

given by taking the composite 

E i f ( 0 ) + ^ E i i r ( 0 ) + <g> ZK(0)+E^fK(l)+ <g> ZK(1)+ 

where /3 € [jftT(0)+, K(l)+]sA ^ H^K(0)+ classifies £(¿0) and V is the 
comultiplication. 

We wish to expand this calculation somewhat to say something about 
the relationship between the homology operations 6{ of sections 2 and 3 
and the cohomology operations P%. Let S(n) be the sphere object that 
represents homotopy. We consider the homotopy cofiber sequence, for n > 
0, 

(BA) S{n)^K{n)+^F{n) 

where 

e e [S(n),K(n)+]aA ~ *nK{n)+ £ H%S(n) = F 2 

is the unique non-zero class. First notice that we can use 4.7 to compute 
7c+F(n). Indeed, the extension of the cofibration sequence B.4 yields a map 

g : F(n) E5(n) - 5(n + 1) 

and 
7r.5(n + l ) ^ r ( 6 j ( j n + 1 ) ) 
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where the Y denotes the divided power algebra, &i = £ t l • • • 6iB is admissible, 
s > 0, and e(J) < n + 1. (See sections 2 and 3.) Then 

7r*0 : n*F(n) 7r*5(n) 

is an injection and defines an isomorphism 

7r*F(n) ^ r(6/(i n +i)) 

where 6/ = 6 t l • • • 6{a is admissible, 5 > 1, and e(7) < n + 1. In particular, 
in the notation of section 12, F 2 ®UT> Qn*F(n) is spanned by the residue 
classes of the elements £j(jn+i)i 2 < j < n. Let 

2/j G [ F 2 Q7r s l t F(n ) ] n + i + i 

with 2 < j < n be this residue class. 
On the other hand, since HQS(TI) ^ F 2 concentrated in degree n, we 

have 

e*P l'(*n) = 0 

and, hence, for 2 < i < n there is a class 

on e iJ£ + t + 1 F(ra) 

so that = P%(Ln). We wish to show that a,- and yg- are intimately 
connected. 

We have seen that the Hurewicz homomorphism defines a map 

h* : H*QF{n) ^H<mtUT>{q^F{n),F2) 
= [ F 2 ®uv Q**F(n)]* 

and the following seems entirely reasonable. 

Proposition B.5: /i*at- is dual to j / * ; that is, 

{h*<*i,yi) = 1. 
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Proof: We first consider the case where i = n. In this instance, we 
examine the diagram of cofibration sequences 

5(n) K(n)+ M F(n) -> S(n + 1) 
I s c i \ I E 2 C 

£ # ( 7 1 - 1 ) + #(ra) + -^U £ 2 l T ( 2 n - l ) + ^ £ 2 2 T ( n - l ) + . 

We have extended the sequences one step to the right. Then we notice that 

i r , E 2 e : 7r +5(n + 1) x.E 2A"(n - 1)+ 

identifies the target as the ring ^ ^ ( n + 1) modulo the ideal generated by 
the elements 6/ ( j n +i) where e(J) < n. The result then follows by a diagram 
chase using Corollary B.2. 

For i < n, we examine the diagram of cofibration sequences 

S(n) = E n - " 5 ( t ) - + En-{K(i)+ E n - , B F(») 

5(n) — #(n )+ - » F(n). 

A simple diagram chase now proves the result. 

This leaves the proof of Theorem B.l. We begin with the following 
preliminary result. Notice that it is a consequence of 4.9 that 

^ E i f ( m ) + S r(y) 

where T denotes the divided power algebra and y G 7rm+i£JRT(m)+. 

Lemma B.6: There exists a map H : EK(2n — 1)+ —• EK(n — 1 ) + 

so that 
0 ^ TT*H : 7r2nEK(2n - 1)+ 7r2nHK(n - 1)+. 

Proof: We use the Hilton-Milnor Theorem, and it is convenient to 
compute in cohomotopy. We know, using 4.9, that 

ir*Z(K(n - 1) x K{n - S T(yi,y2) 
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where 1/1,3/2 G 7rnE(jRT(n — 1) x K{n — 1))+ axe induced from the two pro
jections and T denotes the tensor algebra. We have constructed a map 

/ : E(JBT(n - 1) x K(n - 1 ) ) + EK(2n - 1)+ 

so that under 

TT*/* : **ZK(2n - 1)+ S F 2[*] -> 7r*E(ii:(n - 1) x if(n - 1))+ 

we have 
7T*f*(z) = [t/l,y2] = J/lJ/2 + 

The Hilton-Milnor Theorem implies that / has a retraction g: 

g : Y,K(2n - 1)+ E(K(n - 1) x K{n - 1))+ 

so that gf = id. Therefore 

* V [ » i 1 ! & ] = * • 

Now let 
PUP2 : № - 1) x K(n - 1))+ -> ir(n - 1)+ 

be the two projections and let 
Pi + P2 : (!T(n - 1) x /T(n - 1))+ -+ 1T(H - 1)+ 

be the sum of the two projections. Then we can construct H as follows: if 
n*9*yi 0? s e t H = Epi o g; similarly, if 7r*g*y% ^ 0, set H = Ep2 o g. But 
if V Vi = 7T V y | = 0, set H = E(pi + P2) o 

Proof o f Theorem B . l : Let # : Eir(2n - 1 ) + Eii:(n - 1)+ be as 
in the previous lemma. Since any morphism in sA induces a morphism of 
divided power algebras in homotopy, TC+H must be an injection. Let X be 
the homotopy cofiber of H; that is, there is a homotopy cofiber sequence 

EK(2n - 1 ) + -> EK{n - 1 ) + X. 
By 4.7, 7r*-X" = A(x) where A denotes the exterior algebra and x E 7rn-X". 
Also 

H%X St H%ZK(2n - 1)+ 

so that there is a non-trivial map X —• -K"(n)+. This map must be a weak 
equivalence. Finally, the composite 

EK(n - 1)+ -> X -> lT(n) + 

is non-trivial in ITi and, hence, must be E. 
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ABSTRACT 

Quillen and Andre have rigorized and explored a notion of cohomol-
ogy of commutative algebras or, more generally, simplicial commutative 
algebras. They were able to do a number of systematic calculations, espe
cially when concerned with a local ring with residue field of characteristic 
0, but the case when the characteristic was non-zero remained a problem. 
However, for certain applications — for example, to homotopy theory — the 
non-zero characteristic case is vital. In this paper we explore Andre-Quillen 
cohomology of supplemented algebras over the field F 2 of two elements, and 
completely determine the structure of this cohomology, including a product 
and "Steenrod" operations. A necessary part of the program is a complete 
examination of the homotopy theory of simplicial algebras. For this we 
draw on the work of many authors. 
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