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INTRODUCTION

1. The themes treated in this paper have their origin in the classical theory
of special functions, namely the functions that arise as solutions of linear differ-
ential equations with rational or algebraic coefficients. The study of special
functions certainly goes back to the work of Gauss and Kummer on the hyper-
geometric differential equation. Riemann, who followed them, had a more con-
ceptual point of view that focussed attention on the singularities of the equation
and attempted to determine their influence on the solutions. In particular the
programme of studying the solutions of linear differential equations with mero-
morphic coefficients on a compact Riemann surface undoubtedly originates with
Riemann.

If the singular points of the differential equation are all regular, the mon-
odromy group contains all the essential information. Indeed, this was the point
of view of Riemann who proceeded to calculate the monodromy group of the
hypergeometric equation. Moreover it is characteristic of a regular singular
point that, locally at that point, the formal and analytic theories coincide. The
picture changes significantly at an irregular singular point. Let P be an irregu-
lar singular point, and let us write the differential equation as a first order linear
system

(%) du/dz = A(z)u,

where z is a local coordinate at P, u isan N X1 column vector, and A is an
N X N matrix of functions meromorphic at z = 0. One then finds that, typically,
formal solutions are divergent and that the formal theory of (%) is no longer ad-
equate to obtain a full understanding of the local structure of (%) and its solu-
tions. Nevertheless the formal structure of (%) is the foundation on which one
can erect its complete study. This is due to the fact, first discovered by Poincaré,
that any formal solution of (%) is asymptotic to an analytic solution on a sector
with vertex at P, provided only that the angle of the sector is small enough.
This analytic solution is however not unique , and will in general change when
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we rotate the sector keeping P as well as the formal solution fixed; this is the
Stokes phenomenon for the system (#%*). The constant matrices by which a
fundamental matrix of (%) with a prescribed asymptotic behaviour changes as
we vary the sector are called the Stokes multipliers . 1t is a fundamental theo-
rem of the subject, due to Sibuya and Malgrange, that the formal data and the
Stokes multipliers associated to (%) will determine it upto meromorphic equiv-
alence.

If one is interested in a local theory of linear meromorphic differential
equations it is natural to proceed as follows. Let us say that two systems (%)
with matrices A and B are meromorphically equivalent if there is an invertible
N X N matrix g of functions meromorphicat z = 0 such that

B = g[A] := gAg! + (dg/dz) g-1

This definition reflects the fact that the substitution v = g u takes the system
(%) into the system (%) with B in place of A. Itis important to note that if we
replace the field of germs of functions meromorphicat z = 0 by its formal
counterpart, the quotient field of the ring C[[z]] of formal power series over C,
we obtain a corresponding framework of formally meromorphic systems (%)
and their formal meromorphic equivalence classes. Similarly the notion of
meromorphic equivalence of two analytic families is defined in the same fash-

ion except that the matrix g is allowed to depend analytically on the parame-
ters of the family.

Our concern in this paper is entirely with the local structure of linear
meromorphic systems. In the classical language we can describe our aims as
follows : (i) to classify the systems (%) upto meromorphic equivalence (ii) to
give the space of equivalence classes a natural structure as an analytic space
so that analytic families of systems (%) are classified upto meromorphic equiv-
alence by analytic maps into this space. It turns out that these questions are
reasonable when we consider families that are isoformal , i. e., when all the
formal invariants of the system () are fixed . We shall find that if we fix a for-
mal model and consider the pairs consisting of a system (%) and a formal iso-
morphism of it with the model, the Stokes multipliers may be viewed as the ele-
ments of the first cohomology of a certain sheaf (the Stokes sheaf) of groups
and that this space classifies such pairs upto meromorphic equivalence; and



INTRODUCTION

further that this space, which is a complex affine space Cd in a natural manner,
is the moduli space for the pairs considered above. For the corresponding
problems involving the systems themselves the answers are essentially the
same; one has to replace the affine space by a quotient of it by an algebraic
group.

Our treatment of all these questions is in the framework of vector bundles
and connections. This, or alternatively, the framework of differential modules
which we also make use of rather frequently, is the natural language to use for
studying problems of differential equations on compact Riemann surfaces, as
well as problems in higher dimensions. It is our view that it is a reasonable lan-
guage also in the local context studied in this paper. In any case it is entirely
adequate for treating all the problems that arise, including questions of moduli.

2. We now give a brief description of the organization of the paper. There
are three parts and an appendix. The parts are divided into chapters which are
in turn subdivided into sections (§). References to items within the same part
omit the part number.

Part | is an exposition of the basic theory of meromorphic connections
and their Stokes phenomena. As mentioned a little earlier, the fundamental
objects of study are germs of pairs (V, V), where V is a holomorphic vector
bundle defined on a disk A in the complex plane C containing the origin and
V is a holomorphic connection on A \ (0) which is meromorphicat z = 0. If
Vd/dz is the covariant derivative defined by the connection, then choosing a
trivialization at z = O allows us to represent it as d/dz — A(z) where A isa
matrix of size N X N with entries that are meromorphic at z = 0; the horizontal
sections are then the vector functions u such that du/dz = A(z)u. In Chapter 1
we introduce the definitions and concepts and discuss the formal aspects of the
theory. To any pair (V, V) is associated a differential module over &F =
Cl[z]l[z—1], its formalization , thus giving us a functor from the category of germs
of pairs to the category of formal differential modules, namely, differential mod-
ules over &F. The structure theory of formal differential modules is well known
and goes back to Hukuhara, Turrittin, and Levelt ; we formulate it in categorical
terms, essentially in the form given by Deligne. In the last section of this chapter
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we treat isoformal families of formal differential modules and prove a funda-
mental structure theorem for them. In Chapter 2 the asymptotic aspects of pairs
(V, V) are treated in detail. The basic result is Theorem 2.2.1 which asserts that
for any horizontal section o of the formalization of (V, V) we can find hori-
zontal sections s of (V, V) onsectors T with sufficiently small angles such
that s is asymptoticto o on T. Our proof follows rather closely the discussion
of Wasow [W] (§§ 12-19), but is adapted to the setting of families in which the
theorem is proved. In Chapter 3 the Stokes sheaf and the Stokes lines of a pair
(V, V) are introduced, and a formula for the so called irregularity of the pair is
proved; this is due to Deligne. The Stokes sheaf of (V, V) is a sheaf of groups
defined on the unit circle S1, and its stalk at u € S1 is the group of all germs of
automorphisms g of (V, V) defined on sectors containing u that are flat, i. e.,
that satisfy the asymptotic condition g ~ 1 on these sectors. The development
contained in the first three chapters is then used in Chapter 4 to prove the fun-
damental theorems of the subject, namely the theorems of Malgrange-Sibuya
and Deligne. Let us fix a pair (Vg, Vo) and consider the set M.(Vg, Vo) of all
isomorphism classes of ((V, V), ¢) where ¢ is an isomorphism of the formal-
ization of (V, V) with that of (Vg,Vg) (we shall referto ((V, V), ¢) as a marked
pair). The theorem of Malgrange-Sibuya (Theorem 4.5.1) gives a canonical
isomorphism of M. (Vg, Vo) with the cohomology H1(S1, Stg) where Stg is the
Stokes sheaf of (Vp, Vo). This is thus the precise formulation of the resuit that
the Stokes multipliers and formal data determine the differential equations upto
meromorphic equivalence. This is then used to prove the theorem of Deligne
(Theorem 4.7.3) which gives a complete description of the category of germs of
pairs. To any pair (V, V) we can associate the sheaf of sectorial horizontal
sections % (V, V) on S1 on whose stalks a filtration can be defined via the
asymptotic growths at z = 0 of the elements of the stalks. This gives a functor
from the category of germs of pairs to the category of certain types of filtered lo-
cal systems on S1, and Deligne's theorem is the assertion that this functor is an
equivalence of categories. The final chapter of this part treats a few examples
that illustrate the various aspects of the theory. In particular we give a detailed
discussion of the differential equations of Bessel and Whittaker from our point of
view, describing their formal reduction, the associated Malgrange-Sibuya map,
and the cohomology of the Stokes sheaf.
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Part Il is devoted to a detailed study of the Stokes sheaf and its coho-
mology. Chapter 1 of this part is a treatment of cohomology of groups that is
more or less self-contained; in particular we focus attention on the concept of
twisting which plays an important role later. In Chapters 2 and 3 we take up the
study of the cohomology of the Stokes sheaf St of a meromorphic pair. The
starting point is the fundamental fact that St is a sheaf of unipotent affine alge-
braic groups . Following a beautiful suggestion of Deligne we shall view this as
a sheaf of unipotent group schemes over C defined on S' and so obtain a
functor

R —> St(R)

from the category of C-algebras to the category of sheaves of groups over S1.
it follows from this that the assignment

R —> H1(S1, St(R))

is a functor from the category of C-algebras to the category of pointed sets. The
fundamental theorem is then Theorem 3.4.1 which asserts that this functor is
representable by an affine space of dimension equal to the irregularity of the
endomorphism bundle . We follow Deligne in proving this theorem as a conse-
quence of a rather general result on sheaves of unipotent group schemes
(Theorem 2.4.1). This theorem deals with sheaves U of unipotent group
schemes that admit a filtration of normal subsheaves such that the successive
quotients are again sheaves of unipotent group schemes which are in addition
elementary in a certain sense; we remark that the notion of an elementary
sheaf of group schemes is to be understood in the context of the result that the
Stokes sheaf of a pair whose formalization has only one canonical level is ele-
mentary. Theorem 2.4.1 asserts that the cohomology H1(S1, U) of sheaves of
group schemes U of the type considered is representable by affine space.
Theorem 3.4.1 is then proved by simply verifying that the Stokes sheaf satisfies
the conditions of Theorem 2.4.1.

Part lll deals with the problem of moduli. In Chapter 1 we establish the
basic result that the space H1(S1, St(Vo, Vo)) : = H! is the moduli space for the
category of marked pairs ((V, V), ¢). In Chapter 2 we consider unmarked pairs
which are intuitively more natural and examine in what sense the quotient of the
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space H1 by the automorphism group G"(Vo, Vo) : = G%o of the formalization of
(Vo, Vo), is a moduli space for the category of germs of pairs themselves.
Since G"g is an affine algebraic group and H1 is an affine space we are in the
context of algebraic group actions studied by Mumford [MF]. In particular, if G"
is reductive (this is the case generically), we can construct a geometric quotient
in the neighbourhoods of points in H1 that lie in orbits of maximal dimension
that are closed (stable ). We give examples of stable orbits and note that if the
formalization of (Vp, Vo) has only one canonical level, then a pair (V, V) de-
fines a stable pointin H1 as soon as its Galois differential group is irreducible .
For many classical families it is the case that for generic values of the parame-
ters the Galois differential group is irreducible (see [DM]).

The theory of meromorphic differential equations has a long history and a
very large number of mathematicians have contributed to its themes and results.
Even in the limited circle of ideas that are the focus of attention of this paper, the
foregoing summary has done hardly any justice to the historical aspects of the
subject. We have attempted to remedy this in an appendix that contains a brief
historical survey of the main themes of this paper; for further information and
greater perspective the reader should consult [Be] [J] [Maj] [Mal] and the refer-
ences given there.

3. We would like to express our gratitude to a large number of our friends
and colleagues in various institutions who willingly gave their time and advice
and helped us understand many aspects of this theory. Above all we would like
to thank Professor Deligne who generously gave us his ideas to work with and
who helped us when we had difficulties in understanding them. In particular,
his letters to Malgrange [De 2] and to one of us [De 3], in which he sketched the
essential outlines of his way of viewing and proving the fundamental theorems
of the subject, were indispensable for us during the preparation of this paper.
We have followed his approach in our proof of the representability theorem for
the cohomology of the Stokes sheaf, not only because it is more beautiful and
more elegant than our original method worked out in [BV 4], but also because of
the fact that it is the only way we know to prove this theorem in the ramified case
([BV 4] treats only the unramified case). We are very grateful to him for giving us
permission to use his ideas and write up his results. We would like to thank
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Professor Sibuya for the extensive discussions we had with him during his visits
to UCLA in 1983 and 1988-89; Professors Malgrange and Ramis for the
discussions at Strasbourg and Kyoto; Professors Levelt and van den Essen for
the discussions at Nijmegen; and to Professors Balser, Duval, Lutz, Jurkat,
Ramis, and Sibuya for their participation in an informal seminar at UCLA during
October-April of 1986. Finally we would like to thank the authorities of the Nato
Institute on deformation theory held in Il Ciocco, ltaly, in the Summer of 1986,
and the authorities of the Taniguchi Symposium held in Katata, Japan, in the
Summer of 1987, for inviting us to participate in their conferences and present
the results that form the essential content of this paper.
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PART | : MEROMORPHIC CONNECTIONS

AND THEIR STOKES PHENOMENA

1 MEROMORPHIC CONNECTIONS, DIFFERENTIAL EQUATIONS,

AND DIFFERENTIAL MODULES

1.1. As we have mentioned in the introduction, the themes treated in this
paper originate from very classical questions concerning systems of linear
meromorphic differential equations. However to get a deeper understanding of
these problems it is essential to study them on Riemann surfaces, and more
generally, on complex manifolds of arbitrary dimension. Indeed, the idea that
Riemann surfaces form a natural setting for problems of ordinary differential
equations appears already in the works of Riemann (perhaps only implicitly; cf.
the various articles, notes, and fragments in his Collected papers), Fuchs,
Poincaré, Thomé, and many others. Unfortunately the classical language is not
adequate for working in this more general context, and it becomes necessary to
use the more modern point of view of vector bundies with connections, or
equivalently, of differential modules. This section contains a brief discussion of
these languages leading to a presentation of the formal theory of linear mero-
morphic differential equations from the categorical point of view. The categori-
cal approach that we have decided to take has the advantage that it allows one
to formulate all the relevant results in a form that is not only the most elegant
and far-reaching but also the most suitable for use in global situations. As one
of the best illustrations of this point of view we recommend to the reader
Deligne's solution of the Riemann-Hilbert problem [De 1].

We start with the framework of vector bundles and connections which
provides a coordinate free and geometric language for treating problems of lin-
ear differential equations in the complex domain. We assume that the reader is
familiar with this language, but for the sake of completeness we shall begin with
a brief review of its main features that we shall need (see [De 1]). We shall al-
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ways be in the holomorphic category unless we indicate otherwise. To any
complex manifold X one can associate the category of pairs (V, V) where V
is a vector bundle on X and V is a connection on V. This category is
equipped with 69, ®, »*, and Hom, according to the following definitions (see
[De 1], p.8) :

Ve(s1s2) = V1,e(s1) P Vae(s2), V=ViEgV:
Ve(s1@s2) = Vie(s1) @ s2+s1@Q Vael(sa), V= ViQV2

Ve(h)(s1) = V2,e(h(s1)) —h(Vie(s1), V = Hom (V4,V2)
(V*¥)e(s*)(s) = — s*(V¢(s)) + £((s*(s))

Here ¢ is an arbitrary vector field and V¢ is the covariant derivative in the di-
rection of €. A local section u of (V, V) is said to be horizontal if V¢u=0 for
all ¢. ltisclearthatamap h (Vi—> V2) is a morphism from (V1, V1) to
(V2, V2) if and only if h is a horizontal section for V = Hom (V41, V2). This
simple fact is however absolutely fundamental because it allows one to reduce
questions about morphisms to questions about horizontal sections; we shall
make frequent use of this principle in this context as well as in others. If we
choose local coordinates x;, on X and a local trivialization for V, the covariant
derivatives V corresponding to @/dxy = oy may be written as dy— Ay where
the A, the so-called connection matrices , are N x N matrices of holomorphic
functions of the x;,, . The connection V is said to be flat or integrable if its cur-
vature is zero, the condition for which in local coordinates is

ay An—auAy + [An, Ay] =0 (1 =< v SN)

These are the classical Frobenius conditions of integrability that are necessary
and sufficient for the system of partial differential equations

Vyu = dpu—Aygu =0 (1 =pu=N)

that describe the horizontal sections to have unique local solutions for arbitrary
initial data. Thus, for flat connections, the sheaf of germs of local horizontal
sections is a local system of rank N, the rank of the bundle. Here we use the
term local system of rank N on X in its usual sense, namely, a sheaf of vector
spaces defined on X which is locally isomorphic to the constant sheaf with co-
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efficients in CN, 1 <N < o (cf. [De 1], p 3). We note that the integrability con-
dition is automatic in dimension 1, i. e., when X is a Riemann surface. We
shall be exclusively concerned with this case. The flat pairs (V, V) form a full
subcategory closed under €, &), *, and Hom.

Let X be a Riemann surface. For x € X, let Oy be the algebra of
germs of analytic functions at x, I x, its quotient field of germs of functions
meromorphic at x, and Ox, M x, the corresponding sheaves on X. For a vec-
tor bundle V of rank N defined on X let Ox(V) be the ®Ox—module of germs of
holomorphic sections of V at x, M. x(V), the N-dimensional vector space over
the field M. x of germs of meromorphic sections of V at x, and Ox(V), M x(V),
the corresponding sheaves. If W is a sufficiently small open neighborhood of
X, any basis of M.x(V) defines a trivialization of the restriction of V to W \ {x}.
We shall refer to such trivializations as (meromorphic ) trivializations at x. If V
is a connection defined on the restriction of V to W\ ({x}, we say that V or the
pair (V, V) is meromorphic at x if V¢ leaves M x(V) invariant for any local
vector field holomorphic at x ; this is equivalent to the requirement that for some
(any) local uniformisant z at x, and with respect to some (any) local trivi-
alization of V at x, the covariant derivative Vg/4z has the form

Vdiz = d/dz — A(2), A e g2Z(N, M.x);

here g Z(N, M.x) is the Lie algebra of N x N matrices over M.x. By using trivi-
alizations it is easy to see the equivalence between the abstract language and
the classical one of systems of differential equations. Thus, once we choose a
trivializtion, the horizontal local sections may be identified with N x 1 vectors u
satisfying the system of ordinary differential equations

du/dz = Au.

If we consider another connection V' with V'q/dz = d/dz — A', then the pairs
(V, V) and (V, V') are locally isomorphicat z = 0 if and only if the matrices
A and A' are related by

B = g[A] = gAg +(dg/dz) g (g = GL(N, Myx)).

If we think of A and A' as connection matrices , then g may be viewed as the
gauge transformation that defines the bundle automorphism. If V4 and V2

10
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are two bundles defined on a neighborhood of x, a bundle map from V4 to Va2
is meromorphic at x if it is given by a matrix of meromorphic functions of z
with respect to trivializations of the two bundles at x. As usual, two pairs (V, V)
and (V', V') defined and meromorphic at x, are equivalent if they coincide on
a neighborhood of x; and the equivalence classes are known as the germs .
The local theory deals with the germs rather than the pairs themselves, but we
shall generally not insist on this distinction. 1If we replace the bundles, con-
nections, and the maps by their germs we obtain the category Ty of germs of
meromorphic pairs at x. If z is a local uniformisant at x we can identify Ty
with the category T of germs of pairs at the origin of the complex plane C;
of the complex variable z. Let b be aninteger = 1, let C» be the plane of a
complex variable Z, and let f, be the map z — z = zP. Associated to C.
we have the category Ty, and fp* defines a " pull-back functor " fp* from
To to Go,-;if (V,V) represents a germ at 0 € C; and we choose a local
trivialization for it at 0 so that Vg/4z =d/dz — A(z), then, with respect to the
pull-back trivialization for (V~, V~) = fp* (V, V), we have

V~d/dz =d/dz — A~,  A~(z) = bzb-1 A(zb).

Let S be a discrete subset of X. If V isavectorbundleon X and V is
a connection defined on X \'S, V (or the pair (V, V)) is said to be meromor-
phic at S if it is meromorphic at each point of S; the notion of a bundle map to
be meromorphic at S is defined in an analogous manner. Then it is clear that
we can associate to the pair X, S the category whose objects are pairs (V, V)
meromorphic at S, and whose maps are the bundle maps that are meromor-
phic at S. The basic problem of the theory of linear meromorphic differential
equations is that of understanding the structure of this category, and one of the
essential steps in such a programme is the study of the local version of this
problem, namely, the elucidation of the category Tg. This is one of the main
concerns of this paper.

1.2. From the algebraic point of view the basic notion is that of a D-module
that goes back to Manin [Ma]. Let R be a commutative ring with unit and let D
be an R—module of derivations of R; a special case is when R is a differential
ring, i. e., a commutative ring with unit equipped with a derivation 9, with D =

11
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Ro. By a D—module over (R, D) or a differential module over R we mean an
R-module M together with an R-linear map V (¢ —> V¢) of D intothe R—
module of additive maps of M into itself such that

Veam)=aVem)+(¢a)m (aeR, meM, £ D)

For given R and D the category of D—modules comes equipped with @, ®,
*, and Hom. If (M, V) is a differential module over R we refer to it as free,
projective, etc., if M, as a module over R, is free, projective etc. The solutions
m to the "system of differential equations”

Vem=0 (meM, ¢ € D)

are known as the horizontal elements of M. As in the geometric situation, mor-
phisms h ((Mq, V1) —> (M2, V2)) are precisely the horizontal elements of Hom
(M4, M2,). Unless it is otherwise stated explicitly, we shall suppose that all dif-
ferential modules are finitely generated over their base rings.

If X is a Riemann surface and S C X is a discrete set, we may take R
to be the ring of meromorphic functions on X which are holomorphicon X \' S
and D to be the R—module of derivaions of R defined by meromorphic vector
fields on X that are holomorphic on X \' S. Let V be a vector bundle on X
and V a connection on X \ S that is meromorphic at the points of S; if we
take M to be the R—module of sections of V on X \' S that are meromorphic
at S, we obtain a D—module, and the assignment that takes (V, V) to this D—
module is a functor. At the local level, if (V, V) is a pair meromorphic at x, we
can take R to be the field M x and D tobe Hx = M xd/dz where z isa
local uniformisant at x; then M = M. x(V) is a Hx—module which depends only
on the germ defined by (V, V) at x. The assignment that takes this germ to the
Hy—module M is a functor from Ty to the category of finite dimensional Oy~
modules over IN. x which is an equivalence of categories. In view of this we
shall often permit ourselves to interchange these categories. Let ®" be the
formal completion of ®©x at x, M. "x its quotient field, and DO« = M. x"d/dz;
then we have the formalization functor which assigns to any y— module M

over Mx the H*y—module M" defined by M"* = Tn,* @TLXM' If M= MxV),

we shall view M" as the formalization of the germ of the pair (V, V) at x. We

12
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denote the category of H”x—modules over M. "x by B"x or Bp", when X =
Cz, and x is the origin. In order to be consistent with the notation of our earlier
papers we shall often write, when X =C; and x =0, & for M.%¢ and Fegt for
M, x ; moreover, when working in the complex plane C, we shall denote the
corresponding objects by F, and F.cqt respectively. & and F, differen-
tial fields with d/dz and d/dz as their basic derivations.

Let ¢l be the algebraic closure of ¥F. One knows from the classical
theorem of Puiseux (cf. [Se], Proposition 8, p. 76) that

Fo =Up20 Fb, Fp=F(z1/b);

here &p is the Galois extension of & obtained by adjoining a bth root of z.
Forany b = 1, the " pull-back " imbedding & —— &, defined by the substitu-
tion z = xzb extends to an isomorphism of ¥ with ¥ r ; the extensions are
not unique, and correspond to the choice of a branch z1/b that is mapped onto
z. The Galois group Gal(Fp/F) is up, the group of bth roots of unity, acting by
c,z1/b—3 621/b (¢ € up). The full Galois group Gal(F¢cl/F) is the
topological group p =lim pp, the inverse limit of the pp; we shall identify p
with Z*, the completion of Z, the imbedding of Z in Z" corresponding to the
identification of m e Z with the element of p which projects to exp(2irm/b)
in up. The convergent subfield Fpcgt © Fp is defined in the obvious way as
Fcgtlz1P] and is seen to be identical with the preimage of & cgt under some
(any) isomorphism &Fp = F, that extends the pull-back imbedding. We put

Fegt®! = Up20 Fbcgt-

It is known that & cg(d is algebraically closed. Indeed, one knows that F¢qt is
algebraically closed in & (see [A], p. 48, Theorem 14), so that Fpcqt is alge-
braically closed in Fp forall b = 1, and hence Fcgt ¢l is algebraically closed
in &cl, thus algebraically closed.

For any fe ¢l ord(f), the order of f,is defined as usual as follows:
f=cmz® + cre)pzl+DP 4+ _cppb+ 0, = ord(f) = rb.
The topology defined by the absolute value

1fl = c—ord® (¢ > 1)

13
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is the adic topology . The continuous derivations of ¢l (resp. ¥p) are pre-
cisely the ones of the form fd/dz, f € ¢l (resp. ¥p). They form a vector space
over ¢l (resp. Fp) whose dual is the space of differential forms w over ¢l
(resp. Fp),

w =w# dz, w#e Fc(resp. Fp),

where dz is the form that takes the value 1 at d/dz. Under an isomorphism 1
(Fb = TFr) thatis defined by the choice of a branch z1/ it is easy to see that
w = w¥ dz goesoverto w,y = wy* dz where

wz# = bzb-1 1(w#).

These definitions and formulae are consistent with the corresponding ones in
the geometric context involving holomorphic differential forms and their images
under the pull-back maps fp*, fp (Cz —> C) being the usual covering map.

To any differential module (M, V) over & we can associate the " pull-
back " module (My, V) as follows: Mz = F 2 Qs M, Vedqdz = bzt Vyqz,
and

Ve didz (U@m) = (du/dz)@m + bzb-1 u@QVaazm.

In particular, if A(z) is the connection matrix of Vg/dz with respect to the basis
(mj) of M, then the connection matrix A~(z) of V. with respect to the basis
(1Qmi) of M; is given by the formula

A~(z) = bxb-1 A(zb).
More generally, let us fix a branch z1/® and hence an isomorphism Fp =& F,
extending the pull-back imbedding. If M, = S;&DM, then these formulae

define an isomorphism from the category of differential modules over Fp to the
category of differential modules over & .

1.3 On a complex manifold, the basic object associated to a pair (V, V) is
the local system of horizontal sections. In the local situation with which we are

14
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concerned here it is better to work with sections defined on sectorial domains.
A sector (in C;)is a subset of Cz* of the form

{z=rel®:x<B<B} P x<B=2n+

Note that sectors are always proper subsets of Cz*. The angle of the sector
isthen B — <. f W S1 is an open arc, T (W) is the sector of all points z
rw, with r>0, and w e W. A sectorial domain is a region of the form T g =
T'nAgs where T isasector, § >0,and Ag is the disc in the z-plane of radius
6 and center 0. Given the germ of a pair (V, V) at z = 0, we associate to it the
sheaf ¥ (V, V) = W (V) of germs of sectorial horizontal sections. This is a
sheaf defined on the unit circle S1 in the z-plane; for any u e S1, its stalk
H(V, V)(u) at u is the space of germs of horizontal sections of (V, V) defined
on sectorial domains T §=TnAgs where T is a sector containing u. If WC
S1 is an open arc, % (V)(W) is the space of germs of horizontal sections of V
defined on T (W)g for some 6 > 0. This is a local system of rank N = the rank of
V, and the assignment

(V,V) —— H(V, V)

defines a covariant functor from @y into the category of local systems on St
which is compatible with ®, *, and Hom. In general this will not be an equiv-
alence of categories because the nature of the singularity at z = 0 is not en-
coded in this functor. However for regular singularities this functor does con-
tain all the pertinent information. In this paragraph we shall give a brief review
of the local theory of regular singular connections.

A pair (V, V) is said to be Fuchsian or Regular Singular if on any
sector T° with vertex at z = 0, any horizontal section s of (V, V) is of moderate
growth ,i. e., forsome N = 0,

s(z) = O(1zI-N) (z—> 0 in T).

Here the O refers to the components of the section in some (hence every) trivi-
alization at z =0. For the pair (V, V) the point z =0 is then said to be a regu-
lar singularity.

15
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THEOREM 1.3.1 The functor (V, V) —> H(V, V) is an equivalence
of categories when restricted to the subcategory of Fuchsian pairs .

PROOF Let us begin the proof by recalling ([Mi], pp. 51-52) that for ver-
ifying that a functor F from a category C¢ to a category C2 is an equivalence
of categories one must prove two things : (i) it is fully faithful ;this means that for
any two objects A and B of C4,the map Morph(A, B) —> Morph(F(A), F(B))
is bijective, and (ii) F is essentially surjective , that is, every object in Cz is
isomorphic to one of the form F(A) for some A e C4. To verify that the functor
under consideration is fully faithful we use the compatibility of the functor with
Hom to reduce it to the proof that the assignment taking a germ of a meromor-
phic horizontal section of (V, V) to the corresponding global section of ¥ (V, V)
is bijective . ltis clearly injective; if s is a global section of ¥ (V, V) it defines a
horizontal section s* of (V, V) onthe punctured disc Ag*x = Ag\ (0). But s*
is now of moderate growth at z = 0 and so meromorphic by the theorem of
Riemann on removable singularities. To complete the proof it remains to show
that any local system on S'1 arises asa 9%(V, V) upto isomorphism. Let V
be a local system on S1 and U = U(1). We then have a (monodromy) action
of the fundamental group of S1 with base point z = 1 on U (see [De 1], p3).
Identifying the fundmental group with Z in the usual way we obtain an element
¥ € GL(U) for the action of 1 € Z. It is now a question of constructing a pair
(V, V) such that the monodromy action of 1 on the stalk of ¥%(V,V) at z = 1
is equal to ¥. Select an endomorphism C of U such that ¥ = exp(2niC). Let
Vu be the trivial bundle CXU, V¢ d/dz = d/dz — z-1C. Then the horizontal sec-
tions of (Vyu, Vc) are the multi-valued functions

z—> exp (logz.C)u, ue U,

and so the monodromy action of 1 is exp(2niC) = ¥. So H(Vy) is isomorphic
to V. 3

REMARK To ensure that the assignment
(%) (U, ¥) —> (Vu.Ve)

constructed above is functorial it is necessary to choose C to depend functori-
ally on ¥. This can be done in many ways. We may, for instance, require that
all eigenvalues N\ of C satisfy 0 < Re()\) < 1; C is then said to be reduced
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([BV 1]) and we call it a reduced logarithm of ¥. With this choice (%) is func-
torial and inverts the functor (V, V) —— 3(V, V).

We shall now consider the corresponding formal category. Let K denote
one of &, Fegt, O & cl, the algebraic closure of &, and let O be the corre-
sponding integer ring, so that O =0 =C[[z]] if K=3F, O = Oc¢gt = C{z} when
K=Scgt, and O=0¢=C[[z]][ 212, 213,.....] when K=F¢. If M is a finite
dimensional vector space over K and E C M, E is called an O-lattice ifitisa
free O-module of rank equal to the dimension of M. It is well known that a sub-
set E C M is an O-lattice if and only if it is a finitely generated O-module
whose K-spanis M. We now follow Manin [Ma)] and define a differential mod-
ule (M, V) over K to be Fuchsian if 3 an O-lattice L € M with zVqg4z L C
L. Thus M is Fuchsian if and only if there is a basis of M with respect to which
the connection matrix of V has at most a simple pole; in the classical language,
such a connection matrix is said to be of the first kind . It is not difficult to check
that this is equivalent to requiring that for each m € M, the smallest O-module
in M containing m and stable under zVq/4z is finitely generated over O (see
[Ma]).

The basic results in the formal theory of Fuchsian modules are the fol-
lowing .

1. Every such module is isomorphic to the pair (U(F), Vc"); here Cis
an endomorphism of a vector space U over C, U(F)=F QcU, V¢, "adz =
d/dz — z-1C, so that (U(F), Vc") is the formalization of (Vu, V).

2. If (V,V) is a meromorphic pairand M is the associated module over
Fcgt of germs of meromorphic sections , then (V, V) is Fuchsian if and only if
(M, V) is Fuchsian in the sense of the definition above .

3. Formal meromorphic solutions are always convergent :if (V,V) is
Fuchsian and (M", V") is the differential module over ¥ which is its formal-
ization , then the natural inclusion map from the space of horizontal sections of
V to H(M"), the space of horizontal elements of M", is a bijection . In conjunc-
tion with 1. this implies that formalization is an equivalence of categories .

Let Bo,Fuchs (resp. B "o Fuchs ) be the category of germs of Fuchsian
(resp. formal Fuchsian) pairs (resp. modules), and Loc(S') the category of lo-
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cal systems on S1. Let us write & for the full subcategory of G Fuchs Of all
pairs (Vyu, Vc). We shall introduce the diagram

To,Fuchs = To,Fuchs
1 formalization l sectorial horizontal sections
T"0,Fuchs _— Loc (S1)

Since the vertical arrows are equivalences of categories, it follows from purely
categorical arguments that there are functors representing the bottom arrow for
which the above diagram is commutative in the sense of equivalence of cate-
gories, and that all such functors are mutually naturally equivalent. Furthermore,
as the natural inclusion of & into Co,Fuchs iS an equivalence of categories,
these are precisely the functors F* from ©"g Fuchs to Loc(S1) with the fol-
lowing property : if F is the composition F" « formalization and L is the functor
on & thattakes (Vy, Vc) to the corresponding local system of sectorial hori-
zontal sections, then the functors F and L are naturally equivalenton & :

(3¢) F=L

THEOREM 1.3.2 The above diagram is commutative in the sense of
equivalences of categories for all choices of functors (®*) and only for those ;
all the arrows are equivalences ; and they are all compatible with &), %, and
Hom .

We shall now complete this discussion by giving an explicit construction
of a functor representing the bottom arrow in the above diagram. Let & be the
differential C-algebra of germs of analytic functions defined on sectorial do-
mains Tg = TNAg (T a sectorcontaining z= 1), and let & be the differen-
tial subalgebra of €& generated by Fcgt , z*» (A € Q). We shall identify F cgi!
with & and write &1 for the subalgebra generated by {&, z» (A € C), log z }.
Put ¥ = ¢l ®q, $4 . Clearly &, &4, and ¥ are differential algebras over C
which are integral domains. Z acts through analytic continuation around S
on &1, on ¢l by Galois, and so acts on ¥. Since Fcq® is algebraically
closed (cf. §1.2) and has characteristic 0, one knows that ¥ is a domain (see
[ZS], p. 198) . If M is any differential module over ¢ we define
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M(Y) = ¥QRya M.

Observe that if M is defined over & and Mcl = Fcl@)xM, then the action of
Z on ¥ described above, and on Mc¢! through the imbedding of Zin
Gal(¥cl/T), leads to an action on MCcl(¥) by F—linear mappings that preserve
the connection. Finally, for any differential module U we write H(U) for its
space of horizontal elements.

LEMMA 1.3.3 Let (M, V) be a Fuchsian module of dimension N
over ¢l and let M(¥) be defined as above. Then HM(¥)) has dimension
N over C and

(M, V) —— H(M(Y))

is a functor with values in the category of finite dimensional vector spaces and
compatible with @), %, and Hom .

PROOF Only the dimension statement is not immediate. To prove this
we may assume that M = (FS)N and Vgqg; = d/dz — z-1C, C being a block
diagonal matrix

C = bl.diag. (u1 1+ N1, ..., uk1 + Nx) (yje C and N; nilpotent)

The columns fi (1 <i =< N) of the matrix zC = exp(log z. C) are in N c ¥N =
M(¥). As C is the ring of constants of ¥ and det(zC) is a unit of ¥, the f
are easily seen to form a C-basis of H(M(¥). .

PROPOSITION 1.3.4 Let (M, V) be a Fuchsian module over &
and let (Mcl, V¢l be the corresponding module over ¥¢' . Then there is an ac-
tion of Z on H(MC(¥)), and the assignment

(M, V) —— H(Mmcl(¥))
is an equivalence of categories satisfying (%) above .

PROOF Here we are identifying (through the monodromy action)
Loc(S1) with the category of vector spaces over C with Z-actions. Now Z
acts on Mcl(¥), the action leaving the connection invariant. This leads to the
action of Z on H(MCl(¥)). We claim that (M, V) —> H(Mc(¥)) is a fully
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faithful assignment. Since this functor is compatible with Hom, it comes down
to proving that H(M) = HMC(¥))Z. Take M and V as in the proof of the
lemma but with C reduced. The horizontal section zCu (u € CN) is invariant
under Z if and only if exp(2niC) u = u, orif and only if Cu = 0. But then zCu =
u € H(M). Since the functor assigns (U, exp(2inC) to (U(F), Vg ), we are
through. .

The above argument involved the consideration of maps between differ-
ential modules that are not linear but only semi linear. This can be done sys-
tematically by introducing the extended category of differential modules over
Fcl or ¥ cgt0| in which the morphisms are extended , i.e., are allowed to be o—
linear, ¢ € Gal(Fc/F) or Gal(S}'cgtC'IS’) while preserving the connections ;
we recall that a map L between vector spaces over a field E is o-—linear, ¢
being an automorphism of E, if it is additive and satisfies L{cu) = o(c) L(u) for
all vectors u and all ¢  E. If M, M’ are two differential modules over ¥Fcgd,
a(M—> M) is a o-linear morphism, and if we write

Mel = Ay oM, Mo = FAR) oM,

then there is a well defined c—linear morphism acl (Mcl —» M¢l) such that
acl (fQm) = (o.NRa(m).

It follows from this that formalization M —> M¢! is a well defined functor in the
context of the extended categories. We now have

PROPOSITION 1.3.5 Formalization is an equivalence on the
Fuchsian extended subcategories .

PROOF 1t is only a question of verifying that it is fully faithful. Choose
bases for M and M’ sothat M = (Fegi®)N, M' = (Fegt®)N', Vgaz = didz -
z-1C and V'gygz = d/dz—- z-1C' where C and C' are complex matrices. If
now B (M¢l—>» M'l) is a o-linear morphism, then thereisa ¥ (Mcl—s M'cl)
which is a morphism in the usual sense suchthat 8 = ¥ o 5. But by the result
for the usual categories ¥ is represented by a convergent matrix and so the

same is true of g. In other words, g = b€l for a uniquely determined oc—linear
morphism b (M —> M’). .
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1.4. The theory of the category of not necessarily Fuchsian pairs is dominated
by the fact that formalization is not an equivalence of categories. Furthermore
the formal theory itself is much richer. We shall now give a brief review of it, re-
ferring the reader to [BV 1] [Be] and [J] for more detailed expositions. The fun-
damental results are due to Hukuhara [Hu], Turrittin [Tu]. and Levelt [Le] with
important additions from the categorical point of view due to Deligne [De 2].

Let ¢l = 3(FCl) be the vector space of differential forms w = w# dz
where w# e ¢l is a linear combination of the powers z3, ae Q, a<-1, and
let 8P = BL(Fp) be the subspace of these w that are defined over Fp,
namely, for which w# € Fp. We select a finite nonempty subset = < I¢ and
a finite dimensional! vector space U over C equipped with a grading by ¢!
such that the nonzero components of the grading correspond to the elements of
PN

U= PuUs, Uy + 0 weX.

Let P, (U— U,) be the associated projections. For each w we choose an
endomorphism C,, of U, and define B as the endomorphism of U(F¢l) =
Fel@cU given by

B=2pesx o . 1QP, + z21QC  (C = Puw Cuw).

We referto U, =, (Uw)wes ,» (Cw)wes as formal data , and to them we associate
the differential module (M"g, V") over &, where M"g = U(F), V'Badz =
d/dz — B. Note that (M"g, V"g) is the formalization of (Mg, Vg) where Mg =
U(Fcgt®) = Fegi®@cU, and Ve,gaz = didz— B. The module (M"g, V') is
called a canonical form . The rational numbers a < —1 such that z2 occurs
with a nonzero coefficient in some w# (w e ) are the canonical levels , and
the smallest of these is known as the principal level or the Katz invariant ; =
itself is called the spectrum . If £ consists only of 0, itis clearthat U = Ug, C
€ End(U), and B = z—1®C. If b =1 isaninteger such that all the w# e ¥p
(w e X), and the endomorphism C of U has the property that the real parts of
all its eigenvalues are in [0, 1/b), i. e., bC is reduced, we shall say that the
canonical form (resp. C, the formal data) is b-reduced. Let us now choose a
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branch z1/b and let £ € I(Fp); and let L be the set of canonical levels so

that L={rq,....Tm} < (1/b) Z (r{ < ... <rm <-—1). Clearly there are uniquely de-
fined endomorphisms C, D, (r € L) of U such that

(a) C, D¢ (r e L) commute with each other

(b) Dy # 0 and is semisimple forall re L

(© B = ZraL 2 Dr +z1R)C

It is easy to check that X is the set of forms w = (ZreL Cr 27 ). dz where (Cr)reL
is in the joint spectrum of (Dr)reL , U = @w U is the spectral decomposition of
U with respect to the D,. This is the way canonical forms were defined by us in
[BV 1]. The fundamental result of the Hukuhara- Turrittin- Levelt theory is now
the following (see [BV 1], §§ 6-7).

PROPOSITION 1.4.1 Any differential module over ¥ ¢! js isomorphic
to a canonical form defined by some formal data U, %, (Uyw)wes ; (Cw)wes -
The spectrum Z and the dimensions of the U, are uniquely determined by the
isomorphism class of the module .

If M is a differential module over &, the above result may be applied to
the module Mc! = Fc!lQ)5M, and the theory of the modules over ¥ may be
worked out with some additional Galois descent arguments. We shall define
the canonical levels and spectrum of M to be those of Mcl. M is said to be un-
ramified if its canonical levels are all integers. More generally, we shall say
that M is unramified over &y if all its canonical levels are in (1/b)Z; the rami-
fication index of M is defined as the smallest of such integers b. It is known
that b is a divisor of the least common multiple of {1,2,... , N} where N =
dimg (M) ([BV 1], Proposition 7.6). From [BV 1] (§§6-7) we have

PROPOSITION 1.4.2 Let M be a differential module over ¥y un-
ramified over Fp. Then M isisomorphic to a canonical form determined by
a unique (upto isomorphism ) set of b-reduced data U, Z, (Uy)wes, (Cw)wes -
More precisely , the assignment that takes b-reduced formal data to the corre-
sponding canonical forms is a functor ,with values in the category of differential
modules over &Fp unramified over Ty, thatis an equivalence of categories .
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Consider now a b-reduced canonical form defined by the formal data U,
3, (Uwwes » (Cw)wes but with the additional property that = is stable under
the Galois action of up. A descent structure for this formal data is then any
representation t (c — t(c)) of up in U such that

(DES 1) t(c) P, t(o) =1 = Pgew, 1(6) Cyt(c) =1 = Cqq, -

Two descent structures t, t' are said to be isomorphic if thereisa © e GL(U)
such that

(DES 2) t(c) = T to)t-!, <Put! = Py, © Cut! = Cq .

If M is a differential module over &F unramified over Fp, Proposition 1.4.2
shows that there is an isomorphism h of Fp&)sM over Fp to a b-reduced
canonical form (Mg, V") :

h: FoQ@QsM = (Fo@&cU, V'g).

Forany o € pp, (Fp@cU, V'5[B)) is also a b-reduced canonical form where

O'[B] = Zwez c.w#. 1®Pw + z—1®,

and o)1 transforms (FpcU, V') into (FprQ@cU, V gm)). On the other
hand, as Fp@xM is invariant under =11, (c@1) h (c-1Q1) h-1 is an
isomorphism of (3b®cu, V’g) onto (:rb®cu, VAO-[B]). Proposition 1.4.1 now
shows that ¢.Z = X forall ¢ and Proposition 1.4.2 shows that the isomor-
phism in question must be of the form 1®t(c‘)‘1 for a unique t(c) e GL(U)
satisfying (DES 1). We thus have for all ¢ € up,

(%) h (c@1)h-1 = csX(c).

It is immediate from (%) that t is a representation of pup in U. In other words, t
is a descent structure. If we choose another isomorphism h' instead of h, h'h—1
is an automorphism of (:Yb®cU, V”*B), and so it follows from Proposition 1.4.2
that h' = (1 ®‘C) h forsome < e GL(U) satisfying (DES 2). This means that t
and t' are isomorphic. We have thus associated to M in a natural manner an
isomorphism class of descent structures. At the same time, (%) shows that the
Galois action ¢ —> 0'®t(0') leaves V"g invariant, and that the fixed point
subspace M"% of &F b®cu for this action inherits the structure of a differential
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module over &, and finally that h is an isomorphism over & of M with M*. If
2 is stable under up and t is any descent structure for the formal data,exactly
the same argument applies to show that M"; is a differential module over &
with t as the associated descent structure. We have thus obtained the central
result of the theory of differential modules over & (see [BV 1], §§ 6-7) :

PROPOSITION 1.4.3 There is a canonical bijection from the set of
isomorphism classes of differential modules over ¥F unramified over ¥y and
isomorphism classes of b-reduced formal data equipped with descent struc-
tures .

Actually, the entire discussion preceding this proposition could have
been carried out starting with Fp cgt instead of Fp ; the module determined
by the subspace M; of fixed points for the Galois action in U(Fp,cqt) would
then be defined over Fcgt. It is obvious that M = M N (S}’b,cgt®cU) and
that M;" is the formalization of M.

It is useful to have an explicit construction of the meromorphic pair in the
z-plane whose module of sections is the JF¢gt-module M; described above.
We go over to the plane C, of the complex variable z = z1/6 and consider
the pair (Vz, V) where V. is the trivial bundle C-XU and V. is determined
by Vzdidz =d/dz— B~(z), with

B~(?;) = Zwez (.0;#. 1®Pw + ;-1®bC .

We seek a pair (V4, V1) with V4 4/dz = d/dz — B¢(z) together with an isomor-
phism h of the pull back of (V1, V1) with (V- ,Vg). If € = exp(2inw/b), the
equation h (e®1) h-1 = e®t(e) then becomes, on computing the effect of
both sides on arbitrary sections of (V. , V),

h(z) h(ez)™1 = t(e).

As t(g)b =1, t(g) is diagonizable with eigenvalues that are bth roots of unity,
and so it follows from Hilbert's Theorem 90 (see [Se], pp.158-159, also [BV 1],
p.58) that we can find a holomorphic h locally defined around Zz = 0 with val-
ues in GL(U) such that h(z) h(ez)-1 = t(g). With any such choice of h By is
determined from B~ by
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h=1[B~](2) = bzb-1B4(zb) (h-1[B~] = h~'B~h — h-dh/dz).

A slight modification of the preceding analysis actually yields the follow-
ing more precise result.

PROPOSITION 1.4.4 Fix an integer b = 1. Then the assignment
(formal data + descent structure t) —> M"

is functorial and defines an equivalence of categories from the category of for-
mal data with descent structures with the category of differential modules over
& that are unramifired over .

REMARK Let M be a differential module over ¥ with canonical levels

M, ...m-.

Let M, be the pull back module over ¥, where z = zb. It is then immediate
that the canonical levels of M, are

bri + b—1, ... ,br;m+b—1.

Indeed, it is enough to verify this for canonical forms for which it is obvious since
the pull back of w#(z1/b). dz is w#(z) b zb-1.dz.

One can now get a complete description of the category of differential
modules over ¥F. We begin by constructing a functor M —> M¢gt from the
extended category (cf. §1.3) of differential modules over ¢! to the corre-
sponding category over Fcgi¢l that inverts formalization, namely, has the prop-
erty (Mcgt)" = M forall M, = denoting natural isomorphism of functors. First
of all, as formalization is an equivalence for Fuchsian modules by Proposition
1.3.5, we can find such a functor on the subcategory of Fuchsian modules over
Fol Forany w = w# dze B¢ let L{w) = Fegi® be the one dimensional
module over F cgtc' equipped with the connection

u—> du/dz— w¥u (ue Feg),

and let L(w)C! be its extension to ¢l Then it is a consequence of the
Hukuhara-Turrittin- Levelt theory that any differential module M over ¢! has a
unique decomposition
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M = P M(w) (w e B, Mw) = 0 for almostall w )

where the M(w) are differential submodules uniquely determined by the re-
quirement that

FM)(w) := L(~w)'QM(w)
is Fuchsian for all w. We now define

Megt = Pow Megi(w),  Megt(w) = L(w)QF(M)(w)egt .

It is easy to convince oneself that M —> Mcgqt is a functor (relative to the ex-
tended categories) that inverts formalization. If now M is a differential module
over & and Mcl = Fc@xM, then the above constructions are applicable to
Mcl. But now we have in addition the Galois action of u = Gal(¥F°/F) on Mcl
and it is clear that o € p is a morphism (extended) from MCcl(w) (resp.
F(M)(w), F(M)(w)cgt) to MCl(c.w) (resp. F(M)(c.w), F(M)(c.w)cqgt), and so the
subspace of Mcl of elements fixed by u defines a differential module over
Fcgt- We denote this by Mcqt.

LEMMA 1.4.5 The assignment

is a functor from Go" to g that inverts formalization . Moreover the Fuchsian
module

F(Megt = e (F(MC)(w))cgt

over ¥ cgtc' admits a Galois action whose fixed points define a Fuchsian mod-
ule F(M).

PROOF This is clear from the preceding discussion. .

We now proceed in analogy with the Fuchsian case treated in §1.3. Let
&5 be the subalgebra of ¢ generated by &1 and all the functions of the form

4
E(w)(z) = exp(1j w#.dz), w e BC.
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We have an action of Z on &2 by analytic continuation around S1. For any
differential module M over 3'cgt°' we write M($2) = <I>2®¢ M and define the
functor h from Tgp" to the category of complex finite dimensional vector
spaces by

h(M) = H(MClogt(®2)) = Puw H(MClegi(w)($2))
Forany m e Z «—— u the maps MClgg(w) —> MClgg(m.w) define maps
H(MCleg)(w)($2)) —> H(MCleg(m.w)($2)),

so that we have an action of Z on H(MCIcgt(q>2)) . In other words, we may view
h as a functor with values in the category of finite dimensional vector spaces
with T3¢l grading and a compatible Z-action. On the other hand, as

Melegi(w) = L(w)QF(MEl)(w)egt,
we have the obvious relation
H(MClogi(w)(®2)) = E(w)QH(F(Me)(w)ogi(®2)),
so that, we have the natural isomorphism
h(M) = hF(M) := HF(MY)cgt(®2)) = P HF M) (w)cgt(®2)) -

PROPOSITION 1.4.6 The functor of formalization from g to Bg" is
essentially surjective , namely ,every formal differential module over ¥ s iso-
morphic to the formalization of a meromorphic pair at z = 0. Furthermore ,the
functor h is an equivalence of categories compatible with ®, »*, and Hom
from To" to the category of X ¢l -graded vector spaces over C of finite
dimension equipped with a compatible Z-action .

PROOF The first assertion has been proved already. For the second it
is convenient to work with hF rather than h. The compatibility with ®, *, and
Hom is obvious. If we now observe that gradation preserving linear maps of
two graded vector spaces U, U' are in natural bijection with the elements of the
graded component corresponding to the zero element of Hom(U, U’), we can,
by the compatibility with Hom, reduce the proof that hF is fully faithful to show-
ing that H(M) = H(F(MC)cqt(0)($2))Z where O refers to the component of the
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grading corresponding to the zero element. We now observe that F(MCi)cgt(O)
= (MCh)cqt(0) is a differential submodule of M¢clegt which is Fuchsian and invari-
ant under the Galois group, so that it may be viewed as arising through exten-
sion of scalars from a Fuchsian submodule M(0) of M. The proof of
Proposition 1.3.4 now shows that H(M(0)) = H(F(MCI)cgt(O)(q’z))z. Hence we
see that H( (F(MC)cgt(0))Z2 < H(M). On the other hand, a direct calculation
shows that H(MC(w)) = 0 if w * 0, so that H(M) < H(Mc!(0))Z; from this we
get H(M) < H((F(Mch)(0)(®2))Z. For proving the essential surjectivity of the
functor hF, we start with a pair (U= P wUw, ¥) where ¥ e GL(U) is the ac-
tionof 1 €Z in U,andlet b =1 be an integer such that all the w# for which
U, #0 arein Fp. Clearly ¥b leaves each U, invariant and so we can find a
b-reduced C., € End(U,,) such that ¥b = exp(2ribC) where C = @w Cw -
Since bC is reduced, it follows that ¥ commutes with bC, hence with C, and
that ¥™ exp(-2nimC) depends only on the residue class of m mod b, so that
there is a unique way to define a representation t of up in U such that
t(exp(2rim/b)) = ¥™ exp(—2nimC). It is then easy to see that t is a descent
structure for the canonical form defined by the formal data U, Z, (Uy)wes
(Cw)wes - We thus have a well defined module (M, Vi) over Fcegt. An ele-
mentary calculation shows that the monodromy action of 1 € Z (which corre-
sponds to the Galois action o®t(a) for o = exp(2in/b) on the horizontal ele-
ments) is

exp(log z.C)u —> exp(log z.C)exp(2inC)t(c)u = exp(log z.C)(¥u) (u e U).

It folows from this that our functor takes (M, V) to (U = @P U, ¥) upto iso-
morphism. e

Given differential modules M" over & and M over Fcg itis natural
to say that M is formally isomorphic to M" if there is an isomorphism

§:3‘®,@M = M.

Any such isomorphism is called a marking of M by M". For fixed M" the pairs
(M, ¢) form a category such that the morphisms (M, ¢) — (M, ¢') are the
morphisms u (M ——> M") that are compatible with ¢ and ¢'. If (V,V) isa

meromorphic pairat z = 0 and M is the differential module over Fcqt of the
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germs of meromorphic sections of V, then, a marking of (V,V) by M" is, by
definition, a marking of M by M". The pairs marked by M" form a category in
the obvious fashion.

1.5 The theory of formal differential modules can be developed over fairly
general rings (cf. [BV 2] ). In this paragraph we shall confine ourselves to a few
consequences of the work of [BV 2] that will be important in the context of the
moduli problems treated in 1ll as well as in the asymptotic theory of families of
differential equations treated in the next section.

We begin by formalizing the notion of an analytic family of formal differ-
ential modules over . Let d =1 be an integer, and for any open set Q < Cd
let ®y4(Q2) be the algebra of analytic functions on Q. We use the symbol A
with or without suffixes to denote polydiscs in Cd centered at the origin. We
then define

Odbl(A) = Og(A)[21/P]][z71], Odb = Ua Odp(A).

These are all differential algebras in the obvious sense with the elements of the
coefficient rings ®g(A) behaving like constants with respect to d/dz. A family
of differential modules of dimension N over F (resp. Fp ) is by definition a
differential module (M, V) over O®g,1 (resp. Odp ) with the underlying module
over Og,1 (resp. Ogp ) being free of rank N. By choosing a basis for M we
find that there is a A such that (M, V) is isomorphic to a module (M', V') de-
fined over Od4.1(A) (resp. Od.b(A)). We can obviously specialise (M', V') at
the points A\ € A to obtain an assignment A —> (M'y\, V3\) (A € A) of differ-
ential modules over & (resp. Fp) parametrized by A. If the isomorphism
class of (M'y\, V') over &F (resp. ¥p) is independent of A forall \ in some
A', we shall say that (M, V) is an isoformal family of differential modules over
& (resp. Fp), and refer to the constant isomorphism class of (M'y, V'y\ ) as the
class of the family . This property is clearly independent of the choice of (M, V')
or A'. The fundamental theorem on isoformal families is the following.

THEOREM 1.5.1 Let (M, V) defined over ©4.1 be an isoformal fam-
ily of differential modules of dimension N over ¥. Suppose that (Mg, Vq) is a
differential module over ¥ that represents the class of the family . Then (M, V)
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is isomorphic over 4,4 to the module obtained from (Mo, Vo) by extension
of scalars to O, 1.

PROOF This is based on the theory of [BV 2]. We choose bases for
(M, V) and (Mg, Vo) and work in the following situation. (My, Vy) (A € A) isa
family of differential modules over & where

My = N, Vyddz = d/dz—A(\ : 2)

A being an element of ¢ £(N, Od4,1(A)) ; and foreach A\ « A we have an iso-
morphism

(M, Vi) = (Mo, Vo).

We wish to find another such isomorphism but depending analtically on 2,
namely, to find an element g € GL(N, Og,1(A1)) A1< A, such that

gr:.): My = Mgy O\ € Ay).

If Mp is unramified this is just theorem 10.3.4 of [BV 2]. In particular this takes
care of the case when Mg is regular. So we may suppose that My is irregular
and ramified. We shall now proceed to give the arguments that reduce this to
the unramified case; they depend on the descent theory discussed in §1.4.

Let b = 1 be an integer such that all the Mj are unramified over Fp
and let

Myp = FpN, Vap = didz— AN :2).

Then by Theorem 10.3.4 of [BV 2] we can find a h € GL(N, Ogp(A1)) fora
suitable A1 C A suchthat foreach N\ € Aj,

h(A 1) : Myp = Mopb.

We shall assume, as we may, that Mpp is a b-reduced canonical form and that
Mo arises from it through formal data and descent structure tg on U = CN. By
the descent theory discussed in §1.4 we can find a representation t(A :.) of up
in CN such that foreach A\ € Aq,

h(h:.) (e@1) h(r . )1 = e@() : €) € = exp(2inwb).
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This equation makes it obvious that t() : €) is holomorphic in A\. Furthermore,
as My and Mg are isomorphic, the descent structures t(A :.) and t(0:.) are
isomorphic for each \. Let G be the subgroup of GL(N, C) commuting with all
Py and C. Then we can find ©(A\) € G suchthat A € A4,

th 1 €) = T 10:8) T, <(0) = 1.

Let H be the subgroup of G centralizing t(0 : €). Although <T(\) is not
unique, the above relation makes it clear that it is uniquely defined in G/H and
hence may be viewed as an analytic map of A4 into G/H. By the theorem of
existence of local sections in Lie groups we may choose an analytic map k on
a suitable Ao € A4 such that k(A) and <(\) have the same image in G/H
for X € Ao. Define now

hi = k-1h.
Then hy € GL(N, Og,b(A2)) and forall A € Ao,
hi(h 1)t Myp = Mo,
hi(h 1. ) (8@Q1) hi(x 1. )1 = eR(0 : €).

In other words, h1(0 :. )~Th{(\ :.) commutes with (e®1), showing that it is de-
fined over & itself. If we write g for the element of GL(N, ©4,1(A2)) thus de-
fined, we see that g(\ :.) is an isomorphism of My with Mg, and this is what
we wanted to prove. .
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2 ASYMPTOTIC THEORY OF ISOFORMAL FAMILIES OF

DIFFERENTIAL MODULES

2.1 The point of departure for the analytic theory of systems of linear mero-
morphic differential equations with irregular singularities is the result, going
back in a generic form to Poincaré, that any formal solution of such a system is
asymptotic to an analytic solution on a sector with vertex at the singularity pro-
vided the angle of the sector at the vertex is sufficiently small. The analytic so-
lution is of course not unique, a fact that was the point of departure of the coho-
mological treatment of these questions due to Malgrange and Sibuya. In this
section we shall discuss those aspects of the asymptotic theory that will be
needed by us. To get additional perspective the reader should consult the
classic treatise of Wasow [W] as well as [Ra-Si]. We shall however consider not
only the case of a single system of differential equations but also the case of
families which is deeper and involves other issues. It will be needed in 1l
when we treat the problem of moduli.

We recall the definitions of sectors and sectorial domains given in §1.3.
If A and B are subsets of a topological space, we write A CC B to mean
Cl(A) < CI(B). If T is a sector, an open subset Q of T is said to be asymp-
toticto T (Q ~T) if forany sector T" CC T, there existsa 8 > 0 such that
T's € Q (see figure below)):
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Forany set A € C* we write As=An Ags, Ag being the disc {z : 1zl < &}.

Let T be a sector in C*. We consider analytic functions defined on
open sets Q < T that are asymptoticto T, two such functions being regarded
equivalent if they coincide on an open subset of T that is asymptoticto T.
The equivalence classes are the germs , but we shall allow ourselves as usual
to abuse the notation and work with the functions rather than the germs. Let a
be such an analytic function. If « =2, crzf € &F, we say that a is asymptotic
tox in T(or Q) a ~ « (T), if forany sector T'CC T and any integer N =
0,

a(z) = Tr<N Crzf + O(IzIN+1) (zeT',z—> 0).

The element « is then uniquely determined by a and is denoted by a". In
this case, we have for any integer r = 0,

(d/dz)ra ~ (d/idz)ra* (T)

The set of all germs of such a is thus a differential C-algebra, which we denote
by A¢(T). The map a—> a" is a homomorphism from A¢(T) to &F. If T =
Cx, then A¢(T) = Feqt, a"=a;if T * CX, then the classical theorem of Borel-
Ritt asserts that the map a —> a" is a surjective homomorphism of A{(T") into
F. The kernel of this map, denoted by Ag(T"), consists of the so-called germs
of flat functions in T, namely, germs of functions a such that

a ~0 (T).

Let T = C* andlet logr be abranch of login T. Forany te C, we
define zt = exp(tlogr z ). For any integer b = 1 fix a choice of z1/b in Fp
and define Ap(T") to be the set of all germs of functions a defined on some Q
~ T with the following property: there is an element (necessarily unique) a" =
Zr Cp 2P e Fp suchthat a~a" (T),i. e,

a(z) = Zr<N b 2™ + O(IzIN+I)b) (ze T',z—> 0),

for any integer N = 0, and any sector T' CCT. ltis clearthat Ap(T) is defined
independently of the choice of z1/b and of the branch logr . The theorem of
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Borel-Ritt implies that the map a —> a" is a surjective homomorphism of
Ap(T) into Fp with the same kernel Ag(T") as before. We shall say that a is
asymptoticto a" on T. We put

A(T) = Up=z1 Ap(T)

and view a—> a" as a homomorphism of A(T) onto ¢l with kernel Ag(T).
The elements a of A(T) are the germs that have an asymptotic expansion on
T, a” being the asymptotic expansion of a.

We also need to consider asymptotic expansions when parameters are
present. Fix an integer d = 1 and let notations and conventions be asin §1.5.
Let T be a sectorin Cz*. An open subset Q of CIXT is said to be associ-
atedto T ifforany sector T'CC T there is a polydisc A(T') and 6 = &8(T")
>0 such that A(T")XT's € Q ;wewrite Q ~ T. Note that forany such Q,
the set of points z in T forwhich (0, z) € Q is asymptotic to T. We consider
germs of analytic functions defined on open sets Q associatedto T, germs
being equivalence classes for the obvious equivalence : f' defined on Q' is
equivalent to f defined on Q if thereis an Q" associated to T on which f=
f. If f isdefinedon Q, f is said to have an asymptotic expansion if there is an
integer b =21 and f"=3; aym 2™ e Ogp (cf. §1.5) with the following prop-
erty: for any sector T'<C T thereare A(T') and 6 = &(T") > O for which
A(TIXT's € Q and f"e Ogp(A(T"), such that for any integer N =0 we
have

fOA:2) = Zr<N am(d) 2@ + O(1zZI(N+1)b) (ze T', z—> 0)

the O being uniformin A € A(T'), and zt = exp(tlog r z), log = being a
branch of log in T. We denote this by

f ~ t8(T),

the element f" being uniquely determined by f. We write Agqp(T") for the dif-
ferential ©y -algebra of ( the germs of ) those f for which f" exists and belongs
to Og,b , and put

Ad(T) =Up >1 Adp(T).
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When there are no parameters, i. e., when d =0, Aqp(T) and A4(T) reduce to
the algebras Ap(T) and A(T) considered earlier. The map f—> f* is a ho-
momorphism of Ogp-algebras on Adqn(T); and for any differential operator D
=(3/oN)M (d/dz)r, with A = (A1, ..., Ad) and m = (mjy, ..., mg), we have,

Df ~ Df* (T)

The Borel-Ritt theorem continues to be true, and we formulate it in the following
sharp form :if T isasector+ C*, and ¢ = Zrez arp 2P € Ogp(A), then,
forany A'<cc A andany « > 0, we can find f defined and analytic on
A'XT« suchthat f ~¢ (A'XT). Indeed, we may assume b = 1 and define
tm to be 0 when am =0 andtobe (sup xea'l am(N)l ) —1 otherwise. If « >0,
and O0<pB <1 is so small that cos (B arg logrz) = 1/2 forall z € T, then the
function

fA:2) = Zm am()) (1—exp(— tpx—Mz— B )) zM

is analyticon A'XT , and f~ ¢ (T) (see [W], pp. 41-42; the O-estimates for
the differences between f and the initial segments of ¢ are actually uniform in
allof A'XT « ). In particularthe map f—> " from Agp(T) to Ogp is surjec-
tive.

The extension of the notion of order (in z ) to the rings Agp(T) is imme-
diate ; if fe Agp(T") and f~f"(T), then the order of f is defined as the order of
f ", namely, the smallest of the numbers r/b such that a;p *+ O.

If Mp is a free differential module over Agp(T) and T'CT, we have
the module Mb® Ad,b(T"), the tensor product corresponding to the restriction
map Ag,b(T) —> Ag,b(T') ; we call this restriction to T' and denote it by
Mp(T'). Similarly we associate to My the module Mp" corresponding to the
map f— " of Agp(T) into Ogp; Mp" is called the formalization of Mp,
and if Mp is free, Mp" is also a free differential module over O4p of the same
rank. The maps Mp — Mp(T") and Mp—> Mp" commute with V. In partic-
ular, we obtain the map

H(Mp ) — H(Mp"),
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H(N) being the space of horizontal elements of the module N It is clear that the
assignments Mp —> Mp" and Mp —> Mp(T'") are functorial.

Let V be a (holomorphic) vector bundle defined and trivializable on a
sectorial domain Te. If b =1 is an integer, an asymptotic structure of level b
for V on T is a maximal set of trivializations of V with the property that the
transition matrices between any two of them is in GL(N, Ap(T")), N being the
rank of V. The trivializations are then called the asymptotic trivializations of
level b of V. If V is defined on a neighbourhood of 0, then on any sector T
there is a canonical asymptotic structure of level b, namely the one that con-
tains the meromorphic trivializations. We shall always suppose that in this case
V is equipped with this asymptotic structure for all b. Given V on T ¢ with an
asymptotic structure of level b, a section of V on an open subset Q ~ T is said
to be asymptotic of level b if its components with respect to some (any)
asymptotic trivialization are in Ap(T"). The germs of sectorial asymptotic sec-
tions then form a free module over Ap(T) of rank N. A pair (V, V) defined
over Ap(T) isthen V together with a connection V defined on V such that
Vd/dz maps the module of asymptotic sections of level b into itself; this is
equivalent to requiring that the entries of the connection matrix in any asymp-
totic trivialization are in Ap(T). If we replace Ap(T) by A(T) we obtain the
corresponding asymptotic notions without any reference to the level.

2.2 We shall now formulate the fundamental results of the asymptotic theory in
the parametric context. These are classical when there are no parameters (see
[W], §§12-19, especially Theorems 12.3 and 19.1). But for analytic families of
differential equations that are isoformal, namely whose formal invariants do not
change with the parameter, they are new, at least in the generality considered
here.

THEOREM 2.2.1 Let T be asectorin Cz*, d=1, and let M be a
free differential module over Ag4,1(T) with the property that its formalization M*
is an isoformal family of differential modules over & (see §1.5). Let r{ be
the principal level of the class of the family. If the vertex angle of T is =
nt/(Ir4l — 1), then the map
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H(M) — HM ")
is surjective.

REMARK If M*, or rather its class, is Fuchsian, then ry =—1, and the
restriction on the angles is interpreted, here and elsewhere, as imposing no
condition at all, except that the sector is proper. If the class is not Fuchsian, then
it is quite possible that n/(Ir1l — 1) = 2% because the levels are not necessarily
integers. In this case the sector can be arbitrary except that it be proper.
However, the point is that the asymptotic result should be formulated in the
plane C, where z = z1/b, b being such that brj € Z. The principal level of
the pull back class is ri' = b rq + b -1, and the condition on the sector T » is
that its angle be < w/(Ir4'l = 1) = w/b(lr4l— 1) =< =. In other words, the sectors
T, inthe plane C. of angle w/(Ir1'l - 1) are the natural domains for the sec-
tions that are asymptotic to the elements of H(M").

Going over from M to Hom (M, M') in the usual manner we get the fol-
lowing consequences of this theorem.

THEOREM 2.2.2 [et assumptions and notation be as above and let
M' be another free differential module over Aq1(T) whose formalization M'"
is isoformal with principal level rq'. Let r= min (ry,r{') and let ¢ be any
morphism (resp. isomorphism) M" — M'"*. Suppose that the vertex angle of
T is =<=/(Irl — 1). Then we can find a morphism (resp. isomorphism)

X M— M
suchthat x"=¢.

PROOF We note that if s is the principal level of Hom (M*, M'"), then s
= r ; the assertion for the morphisms is now an immediate consequence of
Theorem 2.2.1 since Isl— 1 <Irl — 1. If ¢ is an isomorphism, we use the theo-
rem to find x € Morph (M, M'), u € Morph (M, M) with x"=¢, u”"=¢-1. Using
bases for M and M' we may assume that x and u are NXN matrices over
Ag4,1(T) with ux ~ 1 and xu ~ 1 on (T). To prove that x and u are in
GL(N, Ag,1(T)) we must show that xu and ux are in GL(N, Ag 1(T)). Going
over to determinants we must show that if a € Ag1(T") and a" =1,then a isa
unit. By definition we can find T, €< T,Up T =T, and polydisks A in Cd
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suchthat a ~ 1 on ApXTp forall n. Itis then clear that lal = 1/2 on
ApXTns(n) forsome 6(n) >0, and so, if Q =Up ApXTp,es(n), we have Q ~
T and a-1 ~ 1. .

REMARK The last argument actually proves that if y is an NXN ma-
trix over Ag4,1(T") which satisfies y ~ ¢ (T') where ¢ € GL(N, Og, 1), then y e
GL(N, Aq,1(T")).

THEOREM 2.2.3 Let assumptions and notation be as in Theorem
2.2.1. Let Mg be a differential module over & cqt such that Mo" represents
the class of the isoformal family M ". Suppose that the vertex angle of T is <
n/(Irl — 1). If ¢ isanyisomorphism of M" with g1 ®3~ Mo", then we can

find an isomorphism x of M with Ag1(T)Q)s ‘Mo suchthat x" = ¢. In
cg

particular , if Ap is the matrix of the connection on Mg with respect to some
basis of My, there is a basis of M such that the matrix of the connection on M
relative to this basis is Ag .

PROOF This is immediate from Theorem 2.2.2. Note that the existence

of ¢ with the properties stated in this theorem is a consequence of Theorem
1.6.1. .

When there are no parameters these existence theorems can also be
formulated in terms of vector bundles.

THEOREM 2.2.4 let T be a sector in Cz* and let (V, V), (V', V')
be two pairs on T, defined over Ap(T") for some b = 1, with respective formal-
izations Mp", M'v", and principal levels ry,r{'. Let r= min(rq,ry'). If the ver-
tex angle of T is <=/(Ir4l — 1), the map

H(Mp) — H(Mp")

is surjective . Moreover , if the vertex angle of T is =<z/(Irl — 1), then , for any
¢ € Morph (Mp", M'p" ), we can choose x from Morph ((V, V), (V', V') such
that x preserves the asymptotic structures (of level b)and x"=¢. If ¢ is an
isomorphism then x can be chosen to be an isomorphism also . Finally, sup-
pose (V, V) is a meromorphic pair whose formalization is represented by a
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canonoical form B of ramification index b. Then there is an asymptotic trivial-
ization for (V, V) of level b with respect to which Vg,4; = d/dz — B.

PROOF The results for b = 1 follow from the preceding theorems ap-
plied to the constant families defined by M and M'. To extend this to the case
of arbitrary b it is a question of going over to the plane C where z = z1/b,
For any differential module over ¥Fp with principal level s, its pull back has
principal level s' =bs + b —1;if TP isasectorin C,* above T, the angle of
Tb is < w/b(lsl — 1) = =/(Is'l — 1), showing that the situation in C; persists in
C» . This shows that we are reduced to the case b = 1. The results then follow
from the preceding ones. The only point to note is that although the preceding
results permit us to define the bundle morphisms and trivializations only on an
open subset of T that is asymptotic to T, analytic continuation (which is avail-
able because we are dealing with solutions of linear differential equations)
extends them to the whole of T ¢ for some €3> 0. .

REMARKS 1 The basic result to be established is therefore Theorem
2.2.1. We shall prove itin §§ 2.4 — 2.6. Suppose now there are no parameters
and fe H(M(T')) with f ~ f*(T""), T' < T. Since f is a solution of a family of
linear differential equations on T ¢, f can be continued analytically to an ele-
ment of H(M(T')). The question is whether the asymptotic relation f ~ f* per-
sists on T also. It can be shown that this is true, provided we start witha T'
that is sufficiently close to T. The proof of this is postponed to §3.2 since it re-
quires the theory of the Stokes sheaf. Note that this is stronger than Theorem
2.2.4 which asserts only that there is some solution f defined over T which is
asymptoticto f*.

2 Although the asymptotic context in which these theorems are formu-
lated is the natural setting for them, one may wonder whether the proofs might
become simpler if we assume that we work in the meromorphic situation. This
is certainly not possible with the methods we use. In our method which is in-
ductive, even if we start with a meromorphic connection, the inductive step
leads to a connection that lives only on a sector. However this connection will
still preserve the asymptotic structure, so that the method will go forward
smoothly if we work from the beginning with bundles and connections on sec-
tors admitting asymptotic structures.
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3 The proof of Theorem 2.2.1 has two fundamental ingredients. The first
is a far-reaching theorem asserting the existence of asymptotic solutions to
certain nonlinear differential equations. We shall formulate this result in §2.3.
The second ingredient is a result asserting that if M is a family of differential
modules defined on a sector T"whose formalizations M " are isoformal, then
certain splittings of M* can be "lifted" to splittings of M provided the vertex an-
gle of T is small enough. We do this in §2.4. Using Theorem 1.5.1 we com-
plete the proof of Theorem 2.2.1 in §2.6 by induction on the rank of the bundle.
To start the induction it is necessary to take care of the case when the spectrum
of the class of M" consists of a single element. This is done in §2.5.

The reader will notice that this approach is very close to that followed in
[W] (§§ 12 — 19). However, in the parametric context the formal theory becomes
much more complicated, and one has to use the deeper results of the theory of
formal differential modules over the rings Ogp that flow from the work of [BV 2].

2.3 We fix a sector T inthe z-plane, an integer m = 1, and consider a sys-
tem of n ordinary differential equations in u = (uq, ... ,un) of the form

(1) zm+1 duj/dz = 6juj + fi(z:uq,...,up) (1<i=<n),
where the following conditions are satisfied:

(a) the §&; are units of Og

(b) the f; are polynomialsin uj, ... ,un with coefficients in Ag 1(T")

(c) the coefficients of the fj have order = 0; and those of the
terms of degree (in the u;) =< 1 are of order > 0.

We say that v = (vq, ... ,vn), Vi€ Q4,1 is a formal solution to (1) if it is a solution
to

(19) zMm+ldvi/dz = 6jvi + fi"(z:v1,...,vn) (1 Zi=<n),
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where fi" is the polynomialin v, ... ,vn whose coefficients are the elements of
04,1 that are the asymptotic expansions of the corresponding coefficients of
the fi

THEOREM 2.3.1 Assume that the angle of T is = n/m, and that the
system (1) has a formal solution v = (v1, ... ,vn), with ord (vi) >0, 1 <i=<n.
Then , we can find uj e Agq,1(T) such that

(@) u=(uq, ... ,un) satisfies (1)
(®) uj ~ vj (T).

We remark that this is essentially the version with parameters of Theorem
12.1 of [W] or the corresponding theorem in [Ra-Si]. We do not prove this
theorem here because the ideas used in its proof are not needed anywhere in
the sequel. The interested reader can either work out the modifications needed
in the proofs in [Ra-Si] to take care of the presence of parameters, or else refer
to [BV 6] where a detailed proof of this theorem is given.

2.4 We shall now take up the lifting of differential module decompositions from
Od,1 to Ag,1(T).

Let us begin with an irregular (= non Fuchsian) differential module Mg
over & andlet Mg = Mo+ @ Mop2 be a decomposition into differential sub-
modules of Mp. We shall say that the Mg; are spectrally disjoint if their spectra
are disjoint in X ¢l. More generally, let M" be a free isoformal differential
module over ®g,4, and let M* = M*y € M"2 be a decomposition into
differential submodules each one of which is free , irregular , and isoformal .
We shall say that the M"; are spectrally disjoint if the spectra of the modules
over ¥ that represent the classes of the M*; are disjoint. Let the class of M"
be Mg and let ¢ be an isomorphism of M" with od,1®gy Mg ;such a ¢ exists
by Theorem 1.5.1, and all decompositions of M" into free, isoformal
submodules are obtained by applying ¢-1 to the decompositions

04,15 Mo = (04,15 Mo1) D (®4.1 R Mo2)

determined by decompositions
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Mo = Mot €D Moz
of Mg into spectrally disjoint submodules Mg; (i = 1,2).

PROPOSITION 2.4.1 With the above notation let M" = M"1 € M"2
be a decomposition that arises in the manner described above from a decom-
position Mg = Mo @ Moz into spectrally disjoint submodules . Let T be a
sector in Cz* and M a differential module over A41(T) with M" as its for-
malization . If the vertex angle of T is = n/(lril — 1) where r1 is the principal
level of My, then there is a decomposition M = M1@ Mo into free differential
submodules such that M maps onto M%; (i = 1,2).

PROOF Let b be the ramification index of Mg. The argument given in
the proof of Theorem 2.2.4 shows that we can work over the complex plane C,
where z =z1/b, Without loss of generality we may therefore suppose that Mg
is unramified and is a canonical form : Mg = ¥ @ cU where U is a vector
space over C, and Vg,d/dz =d/dz — B,

B =Sral Q) Dr +z71Q@C  L={r,..,fm} ri€eZ, ri<..<fm

being a canonical form (cf. §1.4). The decompositions of Mg into spectrally
disjoint parts are then obtained in the obvious way from spectral
decompositions of U that correspond to nontrivial partitions of the spectrum of
(Dr)reL - The complete decomposition of U is obtained iteratively, by first

splitting with respect to the spectrum of Q , then splittig each eigenspace of
1

Dr with respect to Q and so on. So it is enough to prove the proposition
1 2

when the decomposition of U is defined by D where rj is the first index for
i
which the corresponding D is not a scalar. If j > 1, we can tensor by a

differential module of dimension 1 with connection matrix — zr<r z' Dy to
]

come down to the case j=1. Let U = UiPU2, Moi = FQcUi. Let D

denote the restriction of Q to Uj. We may clearly suppose that M" =
1
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Gd'1®cU, M = Ad,1(l“)®cu, that M —> M" is the extension of the map
A4,1(T) — 0g,1, and finally that A* = B where A is the connection matrix of
V defined by Vg,9z = d/dz—- A and B is as above, but now viewed as a
connection matrix on M*. If P; (i =1,2) are the projections U —> U;, we have
the projections 1®Pi M— M = Ad,1(1")®cui, and the problem is to find
an Ag,1(T)-module automorphism g of M such that the projections g-
1(4 ®Pi) g are horizontal for End(M) (i = 1,2). The condition for this is

d/dz (' (1QP) g) + [g-'(1QP) g, Al =0 (i = 1,2),
which is easily seen to be equivalent to
(1) [glA], 1@Pi1 =0 (i =12 (g[Al = (dg/dz)g—1 + gAg).

If in addition we have g ~ 1 (T"), we would be done because Q; ~ P; for i=1,2
in that case. If we write endomorphisms of M as partitioned matrices corre-
sponding to the projections 1@)P;, then (1) is equivalent to

(2) dg/dz + gA—Rg = 0O,

for some R of the form

We shall seek g in the form

3) g = (t1-. t1) t,t" ~ 0 (T).

Such a g would be ~ 1 (T') and so would be in Aut(M) by the remark following
Theorem 2.2.2. If we write

_(A11 A12 _(B1 O
A-(A21 Aaz)’ B-(o Bz)-
we obtain the condition that (t', t") must be a solution to

(4a) A11 + t'A21 = Ry, dt/dz + A2 + t' Ago

R4 t,

(4b) Ao + t"A12 = Ry, at"/dz + A21 + t"Aq1 = Raot".
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Eliminating Ry and Rz we get

(5a) dt/dz + A2 + t' Aoo — Aqqt’ — t' Apq t’

I
o

(5b) dt"/dz + A2q + t"Aq1—Axat" —t" Aqat"

[l
o

Conversely, the system (5), in the presence of
(6) t,t* ~ 0,

implies (4). In fact, if
R R’
glA] = ( R* Re )

then the equations (4) are satisfied but with the proviso that we must replace
Ry and Ri1t by R{ +R't" and Ri{t'+R’, and Rz and Rzat" by R + R" t'
and Rz t" + R" respectively. So, if (5) are satisfied, then,

R(1-t"t) =0, RR(1-t't") = 0.

These imply that R' = 0, and R" = 0, because (1 -1t"t) and (1 -t't") arein-
vertible.

We shall now give the argument for proving the existence of a t' that
satisfies (5a) and (6); the case of t" is entirely similar. The equations (5a)
are nonlinear and we shall apply Theorem 2.3.1. Let us select a basis of Uj in
which D;j is diagonal with eigenvalues \iq (1 =q =<nj). Also,as B is a Laurent
polynomial it makes sense as an endomorphism of M, so that, as A" = B, we
may write

A11 = By +B1, A2 = B2 +B2, A12, A21, 81, B2 ~ 0 (T).
Let r{ = —m—1 where m = 1;then,we have,
zm+1 B = D + Fj, Fi € End(U)[X], Fi(0) = O.

Thus the equation (5a) may be rewritten as follows:

(7) zm+1 dt/dz = Dyt —t'D2 + G
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where G is given by
(8) G = —zMm+1 Aqp + (Fq +2M+1 gq)t' —t'(F2 + 2M+185)
+t'(zMm+1 Apq)t.

In the corresponding basis of End(U;) we get the following equations for the
entries t'ts of the matrixof t' (1 <r=<ny,1<s=<np):

(7%) zMm+1 dtg/dz = (M1r— N2s) t'rs + Gis

where G;g is the rs-th entry of G. The (M\{r— N2s) are constants + 0 while
the Gys are polynomials in the t'k; with coefficients in Aq,1(T") such that the
constant term and the coefficients of the linear terms are of order > 0. On the
other hand, replacing (7) by its asymptotic form we get the equation

(9) dt"/dz = B1t'*—t* By

for which t'* = O is a soluion. Theorem 2.3.1 is now applicable to (7*) and
gives us the existence of a solution t' to (5a) which satisfies the flatness
condition (6).

2.5 We now take up the Fuchsian case.

PROPOSITION 2.5.1 Suppose T s asectorin Cz* and M a free
differential module over Ag1(T) whose formalization M" is isoformal and
Fuchsian, Let Mg be a differential module over &Fcqt such that its formaliza-
tion Mg" represents the class of the family. Then

M = Ag(T) &cgtMo.

PROOF We may assume that for some vector space U over C, Mg =
Feat®eU, Vo,aidz = d/dz —z-1@@)C where C e End(U). Then Mg" = FQcU,
V*0.d/dz = d/dz —z=1@)C, and, in view of Theorem 1.5.1, we may suppose that
M* and M are given by M* = 041QcU, M = Ag1(T)RcU, with Vggz =
d/dz -A, A € End(M), and A" = z-1@)C. So we can write

(1) A=z1QRQC +F, F ~0 (I

45



D. G. BABBITT, V. S. VARADARAJAN

We now consider the family of differential equations
(2) du/dz = Fu

We suppose for definiteness that F is defined on an open set Q ~ T in
CdXC*. We need a lemma.

LEMMA 25.2 There is a unique germ of a fundamental solution G to
(2) suchthat G ~ 1 (T). Inparticular, if H is any fundamental solution to
(2), then there is an analytic map h:Q — GL(N, C) suchthat H = Gh (as
germs ).

PROOF For the uniqueness we may assume that the real axis is con-
tainedin T. If Gj(i=1,2) are two fundamental solutions to (2), both ~ 1 (T),
write K=G1—-Ga. Take A and 6 >0 sothat AX (0, §) € Q, and for any
fixed A\ € A extend K\ :t) and F(\ :t) to C® functions on (— o, §) by
defining themto be 0 for t <0. Then dK/dt = KF and K vanishes for t =0,
so that K = 0. By analytic continuation it follows that the germ of G4 — G2 is O.

The existence of G is proved by the method used in Theorem 2.3.1; but
the present situation is vastly simpler as it is linear. Fix a sector T'CC T and
choose A' and O<x <1 sothat A'XT'« € Q. Let Ck (k =0,1,...) be con-
stants > O such that

IF(N :2)l < Cklzik on A'XT'«

Let I.1 beanormon End(U) sothat | XYl =< [|XIlYl forall X,Y. We seek
G intheform G=1+V,V ~0(T);the equation for V is

dvidz = FV + F.

Forany k = 0 and 0 <=6 <« let Bk(8) be the Banach space of analytic
functions on A'XT's with values in End(U) such that

Igl = sup (1g():2) Hz-K) < ©

where the sup is over A'XT's . We consider the linear operators Jk(8) (6 < )
on Bk(8) defined by

r4
WK(®) V(X :2) = IOF(x Z)VON i z) dz
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Then

1
(&) V(N :2)l = 1z1.1 IOF()\ ttz)v(h stz)dt |

< 6Cylziki vl .

So Jk(6) is bounded with norm =< &Ck . Note also that if

z
Fi(»:2) = J'OF(x :z) dz,

then Il F1 Il < &8Ck so that Fy e Bg(s) also. If we choose (6k)k >0,0 < &k = &0

and 6Ck <1 forall k,then Jk(8) is a contraction operator on Bg(&), and hence
we can find a unique vk € Bk(6k) such that

(3) vk = F1 + Jk(6k) vk .

If we write V = vg , it follows from the uniqueness of vgp that vg restricts to vk
on A'XT's, 6§ = 6. Differentiating (3) we see that G =1 + V is the required
fundamental solution to (2) on A'XT's, 8 = §g9. Using the uniqueness of G

and replacing T' by a sequence T(N cc T with Uy T(") = T we see that
G is definedon anopenset ~ T . .

We now come to the proof of Priposition 2.5.1. By (1) itis a question of
finding g € Aut(M) with g[A] = z-1 ®C. If g1(z) = zC = exp(- logr z. C),
we can view g¢ as an element of Aut(M) and g4[A] = F1 = zzCFzC,
Since z *C has moderate growth at z = 0 it is clear that F1 ~ 0 (T"). By the
above Lemma we can find a fundamental solution Gi to the system of differen-
tial equations du/dz = Fqu with the property that Gy ~ 1 (T"). Then G1~1[F1]
= 0andso (z=C Gy-1)[Fq] = z-1Q)C. If g = zC Gy-1 g1, then g[A] =

z-1Q)C. .

2.6 PROOF OF THEOREM 2.2.1 Let Mg be as in Proposition 2.4.1. If b
is the ramification index of Mo, it is easily seen that it is sufficient to prove the
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theorem for the pull back connection obtained from M in C.* where Z
z1/b, We may therefore assume that Mg is unramified.

If Mg is Fuchsian, Proposition 2.56.1 allows us to assume that M =
Ag1(T)RcU and Vygz = d/dz — z-1@Q)C. If Ug is the null space of C, we
have H(M) = Agq1(T)&cUo, HM") = 04,1&)cUo, and the theorem is obvi-
ous.

If Mg is irregular, we use induction on dimg M. If the spectrum of My
has at least two elements we can find a nontrivial decomposition of Mg into two
spectraly disjoint submodules. Proposition 2.4.1 and the induction hypothesis
now give the result for M.

So we are left with the case when the spectrum of Mg has a single ele-
ment, say, w = w#.dz, where w# = Z(ez,r<-1 Ccrzf. If Ly, isthe one di-
mensional differential module with Vg/az = d/dz + w#.1, it is obvious that
Lw@ Mo is Fuchsian. By our earlier result, H(Ly,@&) M) —> H(L,, Q) M*) is
surjective. Tensoring by L (-.,) now gives the result for M. .
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3 THE STOKES SHEAF OF A

MEROMORPHIC CONNECTION

3.1 Let (V, V) be a meromorphic pairat z=0 and let M be the differential
module over Fcgt of the germs of meromorphic sections of (V, V). If M" isits
formalization and T is a sectorin Cz*, we know from Theorem 2.2.4 that the
map H(M(T)) — H(M") is surjective, provided the vertex angle of T is < 89,
where we can choose 8¢ to depend only on the (formal) isomorphism class of
M*. In general the map H(M(T)) —> H(M") has a nonzero kernel, namely the
space of germs of sectionson T thatareflaton T, i.e., ~0(T). ltis clear that
for a deeper understanding of the structure of (V, V) it is essential to make a
closer investigation of these flat sections. By varying T these kernels will de-
fine a sheaf ; it is this sheaf and its variants that are the subject of study in this
section. For the language and basic results of sheaves and their cohomology
we follow [G].

Given (V, V) we define %o(V, V) = %o(V) as the sheaf on S1 whose

stalk at u € S1 consists of the vector space of germs of sections fof V defined
on some sectorialdomain T, T being a sector containing u, such that

(a) f is horizontal for (V, V)
(b) f ~ O(T).

We often write the condiion (b) as
(b") f ~ O (T (u)).

If W is a proper open arc of S1, then the space of sections of ¥o(V) on W is
the space of germs of sections of V on T (W)gs for some & > 0 which are hori-
zontal for V and flat on T (W).

If f is a global section of %(V), it is immediate from the theorem of Rie-
mann on removable singularities that f is meromorphic and hence that it is
zero. Thus, for the zeroth cohomology, we have,
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HO(S1, %6o(V)) = O.

The dimension of the first cohomology H1(S1, %9(V)) is called the irregularity
of the pair (V, V), denoted by Irr(V, V) or, Irr(V). Of course this depends only
on the germ of the pair.

REMARK If (V, V) is Fuchsian, there is a meromorphic trivialization of it
such that in this basis Vg/dz = d/dz - z-1C where C € End(CN). The local
horizontal sections of V are now identified with the local CN -valued functions
of the form exp(log z. C) u, u € CN. It is easy to see that this is flat if and only if
u is zero. Indeed, the assertion is trivial when N = 1, for then the section is a
constant multiple of zA forsome X € C;if N > 1, we take a flag of C-stable
subspaces of CN whose successive quotients are one dimensional, and use
the result in dimension 1 in conjunction with the induction hypothesis to obtain
the result in the general case. Thus

Ho(V) =0 ((V, V) Fuchsian) .

In particular Irr(V, V) = 0. The converse is also true, as we shall prove in §3.3,
as a consequence of Deligne's formula for the irregularity ( [De 2] [Be] ).

3.2 If (V,V) and (V', V') are two pairs which are formally isomorphic, it fol-
lows from Theorem 2.2.4 that on any sector T with a sufficiently small vertex
angle the two pairs are isomorphic via an isomorphism that is defined over
A4(T). Hence the two sheaves ¥ o(V) and ¥o(V') are locally isomorphic. In
other words the local structure of %o(V) depends only on the formal isomor-
phism class of (V, V), and so should be quite easy to describe. This is actually
true, and we shall now proceed to give a description of it. We begin with some
preparation.

Forany u e S1 let ®O(u) be the space of germs of holomorphic differen-
tial forms w defined on sectors containing u of the form

w=2Z3e@a<-1 Caza.dz

where the sum is finite and the analytic branches z2 are arbitrary. For conve-
nience we shall write w# for the coefficient of dzin w so that
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w = w¥. dz

On any sector containing u we then have a well defined primitive of w, nor-
malized by the requirement that it is zero at u. Let us write E(w) for the expo-
nential of this primitive, so that,

d/dz E(w) = w#E(w), E(w)(u) = 1.

LEMMA 3.2.1 Let ue S1, w e O(u). We then have the following :
(a) If w# = caz8 + termsoforder > a, ca * 0, then Re(cag ud+i/(a +1)) =
Pw(u) depends only on w and not on its representation . And

Pw(U) < 0 & E(w) ~ 0(T(u)

(b) Suppose F C O(u) is a finite set and F-— is the subset of all w € F such
that py(u) < 0. Let

¢ = ZweF E(W) 9w
where the g, are polynomialsin logz and the zM. If ¢ ~ 0 (T (u)), then

Ow = 0 forall w e F\F—.

PROOF (a) That p,(u) is independent of the representation of w s
easy to see, and we omit the proof. To prove its asymptotic interpretation we
begin by supposing that p,(u) + O; then there is a sufficiently small open arc
W of S'1 containing u such that lp(V)l = (1/2)lp,(u)l forall ve W. Then,
thereisa >0 suchthatfor z=rv,r >0,v e W,

¥4
(®  Re( [ w* dz) = pwv) {r,af—_1} {1 +o(®)}
u

as z—> 0. If pw(u) < O itisthenimmediate from (%) that E(w) ~ 0 (T (u)).
Suppose conversely that the exponential is flat. Then it is clear from (%) that
for r sufficiently small,

IE(w)l = (1/2) exp( </l @l - 1)

51



D. G. BABBITT, V. S. VARADARAJAN

for some constant « > 0, so that the exponential cannot be flat. If p(u) = O,
and W is now an open arc containing u such that E(w) ~ 0 (T (W)), we can
move u slightly to a position u' within W so as to have p,(u') > 0. The pre-
vious argument then applies and contradicts the flatness of the exponential. So
we must have p,(u) < O.

(b) The result is proved by induction on IFl, the cardinality of F. If IFI =
1,then ¢ = E(w) g, and we may suppose that p,(u) = 0. Then we can find
a non empty sector T with @ ~ O(T) and py(v) = « > 0 for ve TNST.
But then, as E(- w) ~ 0 (T), we must have g.,, ~ O (T). But itis known that
dw satisfies a Fuchsian differential equation meromorphic at z = 0, and so its
flatness implies that it must vanish (since ¥ o(V) = 0 for a Fuchsian V; cf. the
remark at the end of §3.1). Let now IFI > 1. We may suppose that F— is
empty. If forsome w € F we have p,(u) =0, 3 u' arbitrarily close to u such
that p,(u') <0 sothat E(w) g, ~ O (T (u')), and so the corresponding term
may be dropped; the result then follows by induction. If all p,(u) > 0, we
choose w suchthat py(u) = pw(u) forall w'e F. Then E(-w)gw ~ O
(T (u)), and so,

(%) Jw + Zw'+w E(w'— w)gw ~ 0 (T(u)).

If forallthe w' =+ w we have p,'— (U) < 0, then all the corresponding terms
may be dropped to obtain g, ~ 0 (T (u)), giving g, = O ; we are then finished
by induction. If for some w'=#* w we have p'— (U) =0, we can find u" arbi-
trarily close to u such that p,— (U") < 0 forthat w'. As before we can drop
the corresponding term from (), so that the argument is finished by induction
once again. ¢

Recall from §1.4 the space I (F¢) of differential forms over ¢l of the
form w = X crzf. dz where the sum is finite and ¢ = 0 unless r < —1; and let
L (Fp) be the subspace of those forms whose coefficients are in Fp. Let us
now fix a branch z1/b in ¥ and consider the complex plane C. (z = zb)
with the covering map f (C, —> C) thattakes te C; to t? = z in C. Let
S1.b be the unit circle in C,. Forany w e B(Fp) let w, e B(F ) be ob-
tained from w by the substitution 216 — 2. If w = w#.dz where w# =
Zr cip 27P, then w, = w ¥ dz, where
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We thus have an identification of L(Fp) = LB(F ), the latter being naturally
imbedded in H(v) forany v e S1.b. If we now choose v on S1.b to lie above
u, the map fx allows ustoimbed IB(Fp) inside HO(u).

Returning to the pair (V, V) in Cz let b = 1 be its ramification index.
The pull back of (V, V) to C» (z = z£P) is now unramified and we associate to
its canonical form a pair (Vg', Vg') defined as follows: Vg is the trivial bundle
C-XU, U being a vector space of dimension N over C gradedby w € =, U
= @PUw ; VB ddz = d/dz — B'(z), where = C B(F,) and

B(2) = Zwex wHA1QRP, + z-1QC, C = PuCuw,

P., being the projections U—> U, and C., an endomorphism of U,,. Fixa
point u e S1 and choose a point v e S1.b above u. The pair (Vg', Vg) may
now be viewed, locally on a sector containing v, as the pull back through the
covering map f (C» ——> C) of a pair (Ve, VB) defined on a sector T C Cz*
containing u; Vg = T XU, Vpdydz = d/dz — B(z), and

B(z) = Swex W 1QP, + z-1QC.

Here we use the identification of B(Fp) with B(F ) via fx. As (Vg, VB) and
(V, V) are formally isomorphic over ¥p we see from Theorem 2.2.4 that if the
vertex angle of T is small enough, there is an isomorphism y of (V,V) with
(Ve, VB) that preserves the asymptotic structures and hence induces an iso-
morphism of %g(V) with %0(VB) on TNS1. The local structure of %6o(Vg) is
easy to determine because the differential equations

ds/dz = B(z)s
have the solutions
(%) s = ZTpes E(w)(z).exp(logr z. Cw) tes,  tw € Uy -

Write W = TNS', and forany we W, let Z(w:-) (resp. Z(w :+)) be the set
of w € T suchthat p,(w) is < 0 (resp. > 0).
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PROPOSITION 3.2.2 The isomorphism vy induces an isomorphism
on W of ¥o(V) with the sheaf U of linear subspaces of U whose stalk at
any w e W s the linear span of the U, with w e Z(w:-).

PROOF This is immediate ; for, by Lemma 3.2.1, the solution (%) is flat

around w if and only if all the t,, for which w does not belongto Z(w:-) are
zero. .

Fix a choice of z1/b andlet w € B(Fp), w# = crp 270 + terms of
higher order, cyp + 0. Then w,; = w #dz, where wz# = bcpp 2™Mb-1 +
terms of higher order, sothat r+b—1 = ae Z isthe orderof w,,and c3 =
bcew is the coefficientin w# of za. Write Cb for C,. The points v on S1.b
in Cb such that Re(caza+1/(a + 1)) = 0 form a division of S1.b into 2(Irl — b)
arcs of equal length ; the rays in CDb issuing from the origin and going through
these points are called the Stokes lines (rays) in Cb associated to w. They
form a finite set that will be denoted by S(w, b). If we use another choice of
z1/b, say ¥z1/b where ¥ e pp, then S(w, b) changesto ¥S(w,b). If b’ is di-
visible by b, b'=bd, then w e B(Fp) also, and if z1/b’' is chosen so that
(z1/b)yd = z1/b it is easy to see that

S(w, b) = f (S(w, b)), S(w, b") =f-HS(w, b)),

f being the covering map Cb'—> Cb thattakes z2'e CP' to z'd/b = 2 in
Cb. The Stokes lines associated to w thus form a configuration consisting of
finite subsets of the various S1." (b | b’) that are compatible with the covering
maps that link the corresponding complex planes. The Galois group pup acts
on both IB(Fp) and CP, and it is easy to see that the actions are compatible in
the sense that for o = exp(2rim/b) acting via

zi/b_—» 5z1/b, r —> oz, and dz —> ocdz,
we have (c.w)y = c.w;z, (w € Fp). Thisimplies that
S(c.w, b) = 6-1S(w, b).

Suppose now that (V, V) is a meromorphic pairat z=0,and let £ =

(V) € B(Fp) be the spectrum of the associated formal differential module
over ¥. We define
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S(V.V)b = Ugex S(w,b)

and refer to the elements of S(V, V)p as the Stokes lines (rays )of (V, V) in
Cb. Since X is stable under up the remarks made above show that S(V, V)p
is well defined independently of the choice of z1/b and is invariant under up.
Hence it is the preimage of a well defined subset S(V, V) of S1:

S(V. V)b = =1(S(V, V),

fp (Cb —> C) being the covering map thattakes z € Cb to z = zbe C. The
elements of S(V, V) (or S(V) if there is no ambiguity about V) are called
the Stokes lines (rays Yof (V, V). Note that they are determined entirely by the
formalization of (V, V).

PROPOSITION 3.2.3 Let (V, V) be a meromorphic pair at z = 0.
Then , for any open arc Y < S1, the restriction of ¥q(V) to Y is a local sys-
tem (necessarily trivial on Y) if and only if Y does not meet any Stokes line
of (V, V), or, equivalently, if and only if the function

Ny : u —— dimg%¥o(V)(u) (ue St

is constant on Y. Moreover, the function Ny is lower semicontinuous (value
goes down at special points ), and is discontinuous at u if and only if u lies on
a Stokes line of (V, V).

PROOF If Y does not meet any Stokes line, then the set Z(w : =) does
not change when w varies over Y. It is obvious from this that U of
Proposition 3.2.2 is the constant sheaf on Y, and so the same is true of %o(V)
on Y. Ifthe sheaf ¥o(V) on Y is alocal system, itistrivialon Y as Y is sim-
ply connected, and the function Ny is obviously constant on Y. Finally sup-
poseueY. If Sy (resp. Sy) isthe setof w e = for which p (W) is < 0 for
points w to the left (resp.right ) of u and arbitrarily close to it, and U (resp.
Uy) is the linear span of the U, for w € Sy (resp. w e S;), then

S(u:=-) =SNS,

so that U(u) < Uy N U,. Onthe other hand, if wy (resp. wy) is to the left (resp.
right) of u and arbitrarily close to it, then
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Nv(wg) = dim (Uy), Nv(wy) =dim (Uy).
This shows that
Nv(u) = Nv(wy), Nv(u) = Ny(wy),

proving that Ny is lower semicontinuous. If now Ny is constant around u, it
follows that W (u) = Uy = U, from which we get Z(u:-) = Sy = S;. This
shows that p,(u) cannot be zero for any w e Z. The assertions of the
Proposition are now proved. .

Let M be the differential module of germs of meromorphic sections of V
and let W be a proper open arc € S1. Let M(W) be the associated module of
asymptotic sections of level 1 (over T (W)) :

COROLLARY 3.24 If W' isanopenarc € W and W \ W' does

not meet any Stokes line , then the restriction map HM(W)) — H(M(W")) is an
isomorphism .

PROOF Proposition 3.2.3 implies that the result is true for the flat sec-
tions. Let M" be the formalization of M, m € M", and let s be a horizontal el-
ement of M(W) with the property that s ~ m (T (W')); we must show that this
asymptotic relation persists in T (W) also. Let W be the set of all open arcs Y
with W Y C W suchthat s ~ m (T (Y)) and let W" be the union of the arcs
in W. Then W" e W also, and we need to show that W" = W. Suppose this
is not true, let W" = (a",b") € W = (a, b), and assume for definiteness that a <
a". By Theorem 2.2.4 we can find a sufficiently small open arc (a1, bj) € W
containing a" and a horizontal sction t € M(W) such that t ~ m (T ((a4, b1))).
Then s—t ~ 0(T((a", by))) while there are no Stokes lines through points of
(a4,a"], sothat s—t ~ 0(T((a1, b1))) by the remark at the beginning of the
proof. Butthen s = (s—t) + t is ~ m (T ((a1, b1))), showing that (a1, b") € W.
Since this is an arc strictly bigger than W", we have a contradiction to the
maximality of W". .

REMARK It is clear from this proposition that the Stokes lines mark the
boundaries of sectors where the asymptotic expansion of a horizontal section
ceases to be valid. This type of behaviour, where the asymptotic structure of a
solution of a system of linear differential equations changes with the sector on
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which the solution is defined, is known as the Stokes phenomenon , named af-
ter Stokes who seems to have been the first to have observed it. This is the also
the reason for naming the lines as Stokes lines . The reader should also recall
Remark 1 following the proof of Theorem 2.2.4.

3.3 We shall now obtain a formula, due to Deligne ([De 2]; see also [Be]) for
the irrgularity of a meromorphic pair at z = 0.

If f is any integer valued function defined on S1 such that lim f(ut)
exist, its jump j(f : u) ata point u e S1 is dfined as

j(f:u) = If(u+) = fu)l + 1) — fu-)l.
If f is lower semicontinuous, we have,
i(f:u) = (f(u+) —1u)) + (f(u-)—1f(u)).
The variation var(f) of f is then defined by
var(f) = 2y j(f : u)

where the summation is over all the points of S1. This is finite if f has only
finitely many points of discontinuity. We shall suppose that this is true and also
that f is lower semicontinuous from now on. Let uq, ..., um be the points of
discontinuity and let us define the u; forall i €« Z by uj,m = uj; then

var(f) = i z/(m) if : ui)
Observe that (in all summations below i varies over Z /(m))
0 = X (f(ui +)—f(ui-)) = Zf(ui+)— f(u)) + 2 f(uj) — f(ui—)
while
var(f) = 2 (f(ui+) — f(u)) - 2 (f(up) — f(ur-)

So var(f) must be an even integer. Let us write n2j = f(uj) and npj ;1 for the
constant value of f in the open arc] uj, uj+1[. Then it is clear that
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var(f) = 2 p n2i+1 — 22 ngj

This expression for var(f) shows that it is additive in f.

Let us consider now the sheaf %o(V), and forany u e S? let
Nv(u) = dim %o(V)

as in §3.2. We have seen that Ny is lower semicontinuous and that its points
of discontinuity are precisely the points of S' that lie on Stokes lines.

PROPOSITION 3.3.1(Deligne) We have
Irr(V, V) = (1/2) var(Ny)
In particular, \rr(V,V) depends only on the formal isomorphism class of (V, V).

The second assertion follows from the first; indeed, we note that if (V',V’)
and (V, V) are in the same formal isomorphism class, Theorem 2.2.4 allows us
to conclude that the sheaves %o(V) and %o(V') are locally isomorphic, and
hence that Ny = Ny. For proving the formula we shall follow [De 2] and de-
duce this as a consequence of a more general formula for the Euler character-
istic of certain sheaves of vector spaces in terms of the dimensions of their

stalks. Let & be any sheaf of complex vector spaces on S1 satisfying the fol-
lowing three conditions:

(a) N(u) =dim 8(u) <o forall ue S1
(b) for any open arc U and u e S1, the restriction &(U) — &(u) is
injective
(c) N has only finitely many points of discontinuity.
Given u e S1 the conditions (a) and (b) imply that for a sufficiently small arc U
containing u, the map &(U) —> A&(u) is an isomorphism. Hence for u' e U,
we have a map &(u) —> A&(U') which is injective, showing that N(u') = N(u),

and therefore that N is lower semicontinuous. If N is constant on U, we have

a canonical isomorphism &(u) — A&8(u’). Hence on any open arc on which N
is constant, & is the constant sheaf.
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PROPOSITION 3.3.2 Under the above assumptions, Hi(S1, 8) is fi-
nite dimensional ,i = 0,1. If x = dim HO (S1, &) — dim H1(S1, 8), then,

x = — (1/2)var (N).

It is clear that the sheaf ¥ (V) satisfies the conditions on 8. Further
we have seen in §3.2 that HO(S1, %o(V)) = 0. So, x =-—dim HI1(S1, %o(V)),
and Proposition 3.3.1 follows from Proposition 3.3.2.

We shall now prove Proposition 3.3.2 assuming the following lemma.

LEMMA 3.3.3 I/f ]A,B][ is an open arc of S1 on which N takes the
constant value n, and i (] A, B[ —> S1) is the natural inclusion, then for the
sheaf #8)a, B[ = ix(restriction of 4 to]A, B[), we have,

HO(S1, 81a,B8) = 0, HI(S1, Bja,B)) = HO(]JA, B[, 4).
In particular,
X = —=n.

PROOF OF PROPOSITION 3.3.2 Assuming this Lemma we shall
prove Proposition 3.3.2. Let uq, ..., um be the points of discontinuity of N and
let Ji be the arc lu;, uj.1[. We then have the exact sequence

0— i s —->A—+G§n6{ui}——->0

where 48y forany u e S1 is the sheaf whose stalkat v is 0 forv + u and
A(u) for v=u. Since HO(S1, &) = A(u) and HI((S!, 8{)) = O we have

x(EPi ,e{ul P = Zinzi, while the lemma shows that x(Pi ,6Ji ) = — ZjN2isq.

Since the sheaves on either side of &8 have finite dimensional HO and H1,
the same is true for 8. Hence

X(A8) = ZTinzi— Zjnzig1 = —(1/2)var(N).

This proves the proposition. .
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PROOF OF LEMMA 3.3.3 A section s of &ja B[ may be viewed as a
section of &4 on S1 which vanishes outside a closed arc contained in 1A, B[,
and is hence zero. This gives HO(S1, A1a, B)) = 0. To determine H1, we note
that as 48)a, B[ is O at all points notin ]A, B[, any #8)a, B[— torsor T is
uniquely trivializable on S1 \ [A', Bl where [A', B] C ]A, B[, thus giving a sec-
tion t' on S1\[A', B (cf. IL§1):

—laA—lp ———— g —IB

On the other hand, & is the constant sheaf on ]A, B[ , hence it is trivializable
onit, hencesois 9. Let t be a sectionof I on ]A, B[. We then have sec-
tions s',s" of &4 on ]A, A and ]B', B[ respectively such that s[t] =t on ]A,
Al and s"[t]=t on ]B', B[. By our assumptions s' and s" may be viewed as
global sections on ]A, B[ and so we seethat s=s'—s" e HO(]A, B[, 8). Had
we chosen another section ty of 97, ty =s[t] for a unique element s4 from
HO(]JA, B[, 8); then s' and s"change to s'— sy and s" — sq, so that s re-
mains the same. We thus get a map H1(S1, A1a, B)) — HO(JA, B[, 8). To
show that it is a linear isomorphism we use the covering {S1\ [A', B'], ]A, B[} of
S1. The corresponding cocycle is s' on ]A, A[ and s" on ]B', B[ ; subtracting
from this the coboundary whichis 0 on S1 \ [A, B] and s" on ]A, B[, we see

that the map in question is (s, 0) —> s. Since (s, 0) depends linearly on s
and is a cocycle for all s, we are done. .

COROLLARY 3.3.4 (V,V) is Fuchsian if and only if Irr(V,V) = O.

PROOF If the irregularity is 0, Proposition 3.3.1 shows that Ny is con-

stant and so, by Proposition 3.2.3, there are no Stokes lines. This means that
(V,V)is Fuchsian. e

COROLLARY 3.3.5 If fy isthe covering map CP—> C, then,
Irr(fe*(V.V)) = b. Irr(V,V).

PROOF Let (V'.V') = f*(V,V). Then Ny = fp* Ny, and the Corollary
follows at once. .

We shall now use Deligne's formula to obtain an explcit expression for
the irregularity in terms of the formal data provided by the connection, namely,
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the spectrum X < I(F¢l) and the complex vector space U, equipped with a
gradationby X .U = @w.z Uy, , and a compatible action by Z; the compati-
bility is with respect to the action of the Galois group Gal(F<l/F) (in which Z is
imbedded naturally; see §1.4) on X. Actually, only the action of the Galois
group on X is needed for the computation of Irr(V, V); the Z-actionon U is
not needed except to ensure that dim(U,,) is constant on the Galois orbits. For
any w e X\ (0), let us put

i(w) = —ord(w) -1, b(w) = inf{b=1: w € B(Fp)}, d(w) = dim (Uy,)
Here ord refers to the order and is <—1. The definition of b(w) implies that
(%) i(w) b(w) e Z.

We write [w] for the Galois orbit of w; its cardinality is of course b(w). Itis ob-
vious that the functions i, b, and d are constant on the orbits. We then have
the following result in which the integrality of Irr(V, V) is manifest in view of ().

PROPOSITION 3.3.6 With the above notation , we have ,
IV, V) = Xjele [0] i(w) b(w) d(w).

PROOF Choose b = 1 such that allthe w arein B (Fp). We shall
work in CP with the pull back pair (V', V'). Then by Corollary 3.3.5, Irr(V, V) =
(1/b) Irr(V', V'). Now, if v is a point on a Stokes line for V', the contribution to
var(Ny) from v is precisely Z.;:veS(w,b) d(wz). Hence,

Irr(V, V)

(1/2b) Zy z:c...):veS((«:c,l:)) d(‘-‘-’z:)

(1/2b) Z»40 ZveS(w.,b) d(w )

(1) Z 40 i(wyz) d(wz)
= (1/b) Zqwl+[0] i(wz) d(wz) b(w).

But,if w = (cz" +..).dz, then, wy = (bcz"+b-1 +..) dz, sothat i(wz) =
b.i(w), while, trivially, d(w,) = d(w). This gives the required formula. .
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3..4 The Stokes sheaf St(V, V) or St(V) of a meromorphic pair (V,V) at z
=0 is the sheaf of groups of units of the sheaf %¥o(End V). More explicitly, for
any u e S1, the stalk St(V,V)(u) is the group of germs of automorphisms g of
(V,V) defined on sectorial domains T g for some § > O and some sector T
containing u, satisfying the asymptotic condition of multiplicative flatness :

g ~ 1(T().
Clearly,
ge St(V,V)u) < g-1e %o(End V).

The stalks are in general non commutative. Guided by the analogy with Lie
groups and Lie algebras we shall think of % o(End V) as the infinitesimal
Stokes sheaf and denote it alternately as <t(V, V). If we choose an asymp-
totic trivialization of level 1 for (V, V) in a sector Tg containing u so that V
d/dz = d/dz— A where A e ¢L(N, A1(T o)), thun forany ve TNS1, StV, V)(v)
may be identified with the group of germs of GL(N, A{(T))-valued functions on
sectorial domains T g forsome 6§ > 0O and sectors T containing v, such that

(a) dg/dz + [g,A] = O
(b) g—1 ~ 0(T°(v))-

On replacing V by End(V) in the results of the preceding sections one is led to
the basic results on the Stokes sheaf. The Stokes lines of End(V) are usually
referred to as the Stokes lines when one is dealing with the Stokes sheaf.

The first basic result is that the local structure of St(V, V) is entirely de-
termined by the formal isomorphism class of End(V). We shall now give a de-
scription of it using the formal data of (V, V), namely, the spectrum X, the com-
plex vector space U = P ex U , and the pair (Vg, V) defined on Cb* as
in §3.2. The endomorphisms of U may be viewed as matrices (go<)o,teas
where gg« € Hom(U., Uy). Let ue S andlet ve S1.b be above u. Let W
be an open arc € S1 of length < =/(Ir1l —1) so that there is an isomorphism,
say y, of (V, V) on T (W) with the pair (Vg, V) whose pull backto CPb is
isomorphic to (Ve', Vg') on the connected component of the preimage of T (W)
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that contains v, y preserving the asymptotic structures. The local horizontal
sections of End (V) are of the form

s = Zg5,x E(o—=)(2). exp(logr z.Csx) Tox €xp(— logT 2. Cox),

where the T4+ are in Hom(U<, Ug) forall o, ©. Such a solution is flat if and
only if all the Tg~ are zero except those for which ps_<(u) < 0. This suggests
the introduction of a partial order on (u) as follows :

(%) C <y T & po—<(u) < 0.

We shall explore this ordering (note that it varies with the point u) and its impli-
cations in the next chapter. At this time we limit ourselves to the following
proposition that is an immediate consequence of the preceding remarks(cf.
Proposition 3.2.2)

PROPOSITION 3.4.1 The isomorphism y induces an isomorphism
of St(V) (resp . st(V)) on W with the sheaf & = A&(B) (resp . s(B)) of sub-
groups of GL(U) (resp . Lie subalgebras of ¢ £(U)) whose stalk at any we W
is the group (Lie algebra) ofall g = (gs+«) € End(U) such that

gos =1 (resp. goo = 0),
dosx =0 wunless o <4y T (o=* T).

PROOF The only point that is not obvious at once is that any such g is
invertible. But if we extend the ordering <w to a linear ordering <w in any
manner (this is always possible since X is a finite set), then g+ = 0 when-
ever Tt <w 0, so that g is " upper triangular with 1's on the diagonal ". This
shows that g € GL(U). .

PROPOSITION 3.4.2 Let W, W' be proper open arcs of S1, W' C
W, and suppose that W \ W' does not meet any Stokes line (of End(V)). Then
the restriction map St(V)(W) ——> St(V)(W') is an isomorphism . Moreover, if
(V', V') is another pair and ¢ is an isomorphism of the formalization of (V, V)
with that of (V', V'), and x is an isomorphism of (V, V) with (V', V') on
T(W)s suchthat x ~ ¢ (T(W)), then x ~ ¢ (T(W)) also.

PROOF This is immediate from Proposition 3.2.4. .
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For Irr(End(V)) we have a formula analogous to the one in Proposition
3.3.6. For o, Tt &€ X, let

b(es,x) = inf{b = 1: o, te B(Fp)}.
It is obvious that
i(c—t)b(c—c)e Z, b(c—<)l b(o,T).

PROPOSITION 3.4.3 We have,

Ir(End(V)) = dimH1(S1, st(V)) = Z[o,<]: o< i(6—T) b(s,T) d(c) d(<)

where the summation is over the Galois orbits of pairs (o, ©) for the diagonal
action of the Galois group .

PROOF It is obvious that b(c, <) is the cardinality of the Galois orbit of
(o, ©). From the proof of Proposition 3.3.6 we have,

Irr(End(V)) (1/b) Z5wx i(cz—Tz) d(c)d(T)

(1/0) Zfs, <] : owx i(oz—Tz) b(o,T) d(c)d()

Zo,x]: ow< i(c—T) b(c,T) d(o)d(c)

which is the desired expression.
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4. THEOREMS OF MALGRANGE-SIBUYA AND DELIGNE

4.1 In this chapter we shall formulate and prove the theorems of Malgrange-
Sibuya and Deligne which allow us to get a deep underdtanding of the category
of meromorphic pairs at z = 0. The Malgrange-Sibuya theorem gives a coho-
mological description of the set of isomorphism classes of marked pairs (cf.
§1.4), namely, pairs equipped with an isomorphism of their formalizations with a
given differential module over &F. It is an easy consequence of another result
of Malgrange and Sibuya that describes the first cohomology of certain sheaves
of flat holomorphic matrices. The theorem of Deligne, which we shall obtain as
a consequence of the theorem of Malgrange-Sibuya, gives a complete descrip-
tion of the category of meromorphic pairs at z = 0. These two theorems are the
fundamental results of the subject .

4.2 We begin with the Malgrange-Sibuya theorem. Let CJ[z]] (resp. C{z})
be the ring of formal (resp. convergent) power series in z. If u e GL(n, C[[z]])
then by the classical Borel-Ritt theorem we can find, for any open arc W < S1,
an €> 0 and a holomorphic map g (T (W)e —> GL(n, C)) such that g ~ u
(T (W)). In general the map g will neither be unique nor wil extend to a mero-
morphic map around z = 0. The obstruction to the meromorphic extendability is
measured by the H1 of a certain sheaf Q9 of groups on S1 defined as fol-
lows. For te S1the stalk 9(t) at t of 9 is the group of germs of holomorphic
maps g (T (W)e —> GL(n, C)) which are multiplicatively flat in the sense that g
~ 1(T(W)), where W is some arc around u and € is > 0. For open arcs W'
C W C 81, the restriction map from W to W' is an injection; and if W' cC W,
then for any section s of 3 on W thereis an € > 0 such that the restriction of
s to W' is defined by a holomorphic map g ~ 1 of T(W')e into GL(n, C). It
follows from this remark that any 1-cohomology class for 9 is represented by a
cocycle (gij) associated to a finite covering (Uj) of S1 by open arcs (Uj) such
that for some € > 0 all the gjj are defined by holomorphic multiplicatively flat
maps of T (UinUj)e into GL(n, C).

We shall now set up a natural map
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0 : GL(n, C[[z]]) / GL(n, C{z}) —> H1(S1, 9)

Let u € GL(n, C[[z]]) and let (U;) be a finite covering of S1 by open arcs.
Then we can find € > 0 and holomorphic maps gi (T (Uij)e —> GL(n, C)) such
that gi ~ u (T(Uj)) foralli. Clearly (gigj~1) is an 1-cocycle for 9 . If we write
O(u) for the corresponding cohomology class, it is easy to verify that this class
depends only on the image [u] of u in the space GL(n, C[[z]]) / GL(n, C{z})
and not on the choice of the covering or the g;. We note that O is one-one.
Indeed, let u, u' € GL(n,C[[z]]) and O([u]) = O([u']). Then we can find a finite
covering (Uj) of S1 by open arcs, € > 0, holomorphic gi, gi' mapping T (Uj)
into GL(n, C) with gj~ u, gi'~ u' (T (Uj)) such that (gigj~') and (gi'gj—1) define
the classes O([u]) and O([u']) respectively and gigj~! = cig'igj~'ci~1 on
T (UinUj)e forall i, j, where cj are holomorphic maps of T (Uj)e into GL(n, C)
with ¢j~ 1 (T(Uj) forall i. Then gi'=1ci~1gi=gj~1¢j1gj on T (UinUj)e forall i,
j- This gives a holomorphic map g from a punctured disc into GL(n, C) such
that g=gi-1ci-1gi on T(Uj)e forall i. As gi—1ci~1gi ~ 1 (T (U;)) forall i, we
have g ~ 1 and hence, by Riemann's theorem on removable singularities g is
meromorphic at the origin. In particular this gives g = u'—1u e GL(n, C{z}), so
that [u] = [u']-

THEOREM 4.2.1 (Malgrange-Sibuya)The map O defined above is
a bijection :

O : GL(n, C[[z]]) / GL(n, C{z}) =& HI(S1, Q)

We shall prove this theorem in the next two sections. Our proof follows
essentially the sketch outlined by Malgrange in [Mal 3].

4.3 We prove two technical lemmas in this section which will be used in the
next section in the proof of the Malgrange-Sibuya theorem. Let us denote, for
Z=X+1Yy,

3= (3/ox —id/3y)/2, o = (3/3x +id/3y)/2 (z = x +iy)
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LEMMA 4.3.1 Let A beadiscaround z=0 andlet a bean nXn
matrix of C functions on A. Then we can find a concentric disc A1 < A
anda C® map v of A4 into GL(n, C) such that

o'v=va, v(0) = 1.

PROOF It is enough to find v satisfying the differential equation with
v(0) invertible; for then we can replace v by v(0)-1v. Replacing a by «a
where « e Cc®(A) (the suffix ¢ means compact support) and « =1 around
z =0 we may assume that a itself has compact support and is defined on all of
C. The case n =1 is classical and the case n > 1 is the noncommutative gen-
eralization of it. We shall treat the case of arbitrary n by suitably adapting the
classical,arguments.

When n =1 we define, forany h e C¢(C), ze C,

1 h(w + z)
) = g | el awadw -
c

Then ynh is a continuous function and 0* yn = h in the sense of distributions ;
yh is smooth if h is, and yh(o) = 0. Moreover yh is the unique continuous
solution of the equation 9*ynh = h which is bounded at o ; the uniqueness

follows from Liouville's theorem as the difference k of two solutions of this type
satisfies 9" kK = 0 and so is a holomorphic function bounded at <. Ifnow a e

Cc®(C), v = exp(ya) is then a solutionto 9* v = va, v(®) = 1, and as before is
the unique solution with this property. Note that it does not vanish anywhere.

Let us now consider the general case n > 1. If v is a matrix satisfying
() J*v=va, v(®) =1,

then a classical calculation shows that w = det(v) satisfies the one-dimensional
equation 0*w = w tr(a) with w(o) = 1, hence is nowhere zero, showing that v
is everywhere invertible. As before such a solution is unique. Moreover, when
a is C® but v is only continuous and satisfies (%) only as a distribution, v
has to be smooth because the system of equations (%) for the entries of v is
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elliptic with smooth coefficients. Thus for proving the lemma it is enough to
construct a continuous matrix function v satisfying

(%) 9'v = v.(fa), v(®) = 1

in the weak sense, i. e., as a distribution, for a suitable f € Cc®(C) with f=1
around z =0. Fix a as above, a smooth matrix with compact support defined
on C.

We shall now show that there is a number 6 = §(a) > 0 with the following
property: if f € Cc=(C), | fI =1, and supp(f) is contained in a disc of radius &
about z = 0, then the equation (%) has a continuous distribution solution Let
| .1 beamatrixnormwith | XY 1 =<IX11Y| foralln X n matrices X, Y, and let

B be the Banach space of all continuous maps g from C to the space of
nXn matrices with

gl = supzlg(z)l < oo, g(e) =0.
If be B is compactly supported we consider the map Jp of B into itself de-

fined by

Ueo)@) = gy [ LHRND) gy ngwr  @ze©)
C

If A, is the disc around the origin of radius v and the support of b is con-
tained in A,, a simple argument shows that Il JplI =< 7vi b ll. In fact, the in-

tegration is only over the region Iw+zl < v, and may be split as the sum of in-
tegrals over the subregions where 1zl = 2v and |zl > 2v ; in the former one
has Iwl < 3v and the integral is majorized by

1 IIgbllIJ'K ydrde = 6vligl bl ;

in the latter where Iwl > v, the integral is majorized by

=1 ligbll v—1 IL w+zl <y dxdy =< vligl libll,
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verifying our claim. If b =fa where fe Cc®(Ay), Ifl <1,and v =1/8llall , we
have Il Jjall <1 and so the operator I- Jig is invertible on B. So3 ue B
such that (I- Jgg) u = Jfa 1; this relation is just

u(z) = 515 é‘u(w+z) (fa)(w-ov-vz) + (fa)(w+2) dwAadw* (z < C).

This shows that 9*u = f a+ u fa as distributions and sov = 1 + u is a solution
to (3e). .

For functions which are merely C® and are defined on sectorial do-
mains, we shall use the following definition of flatness : for « € C®(T"¢) where
T ¢ isan open sector, «x ~ O (T ¢g) means that for arbitrary integers m, n,p =0
and any sector T'CC T,

@Ma*Nx)(z) = O(IzIP)  (z—> 0 in T7).

This definition makes sense even when T =C*;then «x € C® (Ag*), and «
extends to an element of C®(Ag) ; we then simply write < ~ 0. We now de-
fine the sheaf 9g as the C® - analogue of the sheaf Q :forany u e S1, its
stalk Qs (u) is the group of germs of C® maps g (T'(W)e —> GL(n, C)) which
are multiplicatively flat i.e., g ~ 1 (T'(W)), where W is some arc around u
and € is >0.

LEMMA 4.3.2 H1(S',9¢) = O.

PROOF We start with the easily verified fact : if m, n are integers = 0,
there are differential operators Dmp on S1 of order < m +n in d/de with
coefficients that are polynomials in e2%i® such that for 4 € C® (S1), and %'
defined by %'(r e2Ti®) = «(e27i®), one has

(0M9* N ') (r e2Ti8) = r—(M+n) (Dmn¥)(e2Tie),

It follows from this that if U € S1 is an open arc, x € C®(T(U)e),and « ~ 0
(T (U)), then for any %4 € C®(S1), one has %' « ~ 0 (T (U)); in particular, if
supp(x) € U, ¥'x € C®(Age). A simple argument now gives the following ex-
tension principle for n X n matrices of functions: let U¢, U2 be open arcs in
S1 with disjoint closures and gj isa C® map of T (Uj)e into GL(n, C) with
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gi ~ 1(T(Uj)), 3 n with 0O<m=¢€ anda C® map g (Aqy—> GL(n, C))
suchthat g ~ 1 and g=gj on T (Ui)y .

Consider now a cocycle (gjj) for the sheaf Qs associated to the finite
covering (Uj) of S! by open arcs, with gjj (T (UinUj)e — GL(n, C)) and gj ~
1(T(UinUp). In view of the above remarks we may assume, by passing to a re-
finement of the covering that the gjj are actually smooth maps of adisc Ag into
GL(n, C) and gjj~ 1. Passing to a further refinement we may assume that we
are working with a covering (Vm)o<m <N Wwhere N is aninteger =4, Vpq =
(em, €m+2), em = exp(2mim/N). Then Vmn Vms+1 = (€m, €m+1) and we may
take the cocycle as given by (m)o<m<N Wwhere gm (=g N+m) iS a map
T ((em, em+1))e —> GL(n, C) and is a restriction of a smooth map g'm of the
disc Age into GL(n,C) flatat z=0,i.e.,g'm~ 1. We modify g'm to hm without
changing gm as follows: hm=g'm for m=0,1,N—-1;for 3=<m <N -2, hpy =1
on T((eo,e1)e), =9g'm on T((em, em+1)e); and h2 =g'2 on T ((ez ea))e), =
g1~1go~'g N-1—1 on T ((eo, €1)e); We may have to make € smaller to ensure
this. The cocycle is not changed but now hgh4...hn—1 =1 on T ((eg, €1)e). We
now define the fm (= f N+m)bY

fo =1, f1 =hy=1, fa=(hih2)1, ... f N1 = (hih2...hn-q)—1

It is then easy to verify that fm—1 fm~1 = gm for all m, so that the cocycle (gm) is
a coboundary. .

4.4 PROOF OF THEOREM 4.2.1 It is a question of the surjectivity of the
map 0. Let us consider a cohomology class o for the sheaf @ and assume
that it is represented by a cocycle (fij) associated to a finite covering (Uj) of S1
by open arcs, fjj being a holomorphic map of T ((UinUj)e) into GL(n, C) with fj
~ 1(T(UinUj). Lemma 4.3.2 allows us to write this , by passing to a refinement
if necessary, in the form fjj=fjfj—1, fj beinga C* map of T (Uj)e into GL(n, C)
and fj ~ 1 (T(Uy)) forall i. As 9" fj=0, we findthat fi1 (0*fj) =f1(@*f) forall
i, j, giving a C® map f(Aeg* —> End(CN)) coinciding with fi~1 (@* i) on
T (Uj)e forall i. As fi~ 1 (T (Uj)) it follows that f ~ O, so that we may assume
that f is C=® onthe fulldisc Aeg. By Lemma 4.3.1(and diminishing € if nec-
essary) we can find a smooth g (A — GL(n, C)) with g(0)=1,g-1(d*g) =1.
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Let gi=fig-1 on T (Uj)e forall i. Then 9* gi=0 so that g; is holomorphic
and gigj~1 =fjj on T (UinUj)e ; at the same time as fj ~ 1 (T'(Uj)), we also have
(0*nom g-1)(0) =0 forall n=1. Thus we see that gj ~ u (T'(Uj)) forall i,ue
GL(n, C[[z]]) being defined by

Uu=1+ 2Zm=1 (@Mg-1)(0) zMm /ml.
It is now clear that O([u]) = o. .

REMARK The additive version of the Malgrange-Sibuya theorem is
also true but is much easier to prove since it is in the commutative context. We
work with the sheaf gmn on S1 whose stalk at t € S1 is the vector space of
germs of flat holomorphic maps g (T (U)e —— Mmn(C)); here, for any ring R,
Mmn(R)) is the space of mXn matrices over the ring R and flathess means
that g ~ 0 (T'(U)). As before we have a natural map

©+ : Mmn(Cl[2])) / Mmn(C{z}) —> H(S", gmn)
The basic theorem is the following whose proof is left to the reader.

THEOREM 4.4.1 The map ©. is a linear isomorphism.

4.5 We shall now use the Malgrange-Sibuya theorem to obtain the funda-
mental cohomological description of the set of all isomorphism classes of
marked meromorphic pairs ((V, V), ¢) at z=0 (cf. §1.4). We fix (Vg, Vo) and
introduce the category of germs of pairs ((V, V), ¢), ¢ being an isomorphism of
the formalization of (V, V) with that of (Vo,Vg), Morph((V, V), ¢) ((V', V'), ¢")
being the set of all morphisms u ((V, V) —> (V', V') suchthat ¢' o u" = ¢.
Let M. (Vo, Vo) be the set of all isomorphism classes of objects in this category.

THEOREM 4.5.1(Malgrange-Sibuya) We have a canonical bijection
® : M (Vo, Vo) = HI(ST, Stg)

where Stg is the Stokes sheaf of (Vg, Vo).
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PROOF Given ((V, V), ¢) € I (Vo, Vo) we can find by Theorem 2.2.4
a finite covering (U;) of S1 by open arcs, an € > 0, and holomorphic isomor-
phisms x; of (V, V) with (Vo, Vo) on the sector T (Uj)e that preserve the
asymptotic structures and lie above ¢,i. e., xi*=¢. Then (x; xr‘) is a cocycle
for the sheaf Stg, and it is easy to check that the corresponding cohomology
class depends only on the isomorphism class of ((V, A), ¢) and not on the x; or
the (U;). We thus get a map

® : M (Vo, Vo) —> HI(S1, Sto),

and it is a question of proving that this is a bijection.

lﬁ’ isinjectivel Let x'j correspond to ((V, V), ¢') e M(Vp, Vo) as
above, for the same covering (Uj). We suppose that there are c¢j € Stg (Uj)
such that x'ixi™1 = ci (xixi™1) ¢j=1 on T (UinUj)e forall i, j. Writing y; = ci~1x’,
we find that yi~1x; = yj~1 x; on T(UinUj)e forall i, j. So there is a holomorphic
isomorphism v of (V, V) with (V', V') on Ae¢* coinciding with yi=1x; on
T (Uj)e forall i. Since v preserves the asymptotic structures at 0, it follows that
v is meromorphicat z=0. As ¢-1¢ = v*, ((V, V), ¢) and ((V', V'), ¢") are
isomorphic.

|<I> is surjectivel We may assume that Vg is the trivial bundle Ag¢ X

Cn so that Vg is the connection with the matrix Ag € g L(n, Fcqt). Let the
cohomology class o e H1(S1, Stg) be represented by an 1-cocycle (gij)
associated with the finite covering (Uj) of S! by open arcs:

gij (T (UinUj)e —> GL(n, C)) holomorphic, gjj ~ 1 (T"(UinUj)), gij[Ac] = Ao.

Clearly (gij) determines an element ¢ of H1(S1, 9) and so we can find, by
Theorem 4.2.1, an element ¢ e GL(n, C[[z]]) that determines c. This means
that (passing to a refinement of (Uj) if necessary) we can find holomorphic
maps X (T (Ui)e —> GL(n, C)), with x; ~ € (T (Ui)), Xi xr‘ = gij on T (UinUj)e,
forall i, j.

Let us now define for each i the connection V; on the restriction of Vg
to T(Uj)e by requiring that its matrix is Aj = xi~1[Ag). Since xjxj~1[Ag] = Ag for
all i, j, it is immediate that Aj = Aj on T (UinUje for all i, j, so that there is a
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connection V on the restriction of Vg to Ag* that coincides with Vi on
T (Uj)e forall i. Since A; ~ ¢—1[A¢] for all i, we see that V is meromorphic at
z = 0. From our construction it is clear that x; is an isomorphism of (Vp, V) with
(Vo, Vo) on T (Uj)e that lies above ¢ for all i. In other words, the isomor-

phism class of ((Vp, V), ¢) liesin I (Vo, Vo) and its image under & is o.
This finishes the proof. .

For any fixed (Vo, Vo), the pairs (V, V) whose formalizations are iso-
morphic to that of (Vg, V) form a subcategory of G, and it is natural to want
to have a description of the set of isomorphism classes of the objects in it. Let
us write 9(Vo, Vo) for this set. We have an obvious surjective map

P : M (Vo, Vo) — 9(Vo, Vo),
and it is a question of describing the fibers of this map. Let
G"(Vo, Vo) = G*(Vo) = Aut (Mo")

where Mg" is the formalization of (Vg, Vo). We have an action of G*(Vp) on
M. (Vo, Vo) given by

uf((V, V), ¢)] =((V,V), ug),
where [...] refers to isomorphism classes.

THEOREM 4.5.2 The fibers of P are precisely the orbits of G"(Vg).
In other words ,

9(Vo, Vo) = G"(Vo)\M.(Vo, Vo).

PROOF Routine. *

4.6 We shall now take up the theorem of Deligne which gives a complete
description of the category of germs of meromorphic pairs at z=0. In a letter to
Malgrange [De 2] Deligne gave the formulation of this theorem and sketched
the outlines of the proof (see [Be] and [Mal 4] for brief discussions of Deligne's
proof). In view of the fundamental nature of Deligne's result it may be worth-
while to discuss it in more detail than given in [De 2] [Mal 4] or [Be].
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Let & be the local system defined on S1 as follows: for any open arc
U < S1, »(U) is the vector space of all holomorphic differential forms on C* of
the form

w=whdz, w* = D« a<-1Caz2

where the sum is finite and the branches z2 are chosen arbitrarily. The stalk
H(u) at u e S comes equipped with the monodromy action m, w — m.w of
Z, the action of 1 € Z being the result of analytic continuation of the elements
along the unit circle described in the counter-clockwise direction starting at u.
For ue S1,and w, w'e H(u), write w <y w' if there is an arc W containing
u such that

z
exp( [(wH*-w*) dz) ~ 0(T(W)).
u

If w,w' e H(U), wewrite w <yw' if w <y w' forall ue U. This is the same
as requiring the above fletness condition on T (U). If w# — w'# = c3 22 +terms
of higher order where c4 * O, then

W<y W S pu—w (U) = Re(caua+l/a+l) < O.

We have already observed in Lemma 3.2.1 that pw—w' (U) is independent of the
choice of the branche z2. If w <y w' itisclearthat w < yw' for an open arc
U containing u; w and w' are not comparable at u if and only if p - (U)
= 0 ;thenthereisanarc U = (u', u) (resp. U" = (u,u")) suchthat w <y w'
and w' < y* w orvice versa.

We now introduce the notions of local systems of finite rank on open
subsets U of S1 that are graded and filtered by . To say that a local system
Vv on UcC S is d-graded is to require that for each u € U there is a grad-
ing of VY (u) by H(u), V(u) = @w..@(u)‘uw(u), such that for some open arc
W containing u, the grading at any point u' e W is the one induced by the
grading at u through analytic continuation from u to u'; in this case this is true
for any open arc W with u e W C U. Clearly, for any f-graded local system
defined on all of S1, the grading at any point u € S1 is compatible with the
monodromy actions on VU (u) and on Jf(u); this means that the monodromy
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action of m e Z on VU (u) induces an isomorphism of VYV ,(u) with Vm o (u)
for all w. It is obvious that for any fixed u, the assignment U —> VYU(u) is an
equivalence of categories, from the category of f-graded local systems on S1
into the category of 0 (u)-graded vector spaces equipped with a Z-action com-
patible with the monodromy action of Z on fH(u). For any open U < S1 the
category of Jf-graded local systems on U comes equipped with ® *, and
Hom; we note that

(VIQVU2),; = Tore=w (V1) Q(V2)e
U*,) = (Pe + — wVe(u)t, L being the annihilator.

Of course Hom(V'1, U2) = U1*Q V2, andif h e Hom(V1, ¥2) is repre-
sented by the matrix (hg«), then h € Hom (V1, v2),, ifandonlyif hgx = 0

when ¢ — © + w. If U= 81, the equivalence ¥ —> VY (u) is compatible with
&, *, and Hom.

Given a Jf-graded local system U on the open set U C S' one can
introduce the subspaces V(w)® of V(w) (w e U) defined as follows:

VYW = Vw), PP V(W) e

w 'ﬁNw
It is then clear that one has the following properties:

(i) {V(W)®},en(w) is afiltration: w <sww' = V(w)® < Y (w)w'
(ii) if s is alocal section of U and s(v) € VU (w)®, then s(w') e V(w')®
for all w' sufficiently close to w.

We call this the D -filtration induced by the - gradation. An arbitrary local
system VU of finite rank on U is said to be 0-filtered if its stalks U (w) are fil-
tered by H(w) and locally on U this filtration is induced by a J49-gradation.
This means that properties (i) and (ii) above are satisfied, and that for each u e
U, there is an open arc W and the structure of a £-graded local system on the
restriction of U to W such that for all win W,

vWww = Vwe, PP V(W)

w ‘gﬂw
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In other words, 0 -filtered local systems are obtained by gluing together &-
graded local systems taking care to preserve the D-filtrations of the latter. We
note that if U is an open set on which the D -filtration on U is induced by a
H-gradation, and for any open arc W' < Uand w € H(W') we write U (W")w
(resp. V' (W'),) for the space of all sections of U on W' that are in VU (w)w
(resp. V' (w),) forall we W', then

vW)w = vW), PP V(W)

w'<vvw
The category of f-graded local systems is equipped with the operations of @
&), *, and Hom in a natural manner. To define these operations in an unam-
biguous way it is enough to check that the JD-filtrations arising out of the local
H-graded structures on U*, Y1) U2, and Hom(‘V'1, U2) may be described
entirely in terms of the Jf-filtered structures on V', U1, and V2. This is seen
easily from the following: write A (w) for the set of ¢ + —w such that either ¢ <
— w or ¢ is not comparable with — w; then,

Y *(u)w

(Zgan(w) U (u)g)tL
(VIR UYU)® = g4t 5w (V(U)TRQU2(U)T)

Finally, the subsheaf Hom(V1, U 2)0 is nothing but the subsheaf of ¢ e
Hom(Vv1, V2) that preserves the filtered structures; this is immediate from the
local identifications

Hom(u1, U2)0 = D¢ <o Hom(V'1, U2)¢
= Pe <0Po—w = ¢ Hom(U1,,U2)

For any open U C S' and any Jf-filtered local system U defined on
U we shall now associate a d-graded local system Gr U on U defined as
follows. For ue U, and w € H(u),

(GrV )w(u)

v(u)w/;u.i‘w V (u)w

GrU(u) = P (Gr V)w(u)
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If WcC U is an open arc on which the D-filtered structure of U arises from a
-graded structure, then for u € W, the natural map

Y (u) — (Gr V') (u)

is an isomorphism when restricted to V' ,(u). This permits us to transfer the -
graded structure of V to Gr Vv on W, andregard Gr ¥ as a J-graded local
system on W. If we consider another Jf£-graded structure for U on W com-
patible with its £-filtered structure, say with components ,‘VU'(u) (u e W), there
is a unique isomorphism v—> (v) of VU (u) with ,,VU(u) such that

(%) v= (v mod = U (u)e' (ue W)

w 'ﬁJw
It is clear from (%) that v—> (v) defines an isomorphism of the two J9-graded
structures on the restriction of VY to W that induces the identity on Gr v,
showing that the J-graded structure of Gr U on W defined above is indepen-
dent of the M-graded structure of YV on W used in its construction. The as-
signment

v —>Grv

is a covariant functor from the category of J£-filtered local systems on U to the
category of Jf-graded local systems on U.

Observe that the O -filtered local system associated to Gr U will in
general be only Jlocally isomorphicto U on U. Indeed, it is clear that for any
u € U there is an open arc W < U containing u and an isomorphism o of
v with Gr Vv as Jf-filtered local systems on W such that for we W, w e
D(W), Ve U(w)w,

(V) = [v]+...

where [v] is the image of v in (Gr V ),(w) and +... aretermsin (Gr VU ), (w)
with w' <y w. We call such isomorphisms admissible .

Suppose Vg isa JD-filtered local systemon U C S1. If V isa JO-fil-
tered local system on U, a marking of ¥ (by Ug) is an isomorphism

77



D. G. BABBITT, V. S. VARADARAJAN

¢ :Grv = GrVYy

We shall say that V' is marked and write LB (V o) for the set of all isomor-
phism classes of marked pairs (V, ¢), where (V, ¢) and (V' ¢') are isomor-
phic if there is an isomorphism j (V' ——> V') such that

geGr() =¢

The set B(V ) has a cohomological description which we shall now
elucidate. For this purpose we introduce the sheaf Q¢ = (V) of groups of
germs of automorphisms of the 0 -filtered local system <V that induce the
identity on Gr V.

LEMMA 4.6.1 If the class of (V,¢) liesin &L(Vg) and ue U, we
can find an open arc W € U containing u and an isomorphism x of U with
VYo on W such that x lies above ¢,i. e., Gr(x) = §.

PROOF If we choose W containing u and admissible isomorphisms
« of V with Grv and «g of Vg with Gr Upgon W, andtake x = xg~1¢«x,
then it is clear that Gr(x) = €. .

PROPOSITION 4.6.2 There is a canonical bijection
Y B(Vo) = HI(U, Vo)
that takes the isomorphism class of (Vg,id) to the zero element. .

PROOF Let (V, ¢) be a marked pair whose class isin &(Vg). By the
above lemma we can find a covering (W;) of U by open arcs, and for each i,
an isomorphism xj (V = Vg ) on W; suchthat Gr(x;)) =¢. If 9ij=Xin1. (9ij)
is an 1-cocycle for the sheaf Q9. We leave it to the reader to make the routine
verification that the cohomology class of this cocycle depends only on the iso-
morphism class of (V, ¢) andthatthe map ¥ : B(Vo) = HWU, Vo) thus de-
fined takes the class of (Vg,id) to the zero element. if (V' ¢') is another
pair, (xi) the associated isomorphisms, and if xi' xj~1 = ¢ xjxj~¢j~1 where ¢;
are sections of Qg9 on W;, we have xi~lci~1xi' = xj~1¢j~1x' on WinW;j, so that
there is an isomorphism t (V'= V) coinciding with xi~1ci~1x;' on W; forall i.
This proves that ¥ is injective. For proving the surjectivity let (gj) be any 1-
cocycle for Qg. We write VU ; for the restriction of Vg to W; and glue the
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sheaves Vg along the intersections WinW; via the identifications v —> gjj(v)
of Voj(u) with U 0i(u), u € WinWj (v e Voj(u)); this is just the twisting of the
sheaf Vg by the cocycle (gj) (cf. I, §1). The cocycle identities show that the
gluing process is self-consistent and leads to a local system U and isomor-
phisms 8j( V= Vi), Vi being the restriction of Y to W;. VU is naturally £-
filtered since the gj preserve the filtration. Since Gr(gj) = 1, there is an iso-
morphism ¢ (Gr V' = Gr Vo) such that Gr(ej) =¢ on W; forall i. Since gjj=
8; 81, the cocycle (gjj) corresponds to the pair (V, ¢) . .

4.7 Following Deligne we shall now introduce the basic functor
To —— category of D-filtered local systems on St

For any open set U < S1 let us consider the assignment that takes germs of
holomorphic pairs (V, V) defined on some sector T (U)e to the local system
¥ (V, V) defined on U of germs of sectorial horizontal sections of (V, V). This
assignment is a fully faithful functor compatible with ® »*, and Hom. If we take
U = S1 and consider the meromorphic pairs at z = 0, it is necessary to give the
local systems % (V, V) an additional structure to maintain the fully faithful na-
ture of this functor. We shall view % = ¥%(V, V) as a JD-filtered local system as
follows: forany u e S1 and w e H(u), ¥w is defined by

z
ve @ o exp(- _fw# dz) . v(z) = O(lzImN) (T)
u

for some integer N = 0 and some sector T containing u; the O refers to the

components of the section v with respect to some (every) meromorphic trivial-
ization of (V,V) at z=0.

PROPOSITION 4.7.1 The {3 (u)«® } define the structure of a £ -fil-
tered local system on ¥.(V, V); and the assignment

germof (V,V)—— %

is a fully faithful covariant functor from Gg into the category of 8-filtered local
systems on S1 compatible with ), %, and Hom . Furthermore, under this cor-
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respondence, the sheaf St(V, V) goes over to the sheaf 3(¥) of groups of
germs of automorphisms of % that induce the identity on Gr 3.

PROOF It is obvious that the {3 (u)w } defines a filtration by (u) and
thatif ve % (u)w, then ve H(u')w forall u' sufficiently close to u. We shall
now verify, using the asymptotic theory of §2, that around any u e S1 this filtra-
tion is induced by a J9-graded structure. Fix u € S1. Then (cf. §3.2) we can
find an arc Wg € S1 containing u and an asymptotic trivialization on T (U)e
of (V,V) suchthat Vgqgz =d/dz— B where the matrix B is a canonical form

B=Zw.z w#.1®Pw +Z‘1®C.

If we fix a branch of log on T (Wp) we can identify (W) (W < Wgp any open
arc) with the space of U-valued analytic functions on T (W) such that

du/dz = B(z)u
on T(W). Clearly
HW) = P KW

where, for w € X,

r4
%wW) = {exp(( Jw#dz) + log z.Cuv:ve Uy}
u

and ¥ ,(W)=0 for w ¢ . We shall now show that forany w e H(u),

HW)® = %,W) D D (W) .

w'<ww
Observe that if u is such a horizontal section so are the Pgsu. Hence the
9 (W)« are stable under the Ps so that it is enough to prove the following:
Ho(W) S HW)® if 0 =w orif c <ww, and Hs(W) N (W)« =0 otherwise.
The first relation is obvious. For the second, if v belongs to the intersection, we
have, for some te Vg,
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z z
exp(— Iw# dz)v(z) = exp( J(c#—w#) dz + log z .Co)t
u u

z
is of moderate growth on T (W). Hence exp( _f(c#—w#) dz)t is of moderate
u

growth on T (W). By the assumption on ¢ we can find a nonempty open arc
W' C W such that w <w o, so that

z
1IN Re( [(c#-w#) dz) — © (ze T(W),z—> 0)
u

z
forany N=0. So exp( J(c#—w#) dz).t can be of moderate growth only when
u

t=0,i.e., v=0.
The assignment
germof (V, V) —— %(V, V)

is clearly functorial and compatible with (), %, and Hom. We shall now verify
that it is fully faithful, i.e., the maps

Morph ( (V, V), (V', V') ) —— Morph ( ¥%(V, V), %(V', V"))

are bijections. But in view of the compatibility with Hom this comes down to
proving that if M. v is the space of germs of meromorphic sections of (V, V),
the natural map

which is obviously injective, is a bijection of M,y with the subspace of sections
that liein %(V, V)0 everywhere. If s € My, then s(z) = O(1zI-N) for some N =
0 as z—> 0, so that the corresponding section lies in %(V, V)0 everywhere.
Conversely, suppose o € HO(S1, %(V, V)0). Then o arises from a horizontal
section s of V on a punctured disc at z = 0; by assumption the section is of
moderate growth on some sector around each point of S1 and so is a mero-
morphic section.
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It remains to determine what happens to the Stokes sheaf. Let us fix a
meromorphic pair (V, V) at z=0 and consider a horizontal section v defined
on a sector around u e S1. Clearly v(z) = O( 1zI-N) for some N = 0 if and only
if ve 3%(u)0. We now have the following.

LEMMA 4.7.2 A horizontal section v is flat if and only if v e % (u)0
and mapsto 0 in Gr ¥(u).

PROOF Indeed, if v satisfies the latter condition, then, with respect to a
compatible Jf-graded structure for % near u, v is a sum of sections V' €
H(U)w' » W' <y O; this implies that v is flat. Conversely suppose that v is flat.
Then proceeding as above with Vg/dz = d/dz — B, it suffices to show that P45 v =
0 if cisnot <y 0. But

z
Psv = exp( Ic# dz + logyz.Cg )t

for some t € Vg, if this is flat, we find as before that t=0 or Psv = O. .

To complete the proof of the prposition we apply this lemma to the en-
domorphism bundle E to get the following : L € ¥o(End(V))(u) < L pre-

serves the filtration of %6 (V)(u) and induces 0 on Gr % (V). Since
St(V)(u) = 1 + ¥o(End(V))(),
the last assertion concerning St(V)(u) follows at once. .
To formulate Deligne's theorem we introduce the following diagram :
o ———> category of D-filtered local systems on S?
(D) 4 formalization d
BCo" ———> category of L-graded local systems on S1

We shall say that this diagram is commutative for a choice of a covariant functor
F representing the bottom arrow if the two compositions are naturally equiva-
lent; the functor F is then called admissible . Note that the vertical functors are
essentially surjective, and all functors are compatible with ® »*, and Hom.
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THEOREM 4.7.3 (Deligne)There are functors that make (D)
commutative ,and all of them are naturally equivalent.. In particular , the functor
h of Propostion 1.4.6 is admissible (after a suitable identification of ¢! with
(1)).

Woe shall prove this theorem in the next paragraph.

4.8 PROOF OF DELIGNE'S THEOREM We begin with

LEMMA 4.8.1 Every d-graded local system on S1 is isomorphic to
one that arises from a meromorphic pair (V, V).

PROOF Let VU be a f-graded local systemon S' andlet Vv(1)=U=
@we,@)(ﬂ Uy, . Let Py, be the projections U—-——> U, . Let ¥ € GL(U) be
suchthat me Z actsvia ¥M. Let = be the setofall w suchthat U, * 0
and let b = 1 be an integer such that w# e Fb,egt for w e X ; here we
choose for the z"n the branches that are equalto 1 at z=1. By hypothesis
Z actson X through pp and ¥ is an isomorphim of U, witth U4 .. We
now proceed as in the proof of Proposition 1.4.5 and the remarks following it.
Since ¥b preserves the grading we can select a b- reduced endomorphism C
of U preserving the grading such that ¥bP = exp(2ribC). We now go over to the
z-plane and consider the pair (Vz, V) where V. is the trivial bundle C- X U
and V- didz = d/dz— B~(z) with

B (Z) = Zwez wst1RP, + z-1RQbC.

The discussion loc. cit shows that there is a meromorphic pair (V1,V4) at z =
0 and a local isomorphism h of its pull back to C. with the pair (Vz, V)

around 2 = 0. We wish to show that V' is isomorphic to the L—graded local
system defined by (V1, V4).

The horizontal sections u of (V1, V1) near z =1 are solutions to du/dz
= By(z)u; taking z = 2P and v(z) = g(z)u(z), this equation becomes dv/dz =
B(z)v(z). Hence (cf. §4.7) the space 3(V1, V1){(1) = 3(1) can be written as the
direct sum @w ¥ (1) where ¥ ,(1) is the space of U-valued functions of
the form
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z
Uwt(z) = h(z)~1exp( f;»:#-d?; +logz.bCu)t  (te Uw)

If we observe that h(z) = O(1zI-N) as z —> 0, we may conclude that t —> U, t
is an isomorphism that gives rise to an isomorphism of VU (1) with 3% (1) as
H(1)-graded vector spaces. Moreover, analytic continuation around the circle
S! inthe z-plane changes the solution ut to the solution

z
h(ez)~1 exp( f[(1.‘.3);4#.(::; + log 2 . bCq, + 2mCe )t
which simplifies, in view of the relation h(z) h(ez)~1 = t(g) = ¥ exp(—2inC), to

z
h(z)-' exp( [ (1.w)z¥dz + log z.b ¥C¢, )t
1

z
h(z)-'exp( [(1.w)z*dz + log £. bC1.c, )7t
1

= Uq,, 7t-

This proves that the above isomorphism commutes with the Z-actions. Hence
the Jf-graded local system on S1 of (V, V) isisomorphicto V. .

We shall now prove that the top horizontal functor is an equivalence of
categories. Since it is fully faithful by Proposition 4.7.1, we need only prove that
it is essentially surjective. Let U be a D-filtered local system on S1. By the
above lemma there is a meromorphic pair (Vg, Vo) such that Gr V' is isomor-
phicto Gr % ; here we write 3 for % (Vp, Vo). Choose an isomorphism t of
Gr U with Gr 3% ). Let @ be the sheaf of groups of germs of sectorial
automorphisms of ¥ that are multiplicatively flat at 0, preserve the filtration,
and induce the identity on Gr %. The pair (V, t) then corresponds to an
element « of H1(S1, 9) by Proposition 4.6.2. As 9 is canonically isomorphic
by Proposition 4.7.1 to St (Vo, Vg) = St, « defines an «* of H1(S1, St) which
in turn corresponds by Theorem 4.5.1 to a pair ((V, V), ¢). We shall show that
% (V, V) isisomorphicto V. We choose a finite covering (W;) of S1 by open
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arcs and isomorphisms x;j of (V, V) with (Vg, Vo) on W; such that x;"=¢ for
all i and the cocycle (xjx;~1) belongs to «* . Then Xx; corresponds to an
isomorphism y; of 3(V, V) with % (Vg, Vo) on W;, and it is obvious that the
cocycle (yiyj~1) belongs to «. But, as yjyj~! induces the identity on the
graded local system, Gr(y;) = Gr(yj) on WinWj for all i,j So there is an
isomorphism t' ( Gr %(V, V) = Gr ¥%(Vg, Vo) ) coinciding with Gr(y;) on W;
forall i. As (¥%(V, V), t) and (V, t) both define the same cohomology class
«, they must be isomorphic.

The construction of admissible functors from the category of differential
modules over ¥ to the category of f-graded local systems on S1 is now ac-
complished with the help of the following lemma.

LEMMA 48.2 Let (V,V) be a meromorphic pair at z =0 with for-
malization M", and let H" be the space of horizontal elements of M" . To any
f e H" we can then associate a unique fg e HO(S1, Gr % (V, V)g) with the
following propoerty :if U < S1 is an open arc and s is a horizontal section
of (V,V) on U suchthat s" = 1, then s induces fg on T (U). Then the
map f—> fg is anisomorphism of H" with HO(S1, Gr %(V, V)o).

PROOF We note that by Theorem 2.2.4, if U is sufficiently small, there
exixt s with the properties described above. If sj(i=1,2) are two such, then
y=s81—82 ~0(T(U)) andso,by Lemma4.7.2 y mapsto 0 in Gr %(V, V),
so that sy and sz induce the same element of HO(U, Gr % (V, V)o). This
means that f —> fg is a well defined map. Its linearity is obvious and its
injectivity is also immediate since O is the only flat section of Gr % (V, V)o . For
the surjectivity we suppose that V is Ag X CN and that Vg/qz = d/dz —A(2).
Let us now consider ¢ € HO(S1, (Gr %)0) where we write ¥ for 3 (V, V). We
can then find a finite covering (U;j) of S1 by open arcs and sections s; of V
on T (Uj)e suchthat sje %0 and s; projectsto «. If sjj = Sj — §j, it follows from
Lemma 4.7.2 again that ( sjj) is an 1-cocycle for the sheaf % (V) of flat
sectorial horizontal sectorial sections of (V, V). By theorem 4.4.1 the coho-
mology class of this cocycle is defined by an element of fe FN: g — sj=ti—t
where t;j is a holomorphic map of T (Uj)e into CN and tj~ f (T (Uj) ). As sj—t
= sj—tj there is a holomorphic map u of the punctured disc Ag¢* into CN
such that u=sj—t; on T (Uj)e forall i; as u is of moderate growth at 0, u is
actually in FegtN. If h=f+u, then sij=ti+u~ h(T(Uj)) forall i so that
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0=Vsj ~ Vh (T(U)),
showing that h € H". Itisclearthat ¢ is associatedto h. .

If we apply this to Hom ( (V, V), (V', V') ) where (V, V) and (V', V') are
two pairs at z = 0, we get the following corollary.

COROLLARY 4.83 Let (V,V) and (V', V') be meromorphic pairs
at z=0, M* and M™ their formalizations , and % = %(V, V), %' = 3%(V', V).
Then there is a bijection ~ (g — B~),

~ : Morph (M*, M) —s Morph (Gr %, Gr %6")

characterized by the following property : if U is a sufficiently small arc and x is
a morphism from (V, V) to (V', V') on T (U) thatis asymptotic to B, then x
induces B~.

To construct admissible functors we proceed as follows. For each differ-
ential module over E over ¥ choose some pair ((V, V), ¢) where (V, V) isa
meromorphic pair at z = 0 with formalization M" and ¢ is an isomorphism :
M”* = E . This is possible in view of Proposition 1.4.6. If E' is another
differential module over & and ((V', V'), ¢') is the corresponding selected pair,
B —> ¢'-1B¢ is a bijection of Morph(E, E') with Morph(M", M), and so
Corollary 4.8.3 allows us to associate to any B € Morph(E, E') an element g' e
Morph (Gr 36, Gr %) (%' = %(V', V")) defined by g'=(¢'-18 ¢)~. ltisthen clear
that B —> B' is a bijection. It is now quite straightforward to verify that the as-
signments

E—> Gr¥%(V,V), p—> B8~

define an admissible functor from Tg" to the category of f-—graded local sys-
tems on S1.

To complete the proof of Deligne's Theorem it remains to show that the
functor of Proposition 1.4.5, say h, is the unique admissible functor upto natural
equivalence. Write A for the functor from Tg to the category of H—graded lo-
cal systems on S1 obtained by composing the top horizontal arrow in (D) with
Gr. it is clear from Proposition 1.4.6 that there are functors x from Tg" to Tp
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with M = x(M)"* forall M. Itis obvious that the following Lemma is sufficient to
complete the proof of Deligne's Theorem.

LEMMA 48.4 Let x (BGo"—> To) be any functor with M = x(M)"
forall M. Then F is admissible ifandonlyif F = \ o x. This is true in par-
ticular for the functor M —> Mcqt definedin § 1.4.

PROOF If F is admissible, we have F(N") = \(N) forall N € Tp.
Hence F(x(M)") = A(x(M)) forall M e Bp". But x(M)") = M, and so one has
F(x(M)") = F(M), showing that F(M) = \(x(M)) forall M e Tq. If conversely
we assume that F = 2\ o x, we start with F(N*) = X\(x(N")) forall N e Ty.
But (x(N"))* = N and so, by Corollary 4.8.3, A(x(N")) = £(N), showing that
F(N*) = A(N),i. e., F is admissible.

We now prove that the functor M —> Mcqt defined in §1.4 is a possible
choice for the functor x. Write, for any differential module N over Fgt,

Ncl = s'cgtcl&cgtN, Nel(ey) = Q®¢Ncl’

where & and & have the same meaning as in §1.3. Here we are also identi-
fying Fcgt® with & sothat Il gets identified with £(1). But, from the defini-
tion of Mcqt it is clear that

H(MClegt) (&) = H(MClegt)(92),
so that
AMMcgt) = H(MClegi(®2)) = h(M).

This finishes the proof of the lemma and that of Deligne's theorem. *
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5 EXAMPLES

5.1 In this section we shall discuss some examples that illustrate many of the
themes treated in this paper. We treat the Bessel and Whittaker differential
equations and analyse the differential modules that they give rise to. The two
cases are very similar, but the Bessel theory is a little simpler since the Bessel
equation is a limiting case of the Whittaker equation. We therefore begin with
the Bessel equation.

5.2 The Bessel connections The Bessel differential equations are
L v2
y'+3y +(1-37)=0

where v e C is a complex parameter. The equation is considered on P1 and
it is well known that 0 and oo are its only singular points, 0 being regular
and oo irregular. We go over to the associated first order system and then
change overto z = t1 sothat z = 0O becomes the irregular singular point and
oo regular. The resulting family of first order differential equations is

M A, u@) = (’;,g_: )

where
(4} -1
AV(Z) = 2—2 ((1—V222) z)
We also define
i 0 1/2 0
B=z2(4o _; )*Z"(o 1/2)

The matrices A, and B define connections V, and Vg on the trivial bundle
V = C2XC in the usual manner :

Vydidz = dldz—A,, VBddz = ddz—-B.
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Actually V, and Vg are defined on C2XIP1 and we are interested in the
germs determined by them at z = 0. The family of connections V, on
C2XP1 is called the Bessel family . B is a reduced unramified canonical form.

The fundamental fact is that the Bessel family is isoformal at z = 0.

LEMMA 5.2.1 For any v the formalizations of (V, V,) and (V, VB)

Zi I1 )} Then Le L ©)

and there is a unique u, € GL(2, C[[z]]) such that

are isomorphic . More precisely , let L = (

uy(0) =L uy[A)] =B
Moreover, the family (u,) belongs to GL(2, C[v][[z]]).

PROOF It is a trivial calculation that

0 —-1Y,_ i Y
L(F o) =(o -i)
If we write B,, = L[A,], then
B, =Dz2 + z71R + Kp

where
D = (0' 9 ) R = (1/2)(_1i ) ) Ko = (v2/2)(_—i1 -l )

It is now a question of proving the existence of a unique g, = GL(2, C[[z]]) such
that g4(0) = 1 and g.[B,] = B; u, willthen be g, L. The existence of g,, is
an example of formal splitting of a differential module along the spectral sub-
spaces of the leading coefficient of its connection matrix that goes back to the
beginnings of our subject. The uniqueness will follow from the fact that the au-
tomorphism group of (V, Vg) is just thegroup of diagonal matrices in GL(2, C).
The present situation is however sufficiently simple that one can do this in an
elementary manner. We seek g, inthe form

gy =1+ 2zT1 + 22T2 +..., Tkegl(2 C)

and wish to solve uniquely for a diagonal matrix C and Tk (k = 1) so that
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av[By] = Dz2 + z-1C.
The relations
(1+zT1+..)(Dz2+zTR+Kg) + T1 +2zTa +...= (Dz2+z-1C)(1 +ZT1 +...)
yield the recursion formulae :
[D,Ty] = R—-C
[D, Tk+2] = Tkt R=CTk41 +(K+1)Tk 41 + Tk Ko (k= -1, Tp = 1).

Since D is diagonal with distinct eigenvalues, the space of matrices with 0 on
the diagonal is the range of ad D, and ad D is an isomorphism on this range.
Hence C must be (1/2)1, the diagonal part of R, and the off diagonal part of
T4 is then determined by the first relation. Suppose that T4, ... Tk and the off
diagonal part of Tk .1 are known (k = 0). Equating the diagonal part of the right
side of the second relation above to zero leads to an equation of the form

(k +1) (diagonal part of Tk +1) = known quantity,

and so, as k = O, the diagonal part of Tk , 1 is determined. Thus Tk 41 is
known, and the off diagonal part of Tk ,2 is then determined since the right side
of the second relation is known completely. The induction thus goes forward. It

is moreover easily seen by a similar induction that the entries of the Tk are
polynomials in v. .

We consider the Stokes sheaf St of (V, V). If

Y(z) =

e—i/z 0
0 ei/z )'

then for an open set U € S1, a holomorphic map g(T (U) — GL(2, C)) be-
longs to St(U) if and only if

(@ g ~ 1(T(V))

(b) d (w—1gw)/dz = 0.

The map
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g— w-ligw

thus defines an isomorphism of the sheaf St with the sheaf of subgroups of
GL(2, C) for which the group of sections over an open arc U is the subgroup of
all h = (hj) e GL(2, C) such that

hi11 = hgz2 = 1, hyze2/Z ~ 0(T(U)), hzedz ~ 0(T(U).

The Stokes lines are thus the rays through the points z = + 1, and the stalk at
u € S1 is canonically isomorphic to the upper (resp. lower) triangular group of
matrices of the form

(8 t;‘) (resp.(l_ (1) ))

for u e S1.+ (resp. S1,— ), the upper (resp. lower) semicircular half of S1. We
thus obtain a sheaf of vector spaces of dimension < 1 on which t+ are linear
coordinates. The cohomology H1(S1, St) is thus a vector space over C. It
follows from Proposition 3.3.2 that H1(S1, St) is two dimensional. To describe
it explicitly we use the covering ¢ :

S = U,UU_, U= ST\ {31}, & = {U,, U_}.
Since HO (Uy, St) = 0, we have
H1 (@, St) = HO (U,NU_, St) = HO (S1.+, St) X HO (S1.-, St),
and as the last written space is two dimensional, we have
H1(S1, St) = HO (S1.+, St) X HO (S1.—, St).
In particular t. are linear coordinates on H1(S1, St).

The main point of interest is of course the calculation of the Malgrange-
Sibuya isomorphism & that takes the set M.(V, Vg) to H1(S1, St). We shall

now prove that

(MS) ®(A,, uy) = = (2 cos v, —2cos ©tv),
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where the sign * is independent of v. By Theorem 2.2.4 we can find isomor-
phisms x, . of (V, V,) with (V, Vg) onsectors T, around z = +1 such that
Xy, + ~ Up (T'1+). On the other hand the only Stokes lines here are the rays
through z = *1, and so, by Proposition 3.4.2, x,,, + ~ u, (T"(U.)). Moreover,
as the stalks at z = +1 are trivial, the x,, ; are uniquely determined by

Xp,+ ~ Uy (T(U4)), xp,+[A)] = B.

A more precise knowledge of the x,, .+ will clearly lead to the determination of
the class ®(A,, uy). Now z12x, , (z2)-1w(z) is a fundamental solution of the
Bessel equation with specific asymptotic properties and so may be computed
explicitly (see [W], §15.2). However we can do this (almost) in a less painful
manner using the symmetry properties of the Bessel connections.

Let us write, forany A e g£(2, ¥F), x e GL(2, &), y (T — GL(2, C)),
AV(z) = —A(-2), X¥(2) = x(~2), YV(2) = y(-2).
A simple calculation shows that if
wo(s 9) s (5 8)
then
ALY = W[A,], BY = S[B], S-S = w1 = uv,
and hence, as S—1LW = - iL, the uniqueness of the x,, . shows that
Uy = —iSU,¥W, Xy, 7 = —iSxy, + VW (on T (Ugz)).
The cocycle associated to the covering & = {U,, U_} is the map
g:T(U,NU_) — GL(2,C), g(2) = Xy, —(2) Xy, +(2)7" .
It follows from the relation above linking x,, . and Xx,, - that
g(z) = Sg(-2)'S1  (ze T(U.NU.)).

It is thus enough to determine g(z) for z in one of the sectors T(S1). Now,
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g(z) = —iS Xy, +(=Z) W X, +(2)1,

and so it is a question of relating X, +(—2z) to X, +(z). Now, if z,1/2 denotes
the branch of z1/2 on T(U,) thatis 1 at z = 1,

z, 2%, (z)~1 ¥(2)

is a fundamental matrix of the connection V,,. So, going to the w—plane that is
a universal covering of Cz* viathe map w—> z = eW, we see that

(%) Fw) = eW2x,, (eW)™1 w(eW)
is a fundamental matrix for the equation
du/dw = eW A, (eW)u.

This is of course initially defined on the domain {w : —nt < Im(w) < =} by (%),
and then extended to the whole w—plane. The monodromy of the solution is the
matrix M e GL(2, C) defined by the relation

F(w + 2in) = F(w)M.
But, A,¥ = W[A,], and so, as w—> W + it corresponds to z—> —z, we have
dF(w + it)/dw = eW W A, (eW) W-1F,
so that, for some Mq,2 € GL(2, C),
F(w + it) = WF(w)Mqy,2
for all w. The notation is justified because M122 = M. From this we obtain,
Xy, 42T W(@) = iW Xy, 4(—2)" $(2)" Mz~ (-n < arg(z) < O).
So finally get
9(z) = w(2) SMy2~)w(2)"! (-n < arg(z) < 0),
and

9(z) = ¥(2) (-SMyp2) w(2)! (0 < arg(z) < m)
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Since w—1(z) g(z)w(z) is upper triangular for 0 < arg(z) < = it follows from
the second of these relations that M{,2 must be of the form

0 1
M2 = (_1 Y )

T determne » we compute Mq,22 = M, the monodromy of the fundamental
solution considered. A simple calculation gives

tr (My22) = A2-2, det (My22) = 1.

On the other hand, tr(M) is independent of the choice of the fundamental solu-
tion ; moreover, as we have remarked at the beginning, the Bessel connection
V., s really a global one defined on €2 X P1, and it is well known that its
monodromy at z = <o is the conjugacy class of

eZNiV 0
( 0 e—21tiV )

As the monodromy at z = O is the inverse of the one at « and has determi-
nant 1, we find

tr(M) = 2cos2nv = A2-2
giving
A = +2cos nv.

We now observe that the uniqueness of x,, 4, in conjunction with Theorem
2.2.1, implies of the analyticity of g in v. This is a special case of the general
result that we shall prove in 1ll that the Stokes class of an analytic isoformal
tamily of marked pairs is analytic in the parameter. So the sign + above is in-
dependent of v. We thus finally get, in the coordinates t+,

®(Ay, Uy ) = £ (2 cos v, —2 cos V),

the signs being independent of v. The sign can be determined to be + by
looking more closely at x,, + (forone v), but we shall not do this here.

The above formula is remarkable because it shows that even for an al-
gebraic family such as the (V, V,) the map v — ®(A,, u,) can be transcen-
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dental. That this map cannot be algebraic can be seen trivially from the fact that
its fibers are infinite :

(V, V,) isisomorphicto (V,V,) & v +9v' or v — ' isaninteger.

For determining the isomorphism classes of the unmarked pairs we ap-
peal toTheorem 4.5.2 which gives the bijection

9(V, V) = Gg\H(S1, st),

where Gpg is the group of automorphisms of (V, Vg). Since B is a reduced
canonical form this is a subgroup of GL(2, C), and is in fact the subgroup of di-
agonal matrices. We use the bijection

H1(S1, St) = HO (S1.+, St) X HO (S1.—, St)

to idemtify H1(S1, St) with C2 via the linear coordinates t+ . The diagonal
matrix diag(«, B) acts on C2 via

(e, B), (te, L) — (A t, XTL) (A = «p).
The orbits are

He = {tv t = c}(c+ 0}, Hox = {t= = O}\{(0,0)}, {(0,0)}.

The hyperbolae Hg (c + 0) are stable in the sense that they have maximal di-
mension and are closed; the punctured axes Hp,+ are smooth but not stable.

For the set of stable orbits we have
(Gg\C?2)stable = Cx

THe space of smooth orbits of dimension 1 is not separated ; it is the complex
line with the origin doubled. More precisely, it is obtained by gluing two copies
of C along C* with the identification t = t. If we omit one of the punctured
axes we obtain the space C. The interest in the stable orbits is due to the fact
that in their neighbourhoods one can construct a geometric quotient for the ac-
tion of the group and hence a moduli space for the set of equivalence classes of
the meromorphic pairs themselves (without any markings); we shall see this in
detail in i
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Interestingly enough the Bessel family does not fill out the orbit space ;
the orbits Hp+ are not in the image of the Bessel family. If we define the con-
nection V_ on C2X P! by V&_gq4; = d/dz — Ax_(z) where

A%_(z) = z—'c'((iJ _? ) + z—1(10/2 55 ) ( + 0),

then it is not difficult to show that the formalization of (V, V*_) at z = 0 isiso-
morphic to that of (V, Vg) and that its analytic isomorphism class goes over to

the orbit Hp,-. To see this we begin by asking whether we can choose an up-

per triangular x = ( 3 ;’ ) such that x[A%_] = B, formally or anlytically. A

simple calculation shows that this is possible if and only if u is a solution, for-
mal or analytical, of

du/dz = 2iz2u—cx z1.
In the formal case we choose the solution
U = Zk 1 x(2i)-K(k=1)1 K.

As before we find unique y+ analyticon T(U+) such that
1 u® «
ve ~(o Y )(TWD yslA]=B

The corresponding cocycle is upper triangular for all u e S1\ {1}, not just for
u in the upper arc S'.+. Hence t- = 0, showing that the orbit corresponding
to this connection is Hg_. Let us now define A%, and V. by

A%, = S(Ax_)vS-1 | V&, g4z = d/dz - A%,

then it can be shown that the formalization of (V, V*,) is isomorphic to that of
(V, V) and that the associated orbit is Hop,+ .

Note that conjugation by a suitable constant diagonal matrix takes A%_
to AB_ forany p + 0, and so, the isomorphism class of A%_ is unchanged as
«x —> 0. But when « =0, A*_ = B which corresponds to the orbit {(0,0)}. In
other words, the image in the orbit space jumps from Hg_ to {(0,0)}. Thisis
the familiar jump phenomenon in the theory of deformations and shows that no
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reasonable deformation theory exists for the pair (V, Vg). At the points corre-
sponding to the orbits H¢; the Bessel family is locally universal, essentially be-
cause the map v — ®(A,, uy) is a complex analytic isomorphism locally.

The monodromy at z = 0 of V, is obtainedby computing M1/22 and so
is the conjugacy class in GL(2, C) of the SL(2, C)-matrix

M _ -1 2 cos nv
(v) = (—2 cos v —1 + 4 cos? nv)

This shows that V,, and V, are isomorphicat z = 0 if and only if they have
the same monodromy there. Moreover all the conjugacy classes of determinant
1 in GL(2, C) occur except the classes {—u :u + 1 and unipotent} and {(1)}.
We can show that the missing nontrivial class comes from the orbits Hg + .
Indeed, goingoverto t = 1/z, A%_ becomes A~ where

1/2 o 1 0
~ = =t —_
A~ = ( (¢] 1/2) '(O -1 )

which is of the first kind, hence regular, at t = 0. It follows from [BV 1] (cf. ex-
ample (1) following Theorem 3.3.1, and Proposition 3.11) that A~ is equiva-

lent under GL(2, C{z}) to the connection marix — t—‘( 1(/)2 10;2 )

and so, its monodromy is the class of
exp(—21ti( 12 = )) = — exp(—2ni (% < )).

Since this class is its own inverse, it is also the class of the monodromy of Ve&_
at z = 0. From the definition of V&, itis clear that its monodromy at z = 0 is
also the same class. So, unlike the Bessel connections , the two exceptional
connections have the same monodromy but are not isomorphic at z = 0.

5.3 THE WHITTAKER CONNECTIONS These depend on two parame-
ters k and m and are defined as before on C2 X PP1. We shall be interested
in the pairs defined at z = 0 by their restrictionsto V = C2 X C. The differ-
ential equations satisfied by the Whittaker functions are ( [WW], p 206 )
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d?W  (1-4m2) + 4kt — 12

W) az * pTE:

W = 0.

If k=0, m= v, and t = 2it, then the equation for W = t1/2J goes over to
the Bessel equation for J, (see [WW], p360). By the Theorem of Fuchs, t = O
is regular, and t = oo isirregular. We go over to the first order system and the
variable z = t-1 to get the equations

du
dz

Ak, m)u,

where
Ak, M)@) = z2(-TY-X) + zIKY + G- m2)Y.

Here we are using the notations
1 0 1 o

1/2 -1
If L = (1/2 1) then

L(-3Y—-XL=1 = (1/2)H.
We define the connection V(k, m) on C2 X P! by
V(Kk, M)adz = d/dz — A(k, m).
Let
B(k) = (1/2Hz—2 — z-1 kH.

Then B(k) is a canonical form and defines a connection Vgk)on C2 X P1 by
the usual formula. We have

LEMMA 5.3.1 The formalizations of (V,V(k, m)) and (V, Vgk)) at
z = 0 are isomorphic for any k. More precisely , there is a unique u = u(k, m)
e GL(2, C[[z]]) such that

u(©) = L, u[Ak, m)] = B(k).
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Moreover, u € GL(2, C[k, m][[z]]D).

PROOF This is proved essentially as Lemma 5.2.1 and so we omit the
proof. .

The meaning of the parameters is thus clear ; in particular, for fixed k, the
family (V, V(k, m))me ¢ is isoformal and ((V, V(k, m)), uy) liesin IM.(V, VBx))
forall m.

For Re gl(2, F) (resp. r e GL(2, F) write
Rt = -Rt, r = ()t (t = transpose).

Then 1 is an involution on the respective spaces, and r[R] = S & r[Rt] =
St. An easy calculation shows that if

(28 5= (8 0)

then,

Ak, m) = T[A(~k, m)¥t], S[B(K)] = —B(K), B(K) = —B(=K)V.

We introduce the function
@(z) = exp(—(1/2) z—1H ).

If St(k) is the sheaf St(V, Vg), then, for any open arc U € S1, g e St(k)(U) if
andonly if h = @=1ge = (h;) is holomorphic from T (U) into GL(2, C) that
satisfies

(@) @ ho=1 ~ 1(T(U)
(b) dh/dz + [h, -k z=1H] = o.
The relation (a) is equivalent to
h11 = hz2 = 1, eVZhya ~ 0(T(U)), eVZhzy ~ 0 (T(U)).
Hence, by (b) if we fix the branches z * 2k on T (U), we have

hi2 = c12z-2K, hzy = cz1 2%k (gje= C).
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The stalks of St(k) are trivial at z = +i; if u e S1.r, the right half of S1\ {i, —i},
«»—1St(k)(u)«® is the group of upper triangular matrices of the form

((1) 51 ) B = const. z—2k

For ue S1.£ the left half of S1\ {i, —i}, ®~1St(k)(u)® is the group of lower
triangular matrices of the form

1 0
(o: 1 ) « = const. z2K,

The Stokes lines are the rays through z = +i. St(k) is thus a sheaf of vector
spaces and Proposition 3.3.2 shows that H1(S1, St(k)) is two dimensional over
C. If U, = S1\ {7 i}, then the covering & = {U,, U_} of ST may be used to
compute Hl. We have, as in the Bessel case,

H1(S1, St(k)) = HO (S1.2, St(k)) X HO (S1.r, St(k)) & Ck+ X Ck—,

where CKk.+ (resp. Ck.~ ) is the one dimensional space spanned by the
branches of z+2k (resp. z—2k) on T (S1.%) (resp. T'(S1r). Although B(k) is not
in general reduced, it is true that the group G(k) of automorphisms of (V, Vg))
is the diagonal subgroup of GL(2, C). Indeed, if ue GL(2, &) and u[B(k)] =
B(k), then u is diagonal, and fixes the connection defined by —z—1kH ; thus
(du/dz)u—1 = 0, so that u is constant. The action of G(k) on H1(S1, St(k)) =
Ck.+ X Ck— is analogous to what it is in the Bessel case ; if u = diag(ec, B)
and » = Bx—1, then u acts by

(a,b)— (»a, »-1b) (a e Ck+ be Ck—).
LEMMA 5.3.2 There are unique isomorphisms
xs(k, m) : (V, V(k, m)) = (V, VBK))
preserving the asymptotic structures of level 1 such that
x+(k, m) ~ u(k,m) (T"(U.).
i 0]

Moreover , if 6 = (0 —i ) and T as defined above , then
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x_(k, m) = 6~1 x, . (—k, m)v¥t+ T-1 (on T (U-))
uk, m) = 6-1 u(=k, myvt T-1,
Finally , x+(k, m) and u(k, m) depend analytically on k and m.

PROOF The existence of xi+(k, m) follows from Theorem 2.2.4 while the
uniqueness follows from Proposition 3.4.2 since T (U:) do not contain more
than one Stokes line. The relations linking U+ follow from the uniqueness and
the easily verified formulae :

61 xyp(—k, m)vVt T-1[A(k, m)] = B(k), 6~ (L= T-1 = L.
Finally, the analyticity in k and m follows from Theorem 2.2.1. .

We define log, to be the branch of the logarithm on T (U;) which is
in/2 at z = i. Forany M e End(C2) we put z,M = exp(log; z. M). Define

Fi(k, m) = x4 (k, m)=1z,—KH oo,

Then F,i(k, m) is a fundamental matrix for the connection V(k, m) on T (U,).
We now associate to A(k, m) the cocycle defined by the x.(k, m) which may be
identified with the map

gk, m) = x_(k, m) x;(k, m)~1
from T (U,NU_) into G. By Lemma 5.3.2 we get
gk, m) = &1 x,(—k, mvt T-1x,(k, m)~1 (on T(U,.NU_).
From this we obtain, on T (U,NU_),
gk, m)vt = 6=1 x,(—k, m) T (x(k, m)vt)~1
gk, m)=1 = xy(k, m) T (x(—k, m)v)-1 5.
In particular, we get, on T (U, NU_),
gk, m)vt = & g(—k, m)~16-1.

The idea is now to determine g(k, m) in terms of F,(k, m). Observe that
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x¢(k,m) = z,—kH o Fy(k, m)—1.
On the other hand, it is obvious that
(log: z)V = log,z tin  (ze S'.r or ze S1.2),
and so,

gk, m)(z) = 6= z,— K exp(z inkH) @ (z) (Fi(—k, m)V1)=1 T-1 Fo(k, m) w(2)~1 4
kH

accordingas ze S1.f or ze S1.2,

Let us now consider the direct sum of the bundle C2 XP1 with itself
equpped with the connection

V(k, m) = V(k, m) P V(k, m)
whose connection matrix is
Ak, m) = Ak, m) P Ak, m)V.

We go over to the w-plane covering Cz* via w—> z = eW and denote by h~
the lift to the w-plane of the function h on the z-plane. Put

F~(k, m) = F,~(k, m) @ T F,~(-k, m)t.

In view of the relation A(k, m) =T [A(—k, m)V¥t] it is clear that F~(k, m) is a fun-
damental matrix for A(k, m). On the other hand the matrix J = ( 102 18 ).

where 12 is the identity endomorphism of C2, may be viewed as an automor-
phism of the bundle and it takes V(k, m) to V(k, m)¥ because AY = J[A].
Hence we conclude that there is an element T € GL(4, C) such that

F~(k, m)¥ = JF~(k, m) T.

The diagonal nature of both F~(k, m) and F~(k, m)V implies that T is zero on

the diagonal, i. e.,
0 Ti2
r= ( T 21 0 )
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The previous relation then reduces to the relations

Fi~(k, m)(w—ix) = TF,~(—k, m)* (w) T2

TF.~(-k, m)t (w—in) = F,~(k, m){(w) Tq2.
From the first of these we get

TFy(k, m)t (w—in) = Fy~(—k, m)(w) T'21*
leading to the identity

Ta1(k, m)t = T12(—k, m).

Moreover we also get

F.~(k, m)(w — 2in) = F,~(k, m)(w) T'12T 21,
so that, if M € GL(4, C) is the monodromy of F,.~(k, m) defined by

Foo(k, m)(w + 2ix) = F,~(k, m) M,
we have,
M = (T12T21)"1,
or,
M(k, m) = Toq1(k, m)~1 T2¢(— k, m)}t (t = transpose).
These relations become, on the z-plane,
Fiolk, m)(—2) = TFy (K m)t(2) T21, TF.(—k m)t*(-2) = Fi(k, m)z) T2,
for z € S1.2. Hence,
Fulk, m)2) = TF(-k, m)*(—2)T21 (z=Sr).
Substituting this in the formula for g(k, m) we obtain
@(2)1g(k, m)(z)®(2) = 6~1z,~KHe imkH T3y z,kH  (z e S1r).

But the left side is the matrix
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(8 B1 ) B = const. z72k

so that we get the identity

ieirk jgirtk g(k, m

where c(k, m) is the constant defined by the equation
8 = ¢k, m)z,— 2k,

On the other hand the formula linking the values of g(k, m) on U, and U_
shows that

@(2)-1g(k, m)@2)»(2) = 6~ @(2)71g(—k, M)(- )lw(2) 6 (zeS1 1),
which simplifies to

o@ gk, M@e@ = (_ g-zinkegem) 2,2k 1) @=St1)

From the formula for T'21 we obtain the following formula for M—1 :

eZiTtk 92i1ck c(k,m)
c(—k,m) e—2ink 4 c(k,m)c(—k,m)

M1 = (
In particular we see that
tr (M-1) = 2 cos 2rnk + c(k, m)c(—k, m).

On the other hand M-1 is the monodromy at <o and so its trace is the trace of
the monodromy M’ of the original system at t = 0. Now the connection matrix
att=0is

A = —t2-m2)Y —kt-1Y + (X +7Y)

and a simple calculation shows thatif y = G, ?) , then

0 1
y[A] = Ct1 + ..., C=(l——m2 1}
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From standard results (cf. [BV 1]) we then find that
tr(M') = tr(exp(2inC) = — 2 cos 2rm.
Hence
c(k, m)c(—k, m) = — 2 cos 2nm — 2 cos 27k.

Let us identify Ck.x with C using z,*2k as bases. Then the
Maligrange-Sibuya map becomes

(V(k, m), u(k, m)) — (— e—2ink ¢(—k, m), c(k, m)).

The action of G(k) = C* is i, (a, b)—> (»a, A—1b) and so the map taking
isomorphism classes of pairs to G(k)-orbits becomes

[V(k, m)lJo—> Hem), d(k, m) = e—2ink (2 cos 2xm + 2 cos 27k),

([..]o refers to the isomorphism class of thepair defined at z = 0) at least when

(ST) dk, m)*#0 < ki—m—%* z.

When +tme Z -k +% we can only say that the image of [V(k, m)]p is either the
trivial orbit {(0, 0)} or one of Hp + . The condition for stability is (ST).

To proceed further it is necessary to make a deeper use of the properties
of the Whittaker functions, and this comes down essentially to the use of their
integral representations. We shall now give a brief sketch of the arguments that
are needed to obtain explicitly the Malgrange-Sibuya map itself. Our main ref-
erence is [WW] (pp. 337-346). It is enough to work with generic values of m
since the Malgrange-Sibuya map is analytic in m.

The differential equations (W) have a basis of solutions Mg, + m, where
(1) Mk,im =tim+1/29_t/2{1+ ...... 13

where the expression within {...} is an everywhere convergent power series in
t whose coefficients are polynomialsin k and m. The branch ttm+1/2 s the
principal one, so that in reality, the Mg + m are functions on the w-plane which

105



D. G. BABBITT, V. S. VARADARAJAN

covers Cz* through the map w—> z = eW. Itis then immediate that the mon-
odromy transformation corresponding to a circuit around t = O is given by

Mi,+ m—> —et2tmMMy & .
Let us write, for any function h of w, hV for the function defined by
hv(w) = h(w + ix).
Then the Mg, + m are related by Kummer's formulae( [WW], p 338) :
M_k mY = em(m+12) My .

For studying the behaviourat t = o or z = 0 one uses the functions
Wk m which are defined through certain contour integrals ((WW], p 339). The
integral representation leads to an asymptotic expansion, while a second inte-
gral representation, going back to Barnes, allows one to determine the relations
between Wk m and Mg, + m ([WW], pp. 343-346). Thus we have,

T (—2m) T(2m)
Mm + Fimks1/2) Mk-m.

Wicm = TCm= ke172)

and

Wikm ~ tkeV2{1+...}, (t=e% Imwli <x, Rew — o).
On the other hand W_k, mV is also a solution of (W) and so we have
ekTW_ i mV ~ t-keV2{1+....}, t=eW, -2r <Imw <0, Rew — ).

These relations may of course be differentiated formally with respect to t, and
so we get the following asymptotic expansion of a fundamenati matrix for (W):

ik v k g— t/2
G=(ka e'"™W _km )~H(t)(t e 0

Wkm' ekt W_mnv! (0] tk et/2 ) (= didt)

H) ~ (_: 12 112 ) + e GLE CI1AD),

for the regime

-t <Ilmw <0, Rew — o, t=eW.
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Let us now go overto z = 1/t which corresponds to making the trans-
formation w—> — w sothat z = e—~W. Write

RW) = G(— w).
Then
Rw) ~ K(z)(z—k g-1/22 » (;1/22 ) (z—> 0, 0 < arg(z) < =),

where K is asymptotic to an element of GL(2, C[[z]]) in the same sector. As

1 1
(_1/2 1/2) = L-1, we have,

z—k g-1/2z ¢ ;
( 0 zk e1/2z )R(W)' ~Ki (z— 0, 0 < arg(z) < m),

where Ki € GL(2, C[[z]]) and K{(0) = L. Since R is a fundamental matrix for
V(k, m) it follows that the gauge transformation above must be the same as the

x+(k, m) we have been working with earlier. But then, as
Fie(k, m) = xi(k,m)-1z,~KH o,
we have,
Fi(k, m)(z) = R(w) (z = eWe T(U,)).

Let M be as before the monodromy of Fi(k, m) so that R(w + 2ix) =
R(w) M which leads to the relation G(w +2ir) = G(w) M—1, showing that M—1
is the monodromy of G. On the other hand the relation between Wy m and the
Mk, + m implies the following relation:
T (—2m)

ikt v = it(m +k + 1/2)
MWk mY = T ke 1/2) © M, m +

T'(2m

in(—-m +k + 1/2) .
T (m+k+1/2) © M, —m

Hence, if
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M = (Mkm M_km

M'km M'k—m
we have,
G=M?, ¥ =(5)j=12,
where,
- T'(2m - —L(2m) i(m + K + 1/2)

T = TComk+172) ' 12 = Timekeig) o "

v, - —T(@m) o T@mM) ircmak+1/2)

21 = T(mke1/2)’ 2= T(meke1/2)° :
Hence

— eg2itm 0
M- = 3'—1( o _ e_zmm)a',

which gives, after a simple but tedious calculation, the following formula for M—1
= (Miij=1,2"

— o?ikn - 2in oZlkn
w1 = ' M2 = Tmeke1/2)T (—m+k+1/2) °
B2t = 2in — e2ikx — 2 cos 2mm.

T(m—k+1/2)T (-m—k+1/2) * ¥22 =

If we compare this with the formula derived earlier for M1, we get,
2in
T (m+k+1/2)T (—m+k+1/2) °

c(k,m) =

It follows from the above formulae that the cohomology class which is the image
of ((A(k, m), u(k, m)) under the Malgrange-Sibuya map is represented by the
cocycle g(k, m) attached to the covering & = {U,, U.}:
2in
1 Z+_2k
gk, m) = T (m+k+1/2)T (—m+k+1/2) (ze S1r),
0 1
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1 0
g(k, m) = —2ine—2ikr 2.2k 1 (z= S12).
T (m—k+1/2)T (—m—k+1/2) “*

These formulae allow us to determine the orbits that arise from the con-
nections V(k, m). Since 1/T (z) is entire and vanishes only at the points z =
0, -1, -2, ...., we get the following conclusions:

2k¢ Z: All orbits except {(0,0)} arise.
2ke Z, Kk < 0: All orbits except Hp . arise.
2ke=Z,k > 0: All orbits except Hp- arise.

k =0: All orbits except Hg+ arise.

5.4 GENERALIZATIONS These calculations have been generalized in a
far-reaching manner in a recent work of Duval and Mitschi [DM]. Their object of
study is the family of differential equations

Dap = NPz IT1<jcp @+ n) - IT1<jcq @+ vj-1)

wher 9 is the Euler operator zd/dz, and 4, ... ,up and vq, ..., vq are com-
plex parameters. When q = p+ 1 > 2, the associated connections have an ir-
regular singular point at < and their formalizations have only one level,
namely, 1/g—p. The reader is referred to their paper for the details involved in
the calculation of the Stokes multipliers and the Malgrange-Sibuya maps.
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PART 1l : THE COHOMOLOGY OF STOKES SHEAF

1 COHOMOLOGY OF GROUPS

1.1 Let X be atopological space. We assume that the reader is familiar with
the language of sheaf theory, as in [G] for instance. We work with sheaves of
sets and groups which are not necessarily abelian. If 8 is a sheaf of groups
(resp. sets) on X, 4&(U) or HO(U,8) will denote the group (resp. set) of sec-
tionsof 4 on U. If U and V are open sets and s and t are two sections on
U and V respectively, we write s=t on Un Vto meanthat s and t have the
same restrictionon Un V.

Let § be a sheaf of groups and ¥ a sheaf of sets, both defined cn X.
We say that O isa (left) G-sheaf if @ actson I . More precisely, this
means that we have left actions of §(U) on 97 (U) for each open set U C X
that are compatible with the restriction maps. We then have an action of the
stalk G(x) on the stalk 9'(x) for each x in X. We regard § itself as a {4-sheaf
by letting §(U) act on itself by left translations. A Q-torsor isa G-sheaf I
that is locally isomorphic to @, i.e., there is a covering (Uj) of X by open sets
U;j such that the restrictions of 9 and 8 to U; are isomorphic as 8-sheaves

for all i. Torsors generalize principal bundles.

1.2. If 9 is a sheaf of groups on X, we write as usual
HO(X, @) = 9(X) = the group of sections of G on X.

Let G = (Uj) be an open covering of X . The 7-cochains associated to € with
valuesin 9 are systems g =(gij) where gjj is a section of § on Ujn Uj; gis
called alternating if gjjgji =1 ;9 is called an 7-cocycle it gjjgjk gki =1 on
Ujn Uj n Uk . Note that if the covering is such that all distinct triple intersections
are empty, i.e.,if Ujn Ujn Uk =< wheneveri, j, and k are distinct, then all al-

ternating cochains are automatically cocycles. The set of 1-cocycles associated
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to ¢t is denoted by Z(€, 8). The coboundary group C(Q, §) associated to €
is the full direct product of the §(U;j) :

c@, 9) = TTi 9.

We have an action ¢, g —> c[g] of the coboundary group on the space of cocy-
cles given in the usual manner for c = (cj), g = (gij), by

clgl] = h  where h = (hjj), hjj = cjgj Cj'1 on Ujn Uj.

The space of orbits for this action is the cohomology associated to @ :

c@, 9) \ Z(@,9).

The system gjj= 1 defines the trivial cohomology class 0 ; thus H1(e, 8) isa
pointed set. If B = (V) is an open refinement of & with refinement inclusion
V& CUj(x) » we have induced maps g —» g' of Z(&, 9) into Z(®, 8) and
c—> cf of C(¢&, 9@) into C(®B, 8) given by

H1(el, 9)

9'xp = Gi(x)i(B) onUx nUpg | cfx= Cjx) ©On U

The first is a morphism of pointed sets and the second is a homomorphism of
groups. It is immediate that c[g]" = cf[gl] and so we have an induced map on
the cohomology spaces H1(t, 9) —» H1(®, 9). This map is independent of
the refinement inclusion chosen. Indeed if Vi < Uj(«) is another refinement

inclusion, we have (with obvious notation) gr' = c[gf] where c is the element of
C(®, 8) given by Cu = gi'(ex) i(ex) ON Ve -

A special feature of first cohomology is that the refinement maps are al-
ways injective. More generally, we have

PROPOSITION 1.2.1 /f g ,h e Z(Q, 8) and h' =c[g'] for some ¢ e
C(®, 9), then we can find d e C(Q, 9) suchthat h=d[g] and df'=c. In
particular, the refinement map of the cohomology spaces is injective.

PROOF Define, for indices i, ¢,

dix = hji(ex) Cox Gi(ex)i ©ON Ujn Vg .
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As hii(ec) = hii(g) Ni(B) i(cx) » Gi(ex) i = Gi(ex) i(B) Gi(B) i+ Ni(B) i(ex) Cox Di(ex) i(B)
= cg on Ujn Vg n Vg, we see that djx =djg onUjn Vg n Vg . So there are
dj € 9(Uj) such that dj=djx on Ujn V, forall e, i;taking i=i(x) inthe
definition of dj o« we see that di(x) = Cex ON Vx - So hjjand digijdj'1 restrict
to the same element on Ujn Ujn Vg n Vg, and hence h = clg. .

As usual we define H1(X, 8) as an inductive limit :
H1(X,9) = lim ¢ HY(@, Q) .

In view of the above proposition each H1(Ci, 9) imbeds naturally in H1(X, 9),
so that we can write

H1(X, 9) = U e H1(L, 9) .

The covering € is called good if H1(X, @)= H1(C, @) . From our definitions it
is immediate that C(C(, 8), Z(&, 9), HO(X, 8), and H1(X, 8) are all covariant
functors of 9.

PROPOSITION 1.2.2 Let 9 be a sheaf of groups on X. Then the
elements of H1(X, @) classify the Q@-torsors on X . More precisely, there is a
natural bijection from the pointed set of isomorphism classes of @-—torsors on
X to the pointed set H1(X, 9) .

PROOF For any @-torsor ' on X, select an open covering €& = (Uj)
of X and 8j-isomorphisms @ : §j ~ 9, the suffix i denoting (here and else-
where) restriction to Uj. The identity section of G maps to a section tj of I’
and there are unique gjj= 9(Ujn Uj) such that gjj[tj] =tj on Ujn Uj. Clearly
g = (gjj) is anelement of Z(t1, 9) . It is a standard verification that the image of
g in H1(X, 8) depends only on the isomorphism class of I and not on the
choice of I°, € ,orthe «j. If I, I are such that gijj= cigijcj"1 for suitable
cj = 9(Uj) , one can construct a global isomorphism of 9 with '. Indeed, re-
placing «j by «j- r(cj) (r(cj) is right translation by cj) we may assume that gfj;
= gjj foralli,j. If 8; is the isomorphism of 7 with I'j that takes tj to ti,itis
immediate that 8; = 8; on Ujn Uj. Thus the 8 are the restrictions of a global
isomorphism of 9° with 9" . In other words, the isomorphism classes form a
set, and we have a natural injection of this set into H1(X, @) . To see that this is
surjective let g = (gjj) be an element of Z(Ct, 9) . We can define a 9—torsor I
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by gluing the §jalongthe Ujn Uj via the bijections t —>» tg;j(x) of the stalks
9ij(x) with gj(x) , xeUjn Uj . ltis easy to check that the resulting 9—torsor I
is the one that gives rise to g. .

COROLLARY 1.2.3 The image of a S-torsor T in H1(X, 9)is
trivial if and only if T is trivializable , i.e., if and only if I admits a global
section. If moreover HO(X, @) =0, any such I has a unique section, i.e., T
is uniquely trivializable.

PROOF Obvious. .

If UC X is open, then we have a natural restriction map taking S-tor-
sorson X to 9-torsors on U. Thus we have a natural map from H1(X, @) to

H1(U, 8) . At the level of cocycles this is the map that associates to the cocycle
(gjj) coming from the covering (U;j) the cocycle gy = (restriction of gjj to Un

Uinyj).

COROLLARY 1.2.4 Suppose € = (U;) is a covering of X such that
for any i the restriction map H1 (X, 9) —> H1 (Uj, Q) is the zero map. Then

& is a good covering.

PROOF By assumption any Q-torsor & on X trivializes on U; and

hence it follows from our discussion that the cohomology class associated to
T is already represented by a cocycle from € . .

The geometric interpretation of H1(X, @) furnished by Proposition 1.2.2
behaves well from the functorial point of view also . More precisely, let @' be
another sheaf of groups on X and @ —> Q' a sheaf morphism . Then the
corresponding map H1(X, 9) —— H1(X, 9') can be viewed geometrically as
follows . Let I be a 9-torsor on X, and let us identify @', 8, and 9 with their
etale spaces above X, with @ acting from the righton §' via g ——> §'. We
form the fibre product @' Xyx I on which G acts freely from the right via
(g, 1), g —> (g'g, g-1[t] ) and define ' as the quotient space for this action
with the quotient topology . The action h, (g'.t) — (h @', t) of @' from the left
induces an action of §' on I'. ltis easy to verify that O isa 9'-torsor and
that the map of H1(X, @) — H1(X, @') definedby T — T isin fact the
natural map corresponding to the map & — 9'.
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If X is compact one needs to work only with finite coverings. If X is not
compact this may not be enough. In general, if T is any class of open cover-
ings directed with respect to the refinement ordering, H11~(X, 8) will denote the
union of all the H1(€1, §) where € runs through the coverings from T. Clearly
under the identification of Proposition 1.2.2, H1 T (X, 9) corresponds to the set

of isomorphism classes of torsors & on X for which there exists a covering
(Uj) from T with the property thet & trivializes on the Uj for all i.

1.3 Let 9@ be a sheaf of groupson X, and let g be a cocycle for §. Our
purpose now is to define a sheaf of groups 9(9) , the so-called twist of § byg.
We shall be a little more general and suppose only that g is a cocycle for & ,
&F being a sheaf of groups on X that contains @ as a normal subsheaf .

Let us write €& = (Uj) for the open covering such that the cocycle g = (gjj)
belongs to Z(C1, &) . Let 9; be the restriction of @ to Uj. The sheaf 9(9) is
then obtained by gluing the 9; along Uj n Uj by identifying the stalk 9j(x) at x
€ Uj n U;j with the the stalk Gj(x) via the isomorphism t — gijj(x) [t] where u[t]
denotes utu-1. Itis obviousthat 9(9) is locally isomorphic to @ and that for
any open U < X the sections of 9(9) on U may be identified with families (s;)
where sje 9(U nUj) and gjjlsjl =sjon Un Ujn Uj. In particular, if g trivial-
izes on U, there is no twistingon U, i.e., @ and g(9) are isomorphic on U.
Indeed, if gjj = CiCj‘1 on Un Ujn Uj where ¢ are sections of 3 on U n Uj, the
isomorphism takes the section s of @ on an openset V< U to the section of
9(9) on V given by the family (cj[s]). If c=(cj) isin C(@, &) and h =c[g] we
have an isomorphism 8¢ of 8(9) with g(h) that is defined by the requirement
that it takes the section (sj) of 9(9) on U to the section (cjlsi]) of 9(") on U.
We check easily that Bcg' =8¢ <8¢ . If B = (V) is arefinementof ¢ and Vg
€ Uj() is the refinement inclusion, and we replace g by h = gf, we have an
isomorphism ¢, of 9(9) with g(h) that takes the section (sj) on U to the
section (o) on U where o = Sj(c) ON UNn Vg . If Ug © Vi(x) is another
refinement inclusion, k =gf",and «p is the corresponding isomorphism of
9(9) with g(K), we have ¢y =8g- @r; here d isin C(B®, ¥) and is given by
di = gi'(x) i(cx) » SO that k =d[h] . ltis clear from these remarks that the isomor-
phism class of a(g) depends only on the cohomology class of g, say ¥ . We
therefore often write 9(¥) instead of 9(9).
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PROPOSITION 1.3.1 let F =9 ,% e H(X, 9), andlet g eZ(C, Q)
represent ¥. Then

HO(X, §(9)) = the stabilizer of gin C(C, 9) .

In particular HO(X, 9(¥)) = 0 if and only if the stabilizer of g in C(C, Q) is triv-
ial .

PROOF The group HO(X, @(9)) is isomorphic to the group of all sys-
tems c = (cj) such that cj = 3(Uj) and QijCjQij'1 =¢j, i.e., to the subgroup of all
c in C(Q, Q) with c[gl=g. e

REMARK Suppose that HO(X, (%)) = 0. Then the sheaf 9(¥) itself is
canonically defined (not just its isomorphism class) . For in this case the iso-
morphisms @(9) ~ g(h) constructed in the above discussion are uniquely de-
termined. Indeed, by the above result, when we go from g to h = c[g] the
coboundary c itself is uniquely determined by g and h, so that we have a
canonically defined sheaf corresponding to the choice of C ; when we change
over to a refinement ® , the formula ¢p =84 - ¢y shows that the sheaves as-
sociatedto €& and ® are canonically isomorphic. ¢

Suppose now that & = § . We shall now show that given any cocycle
g for 9 one can naturally define a twist 33(9) of any 9—sheaf I3, which will be
a 9(9)-sheaf defined upto isomorphism . Let & = (Uj) and g = (gjj) be as
before and define the sheaf %(9) by gluing the j and L along Ujn Uj via
the identification t —> gijj(x) [t] of the stalk JSj(x) with the stalk I83j(x) , for all
x e Ujn Uj. The sections of &(9) over an open set U are families (sk) ,
sk e $(Un Ug), such that gk [s)l=sk on Un Ugn Ujforallkl;if (gk) isa
section of 9(9) , it is then immediate that (gk [sk]) is also a section of
5(9).Thus (9) isa 9(9)-sheaf, and I —> 3(9) is a covariant functor . As
before we have isomorphisms 8¢ (53(9) — 5(h)) when h = c[g] , and isomor-
phisms ¢ (3(9) —» x(h)) when h =gl , with the same relations . We thus

obtain the 9(¥)-sheaf 33(¥) defined upto isomorphism , the sheaf itself being
canonically determined if HO(X, @(¥)) =0, ¥ being the cohomology class of g.

PROPOSITION 1.3.2 Twisting by g induces a bijection of H1(X, 9)
with H1(X, 8(9)) andtakes ¥ to 0, ¥ being the cohomology class of g.
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PROOF It is clear from our construction that (33, §) is locally isomor-
phic to (3(9), 9(9)), and so, if & is a 9—torsor, B(F) is a 9(9)-torsor.
Twisting by g thus defines a map from H1(X, 8) to H1(X, 9(9)). Since we
can replace g by refinements coming from a cofinal family of coverings of X, it
is sufficient to show that for any g € Z(Q, 8) , twisting by g gives a bijection
H1(e, @) = H1(e, 8(9)). Let 5 be a 9—torsor with sections sj on U;j which
are related on Ujn Uj by hiflsjl =si, h= (hij) being the cocycle that corre-
sponds to 33 . Clearly 33(9) also trivializes on the U;j. We shall now compute
the cocycle corresponding to the sheaf 33(9) -

To this end we shall construct sections for 33(3) over the U;. Define the
family s;" = (sijk) by setting sjk= gkilsi] on Ujn Uk . As sjj = gik [sik] on Ujn
Uk n Uy, s;i" is asection of 33(9) on U; ; the cocycle corresponding to 33(9) is
then given by the system h" = (h;;") where hjj* is the element of a(9) (Ujn Uj)
that satisfies hjj*[sj"] =s;* on Ujn Uj. An easy calculation shows that hjj* =
(hijk) is given by

(T hijk = 9ki hjj gjk -

This is the basic formula for our purposes. If we take hjj = gjj here , we see that
hijik = 1, showing that %(9) is trivial as a 9(9)-torsor . Let IN. be another g—
torsor represented by the cocycle m = (mjj) , such that () is isomorphic
with M. (9) . Writing the cocycle for M.(9) as m;* = (mjjx) as above , we
have sections ¢;" = (cik) of 9(9) on Uj such that m;j* = ¢;"hjj"c;"-1 on Ujn U;.
So mijjk = cik hjjk Cjk'1 on Ujn Ujn Uy, or mj=di hjj djk'1 on Ujn Ujn Uk,
where dik = gik Cik ki - The relations cj = gki"! cik gki imply that dj; = dik on
Uj n Uk n Uj so that there are sections dj of 9 on Ui that restrict to djk on
Uj n Uk ; and we have mij = dj hjjdj’1 on Ujn Uj. This proves that & and T
are isomorphic .

It remains to establish the surjectivity. Let m”= (mij") be a cocycle for
9(9) and write mji* = (mjjk) . Define hijjx = gik Mijk gkj on Ujn Ujn Uk .
Then an easy calculation, based on the relations mjjk = gik-1 miji gik shows
that hijj = hjjk on Ujn Ujn Uk nU;. So there are hjj in 9(Ujn Uj) that restrict
to the hijk , and it is an easy matter to verify that the (hij) define a cocycle h
for §. Itis obvious that the twist of h is mA. .
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DIRECT AND INVERSE IMAGES. Let X, Y be topological spaces, and f
(X — Y) a continuous map. If 9 is a sheaf of groups or sets on Y (resp. X)
its inverse (resp. direct) image is *Q (resp. fx3 ) on X (resp.on Y). If @ is
on Y, (f*9)(x) = gf(x)( x & X); for open U € X, f*@(U) is the set of continuous
maps s of U into the etale space of § such that s(x) € Gf(x) forall x e U. If
g ison X, then foranyopen V C Y, f,8(V) = 9(f—1(V)). Let us now suppose
that X and Y are compact metric spaces, Y is the space of orbits of a finite
group G with a free actionon X, and f (X — Y) is locally trivial so that each
point of Y has an open neighbourhood U such that f=1(U) = G X U, G acting
on the first component by left translation; in particular, f —1(U) = || geG Ug
where Ug are disjoint, gUp = Ugh , and f (Ug —> U) is a homeomorphism.
For a sheaf @ of groups on X, (f,9)(U) = P geG 9(Ug) so that we have
(fx8)(y) = P f(x)=y 9(x) . Assume now that G operates on § compatibly with
its action on X. The stalks of f,Q are stable under G, so that the subsheaf of
invariants (f,9)G is well defined . The inclusion (fx3)G «—— {,9 gives a

natural map
i1 HI(Y, (fx8)G) — HI(Y, 1,9) .

On the other hand, we have a natural imbedding j: HI(Y, {4x8) —— H1 (X, 9);
indeed, if Cly = (Vj) is an open covering of Y, and CQx = f*Cy = (Uj) where
Ui =f=1(Vj), H1(Qy, 1,9) =H1(Cix, 8). So we have a natural map

F=jei:HI(Y, (£,9)8) — H1(X, 9) .

Finally, as G acts on @, it acts on H1(X, @) also, and we write H1(X, 9)G for
the pointed subset of its G-invariant elements. If ¥ is a sheaf of groupson Y
and 9 = f*H, the stalks of @ at points above y € Y are canonically identified
with H(y) so that we have a natural action of G on § that commutes with this
identification; and % = (f*8)G canonically.

PROPOSITION 1.3.3 Suppose HO(X, 9(%)) =0 forall « e H1(X, 9).
Then | is a bijection of H1(Y, 1,9) with H1(X, @) and F is a bijection of
HI(Y, (1x8)G) with H1(X, 9)G . Iffurther @ = *3% as above, then H1(S1, %)

= H1(X, 8)G canonically.
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PROOF To prove that i is injective let us consider (in the notation in-
troduced above) g,h = Z(Qy, (f+9)G) such that h =c[g] for some ¢ = (ci) =
C(Qy, f49) ; it is a question of proving that ¢j 9(Ui)G forall i. Clearly, as gjj
and hj; are G-invariant sections of 9 on Ujn Uj, we have ct[g] = h also for
any te G, and so ((ct )~1c) [g] = g. As HO(X, Gg(x)) =0 for « = [g] , we con-
clude from Proposition 1.3.1 that (ct )~1c =1, i.e., ¢t = ¢ . It is obvious that F
maps into H1(X, 9)G . Suppose now that « «H1(X, 8). We shall find a cov-
ering Cly of Y anda g = Z(f*Cly, 9) that represents c; this will prove that j
is surjective. To this end, we choose a G-invariant metric dist x for X; then
dist y (y, y') :=dist x (f=1(y), f—1(y")) is a metric for Y. Forany € >0 let G(g)
be the covering of X by all the open balls of radius € . As X is compact these
coverings are cofinal. Since G acts freely on X, there is an €g > 0 such that
dist x (x,t(x)) = €g forall xe X, 1+t e G, and sowe can find €,0 < € < igg,
and a cocycle h € Z(G(c), §) representing « . If Bisin ©(e) its transforms
t[B] (t € G) are disjoint; if By =f(B) then f—1(By)=|| teg t[B], and Qy =
{By | B e ©(c)} is acovering of Y. We may thus view G(g) as a refinement of
f*Cy viatheinclusion B < f—1(By) =G[B]. If B, B' arein G(g), G[B] n G[B'
is the disjoint union of the t [B] n t' [B'] and so there is a unique section of §
over G[B] n G[B'] that restricts on t[B] n t' [B"] to the section defined by h. So
we obtain a cocycle k from Z(f*Cly, §) that maps into h under the refinement
map . Thus k represents « also. Suppose finally that o« is invariant under
G . The cocycle k constructed above may not be invariant; we shall now show
that it can be modified so as to become invariant. If t € G, the transform kt will
also represent « ,i.e., kt =ct[k] fora ct e C(f*Cly, @) ; the element c; is
unique because HO(X, 9(“)) = 0, exactly as in the earlier proof. Let us now
write M for C(f*Cly, 9) viewed as a G-module; c (t —> ct) isthen a map of G
into M satisfying c1=1, cgt = (c{)Scg , i.e.,, c—1 e HI(M, G) . We shall
presently prove that H1(M, G) = 0 ; assuming this for the moment we see that
thereisa d e M suchthat ¢y =dtd—1 forall te G. If g=d—1[k], g repre-
sents « and gt = (dt)"1kt]=d—Y(c) IKt1=d- 1kl =g.

It remains to prove that H1(M, G) =0 . Since M is the complete direct
sum of the G-modules Mg = 9(G [B] ), it is enough to show that H1(Mg, G) =
0 forany B. We identify Mg with the G-module of maps from G to §(B) by
identifying the map t —> by with the section of § on G[B] that restricts to (bp)t
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on t[B] ; the action of s—1 e« G onthe map t—> bt is to send it to the map
t —> bgt . Suppose maps mg (G —> 9(B)) are given such that mq(u) = 1,
mgt(u) = mt(s—'| u) mg(u), s;t,ue G. Let d(G—— 8(B)) be the map defined by
d(u=1) =my(1). Then

dt =Ty du—)~1=dt—Tu=N)duT)y 1 =myu () my (1)~ T=m¢ @)

proving that mi =dtd—1, te G. This completes the proof. .

1.4. EXACT SEQUENCES OF SHEAVES ON S' AND THEIR COHOMOLO-
GIES From now now on we shall suppose that X = S1 . We begin by recalling
that when we have a diagram 0 —» U — V —> W —> 0 of pointed sets , ex-
actness at V means that the fibre in V above the distinguished point of W is
the image of U, while exactness at U (resp. W) means that the map from U
to V (resp. V to W) is injective (resp. surjective) .Consider now an exact se-
quence of sheaves of groups

(Eq) 0 > 9 > 9 > 9" > 0

on S1. The induced map from H1(S1, §) to H1(S1, @") is surjective; in fact,
the standard construction defining the usual boundary map in the abelian case

(see for example [MK] p 59) shows that if ¥ isin H1(S1, 8") we can find a
finite open covering . = (M3 ) and a representative cocycle of ¥ from this

covering, say g, such that g lifts to an alternating cochain of @ from . . As
dim (S1) = 1, we can choose (see below) M, = (My,) so that triple intersections
of the My, corresponding to distinct indices are all empty, and hence it follows
that ¥ lifts to a cocycle for § .To (E{) we can therefore associate the exact

sequence
0 — HO(s1, g —s HO(S1, g) — HO(S1,8") —
(E2)
—> H1(81, g') — H1(S81,9) — H1(S1,8") — 0.

Suppose € = (Uj) is a covering of S1 and be Z(1, @) and let a be the
image cocycle in Z(C, §") . From the discussion of twisting we have given it is
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clear that we cantwist @' and 8 by b and 8" by a to obtain the exact se-
quence of the twisted sheaves

(E3) 0—> g'(b)——>s gb) —»5 g~(@) —> 0

which leads to the exact sequence
0 — HO(s1,8'(b)) —HO(S1, g(b)) — HO(S1, g"(a)) —
(Eq)
— H1(S1, g'(b)) — H1(s1,8(b)) —H1(ST, g"(a)) —o0.

Moreover it follows from our definition of twisting of cohomology classes that the
square

H1s1,9) —— HI(sl, 97
vlvtb »Lta
H1(s1, gb)) ——— HI(s1, g"(@)

is commutative, the map t p, (resp. t 5) being the twist by b (resp. a) ; this is clear
from the formulae (T ) of the previous paragraph for the twists of cocycles .

We have used above the fact that there is a cofinal family of coverings

whose triple intersections are empty, and for these all alternating cochains are
cocycles . This is easy to see. Indeed, let q = 1 be any integerand zg, z1, ...,

Z4q =20 be the division points of the circle S1 into 4q arcs of length ©/2q,
the points being ordered in the counterclockwise direction; the open arcs
(zo ., 22) , (21, 23) . - .(24q-2 » 20), (Zag-1 » 1) then form a covering of S
whose distinct triple intersections are empty . For later use we note that by per-
turbing zg slightly it is possible to ensure that the z; do not lie in any given fi-
nite set . It is also useful to remember that if & is any open covering of S1,
there is an integer p > 1 such that any open covering of S1 by open arcs of
length <=n/p is a refinement of ¢t . The following proposition is now obvious.

PROPOSITION 1.4.1 Let 9,9',9" be sheaves of groups on S1
satistying (E{) and let HO(S1, g"(x)) =0 forall « e H1(S1, g"). Fix a co-
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cycle a representing o and a cocycle b for § thatlies above «. Then
the fibre above o of the map H1(S1, 9) —>» H1(S1, @") is canonically iso-
mormphic to H1(S1, g'(b)) . More precisely, the diagram

J-tb J—ta
0 ——» H1(s1, g'(b)) ——5 H1(S1, g(b)) — HI(S1,9"(a))——>5 0

is commutative , the bottom line is exact, and the fibre in H1(S1,8) above «
gets mapped to the image of H1(S1, 9'(b)) in H1(S1, g(b)) .

1.5 We shall conclude this section with the formulation and proof of a resuit
of Deligne [De 3] that will be decisive in the proof of the representability theorem
discussed in the next section. We fix a real number a > 2n and consider the
map f of the open interval | = (0, a) onto S1 that takes x to its residue class
mod 2r . Let & be the category of sheaves of groups @ on S1 such that

HO(, f*g@) = 0, HI(,f*8) = 0.

PROPOSITION 1.5.1 (Deligne) Forany 9 in 8 ,HO(S1,8)=0.
Moreover, if J = (0, a-2rn) , we have a natural isomorphism (of functors with
values in the category of pointed sets)

H1(S1,9) = HO, f*g).

PROOF We shall give Deligne's proof [De 3] of this result that relies on
the interpretation of H1 as the set of isomorphism classes of torsors . To begin
with, as we have the imbedding HO(S1, §) «—> HO(l, *g), we must have
HO(S1,8) =0. So we are left with Hl. Let @ €« & and o bea G-torsor on
S1. Since f is a local homeomorphism it is immediate that f*J is a f*g—
torsor . By assumption f*9 is trivial and uniquely trivializable on 1. Let t be
the unique section of f*J° on |. Since the stalks of f*9" at x and x + 2x are
the same there is a unique element g(x) € f*G(x) such that

(%) g(x) [t (x)] = t (x+2n) (O<x<a-—2n)
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In other words, we have an isomorphism above S1 between the restrictions of
f*I to (0, a-2n) and (2r, a) inducedby g. Now g = HO(J, f*g), and we
note first that g depends only on the isomorphism class of I°. Indeed, if ' is
isomorphic to 7, the lifted isomorphism *J' = {*9 must take the unique
section t' of f*T' to the section t of *J". This shows immediately that g
does not change if we replace 9 with '. We thus have a map

H1(S1, g) — HO(Y, 1*Q) .

If T is already trivialon S1, t(x +2rn) =t (x) sothat g(x) =1. Hence the map
above is defined in the category of pointed sets . We wish to prove that it is a
bijection .

To prove the injectivity, let us consider two Q-torsors o, O for which
the associated sections g are the same :

gt ()] = t(x+2x), gX)t'(x)] = t'(x + 2x) .

It is a question of showing that the isomorphism & of f*J with f*3J' that takes
t to t' descendsto S1,i.e., &(x) depends onlyon f(x). If x and x + 2r are
both in I, then 0 <x < a-2n, and we have

D (X)(t (x + 2x)) = P (x)(g(X)[t (X)]) = g(X)[t'(x)] = t'(X + 2K) = P (x+2x)(t (X + 27) .
This proves that ®(x + 2x) = ®(x) .

To prove the surjectivity,let g € HO(J, £*g). Write U for the trivial f*9—
torsor on | with t as its unique section . To show that U descendsto S1 we
first prove that there is a natural way to identify U(x) and U(x + 2xn) for 0 <x <
a — 2n . We define 8(x) as the unique bijection of U(x) with U(x + 2x) such
that

8(x) ()t (x)]) = t (x + 2m).

If x,Xx+2x,...,x+2rr arein |, we define B(x) (U(x) = U(x + 2rr)) by

Br(x) =8(X + 2(r—1)x) - ... - B(x + 27).
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It is obvious that we have a consistent scheme of identifying the stalks of U
above S1sothat U=f* fora @-torsor ¥ on S1. The construction shows
that I givesriseto g.

It remains to show that the map 9" —— g is functorial . If §' is another
sheaf from & and @ —> Q' is a sheaf map, the Q'—-torsor ' which is the
image of T has the stalks '(x) = 9'(x) X " (x)/3(x) . Hence f*T'(x) =
*g'(x) X * (x)/1*9(x) so that we may represent t'(x) by (1, t (x)) . It follows
easily from this that g'(x) is the image of g(x) in *9'(x) . In other words, we
have a commutative diagram

H1(S1, 9) — HO(J, *Q)
l l

This proves the functoriality. .
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2 SHEAVES OF UNIPOTENT GROUP SCHEMES AND THE

REPRESENTABILITY OF THEIR COHOMOLOGY

2.1. We begin by recalling some basic facts about affine group schemes and
algebraic matrix groups ; for more details see [Wa] and [Bo]. We work over C
and all our C-algebras are commutative and have units . For any C-—algebra
R we consider covariant functors F : S —> F(S) from the category of R-alge-
bras to the category of sets. Two such functors F, G are naturally isomorphic if
there is a bijection F(S) —» G(S)) for each S such that for any homomorphism
of R-algebras S —> S' the diagram

F(S) — G(S)
4 4
F(8') — G(S)

commutes . F is said to be representable over R or an affine scheme over R
if there exists an R- algebra A such that F and Homg(A, . ) are naturally iso-
morphic functors. We then say that A represents F over R, and write A =
R[F]. Given F, A is determined upto isomorphism .

An affine group scheme over R is a representable functor from the cate-
gory of R-algebras to the category of groups. The algebra that represents this
functor is then a Hopf algebra; and conversely, if A is a Hopf algebra over R,
the sets Homg(A, S) become groups in a natural way for any R-algebra S, and
S —> HomR(A, S) is an affine group scheme over R . All these definitions
are of course relative to R; when R = C, we shall generally omit any reference
to C.

An affine scheme F is said to be of finite type or algebraic if A =CI[F] is
finitely generted ; reduced if A has no nonzero nilpotent elements. A general
affine scheme need not be reduced, but an affine group scheme is always re-
duced. If F is a reduced affine scheme of finite type represented by A = C[F],
one may view A as the C-algebra of polynomial functions on an algebraic
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subset V of some CN ; we then write V(R) for F(R) for any C-algebra R. If F
is an affine group scheme of finite type, we may take A to be of the form C[G]
where G is an algebraic matrix group over C , i.e., an algebraic subgroup of
some GL(N, C) (even SL(N, C)) ; we write G(R) for F(R) and say that G gen-
erates F . An arbitrary affine group scheme is the inverse limit of algebraic
affine group schemes ; and conversely, the inverse limit of affine group
schemes is an affine group scheme .

If G is an algebraic matrix group and K is a normal algebraic subgroup,
there is a unique structure of an algebraic matrix group for G/K such that
G —> G/K is a morphism . In particular, a bijective morphism G —> G' of
algebraic matrix groups is an isomorphism . If G —» G' is a morphism of al-
gebraic matrix groups, the image of G is Zariski closed in G' and so is an al-
gebraic matrix group. For an algebraic matrix group G < GL(N, C) and an el-
ement x € G, x is semisimple (resp. unipotent) if it is mapped into a semisimple
(resp. unipotent) element in all (rational) linear representations ; it is enough if
this is so in a faithful representation . If all elements of G are unipotent G is
called a unipotent group ; the corresponding group scheme is also called
unipotent . An arbitrary affine group scheme is called unipotent if it is the in-
verse limit of algebraic affine group schemes that are unipotent . If G is a
unipotent group scheme, so is any group scheme that is represented by a Hopf
subalgebra of C[G].

2.2 Let us consider a unipotent affine group scheme represented by a unipo-
tent subgroup of SL(N, C) which we denote by G . If ¢ = Lie (G), the map exp
(¢ —> G) is then an isomorphism of algebraic varieties ; in particular, in the
usual topology G is always connected and simply connected, and the same is
true of all the algebraic subgroups of G . If G' is another unipotent matrix
group with g'= Lie(G') , we have a bijection ¢ — d¢ of Morph(G, G') with
Morph(g, g') such that ¢(exp X) =exp de(X) forall X e g .

PROPOSITION 2.2.1 Fix G, G', and «(G—> G') and let H' C G' be
an algebraic subgroup with H = o-1(H') . Then, forany C-algebra R,

H(R) = »(R)1(H'(R)) .
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PROOF Going over to the corresponding Lie algebras and selecting
suitable bases in them we come down to the following situation : (#1, ... ,¢my) is

a polynomial map of CN into CM and for suitable integers p,q=1,
(Pi(X‘], .- ,Xn) =0, 1Si5q S X=e = XP =0

We want to prove that this relation is true when C is replaced by R. But by the
Nulistellensatz the above relation is equivalent to

®i® = Zjpjjxj. P = Zjqji @i

for suitable integers a, b > 1, and complex polynomials Pij » Gij - We can obvi-

ously substitute R-values for the x's in the last relation, and hence in the previ-
ous relation also . *

COROLLARY 2.2.2 If K= ker(«), then K(R) = ker (¢ (R)) .

PROOF Take H'=(1). .

PROPOSITION 2.2.3 /f ¢ is surjective, there is a morphism of the
underlying algebraic varieties s (G' —> G) such that ¢ - s =id, i.e., G, viewed
as a fibre space over G', has a global section . In particular, if K is ker (¢),the
map f(G' X K—— G) given by f (X', h) = s(x')h, is an isomorphism of alge-
braic varieties . Moreover «(R) is a surjective homomorphism from G(R) to
G'(R) forany C-algebra R.

PROOF The last assertion is immediate from the existence of the sec-
tion s, since ¢(R) - s(R) = id(R) . The result is well known and the proof is a
minor variant of the one given in [V] (Theorem 3.18.2, p238). .

COROLLARY 2.24 Suppose Gj (i = 1,2,3) are unipotent algebraic
groups and

G| —> Go—> G3
is exactat Go . Then
G1(R) — G2(R) — G3(R)

is exact at Go2(R) forany C-algebra R.
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PROOF Let K¢ = image(G1), Ko = ker (Go ——> G3), so that K1 = K»
C Gp . By the Proposition G{(R) ——> K1(R) is surjective for all R so that
K4 (R) = image G1(R) forall R. Similarly, by Corollary 2, Ko(R) coincides with
ker(Go(R) —— Gg3(R)) forall R. As K1 = K2, we have K{(R)=K2(R) for all
R. .

COROLLARY 2.25 Let «,¢ (G——> H) be two homomorphisms . If
K is the subgroup { x|®(x) = w(x) }, then

K(R) = {x| ®R(X) = wRr(X)}
forall R.

PROOF Consider 8= (v, ¢) mapping G into HX H. If Hq is the di-
agonal subgroup of H X H, then K =8-1 (H4) . The corollary follows from
Proposition 1. .

23 Let X be an arbitrary topological space and R any C-algebra . A sheaf of
affine group schemes over R on X is a covariant functor (S — G(S))
from the category of R-algebras S to the category of sheaves of groups on X
such that for any open set U C X,

GU) {S — 9U)(S) := 9(S)(U) = group of sections of 3(S) over U}

is an affine group scheme over R . A sheaf of unipotent affine group schemes
is a sheaf @ of group schemes such that the group schemes §(U) are unipo-
tent forallopensets UC X. If §,9', @" are sheaves of affine group schemes
over R withmaps 8'—9, 9 —> §", we say that

0 > Q' > 9 > g" >0
is an exact sequence if for each R-algebra S

0—— 9'(S) > 9(S) > §"(S)—— 0

is an exact sequence of sheaves of groups . We may then view @' as a normal
subsheaf of @ and @" as the quotient sheaf 9 / a'.
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We shall now indicate a simple method of constructing sheaves of
unipotent affine group shemes and associated exact sequences. Fix a basis B
for the topology of X that is closed under finite intersections ; for instance, and
this is especially important for us, when X = S1 we may take B to be the set of
all open arcs of length < ¢, ¢ being a sufficiently small number. We consider
the category & (IB) whose objects are sheaves G of groups on X such that for
each U e B, G(U) is a complex algebraic unipotent matrix group, the restric-
tion maps G(U) — G(V) (when V < U) being morphisms of algebraic groups,
and whose morphisms are maps G — G' such that G(U) — G'(U) is a mor-
phism of algebraic groups for all U € B (we shall say that G is algebraic on
B). Forany U € B, we write G(U) for the group scheme over C defined by
G(U) . Forany C-algebra R, {8(U)(R)lueR is a presheaf of groups; we de-
note by $(R) the associated sheaf. Then R ———> §(R) is a covariant functor
from the category of C-—algebras to the category of sheaves of groups. We now
have the following proposition.

PROPOSITION 2.3.1 9(R —— G(R)) is a sheaf of unipotent group
schemes on X ; and for any C—algebra R and U e B, 9(U)R) =z §(R)(U).
Moreover @ is unchanged if we replace B by a basis B1 < B that is also

closed under finite intersections . Finally 9Q(U) is algebraic for all U which
are finite unions of setsin B.

PROOF We shall verify first that for any C-algebra R, {3(U)(R)lyeB is
already the restriction to BB of a sheaf of groups on X . So we must prove that
if U,Uj(ielarein B, U=JjUj,and sje 3(Uj)(R) are such that sj = sj on
Ujn Uj forall iand j, then there is a unique s € 3(U)(R) that restricts to sj on
U; forall i. Suppose first that 1 is finite. We then have the usual diagram of
complex algebraic groups

E) 0 ——GU) — Tl |GUI) /33 TT; ., GVinY))

and the corresponding diagram over any C-aigebra R
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(Er) 0——GU) R—TT;¢ |G RT3 TTj ;) GUiNU)) R)

The required property is equivalent to the exactness of (ER) at the second step
together with its exactness at the third step in the sense that the image of
G(U)(R) is the subgroup where the two maps into the third group coincide. By
assumption we know that this is true for the first diagram, and so we are through
by Corollaries 2.2.2 and 2.2.5 .

Before taking up the case when | is infinite we note that if IB'is the class
of sets which are finite unions of sets in B, the above argument shows that
there is a unique way to regard the G(U) for U € B' as algebraic matrix
groups and R —— §(U)(R) as the corresponding group scheme .

Suppose now that | is infinite. For any finite F < | let UF = UjeF Ui -
Then UfF e B' for all F, and the algebraic groups G(UF) form an inverse sys-
tem with G(U) as their limit as abstract groups. We must prove that 3(U)(R) is
the inverse limit of the §(UF)(R) . For this it is enough to prove that if AF and A
are the C-algebras representing 9(Ufr) and 9(U), then A =limg AF. Butif
KF = ker(G(U) —> G(UF)), then (KF) is a directed family and (\f K = (1), so
that Kp' = (1) for some F'i.e., G(U) = G(UF'), which gives A = Ap'.

It remains to show that for any open set VC X, R——> 9§(V)(R) is a
unipotent affine group scheme. Since B' is closed under finite unions we can
write V = |« Ux where the set of indices o« is directed and « < B implies
that Ux < Ug, the Uy beingin B'. The sheaf property shows that 3(V)(R) =
limg 9(Ug)(R) . As the 9(U) are unipotent group schemes so is (V). The
remaining statements are obvious. .

PROPOSITION 2.3.2 Suppose Gj (i = 1,2,3) are sheaves in & (B)
such that

0] > G1 > Go > G3 >0

is exact. Let 9; be the sheaf of unipotent group scheme associated to Gj as
above. Then
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is exact.

PROOF 1t is a question of showing that for any C-algebra R the se-
quence

0— 91(R) — 92(R) —>93(R) —> 0

is exact. The exactness at the first and second stages is immediate from the ex-
actness of the sequence 0 —— G1(U) — G2(U) —— G3(U) for all open U

e B (Corollary 2.2.4) . To prove exactness at the third stage let us fix x e X
and define forany U € B, x € U the (algebraic) group Gz 2(U) as the image
of Go(U) in G3(U), and forany V< U,V e B, the (algebraic)group G3(U,V)
as the image of G3(U) in G3(V) . By our assumption, forany U B andany s
in Gg(U) we can find a VC U, x e V e B, such that the image of s in G3(V)
lies in Gg 2(V). But, as a unipotent algebraic group is the result of successive
extensions of (the additive group of) C by C, it is clear that such a group is the
closure of the subgroup generated by a finite set of its elements. So, for given
UeB wecanfind VC U, xeVeB suchthat G3(U,V) € G3 2(V). Butthe

results of §2.2 now imply the same inclusion for the corresponding groups of R-
points, thus giving the exactness we wanted at the third stage. .

In view of this Proposition it is natural to say that a sheaf 9 of unipotent
group schemes is algebraic on B if foreach U e B, the group scheme 8(U)
is algebraic . It is then clear that the assignment G —— @ is an equivalence of
categories from A (BB) to the category of sheaves of unipotent group schemes
that are algebraic on BB that takes exact sequences to exact sequences . We
shall also say that G generates 9.

PROPOSITION 233 Let F,9 be sheaves of unipotent group
schemes on X that are algebraicon B with @ a normal subsheafof .
Then for any U € B the functor R ——> HO(U, §(R)) is representable by
affine space . More generally, let R be a C—algebra, ¥ eH1(X, ¥ (R)), and
let « be a cocycle representing ¥. Then 9(%)(S —— g(S)(xX)) is a sheaf of
affine group schemes over R ;and forany U e B such that ¥ trivializes on
U, the functor S —— HO(U, 9(S)(x)) is representable by affine space over R.

PROOF For U e B the group scheme $(U) is represented by a
unipotent algebraic group G(U) . As the underlying variety of G(U) is isomor-

130



THE COHOMOLOGY OF STOKES SHEAF

phic to Lie(G(U)) , it is an affine space . This proves the first statement . For the
second statement, fix R, ¥, «, and U and let « be associated to the covering
(Uj). Forany R-algebra S, let @(x)(S) = 9(S)(x’) where «' is the image of «
induced by the map R —> S. Then it is clear from our discussion in §1.3 that
g(x%) is a covariant functor from the category of R—algebras to the category of
sheaves of groups on X, and further that forany U € B on which & trivializes,
the restriction to U of this functor is naturally isomorphic to the restriction of 9
to U. Hence the restriction of 9(%) to U is an affine group scheme over R and
the functor S —— HO(U, 9(0‘)(8)) is representable by affine space over R. To

complete the proof we must show that §(%)(V) is an affine group scheme for
any open V. Now V is the unionofthe Vn U and ¥ is trivial on Uj, so trivial

on V n U;. The result is thus true for V n U;, and the proof for V would follow if
we show that the class of open sets V, for which 9(%)(V) is an affine group
scheme, is closed under unions. Since inverse limits of affine group schemes
are affine group schemes, we are reduced to the case of finite unions and
hence to a union of two open sets. If V and W are open sets such that 9(0‘1)(V)
and @(x)(W) are affine group schemes and U = V n W, @(x)(U) may be
viewed as the fiber product 9(x)(V) X g5 9(x)(W) where ¥ = g(X)(VnW), so
that @(=x)}(U) is an affine group scheme. .

If ¢ is a nilpotent (finite dimensional) Lie algebra and G is a simply
connected complex Lie group with Lie algebra ¢, the exponential map is an
isomorphism of complex manifolds from ¢ to G; and the multiplication law on
G, when taken back to g by the inverse of this isomorphism, becomes a poly-
nomial map g X ¢ —> ¢. This shows that we can view G as a complex
unipotent group in a natural and unique manner so that the exponential map is
an isomorphism of algebraic varieties. Now ¢ is known to possess a faithful
linear representation by nilpotent endomorphisms of a finite dimensional vector
space ([V] p, 237, Cor. 3.17.6) from which it follows that G is an affine algebraic
unipotent group over C. If we carry over this correspondence between nilpo-
tent Lie algebras and unipotent matrix groups to the sheaves on X we obtain a
correspondence between sheaves of unipotent groups and nilpotent Lie alge-
bras. Suppose G is a sheaf of groups from A (B). For Ue B let g(U) =
Lie(G(U)). Then {g(U)luep is a presheaf of finite dimensional nilpotent Lie al-
gebras over C, and the bijectivity of the exponential map shows at once that it
is the restriction to B of a unique sheaf of Lie algebras over C. We write
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Lie(G) for this sheaf. If g is a sheaf of complex Lie algebras on X such that
g (U) is a finite dimensional nilpotent Lie algebra for all U € B, then there is a
unique (upto isomorphism) sheaf G from A(IB) such that g = Lie(G). The as-
signment G —> Lie(G) is a functor which establishes an equivalence of cate-
gories from the category A (IB) to the category of sheaves of complex Lie al-
gebras on X whose sections on any U € B form a finite dimensional nilpotent
Lie algebra. If

0—G—>G—G"—0
is an exact sequence from A (B), it is then clear that
0 —> Lie(G') — Lie(G) —> Lie(G")—> O
is exact and vice versa.

Suppose that G and G' are sheaves from A (IB) with an imbedding
G' —> G that allows us to identify G' as a normal subsheaf of G. Let G" be
the quotient sheaf G/G'. It is often useful to know when G" belongs to A (B).
If @' and @ are the sheaves of unipotent group schemes corresponding to G'
and G respectively, we can define a covariant functor §" from the category of
C-algebras to the category of sheaves of groups on X such that

0—m 9 —9g—>8"—0

is exact. It is then clear from Proposition 2.3.2 that there is at most one way to
regard G" as a sheaf from A (B), and that this is possible if and only if for each
Ue B, 9"(U) is an affine algebraic group scheme. The following result is often
useful to decide this. Write g¢" = Lie(G)/Lie(G'), so that

0 —> Lie(G') —> Lie(G)— ¢"—> 0
is an exact sequence.
PROPOSITION 2.3.4 G" belongs to A (B) if and only if
dim HO(U, ¢") < o Ue B,

and this is automatically satisfied if
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dim H1(U, Lie(G")) < co.

PROOF The first assertion is a rephrasing of the discussion given just
now. The exact sequence

HO(U, Lie(G)) — HO(U, ¢") — H1(U, Lie(G"))
leads to the second assertion immediately. .

COROLLARY 2.3.5 If GO is a normal subsheaf of G from A (B)
suchthat G < GO C G and G/G' € A(B), then GO/G' isalsoin A(B).

PROOF We have Lie(G') < Lie(G9%) < Lie(G), and Lie(G0)/Lie(G") is a
subsheaf of Lie(G)/Lie(G') = ¢". So dim HO(U, Lie(G0)/Lie(G") < <o. .

2.4 Given a sheaf g of affine group schemes over a C—algebra R defined on
X, the assignments

Hi(X, 8) : S —— Hi(X, 9(8)), i=0,1

are covariant functors with values in the category of groups for i = 0, and in the
category of pointed sets for i = 1. For i = O the functor is the group scheme
S —— 9(X)(S) . Clearly it makes sense to ask whether the functor H1(X, 9) is
represented by an affine scheme over R . In particular, when 9 is a sheaf of
unipotent group schemes , the above Proposition suggests that it is natural to
ask whether H1(X, 9) is represented by an affine space, i.e., by the C-algebra
C[T{,...Tq] for some indeterminates T4{,...,Tq . We shall now formulate a result
that asserts that this is the case for certain types of sheaves that arise in the the-
ory of meromorphic differential equations . We shall give the proof of the theo-
rem in the next paragraph.

So we suppose that X = S1 and write A for the category of sheaves of
unipotent group schemes on S1 that are algebraic over the collection of all
open arcs. Actually it is necessary to work with the unramified finite coverings
S1.d of S1 with the covering maps fq : €2in8 ——3 2ind8 et Ad be the

counterpart of & on S1.d:itisclearthat fg*A < Ad. On S! weusethe
usual arc length | . |, but on the S1.d we use the arc length normalized so that
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fq is an isometry (thus IS1.d = 2rd ). Let us call a sheaf § from the category
A elementary if it has the following property :

there is aninteger d =2 1, anumber a=a(8),0 < a(9) < 2dn
and a finite subset ® = &(9) < S1.d such that, for any open arc

8) | < s1.d whose length is a and whose endpoints are notin @,
and any C— algebra R,we have

HO(, 1g*3(R)) = 0, H1(l, fg*3(R)) = 0.

If 9 is elementary with d, a, ¢ as above and if d' is an integer divisible by d,
it is clear that the pullback of 9 to S1.d' also has the same property for the
same a and the finite set ' which is the preimage of & in S1.d". Furher if
d" divides d and a is actually < 2d"=, then the decisive property (&) is al-
ready satisfied on S1.d" . Indeed, in this case, the covering map
s1.d — s1.d" is a homeomorphism on arcs of length < 2d"n and we have
(8) with " asthe image in S1.d" of &. In particular, the case when a < 2x
is especially interesting; for then we can take d = 1, i.e., 9 already satisfies the
defining condition (8) on S1. We referto such a 9 as unramified .

THEOREM 2.4.1 Suppose U is a sheaf of unipotent group schemes
on S1 from the category A and that there is a finite filtration

U =uu0>9u()>...o.

of normal subsheaves of affine unipotent group schemes from A such that the
quotients U /U () are from U and

(i) the quotients () /u(i+1) = u() are from A and are all ele-
mentary

(i) the arc lengths aj = a(‘V' (1)) are decreasing , i.e.,

ag =@ = ajpq = -
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Then
(a) forany C-algebra R and any « e H1(S1, W(R)),
HO(s1, u(R){(x)) =0

(b) forany » € H1(S1, U(C)), the twisted sheaves of group schemes
WEN)  form a filtration for U (X) that has the same properties as (U ()); in
particular the U (G)(X) are elementary for the same arc lengths a;

(c) the functor
H1(81, 9) : R— H1(S1, 9(R))
is representable by affine space .

. The proof of the theorem divides itself naturally into two parts : the proof
when U itself is elementary, and the inductive step of going from the sheaf
U /U to the sheaf U /U (i+1) using the exact sequence

(Ep) 0— V() — u/ul+!) -y /ul —o

Before taking up the proof we shall obtain a criterion that will be very useful to
us in verifying that certain sheaves that occur are elementary.

PROPOSITION 2.4.2 Suppose that G is a sheaf of unipotent group
schemes from A (generated by G)and that fg*G = G" satisfies the following

condition : there is a finite set ® < S1.d suchthatif | < I' are open arcs in
Sl.dwith (I'\ I)n & = &, the restriction map G*(I') —> G*(l) is an isomor-
phism. Then in order that & be elementary it is sufficient that the condition (&)
be satisfied when R=C.

PROOF Replacing S1.d by S' we may assume that d = 1. Fix an
open arc | of length a and endpoints notin ® . By assumption G(l) = 0 so that
the groups 9(I)(R) = 0 for all C—algebras R . We are thus left with the case of
H1.

Consider first a finite covering € =(Uj)1<j<N of | by open arcs U;, with
distinct triple intersections empty. For any C-—algebra R, the set of cocycles for
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3(R) from € may be identified with 'ﬂ';<j 9(Uint) (R) which is the set of R—
points of the C—variety ﬂi<j 9(UjnUj) whose underlying set is the set of cocy-
cles for the sheat G. Since G is essentially §(C) our assumption implies that
HO(I, G) = 0 and H1(l, G) = 0, and so the map

t: TTi G(Uj) — TTij G(UiNU))
given by
t((c) = (cicj™)

is bijective . Indeed, it is surjective because the 1-cohomology for the arc is 0; if
cici1 =cicj1, then ci~1ci=cj1cj on Ujn U; so that the c'j~1cj extend to a
section of G on S1, which must be trivial by the assumption of vanishing of the
oth cohomology, giving c'j =cj for all i. Now the varieties G(J) are affine
spaces forany arc J. Hence t is a bijective morphism of affine spaces , and so
must be an isomorphism of varieties by Zariski's main theorem (see[Di]) . So
the corresponding maps t (R) of R—points must be bijective for all C—algebras
R . Since t (R) is obviously given by the same formula, we can conclude that
H1( e, 8(R)) =0 forall R. As the coverings such as € are easily seen to be
cofinal in the collection of all finite coverings of | by open arcs, we have
proved that H1~( X, @(R)) = 0 where T is the collection of all finite open cov-
erings of | by open arcs . It thus remains only to extend this conclusion to the full
cohomology of |.

Before taking up arbitrary coverings we shall extend the preceding result
and show that foranopenarcJ C lwith (I\J)n & = &,

HOWY, 9(R)) =0, Hlr(J, 9(R) =0

for any C-algebra R. In fact, by our assumption, if K < K' are open arcs with
(K\K)n® = &, the isomorphism G(K') = G(K) implies the isomorphisms
A(K)R) = 9(K)(R) forall R ;thus any section of (R) on J extends to a sec-
tionon | and so is zero. To prove that H11- is 0, let 1= (u,v),J=(, V), and
let (Uj)1<i<N be a finite covering of J by open arcs Uj, the enumeration being
such that Uy = (u', u") and UN = (Vv", V'). Let I be a S(R)-torsoron J which
is trivial on the U;. We glue the trivial torsor on (u, u") (resp. (v", v)) to &
along Uq (resp. UN) by identifying the identity section on U1 (resp.UpN) with
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some section of I on U4 (resp. UN) . The resulting torsor on | is trivial be-
cause of our earlier result that H1~(l, @(R)) = 0. Thus o is trivial on J.

Fix the C—algebra R andlet 9 be atorscr for the sheaf 3(R) on I. Let
(Vj) be an open covering of | such that T is trivial on Vj forall j. We wish to

prove that T is trivial. We may assume that the covering is countable and that
the Vj are open arcs. We write | as the union of an increasing sequence of
open arcs Jpn such that |\ J1 does not meet &, and go over to a subcovering
(Uj) such that for some increasing sequence of integers (kp), the Uj (1<i<kp)
form a covering of the closure of J, . If | is the union of the U;, 1<i<k,, the I
are increasing and we know from the previous result that the restriction of ¥ to
In is uniquely trivializable ; let t, be its unique section on |. The uniqueness
implies that for m > n tp, restricts to tn . Hence the t, build up to a section of
I on |, proving that T s trivial. .

2.5 We shall now prove Theorem 2.4.1. We need a few lemmas.

LEMMA 251 I/f Q is a sheaf of unipotent group schemes defined on
S1 from the category A , andif Q@ is elementary, then H1(S1, 8) is repre-
sentable by affine space .

PROOF The definition of an elementary sheaf involves the covering
space S1.d, a number a> 0, and a finite subset & < S1.d . There are two
cases to consider according as § is ramified or not, i.e., according as a > 2n
or a <2m.Case 1: a< 2n. We may assume that d =1 so that 9 itself has
the property:

(%) HO(1, 9(R)) =0, H1(l, 8(R)) =0 forall C-algebras R,

for all open arcs | of length a whose endpoints are not in &. Fix a finite cov-
ering @ = (Uj)1<i<N of S1 by open arcs of length a with endpoints not in &
and with all triple intersections empty . It is then immediate from (x) that C(Ci,
a(R)) = 0 and hence that Z(¢, 9(R)) — H1(S1, 9(R)) is a bijective map.
Since

Z(&, 9(R)) = Tlicj 9(UinU))(R)
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and since R —— 9(U)(R) is represented by affine space for any open arc U
by Proposition 2.3.3, we are through. Case 2:a>2n. If | is an open arc of
length a on S1.d with endpoints notin &, the map fq: | — S1 is surjec-
tive. By Proposition 1.5.1 there is an arc J of S1.d such that we have a natu-
ral isomorphism of functors

H1(S1,9) = HO(, ig*Q) .

As R ——> HO(, fg*9(R)) is representable by affine space by Proposition
2.3.3, we are through. .

LEMMA 2.5.2 Let assumptions be as in the previous lemma, but as-
sume now in addition that Q@ is a normal subsheaf of a sheaf & of unipotent
group schemes from A . Let R be a C-algebra, ¥ € H1(S1, ¥(R)), and «
a cocycle representing ¥ . Suppose that {gq*¥ trivializes when restricted to
any open arc of S1 d of length a whose endpoints are not in & . Then the
functor S ——» H1(S1, 9(S)(%X)) on R-algebras is representable by affine
space over R.

PROOF If B is the pull back of « then the pull back of 9(S)(%) is the
twisted sheaf (fd*g(S))(f-‘) . Since p trivializes on arcs of length a whose

endpoints are not in @, this twisted sheaf is isomorphic to the untwisted sheaf
when restricted to such arcs . Hence we have

(%) HO(, fg*(a(S)(B))) =0, HI(I, tg*(3(S)(B)) =0

for all such arcs 1. As before we distinguish between the two cases a > 2x
and a < 2r. If a >2x, Proposition 1.5.1 applies and so we can select an
arc J € |, with J of length a-2r and 1| as above of length a such that
S — H1(81, g(S)(x)) and S ——3 HO, (fg*9(S))(B)) are naturally iso-
morphic functors . But g trivializes on |, hence on J, and hence the functor S
———3 HO(y, (fd*g(S))(ﬁ)) is representable by affine space over R by
Proposition 2.3.3 . In the other case, when a < 2r, the condition () descends
to S1 itself; in particular, o« itself trivializes on arcs of length a whose end-
points are not in a suitable finite set ®' < S1. So, if we take a covering & =
(Uj)1<i<N of S1 by open arcs of length a with endpoints notin @', we have
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H1(S1, g(S)(=)) = TTigj 9(S) XUV = TTigj S(SHUINY)),

the second isomorphism arising because of the fact that o« trivializes on all the
Ujn Uj . Proposition 2.3.3 now implies that these functors are representable

by affine space over R. .

LEMMA 2.5.3 Let F, G be two functors from the category of C—alge-
bras to the category of sets. Suppose u : F —— G is a natural transformation
and that the following conditions are staisfied :

(i) G is representable by affine space
(ii) For any C—algebra R and g = G(R), the functor

ug (S—> ug1(g) = fibre above g),

on the category of R—algebras ,is representable by affine space over R .Then
F itself is representable by affine space .

PROOF Let A =C[T4, ...,T{] represent G so that G(R) = Homg(A, R) .
We now take in condition (ii) above R =A and g € Homg(A, A) as the identity
map, and obtain A’ = A[S{,...,Sp] = C[Tq,...,Tf, S1.....Spn] representing ug.
Write F'(R) = Homg(A', R) for any C-algebra R. We shall prove now that F' =
F . For this it is a question of proving that for any g € G(R), F'g(R) = Fg(R), the
suffixes referring to the fibres . But from the definition of A'it is clear that for any
g € G(R), as R is an A-algebra via g(A —— R), we have,

Fg(R) = HomA(A[S1....Sh], R) = Fg(R),

as the middle term consists of all homomorphisms of C[T4{,...T{][S1,...,Sp] into
R that restrictto g on C[T4,..Ty] . .

We now begin the proof of the Theorem proper. There is no loss of gen-

erality in assuming that the condition (6) of being elementary refers to the
same covering space S1.d forallthe U (i) . Letus also write f instead of fqg

for the map S1.d — S1. Thus we assume that there is a finite set ® < s1.d
such that for any i, any C-algebra R, and any open arc | of length a; whose

endpoints are not in ¢, we have,
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HO(I, t* U ()(R)) =0, H1(l, *U()R))=0.
LEMMA 2.5.4 We have, for all i, and all C-algebras R,
HO(s1, w()(R)) =0, HO(S!, (U/UM)(R)=0.

PROOF Since V(i) is elementary, the first statement is immediate from
Proposition 1.5.1. For the second we use induction on i. If i =1, we are

through since U /uU(1) = 4 (0) . Ifthe result is true for u/uU(i), we get from
(Ej) the exact sequence

HO(s1, w()(R)) — HO(S1, (U /uli+1))(R)) — HO(ST, (U /UD)R)).
Since the extreme terms are zero, the middie term is also zero. .

LEMMA 255 Forall i>1, all C-algebras R, and for any open arc |
of S1.d oflength aj.1 whose endpoints are notin &, the restriction map

H1(s1.d, t*(u /ud)(R)) — H1(, *u /U)(R))
is the zero map.

PROOF For i=1 U/U(1) = v(0) is elementary and the lemma is im-
mediate from the definition. For i > 1 we shall use induction on i. Assume the
lemma for (U /U{))(R) and consider the exact sequence

0 — t*U(i)(R) — t*u /Ul+1)(R) — *u /UDR)— 0.

If | is an arc of length aj with ends notin &, and g € H1(S1.d, f*u /u(i+1)}(R)),

the image of B in H1(S1.d, t*(u /U ()(R)) restricts to zero on open arcs of
length aj_1 whose endpoints are not on &, and hence also on such arcs of
length aj<aj—1 . So,if | is such an open arc of length a;, the exact sequence

0 = H1(, U )(R)) — H1(, *u /wi+1)(R)) — HI(, t*u /Ul)(R))
shows that g must restrict to zeroon 1. .

LEMMA 256 Forany R andany B = H1(S1.d, x4 /U ()(R)), we
have
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HO(s1.d, (i*u /u){R)B)=0.
In particular, forany o  H1(S1, U /u()(R)(x)),
HO(s1, u /ul)(R)(x))=0.

PROOF We use induction on i. To start the induction we must prove
that HO(S1.d, (*r (0)(R))(B)) = 0. It is obviously enough to do this with S1.d
replaced by an open arc | of length agp whose endpoints are not in ®. But for

such an arc |, B trivializes on |, so that the twisted sheaf is isomorphic to the
untwisted one on |; and as the definition of being elementary implies that
HO(I, f*4 (O)(R)) = 0, we are done. Assume now the result for i and consider
the exact sequence

0 — U )(R) — *u /Uli+1)(R) — *u /UR)— 0.

Let B be an element of H1(S1.d, f* /U (i+1)(R)) with image «. Then we
have the exact sequence of twisted sheaves

(%) 0 — *U()(R)(B) — (t*u, /Ul+1)(R)(B) — (P*u /U(R))x) — 0

To prove the result for i+1 we must show that HO(S1.d, (f*r (i)(R))(B)) = 0. But
by Lemma 2.5.5, B trivializes on arcs of length a; whose ends are not in &.

So the argument given above for U0 goes through without any change what-
soever. *

LEMMA 2.5.7 Fix a C—algebra R, and let B be a cocycle for
. /u(+1)(R). Then the functor

S — H1(s1, w(i)(s)(B))
on R-algebras is representable by affine space over R.

PROOF In view of Lemma 2.5.2 it is enough to verify that f*g trivializes
on open arcs of length aj; whose endpoints are not in &. But this is precisely

what is proved in Lemma 2.5.5. .

Essentially the same arguments yield
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LEMMA 258 For B as in Lemma 2.5.6 t*V ()(B) js isomorphic to
t*r (i) as sheaves of affine group schemes over R when restricted to arcs of
length a; whose endpoints are not in ®. In particular if » € H1(S1, U (C)),
YO = YON /Y G+, and V) s elementary for the same arc length
and covering as VU (1),

PROOF We consider the exact sequence (x) in the proof of Lemma
- 2.5.6, but restricted to an arc J of length a; whose endpoints are not in ¢. By
Lemma 2.5.5 B and « trivialize on J so that the second and third members
of the exact sequence may be replaced by the untwisted sheaves. But then it is
clear that f*U ()(B) and f*U () must be isomorphic on J. .

PROOF OF THEOREM We have already proved (a) in Lemma 2.5.6
and (b) in Lemma 2.5.8. We prove the representability of the functor R ——>»
H1(S1, u /u)(R)) by inductionon i;as U =U/U) fori>> 0, this will be
enough. For i= 0 thisis just Lemma 2.5.1. Suppose i > 0 and that the resuit is
true for i. We consider the exact sequence

0— VvIR)— u/uli+)R)— w/Uul(R)— 0
as well as its twists
0 — UH(R)B) — (u /U (+1)(R))(B) — (u /UDR))(x) — 0

where « is a cocycle for U /U ()(R) and B is the cocycle for U /U (i+1)(R)
that maps into «. By Lemma 2.5.6 the sheaf U /U ()(R)(%) has only the zero
section on S1, and hence Proposition 1.4.1 is applicable. So if we consider
the exact sequence (for R—algebras S)

0 —> H1(81, v (i)(s)) — H1(ST, u /uli+1)(S))
— H1(S1, u/ul)(s) — o,

the fibre above « is canonically isomorphic to H1(S1, (U (i)(S))(B)) . So by
Lemma 2.5.7 this is representable by affine space over R. But by the induction
hypothesis R— H1(S1, u /U ()(R)) is representable by affine space and so
Lemma 2.5.3 leads us to the same conciusion with i replaced by i+1. *
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2.6 It remains to compute the dimension of the affine space that represents the
cohomology H1(S1,7U) in Theorem 2.4.1. We shall devote this paragraph to
this question.

We begin reviewing briefly how the tangent spaces of a variety are
determined in terms of the associated schemes. Let A be an affine scheme
represented by an affine algebra A over C that is reduced. One introduces
the algebra R of dual numbers, R = C[¢], €2 = 0. We have the maps
A(R) —> A(C) corresponding to the homomorphism R —3>C (a + be — a),
and A(C) —> A(R) corresponding to the injection C —> R ; the composition
A(C) — A(R) —> A(C) is the identity. If p € A(C), the fibre of A(R) —A(C)
above p is easily seen to be the complex vector space of all "p-derivations” of
A, i.e., C-linear maps v(A ——>C) such that v(ab) = p(a)v(b) + p(b)v(a) for all
a,b € A, and hence may be identified with the Zariski tangent space to the com-
plex variety A(C) at p. The map A(C) ——> A(R) is the "zero section"
p —> (p,0). If B is another affine scheme represented by the reduced affine C-
algebra B, and A —> B a homomorphism, we have a commutative diagram

B(R) —> A(R)
i l
B(C) ——> A(C)

and the top map is linear on the fibers. If A(C) is a smooth connected variety of
dimension d, in particular if A = C[ Ty,..., Tg] where Tj are indeterminates,
then the tangent spaces have dimension d everywhere.

Suppose A is the affine algebra of an affine algebraic group scheme
G over C sothat A is a Hopf algebra. The commutator map sending (a,b) to
aba-1b—1 gives rise to a bilinear map ¢ (C) X ¢(C) —> ¢(C) where ¢(C) is
the tangent space to G(C) at 1, and it is a standard fact that this defines the
structure of a Lie algebra on ¢ (C). On the other hand, G(R) and G(C) are
groups, and the maps G(C) — G(R) —> G(C) are homomorphisms, so that
the fiber of G(R) above 1 is a group. The group structure is determined by the
following lemma.
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LEMMA 2.6.1 Under the identification of the fiber of G(R) above 1
with ¢(C) described above, the group multiplication corresponds to addition in
¢(C).

PROOF We write a —> 1(a) for the homomorphism A —> C de-
fined by the identity element 1 € G(C). The image of 1 in G(R) is (1,0) and so
(1,0) is the (multiplicative) identity of G(R). Let A (A—> A & A) be the co-
multiplication and write A(a) = = a;® b;. Forany h e g(C), the relation
(1,h)(1,0) = (1,h) gives, as (1,h)(a) = 1(a) + €h(a),a e A,

1(a) + eh(a) = ((1,h).(1,0))(a)
= Z (1,h)(aj)(1,0)(b)
=X (1(a) + h(ap)1(bj)
== 1(aj)1(bj) + £ = h(aj)1(b;)
Hence, and after a similar calculation based on (1,0)(1,h) = (1,h)

1(a) = Z 1(@)1(b), h(a) = Zh(a)1(b) = Z 1(a)h(bi)

But then
((1,h).(1,h)(@) = Z(1,h)(@)(1,h")(bi)
= Z (1(a) + eh(a))(1(bi) + €h'(bi))
= Z 1(a)1(b) + € Zh(a)l(bi) + €Z h'(bp)1(ai)
= 1(a) + £(h + h)(a)
This proves the lemma. .

We shall now go over to the context of §2.2.. Let X be a topological
space, B, a basis for the topology of X, closed under finite intersections; 9, a
sheaf of unipotent group schemes, algebraic on B . We write Lie(9) for the
associated sheaf of Lie algebras, so that, for U € B, Lie(8)(U) = Lie(g (C)(U)).

LEMMA 2.6.2 Assume that (a) HO(X, 9) = 0 (b) HY(X, 8) is repre-
sentable by a reduced affine scheme. Then there is a canonical linear isomor-
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phism of the tangent space to H1(X, 9(C)) at the trivial class 0 with
H1 (X, Lie(®)). In particular, if H1(X, 8) is smooth and connected, its dimension
is equal to the dimension of the complex vector space H1(X, Lie(9)).

PROOF For any covering ¢ = (Uj), Uj € B, we shall set up a linear
isomorphism of the fiber above 0 of H1(C: §(R)) ——> H1(C:8(C)) with
H1(¢: Lie(9)), in such a way that the isomorphisms are compatible under re-
finement. We have the commutative diagram:

Z(a: 3(R)) — z(C: 9(C))
{ i
H1(&; 9(R)) — HY(Q : 9(C))

The cohomology classes in H1(C: §(R)) above 0 are represented by (gij,h'ij)
where ( gjj) € Z(&: §(C)) , gjj = cicj~! for suitable c; € HO(Uj, §(C)). Replacing
(giph'ij) by (ci, 0)=1 (gij.h'"j) (c;;0), we may assume that the representative cocy-
cles are of the form (1,h;jj). It now follows from Lemma 1 that (hj) is a cocycle for
the sheaf Lie(© ) associated to the covering &, and that
(hij) —> (1,hjj) is a linear isomorphism of Z(C:Lie(8)) with the fiber of Z(Ci:
9(R)) above 1 e Z(€: G9(C)). We now claim that this descends to an iso-
morphism of H1(Ci:Lie(8)) with the fiber of H1(C:9(R)) above 0. Forthisitis
only necessary to show that (1,hj) and (1,h'jj) define the same element of
H1(&:9(R)) if and only if (hjj) and (h'jj) define the same element of
H1(Q: Lie(8)). It hYj = hjj + ki - kj, (1,h%) = (1,ki)(1,hi)(1,kj)"! by Lemma 1; on the
other hand, if (1,h%j) = (ci, ki)(1,hij)(cj, ki)'1, we must have CiCj'1 = 1, showing
that the c; define an element of HO(X, §(C)); since this group is 0, we must
have ¢j =1 forall i so that (1,h%) = (1,k))(1,hj). (1,kj)~, i.e., h'jj = hjj + kj - kj, by
Lemma 1 again. It is obvious that the maps hjj —(1,hjj) are compatible with
refinements. .

PROPOSITION 2.6.3 Let U be a sheaf of unipotent group schemes
on S'asin Theorem 2.4.1. Then

dim H(S1,4) = dim H1(S", Lie(U)) = Zi»o dim H1(S1,4 (1))
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PROOF U and V() satisfy the conditions needed for the validity of
Lemma 2.6.2 Hence

dim H1(S1,u) = dim H1(S1,Lie(w)), dim HY(S1,U®) = dim H1(S1, Lie(V 1)
On the other hand, the exactness of the sequence
0 — Lie(U®) — Lie(U/U(+1)) — Lie (UW/U®D) —> 0

coupled with the vanishing of HO(S1,Lie(U /U ®)) (which follows from the van-
ishing of HO(S1,u/U®)) implies the exactness of

0 —> H1(Sl,Lie(v®) — HI(S1,Lie(U /U (+1)))
—> H1(S1,Lie(u/U®)) —0
Hence
dim H1(S1,Lie(u /U (+1)) = dim H1(S1,Lie(UW/U®)) + dim H1(S1,Lie(U®))
which leads to
dim H1(S1, Lie(U)) = Zi»0 dim H1(S1, Lie (V1)

The proposition is now immediate. .

2.7 Let X = S1 andlet U be a sheaf of unipotent schemes on X satisfying
the conditions of Theorem 2.4.1.

DEFINITION A covering & = (Uj) of S! such that H1(C: U(R)) =
H1(W(R)) for all C-algebras R is called a good covering.

Let us put
a(W)= mini>oa

o(w) = Ui>o2(v®)
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PROPOSITION 2.7.1 Let & = (Ux) be any finite covering such that
(a) the (Uy) are open arcs of length < a(\,); (b) if Uy has length equal to
a('Ww), its end points are not in f{®]. Then Q is a good covering .

PROOF We prove this for U /U® in place of U, i = p. This is enough
since U® =0 for i>> 0. Clearly

a(u/u® = a1, #(U/UD) = U o<jci-1 2(UD)
In view of corollary 1.2.4 it is sufficient to show that the map
H1(SI, W/ UM)R)) —> HI(Uy , U/UGNR))

is the zero map for any « . It is enough to prove this for the pull back sheaves
on S'.d and for an arc V, which maps homeorphically under f onto Ug.
Since the ends of V4 are notin ®(U/U{® ) we can enlarge V4 to an open
arc | of length aj_1 whose ends are not in ®(U/U®). The assertion to be
proved now follows from Lemma 2.5.5. .

Let us now fix a good finite covering & = (U;), each Ujbeing a fi-
nite union of arcs. Let

C(@:U) = C(U): R —> C(a : U(R)) = C(U(R))

Z(CL W) = Z(U): R—> Z( U(R)) = Z(U(R))

have their usual meanings. C(U) is a unipotent algebraic group scheme and
Z(W,) is an affine scheme. The latter is defined by the equaitons

() gii=1, gijgji =1, gij Ojk ki = 1.
PROPOSITION 2.7.2 C(U(R)) acts freely on Z(U(R)) forall R.

PROOF By Theorem 2.4.1, HO(U (R)(®) ) =0 forall « e Z(U(R)). The
result now follows from Proposition 1.3.1. .

LEMMA 273 Let E and F be affine schemes over R and «
(E —> F) a natural map. If «(S)(E(S) —> F(S)) is surjective for all
R—algebras S, there is a natural map ¢ (F— E) suchthat v o b = idF.
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PROOF Let A (resp. B) be the R—algebra that represents E (resp.
F). By a standard result ([Wa] p. 6) we know that there is an R—algebra map f
(B —> A) that gives rise ¢ . It is a question of constructing an R—algebra map
g(A—> B) suchthat g o f= idg. Since «(B) (E(B) —> F(B)) is surjective,
we can find g € E(B) such that ¢(B)(g) = idg. Then g(A —> B) is an R—al-
gebra map; as f givesriseto ¢ , ®(B)(g)=g - f,andso g+ f = idg. .

PROPOSITION 2.7.4 2Z(U) is representable by an affine space
over C.

PROOF Z(u) and H1(S!l: U) = H(W) are affine schemes and we
have a natural map

7 Z(UW) — HI(UW)
that is surjective for all R. Hence by Lemma 2.7.3 there is a natural map

c ! HI(UW)— Z(u)
such that

Te o= id.
So for any R the map
6(R) : C(U(R)) X HI(U(R)) — Z(U(R))

defined by

8(R)c, ¥) = c[o(y)]
is bijective. This shows that we have an isomorphism of functors

6 :C(U) X HI(U) — Z(u)

as C(U) X H1(“W) is representable by an affine space, we are done. 3

COROLLARY 2.7.5 The ideal generated by () is prime and is
the ideal for all regular functions vanishing on Z(U.(C)); the latter is an alge-
braic variety isomorphic to complex affine space.
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THEOREM 2.7.6 The action of C(U(C)) on Z(U (C)) is free in the
algebraic geometric sense, and the map

Z(U(C)) —>» HI(U(C)) = C(U(C) \ Z(U(C))
is the quotient map.
PROOF The first statement is immediate since
©(C) : C(U(C)) X HI(U(C)) —> Z(U(C))

is an isomorphism of varieties which is equivariant with respect to C(U (C)),
the action on the left being left trranslation on the first component. The second
statement follows trivially from the first. .

In practice the sheaves of group schemes one encounters are often
unramified and possess additional features. We shall now make a few remarks
that may be helpful in getting a further understanding of the representability
theorem 2.4.1 in these special cases. We shall use the good coverings in the
unramified case to get a more explicit description of the scheme structure on
H1(S1,U). We assume that U satisifes the following conditions :

(a) U is unramified.
(b) for each i > 0, the exact sequence
0— VYO — u/ul+)) — u/u® — o0
splits, i.e., there is a map
it u/ul)— u/uli+n

such that Bjeo ¥ = id, Bj being the map U /U(i+1) — U /U(D . We wish to
prove

THEOREM 2.7.7 If U satisfies these conditions, we have
H1(S1,4) = Tlizo HY(ST, v ®)

We shall prove this for U /U in place of U; as U® =0 for
i >> 0, the result for U, will follow at once. Fix i > 0 and assume the theorem
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for U /UG+1), Let us fix a finite covering (Uy) of S1 by open arcs of length a;
whole ends are not in @ (U /U (i+1)) and whose triple intersections are empty.
This is certainly a good covering for U /U() in view of Proposition 2.7.1.
Since there will be no other covering involved in the discussion below we shall
omit references to it. We may enumerate the indices « as 1, ..., M and identify,
for any sheaf 48 for which the covering is good, the cocycles for &4 by systems
(Sxp)x<p » Sxp € A(Ux N Up).

LEMMA 2.7.8 The natural map
Bi: C(UW/Ul+)) — Cc(u/u®)
induced by Bj is an isomorphism , and its inverse is the map
c(u/u®) — c(u/ul+)
induced by ¥;.

PROOF It is enough to prove that B; is bijective. Fix a C-algebra R
and consider ¢ = (Cx ) & C(U/U(+1) (R)) such that Bj(cx) =1 forall o .
Then cy is a section of U (R) on Uy, hence cx =1. *

Suppose g € Z(V{M(R)) and h e Z(U/U(R)). We define gxh e
Z(u/ul+1 (R)) by

(9xh)xp = gup Yilhxp)  (x <B)
For any cocycle s, we write [s] for its cohomology class.
LEMMA 2.7.9 Fix R.
(a) If [gxh] = [g'xh'], then [h] = [h']
(b) If [gxh] =[g'*xh ], then g=g'.
) If Ec Z(u/U® (R)) maps onto HI(U/U)R)), then
Z(U)(R)) *x E maps onto H1(W/U(+1)(R)).

PROOF a) Applying Bi,weget [h] =[h"].
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b) Suppose g'xh =c[gxh] for some ¢ e C(U/UC+1)(R)). Applying Bi
we get h = Bj(c)[h]. As the action of C(U/U)(R)) is free, Bi(c) = 1. By Lemma
2.7.8 thisgives c=1,i.e.,, g'*xh= gxh. Butthen g'=g.

Note that by the results of § 2.5, the covering is good for U, /U (+1)(RY))
also, since each cocycle for it trivializes on arcs of length a;.

c) Let ue Z(u/U+1)(R)). We can write u = kxc [e] where e € E
and ce C(U/U®(R)). ltis a question of finding k' € Z("U()(R)) with kx c[e] =
vi (c)[k'* e]. But

Uxp = Kp ¥i (Cx €xp CB_1)
= kxp ¥i(cx) ¥ilexp)?i (cp)!

= T Cadkyp Ti (0xp) ¥i(cp)?

where
Kxp= ¥i(Cx) -1 Kxp ¥i(Cex)

Since U (R)(Ux N Ug) is a normal subgroup of U /UG+1)}(R)(Ux N Ug),
k'xp is again a section of U ()(R) on Uy N Ug, so that k' is an element of
Z(VO(RY)). .

PROOF OF THEOREM 2.7.7 Let o; be the natural map
ci : HI(SL, u/U®) — Z(u/u)
such that mj.oj=id where f; is the real natural projection
mi o Z(AUW/Uu®) — HY(ST,u/u)
We now define the natural map
g: Z(U®) X HY(SY, u/u®) — HI(SH,u/ul+1)
by

£(R) (9,v) = [g * oi(¥)]
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The naturality of £ is obvious. By Lemma 2.7.9 ¢ is an isomorphism. Since
the natural map

Z(v®) — HYSI,vd)
is an isomorphism, the proof is complete. .

REMARK If V is elementary (and unramified), the representability of
H1(S1,V) by affine space is immediate from Lemma 2.5.1. Hence it is clear
that the above argument leads to an elementary proof of Theorem 2.4.1 in the
special situation treated here. The Stokes sheaf of an unramified element of
G satisfies these conditions as we shall see below and so the above argument
gives a proof of the affine structure on the cohomology of the Stokes sheaf and
its explicit decomposition as a product of the cohomologies of Stokes sheaves
of unramified connections with a single level. Such a proof is actually very
close to the one discussed in [BV4] and [BV5]. It would be interesting if a similar
proof could be found in the ramified case.

Let us consider the general situation of Theorem 2.4.1. Let us
suppose, as in §2.5, that all the arclengths a; are < 2dr, so that the condition
(8) refers to the same covering space S1.d forall U{);let {(S1.d — S1) be
the covering map. We are then in the situation discussed in §1.3. Proposition
1.3.3 then gives rise, for all C-algebras R, to natural isomorphisms

H1(S1, ‘W(R)) = HI(ST, t*U(R))nv,
the superfix denoting the subspace of pg-invariant elements. This leads to
THEOREM 2.7.10 There is a natural isomorphism of varieties
H1(S1, u(C)) = HI(S?, f*u (C))inv

REMARK Since f*% is unramified, the affineness of its H1 has an
elementary proof, and so, it is natural to ask whether we can use the above
Theorem to get an elementary proof of Theorem 2.4.1. This seems difficult to
do, although the above thorem shows that H1(S1, U (C)) is smooth, in view of
the classical theorem that the variety of fixed points of a complex analytic action
of a finite group on a complex manifold is smooth [BM].
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3 AFFINE STRUCTURE FOR THE COHOMOLOGY OF THE

STOKES SHEAF OF A MEROMORPHIC PAIR

3.1 We shall now apply the theory of §§1-2 to the local study of meromorphic
pairs. In order to do this it is necessary to show that the Stokes sheaf of a
meromorphic pair (V, ¥) at z =0 satisfies the conditions assumed in Theorem
2.4.1.

PROPOSITION 3.1.1 Let (V, V) be a meromorphic pair at 0 C
and let St(V,V) (resp. st (V,V)) be its Stokes sheaf (resp. infinitesimal
Stokes sheaf). Then st(V,V)) is a sheaf of complex nilpotent Lie algebras
and St (V,V) is the corresponding sheaf of complex unipotent algebraic
groups, so that St (V,V) is in the category & and st (V,¥V)) = Lie (St (V,¥)).
Moreover hte assignment k —> 1 + k is an isomorphism of affine varieties of
st(W) with St(W) for each open arc W C S1.

PROOF This is more or less an obvious consequence of the discussion
inl, §3 and ll, §2.3. Let E be the endomorphism bundle of V and ¥g the
connection on E associated to ¥. We know that for any open arc W < S1,

St(V,7)W) = 1 + st (V, V)W)
st (V, V)W) = Ho(E)W)

where Ho(E)(W) is the space of flat horizontal sections of (E,¥g) on T (W).
Then, by 1, Proposition 3.4.1, we have an isomorphism, depending only on the
spectrum Z of (V, V) and the partial ordering <, on it, of the sheaf St(V,V)
(resp. st (V,¥)) on W with the sheaf 8 = 8(B) (resp . s(B)) of subgroups of
GL(U) (resp . Lie subalgebras of ¢ £(U)) whose stalk at any w € W is the
group (Lie algebra) of all g = (gs<) € End(U) such that

9oc =1 (resp. gos = 0),

Oot O wunless 6 <y T (0#*T).
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If we extend the partial ordering <,, on Z to alinear ordering << arbitrarily,
then it is clear from the above that gor =1 or 0 if T =06 and ggsx =0 if
T<< o,sothatif g=1+h, h is nilpotent and g is unipotent. .

We now introduce a natural filtration on St (V,V) indexed by real num-
bers. For any real number t, St (V,V)(!) is the subsheaf of St (V,V) whose
stalks at u e S1 are given by

St (V,V)O (u) = { g = St(V,V)(u) : (g—1) E(w) ~ 0(T(u)) if ord(w) > t}
Here we recall (cf. I, §3) that for any differential form w e 8(u), E(w) is
z
exp( I w#. dz). The fundamental result concerning the St(V,V)® is the fol-
u

lowing.

PROPOSITION 3.1.2 Llet L = {r1,..../rm} (rie Q, ri < ..<rm<-1)
be the canonical levels of (V,V). Then {St (V,V)(D} is a family of normal
subsheaves of St (V,V) decreasing with t. Moreover, we have

St(v,v)) = 0 (t<rpor t>rym),
StV,V)O = syV,V)() (rg < t < feet )
Finally , writing St (m—k) = St(V,V)®) for t = rk, one obtains the filtration
St0) =st(V,v) D st(th o .. st(m1) o stm =0

such that St()/St(D) e A whenever j>i,and St(1)/Stl+1) js elementary
with associated arc length w/(| rm-i —1), i=0,1,..., m—1.

The proof of this proposition will be taken up in §§3.2- 3.4.

3.2 In this paragraph we shall suppose that (V,V) is an unramified canonical
form. Thus V is the trivial bundle C X U where U is an n-dimensional vector
space over C, and Vq/4z = d/dz—- B where

B = E,‘._ Dizr + z'1C (L={r1,...,rm}, neZ,rn<..<rm <-1)
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is an unramified canonical form. Forany k, 1 < k < m, we write L(k) = { ry,..,Ik },
Bk = Z,.._(k) Dy zf + z71C,

and define Vi to be the connection on V whose connection matrix is the
canonical form Bk which is being viewed as a section of the bundle End(V) on
C*. Let X (resp. Z(k)) be the spectrum of (V, V) (resp. (V, Vk)). We identify =
(resp.Z(k)) with the joint spectrum of the Dy, r e L (resp. Dy, r € L(k)); and for o
€ Z or Z(k) (depending on the context) let Uy be the spectral subspace of U
corresponding to o and Pg (U —>Ug) the spectral projections. If k< m, let
Bk, (¢ = Z(k)) be the restriction of

zr¢|_\]_(k) D,z + z-1C

to Vs =C XU; , viewed as a section of End(Vgs) on C*, and ¥k, the con-
nection on Vg with Bg,s as the connection matrix. We write St, Sty, and
Stk,s for the Stokes sheaves of (V,V), (V,Vk) and (V5,V k) respectively.
Finally, for o« = 3;g ar2'.dz eZ, let ok = ZreL (k) ar2'.dz.

It is easy to describe the Stokes sheaf of a canonical form explicitly.
Indeed, it follows from 1, §3.4 that for any open set W < S1, St(V, V)(W) is the
group of holomorphic maps g (I' (W) — GL(U)) such that

(a) dg/dz + [g.B] = O
(b) g ~ 1 (T(W)).

These differential equations can be solved at once to obtain the local structure
of St. Select a branch logw of log on T (W) and define

W(z) = exp(ZreL Dr 2'+1/r+1 + logwz.C) (ze T(W)).
Then W (T (W) — GL(U)) is holomorphic and satisfies
(dw/dz) 4-1 = B.
It is easy to see that if g (T'(W) — GL(U)) is holomorphic, then

dg/dz + [g, B] = 0 < d/dz(w—1gy) = 0.
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In particular, if W is an open arc, the transformation
g— v lgw

is an isomorphism on W of St(V, V) with the subsheaf 4(B) of the constant
sheaf GL(U) whose stalkat we W is

AB)W) = {he GLU) : why—t ~ 1 (T(w)) }.
Thus, if 6, Tt € Z, and o *# T, thenany g e St(W) can be represented as
(%) E(c—<) exp(logw z . C5) Y exp(—logw z . Cx) = E(6—T) hy o<
where Y € Hom(U., Uy) is a constant. Note that
(a) hy g is afunction of moderate growth
(b) Y = 0 unless pg—(Uu) < O forall ue W,
the latter being a consequence of I, Proposition 3.4.1.
PROPOSITION 3.2.1 Fix k,1 <k <m.Then there are maps
« (Stk— St) and B (St—> Poex( k) Stk,o) in the category A such that
0 —> Stx—> St—> Poas(k) Stkg—> 0

is an exact sequence. Moreover, this sequence splits , i.e., there is a map
v (@csz(k)Stk,g —> St) suchthat B - ¥ =id.

PROOF Let
pk = exp (Zral\ L(k) Dr 27+ 1/r+1)

We define «,p,¥ as follows :if W < S1is open and g € Stx(W), h € St (W),
t=(ts) € Poe =(k)St ko (W), then

x(g) = pkgPk1, B(h) = (Pch Pg)gexk), ()= Zse kPstoPo

If we think of any h e St(W) as a matrix (hg<)o,cex(k) . B(h) is the matrix
(hoobsx) and ¥ (ts) is the matrix (65+ts). Itisthus clearthat p - ¥ = identity,
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and that ¥ is multiplicative. The multiplicative nature of c« is obvious. But for
g it is not obvious and needs an argument. We consider the spectral decompo-
sition U = Py ax U, of W with respect to all the Dy , r e L, and represent the h
e St (W) as matrices (hey)e,we £ - The multiplicativity of p then comes down to
showing the following: for ce Z(k), let S(c) be the set of ¢ € = with ¢k =o;
then for h,h' € St (W) and «,Ww e S(c),

(hh)ey = E)\:S(o) heah'sy .

Now,

(hh)ew = ZreS(o) Noah'aw + Zicto Zpes(c) houh'uy

where the t in the second sum varies over Z(k). We claim that each summand
of the inner sum in the second term ( for fixed <)is 0. Indeed, letu e W be not
on any Stokes line. Then we have either o <y * or T <y o ; in the first case,
W <y p sothat h'yy =0, while in the second case, n <y ¢ sothat hey =0.

We must show next that o<, and ¥ map into the appropriate sheaves;
E' . For g e St we have,
dec(g)/dz = [ (dpk/dz)pkt, pkg pk~1] + pk[Bk, g] P!

= [B, x(@)}

It remains to show that «(g) ~ 1 (T (W)). If ¢, % € £ and «wk= vk then gey
= G4y , Sothat we need only show that for any open arc W,

x(g) ~ 0(T'(W) (k * Wi).
Write ¢ = ¢k, T = Wwk.Then, by the relation (*),
«(Q)ey = E(e—¥) hyst, Gox = E(c—7)hyex.

Since g = Stk(W), it follows that g, and hence «(g), is zero unless pg—c(u) <0
for all u e W. On the other hand, as o * ¢, ord(c—T) < rk, s—t and ¢—y
have the same leading coefficient, so that ps—t(U) = pe—y(u) (u € W). Hence,
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when pg_<(u) <O forall u e W, we must have E(¢—y) ~ 0 (T'(W)). This im-
plies that «(g)ey ~ 0 (T'(W)) since hy o is of moderate growth.

[8] : itis trivial to check that B maps St (W) into @ se 5k Stk,o (W).

: Similarly it is trivial that ¥ maps Pga x(k) Stk,o(W) into St (W).

[EXACTNESS| For g € Stk(W), goo =1 for o e =(k), and so, B(cx(g)) =
1. We must now verify that if h e St (W) and g(h) = 1, then g = px-1h pk &
St k(W). A simple calculation shows that dg/dz = [Bk, gl and so it remains to
verify the flatness condition . Now gq5 = 1 for all o and so we must verify that if
v,y e and o= © *+ T = Yk, then gy ~ 0 (T'(W)). But as before, in view
of (x),

heyw = E(¢—W)hygr, gew = E(c—T) by gx;

and hyy , hence gey also, is zero unless pyp—yw(u) < O forallu e W. !n the
latter case, as before, pg—(u) < 0 forallu e W, so that, as hy,g« is of moder-
ate growth, gey ~ 0 (T'(W)).

Finally, the morphic property of o,B,and ¥ is obvious. .

In view of this result we may identify Stk (1 < k < m) as a normal sub-
sheaf of St, with Stj; = St. We put Stg = 0; moreover, for 1I<k<mand o =
2 (k) we write St k+1,o for the Stokes sheaf of (Vg , Vk k+1,0) Where Vg is the
bundle C X Uy and Vkk+1,0 is the connection whose matrix is the restriction
to Vg of

Bkk+1,0 = Zurel(ks1\L(K) Dr 2" +z-1C.
The following is then an immediate consequence of the above result.
COROLLARY3.2.2 We have
Sto=0C Sty C ... € Stm=5St
where Stk is a normal subsheaf of St. Moreover,for 0 < k < m,

Stks+1/Stk = Doe 5(k) Stkk+t,o
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PROPOSITION 3.2.3 Let r<-1be an integer, U a complex vector
space of finite dimension , and B' = D' z' + z-1C' a canonical form defining a
connection V'onthe bundle V'=C X U.Then St (V'.V') is elementary with
associated arc length w/(Ir-l).

PROOF If a,b are any two distinct eigenvalues of D', let ®(a,b) be the
set of rays through the points u e S1 such that Re((a-b)urf) = 0 ; then
® = Jap ®(a,b) is the set of Stokes lines of End(V'). In view of proposition
2.4.2, it is a question of proving two things:

(a) if K is an open arc € S1 of length w/(Ir—1) with end points not on &,
then

HO(K, St (B')) =0, H1(K,St (B)) = 0

(b) if K,K' are arcs with K' € K and (K\ K') N ¢ =, then any section
of St (B) on K' extends uniquely to a sectionon K.

The assertion (b) is a restatement of 1,Proposition 3.4.2. Concerning the asser-
tion (a), let g € HO(K,St (B")). If a,b are distinct eigenvalues of D', #(a,b) is a
set of 2(iri—1) rays with angle exactly w/(Ir-I) between successive members
and so one of them must meet ® within K. Hence g3 =0, andso,as a,b
are arbitrary, g = 1.

The vanishing of H1(K,St (B')) is more delicate . We prove first that if K'
is any open arc of length < =w/(Ir-1), the restriction map

H1(S1,St (B')) — H1(K',St (B"))

is identically zero; this does not require B' to have only one level but depends
rather on the fact that r is the principal level. If ¥ H1(S1,St (B')), we can find
by the Malgrange-Sibuya theorem a meromorphic pair (V,V) at z =0 and an
isomorphism ¢ of its formalization with the formalization of (V',Vg'), such that
((V,¥),e) is represented by ¥. Thus we can find € > 0, a covering (U;) of S
by open arcs and isomorphisms x; of (V.V) with (V',Vg)on T (Uj)e such that
xi" = & and the cocycle (x;xj~1) represents ¥. But IK'l < m/(Ir-l), and so
I,Theorem 2.2.4 allows us to find an isomorphism u of (V,V) with (V',Vg)on
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T(K)e with u* = & ; if yj=xu-1, itis immediate that y; « St ((V,V))(Uin K) and
cici~1 =yiyj1, on UiNUJNK'. Thus ¥ trivializes on K.

We now argue as in Proposition 2.4.2 to show that any torsor I for
St (B') on K is trivial. We claim first that if K' is an open arc and K'CC K,
the restriction of & on K' is actually the restriction of a torsor on S1 for St(B'),
to K'. Indeed, if we write K' = (u',v') where u'.v' € K, there are small open arcs
(v',v') and (u',u") with u" < v" on which ¥ is trivial ; we then take the trivial
torsor on the arc S1\ [u",v"] and glue it to the restriction of 9 on (u',v'). By the
result established above, I trivializes on K'. We now write K as Up K where
KiCC Ky ..cC Khpcc.....K, and K\ K1 does not meet #. Then I trivi-
alizes on all the Kj. If there are two sections t, t' of 9° on Kp, then thereis a
section g of St(B') on K, suchthat g[t] = t'. Butas (K\ Kn)Né =3, g ex-
tends uniquely to a section of St (B') on K, which must be the trivial section
since HO(K, St (B')) = 0. Thus t = t, proving that ¥ is uniquely trivializable
on Kp. The sections of I on the Kj are thus coherent and build up to a sec-
tionon K. This finishes the proof that H1(K, St (B')) = O. .

PROPOSITION 3.2.4 St satisfies the conditions of Theorem 2.4.1.

PROOF Let us observe that the connections Vi k41,0 all have a single
level, and that this level is the same for all of them, namely ry,1. The above
proposition applies to each of them and shows immediately that

Poa xk) Stiks1,o

is elementary with arc length w/(Irk+1l —1). The result now follows from
Corollary 3.2.2. .

Let us write
St = St ((V,V))D, te R
where V=C X U and V is the connection on V with connection matrix B .
PROPOSITION 3.2.5 We have ,

Stv,v)h = 0 (t<rpor t>rm),
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St(V,V)O = Stk (rk < t < regq)-

PROOF Let W be an open arc and g € St(t)(W), t € R. Then, when
9, eZ, (¢ + W), we have, by (x),

9oy = E(e—¥) hy oy .
Suppose firstthat t < ry. Then ord(v — W) > ry > t and so
exp(—logw z. C¢) E(~ (#— w))exp(logw z. Cy) ey ~ 0 (T(W))

by the assumption on g . This shows that Y =0, and hence that g =1. Let us
next supposethat rk < t < rg;1 where k < m,andwrite f = pxk~1g pk, ®k=
o, $g=T. If o0 =<, then ord(e—w) > rg,1 > t, and so, we can argue as
before that g,y =0, sothat foo = 1. If o + T, we have

-y = (o—T) + 8, ord(B) > rc,1 > t,
and our assumption leads to the relation
fox = E(-8) gox ~ 0 (T'(W)).

In other words, we have verified that px—1g pk & St (Bk)(W), i.e., St{t)(W) < Sty.
To prove the reverse inclusion, let f € Stx. Then fyy =64y for @, b € = with
c=<;andif o+ T, we have

fow = E(e—W) hy oy, for = E(-8)fpy ,

and pe-y(U) = peg—<(u) forall u e W. Clearly we have to consider only the
case when pe_y(u) < O forall ue W, since otherwise fs, and hence fyy
also, must vanish. Let po—y(u) < O forall ue W, and let n be any differential

formin 49(W) of order > t. Then
EM) fou = E(e—w +1) hyeu;

and for the leading term bzd of ¢—y + 7, since it is the same as that of ¢—,
we must have Re(bud+1/q+ 1) < 0 forall ue W. Hence, for any sector T
CC T(W) one has the estimate

IE(e—w +1)l < exp(-alzld+1) (ze T',z—> 0),
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a > 0 being some constant. But then, as hy, ,y is of moderate growth, we
must have

E(M) fou ~ 0 (T°(W)).

This proves that f e St(t)(W). Finally, let t > rp, ,and let fe St (W). Then for
any ¢,¢ =, with ¢ *+ ¥, ord(v—¥) < rpm and so the last argument applies
and shows that

EM) few ~ 0(T'(W))

forall ® * ¥. Sofe StOW). .

3.3 In view of the results of § 3.2, it is clear that for completing the proof of
Proposition 3.1.2 we must relate the Stokes sheaf of an arbitrary (V,¥V) to that of
an unramified canonical form. We shall do this in this paragraph and thus com-
plete the proof of Proposition 3.1.2.

Let (V,V) be a meromorphic pair at z = 0 and suppose that it is unrami-
fied. Then we can find an unramified canonical form B and an isomorphism n
of the formalization of (V,V) with that of (Vg,Vg). The Malgrange-Sibuya iso-
morphism described in I, Theorem 4.5.1 associates to the pair ((V,V), 1) a co-
homology class « « H1(S1,St) where St =St (Vg, V) asin § 3.2. We repre-
sent this cohomology class o« by a suitable cocycle a coming from a good
covering, for example, a finite covering (U;j) of S1 by open arcs of length <
n/(Ir1|]-1), r1 being the principal level of V. Observe that if ((V', V'), £) is a pair
associated to (V,V), then ((V', V'), n¢) is associated to (Vg, Vg), and this cor-
respondence sets up a bijection

wa : H1(S1, St) = H1(S1, St(V,V))
via the respective Malgrange-Sibuya maps.

PROPOSITION 3.3.1 We have , for a suitable choice of the cocycle
a representing cx,

St(V,V) = St@), St(V,V)® = StH@), (te R)
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where the superfix denotes twisting, and = is an isomorphism of sheaves from
the category As. IMoreover, the bijection 4 defined above coincides with
twisting by a and is an isomorphism of affine spaces.

PROOF Thereis an € > 0 such that for eachi we can find an isomor-
phism y; of (V,V) with (Vg,VB) on a sectorial domain T (Uj)c, the isomorphism
being compatible with the asymptotic structures and inducing the formal iso-
morphism m. In particular, flatness of sections (of these as well as their associ-
ated bundies) is preserved under y;. By the definition of the Malgrange-Sibuya
map, the cocycle a = (yjyj~1) determines the cohomology class « correspond-
ingto ((V,V),n). But y; induces the isomorphism

g— vyigy!

of St (V,V) with the restriction St¢j) of St to the arc Uj, so that we may now
view St (V,V) as obtained by glueing the St i) via the isomorphisms

s—> ajjs gj~!

of St(j) with St(i) on UinN U;. This proves that St (V,V) = St(® ;and as aj
are multiplicatively flat, i. e., ~ 1 (T (UiNUj)), it is also clear that St (V,V)® gets
identified with St(1)(a) in the same manner. Suppose now that ((V', V'), ¢) is a
pair associated to (V,V) and x; are isomorphisms of (V',V') with (Vg,VB) on a
sectorial domain T (Uj)e, the isomorphism being compatible with the asymptotic
structures and inducing the formal isomorphism ¢. Write gjj = x x;~1 and hjj =
yi i xi~1 yj~1. Then the cocycle (gij) represents ®((V', V'), £)) € H1(S1, St(V,V)),
while the cocycle (hj)) represents $((V', V'), n¢)) € H1(S1, St). The obvious
relation

Yk Gij Yk~ = axi hijai on UinUjnUk

shows, in view of the discussion in Il, §1.3 (cf. relations (T) in the proof of
Proposition 1.3.2, loc. cit) that ®((V', V'), £)) isthe twist by a of &((V', V'), n¢)).
Since twisting is functorial it is clear that it is an isomorphism of the affine
schemes represented by H1(S1, St). .

The next proposition relates the filtrations in the z-plane with those in the
z—plane, z=29. Asusual f=fgisthe map £ —> zd. Let (V,V) be a mero-
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morphic pair (in the z-plane) at z = 0 and let (V',V') = f*(V,V). We do not sup-
pose that (V,V) is unramified, but only that (V',V') is unramified ; this is cer-
tainly possible for a suitable d.

PROPOSITION 3.3.2 Forany teR let t=dt+d-1. Then
St(V, VM) = f* (St(V, V) (te R)

PROOF Fix v on S1.d, and let u = f(v). We may work on a sufficiently
small sector around v on which f is a diffeomorphism. The horizontal sec-
tions g and h of (V,V) and (V',V') correspond by h(z) = g(x9). Moreover for
a differential form w e H(u) one has ord(f*w) = dord(w) +d-1. So

ge St(V,V) o (g(z)—1)E(w) ~ 0(T(u)) forany w e (u)
with ord(w) > t

< (h(z)—1)E(M) ~ 0(T'(v)) forall ne H(v) with
ord(n) > t'

< he St(v, V"))
which is what we wanted to prove. .

PROOF OF PROPOSITION 3.1.2 Fix a meromorphic pair (V,V) at z =
0, with canonical levels rj € (1/d) Z. Then (V',V') = {g*(V,V) is unramified in
the z-plane with canonical levels rj = dri+d-1 e Z. Propositions 3.2.4,
3.2.5 and 3.3.1 show that Proposition 3.1.2 is true for (V',V') with r; replaced by

riand © by dm. Butthen Proposiiton 3.3.1 shows that Proposition 3.1.2 is true
for (V,V). 3

3.4. Theorem 2.4.1 and Proposition 3.1.2 now lead to the following theorem.

THEOREM 3.4.1 Let (V,V) be a meromorphic pair at z =0. Then
St (V,V) is a sheaf from the category A . The cohomology H1(S1,St (V,V))
of the corresponding sheaf of unipotent group schemes in representable by
an affine space of dimension equal to Irr (E,VEg), the irregularity of the endo-
morphism bundle (E,Vg) assocciatedto (V,V).
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PROOF Only the last assertion concerning the dimension of
H1(S1, St (V,¥)) needs a comment. Proposition 2.6.3 shows that this dimen-
sion is equal to dim H1(S1, st (V,V)) = dim H1(S1, % o(End V)). But this is
equal to Irr (E,¥g) by definition (cf. §3.1). .

Let (V', V') be as in Proposition 3.3.2. From Theorem 2.7.10 we then
obtain further the following theorem.

THEOREM 3.4.2 We have
H1(S1, St (V,¥)) = HI1(S14, St (v, ¥)inv

where the superfix refers to the subspace of elements invariant under the
natural action of ng.

Finally, it is clear from Proposition 3.2.1 that the conditions of Theorem
2.7.7 are satisfied by St, and so we have the following Theorem.

THEOREM 3.4.3 Let notation and assumptions be as in Proposition
3.2.1. Then we have, canonically,

H1(S1, St) 2 Tlkxo0 [Toexk) HY(ST, Stkk+1,0)

where Sty k41,0 are the Stokes sheaves of the elementary unramified pairs
(Vo, Vkk+1,06)-
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PART Il : LOCAL MODULI
1 LOCAL MODULI SPACE FOR MARKED

MEROMORPHIC PAIRS

1.1. The theorem of Malgrange-Sibuya (I, Theorem 4.5.1) says that the coho-
mology H1(S1, St0) of the Stokes sheaf St0 of a meromorphic pair (VO, V0)
parametrizes the set of isomorphism classes of marked meromorphic pairs for-
mally isomorphic to (V9, V0), while Theorem 4.5.2 shows that for parametrizing
the isomorphism classes of the unmarked pairs one has to go to the quotient of
H1(S1, St0) by the group G*(V9, V0) of automorphisms of the formalization of
(VO, VO). In Part Il we have shown that H1(S1, St0) is an affine space over C
in a natural manner. In this part we shall examine to what extent H1(S1, St0)
and its quotients may be viewed as local moduli spaces for meromorphic pairs
with fixed formal data. As is well known, this is really a question of studying the
problem of classifying analytic families of meromorphic pairs upto meromorphic
equivalence, by analytic maps into H1(S1, St0) and its quotients. We shall be
interested only in the local deformation theory, so that only germs of families
and their equivalence will be of concern to us. In this chapter we shall consider
only the marked pairs, postponing to the next chapter the treatment of the un-
marked case.

We begin with a brief discussion of analytic families of vector bundles
and connections. A family of vector bundles at z = 0 is by definition a holo-
morphic vector bundle V on A X A where A (resp. A) is a polydisk (resp.
disk) in Cd (resp. C) centered at the origin. One may then identify V with the
assignment A —> V3 (A € A), V3 being the pull back bundle ix*V on A
corresponding to the map iy (z—> (%, z)). Holomorphic sections s of V may
be identified with families of sections s(x) of V3, s(»)(z) = s(»:z). By a
meromorphic section s (at z = 0) we mean a holomorphic section s of the
restriction of V to A X A* such that for some integer q > 0, zds extends to
a holomorphic section of V; here A* = A\ (0). Let ® be the algebra of germs
of holomorphic functions at (0,0) € Cd X C and let @ ®[z-1]. lItis then
clear that the germs of meromorphic sections of V at z 0 form a free G-
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module, say M, ofrank N = therank of V. If V, V' are two families of vector
bundles, a meromorphic map (at z = 0) V—> V' is by definition a holomor-
phic map s from the restriction of V to A X AX* to the corresponding restric-
tion of V' such that for some integer q > 0, zd s extends to a holomorphic map
of V to V'.

A family of meromorphic pairs at z = 0 is an assignment
(V,V):x — (V3, Vi)
such that
(a) V isafamily of vectorbundlesat z = 0 and V3 = in*V
(b) foreach A e A, (V3, V3) is a meromorphic pairat z = 0
(c) for any meromorphic section s of V,
(x) Vs:x z—> V3 ddzs(A)2)
is again a meromorphic section of V.

Our concern is only with germs of families of such pairs at (0, 0). From the
perspective of differential modules one views € as a differential algebra with
respect to the derivation 0/0z and considers the category of free differential
modules M of finite rank over &. If (V, V) is a family of meromorphic pairs at
z = 0, one can associate to it in an obvious way a differential module (M, V)
over & where M isthe € -module of germs of meromorphic sections of V
and V is defined by (x) above. This sets up an equivalence of categories and
we shall not distinguish between these two categories. If we go to a concrete
description using a trivialization of V,then V = AXAXCN, and the connec-
tions V3 on AXCN are given by

Vadidz = d/dz — A(x: z)

where A is an NXN matrix such that z9A is holomorphic on AXA for some
q=20, i.e., A= gl(N, @). Inthis way we are led to the context of a family of
meromorphic differential equations that depend holomorphically on the param-
eter x e A,
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Let (V,V) = {(Vi, Va)} be a family of meromorphic pairs and let (M,V)
be the associated differential module over @. Let ®44 beasinl, §1.5. Then
we have a natural imbedding €& «—— 4 1 obtained by viewing any element of
@ as a Laurent series in z all of whose coefficients are in ®©gy(A) for some A.
We thus have the differential module (M", V") obtained from (M,V) by exten-
sion of scalars &4 — g 1. By a marking of (V, V) or (M, V) by a differential
module (M0", VO*") over ¥ we mean an isomorphism

€ : (M, V") 2 041QQy MO*

PROPOSITION 1.1.1 In order that there is a marking of the family
(V, V) it is necessary and sufficient that it be isoformal, i. e., the formal isomor-
phism class of (Vy, V) does not depend on X.

PROOF This is immediate from I, Theorem 1.5.1.

Let (VO, VO) be a meromorphic pair at z = 0. An isoformal family of
marked pairs associated to or formally equivalent to (V9, V0) may now be de-
fined as a system ((V, V), §) where (V, V) is a family of meromorphic pairs
and ¢ is a marking of it by (M0*, V0*), the formalization of (V0, V0) ; we shall
say that it is a local isoformal deformation of ((Vo, Vo), £0)- By specializing €
at the points A we obtain a collection of isomorphisms

€x (MY, V) = (MO%, VO,

where (My*, V") is the formalization of (V3, V1), and we often identify € with
the collection (€3). If ((V, V), €) and ((V', V'), £') are two isoformal families
associated to (V0, V0). They are said to be equivalent if there is an isomor-
phism

a: (MV)= M,V
such that
€ = eo al\

where a* (M", V") =z (M, V") is the natural extension of a.
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Let St0 = St(VO, VO). Let M. (VO, VO) be, asin |, §1.4, the set of iso-
morphism classes of marked pairs formally equivalent to (VO, V0). After the re-
sults of Il, Chapter 2, the space H1(S1, St0) may be viewed as an analytic
manifold in a natural manner. Following the general principles of the theory of
moduli one recognizes that in order to secure an interpretation of H1(S1, St0)
as a moduli space for marked pairs one has to verify the following.

A (Morphism property ). Fix a pair ((Vo, Vo), £0) whose isomorphism
class is in M, (V9, VO) and let f = ((V, V), €) be a local isoformal deformation
of it. Then forall » near 0 the class of ((Vj, Vi), €3) isin M. (VO, V%), and so
by the Malgrange-Sibuya Theorem (I, Theorem 4.5.1) we obtain a map ¥¢ of
neighbourhood of 0 into H1(S1, St0):

@5 0 A —> ((Va, V), €2).

It is obvious that the germ of this map depends only on the equivalence class of
the family ((V, V), €). The morphism property is the assertion that this map is

holomorphic.
B (Criterion for equivalence ). This criterion says that two families
f=(V.V)€) and f = ((V', V'), §")
are equivalent if and only if ¢ and ®¢ define the same germ, i. e.,
P = Op
in a neighbourhood of O.

C (Existence of universal families ). Let d = dim H1(S1, St0). Then, for
any ((Vo, Vo), £0) a universal local deformation of it is a family f = ((V, V), &),
defined over a polydisk A in Cd, suchthat Vo = Vg, Vo = Vo, €0 = £o0,
and the map ®¢ is a local analytic isomorphism of a neighbourhood of 0 &
Cd into H1(S1, St0). The existence of such local universal deformations for ar-
bitrary ((Vo, Vo), £0) is the third requirement for interpreting H1(S1, St0) as a
moduli space for marked pairs.

THEOREM 1.1.2 H1(S1, St0) is a local moduli space for marked
meromorphic pairs whose formalizations are isomorphic to (VO, V0).
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We shall give the proof of this Theorem in the next four sections.

1.2. In this section we shall establish the morphism property. We begin with a
simple observation. Let U, U' be open arcs of S1 with UCcC U andlet T =
T(U), T'=T(U) be the sectors on them. Let (MO, V0) be the differential mod-
ule over Fgqt of the germs of meromorphc sections of VO and (M©", V0*) its
formalization. We then have the differential modules

MO(T) = Ad,1(1“')®;cg‘M°, MO* = 04,1Q) g'MO

C

and the formalizing map MO(T') — MO0". Suppose g is an automorphism of
MO(T') such that g* = 1, the identity automorphism of MO, It is then clear (for
example, by choosing a trivialization of V0) that g defines a family of automor-
phisms of (V0, VO) on the sectorial domain T 5 for some & > 0, preserving the
asymptotic structure and satisfying

g(d) ~ 1(A X Tg).
Clearly each g(») is an element of StO(U).
LEMMA 1.2.1 The assignment
a»—> g(»)

is an analytic map of a neighbourhood of 0 into St0(U). Conversely, any such
analytic map arises as above from some automorphism g of MY(T) with g*
= 1.

PROOF We may assume that VO is the trivial bundle and that VOqqg,; =
d/dz — A9, where AQ e g I(N, Feqr). Write g(A: z) = 1 + h(x:z). Then h is
an analytic map of A X T4 into ¢ £(N, C) with h ~ 0 (A X Ts) satisfying

(%) dh/dz + hAO — AOh = 0.

The solutions k of (x) form a nilpotent Lie algebra, namely st(U), and the
map 1 —> 1+ Kk is an isomorphism of affine varieties of st(U) with Sto(U) (cf.
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I, Proposition 3.4.1, and ll, Proposition 3.1.1), so that we need only to prove that
» —> h(A) is analytic into st(U). This is obvious since, for any zg € T3, the
map » —> h(Ax :zg) is analyticinto g £(N, C) while the map k—> k(zg) is a
linear isomorphism of st(U) with a subspace of g £(N, C). For the converse
assertion it is enough to find forany u € U anopenarc W, ue W C U, such
that g(x:z) ~ 1 (AXT (W);s). By |, Proposition 3.4.1 we can find W and y =
GL(N, Ap(T")) such that g(x:z) = y(z) a(») y(z)-! where a(» — a(})) is an
analytic map into GL(N, C). Itis then clearthat g(x:z) ~ 1 (AXT (W)s). 3

Let us now consider a family f = ((V, V),€) of marked meromorphic
pairs associated to (V0, V0). Let « be a positive number sufficiently small,
say, x <w/(Ir4l — 1), rqy being the principal level of the formalization of (VO, VO0).
Let & = (Uj) be a finite covering of S1 by open arcs of length < «, and for
each i let Ui be an open arc of length < « with Ui CC Uy ; write Tj = T"(Uj),
T =T (Ui). Since & is an isomorphism of (M", V") with ©®4 1 & M0",
Theorem 2.2.3 allows us to choose for each i an isomorphism x;,

Xi: Ad1(T) & aM = Ad,1(T')®;°glM°. X' = §.

If gij = xi %=1, gjj is an automorphism of Aq,1(T'inT|) &y MO and so de-
cgt

fines a family of automorphisms (gij(»))xea of (VO, VO) on (T'inT))s for suffi-
ciently small A and 6 >0. Then g(*) = (gij(»)) € Z(& : St0), the space of co-
cycles of St0 attached to the covering €. Lemma 1.2.1 shows that X —> g(?)
is an analytic map into Z(C : St0). But then it is clear from the discussion in I,
§2.7 (Theorem 2.7.6) that » —> [g(n)] (= the cohomology class of g(x)) is an
analytic map into H1(S1, St0). This is of course the map ®; defined by the
family f. This proves the morphism property. .

1.3. We shall now prove that ®¢ determines the equivalence class of f. We
shall assume all the bundles to be trivial so that

VO = AXCN, V =V' = AX AXCN.
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Let f and ' be two families of marked meromorphic pairs that are isomorphic
to (VO, VO) such that &s = ®¢ . We write A0 for the connection matrix of VO
and A(xI z) (resp. A'(h: z)) for the connection matrix of V3 (resp. Vy'). In the
notation of the previous section we now have a second family of cocycles g'(x)
= (gij'(3))reA , associated to €'(and choices of x;' above §£'), and the as-
sumption is that [g(»)] = [g'(»)] . It is then immediate from Il, Theorem 2.7.6
that there is a unique analytic map A —> c(}) = (ci(})) into C(C : St0) such
that g'(x) = c(d)g(»)] forall X € A. Rewriting this in terms of the x; and Xx;'
we find that

() (A oA xi'(h) = xj(A) 1 ¢(d)1 x'(A)  on TinT;
forall i,j and A = A. By Lemma 1.2.1 the collection cij(»)y«A defines an
automorphism ¢; of Ad,1(1"in1‘i)®3cgtM° with ¢* = 1; hence xi~1¢~1x =

ai € GL(N, Aq,1(Ti)) with aj[A] = A" and a" = €¢'-1¢ forall i while (x)
shows that aj and aj coincide on T'inTj for all i, j. We thus obtain an element
a € GL(N, @) such that a[A] = A' and a" = ¢-1¢. Itis now clear that a
defines the equivalence of f and f'. .

1.4. We shall now take up the construction of universal local deformations.
This will be done in two stages. The first stage, to be carried out in this section,
assumes that (V9, V0) is unramified; and the second stage, treated in the next
section, completes the proof when this hypothesis is dropped. Throughout the
proof we shall assume that all bundies are trivial with fiber U = CN. Thus to
each element A of g Z(N, Fcqt) we have a connection V(A) defined by

V(A)yaz = d/dz — A,

on the trivial bundie A XU for some disk A around z = O, so that we may
think of A or V(A) as defining the pair (AXU, V(A)). We adopt a similar con-
vention with regard to marked pairs and families, so that, for example, families
are represented by elements A of g 2(N, &) where & isasin § 1.1. We write
d for the irregularity of the endomorphism bundie of V0 so that

d = dim H1(S?, St0).
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Let VO = V(A0). We first suppose that VO = V(B) under GL(N, &)
where B is an unramified reduced canonical form. Let us consider the pair
defined by Ag € ¢ £(N, Fcqt) and an element §o of GL(N, ¥F) such that
€o[Ao] = A0. It is obvious that for the problem of constructing a universal family
of local deformations of the marked pair (Ag, £9) we may replace (Ag, £0) by
(Y[Aol, €0y—1) where y & GL(N, Fcqt). Now there isan 1 e GL(N, &) such that
n[Ao] = B. If we truncate the Laurent series for n at a sufficiently high stage we
shall obtain y € GL(N, F¢qt) suchthat y[Ag] = B + F where F e g £(N, C{z}).
Thus there is no loss of generality in assuming that

(%) Ao =B + F, Fe gl(N, C{z}).

We write GL(N, C{z})1 (resp. GL(N, C[[z]])1) for the subgroup of GL(N, C{z})
(resp. GL(N, C[[z]])) of elements whose leading term is 1. Also we use the
usual notations and conventions regarding canonical forms (see I, §1.4). In
particular,

B = EfeL Zr® Dr +Z"1®C,

where L ={rq, r2, ..., rm} is the set of canonical levels of B, the r; being inte-
gers with ri<ro<..<rpm<-1; C, Dy (relL) arein End(U) and commute with
each other, and Dy is semisimple forall r = L.

LEMMA 1.4.1 /f Fq e gZ(N, C[[2]]), 3 a unique ¢ € GL(N, C[[z]])1
such that ¢[B + F{] = B.

PROOF Let A1 = B + F4. Forthe existence we may, in view of Lemma
6.2.2 of [BV 1], assume that [A1, D] = O forall r e L. By spectral splitting we
come downtothecase A1 = c 1 + z-1C + F{ where c e Z, the spectrum of
B. As C is reduced, Proposition 3.2 of [BV 1] applies to give £ € GL(N, C[[z]])1
such that ¢[A41] = o1 + z-1C. If ¢' € GL(N, C[[z]])1 is such that £[A1] = B
also, then t = ¢¢'-1 e GL(N, C) N GL(N, C[[z]])1, hence t = 1. .

Let g £(N, C[[z]])+ be the space of all X « g £(N, C[[z]]) with leading term

LEMMA 14.2 Let A1 = B + Fy be as in the preceding lemma. If
Y* € g £(N, C[[z]]), 3 aunique X" e gi(N, C[[z]])s suchthat V(A)(X") = Y".
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PROOF By Lemma 1.4.1 it is enough to prove this with B in place of
A1. It is then a question of proving that for fixed o, © € £ and a given Y*,

Y = Yo + 2Y1 +.... (Yq € Homg(U<, Ug)),
there is a unique X",
Xt = 2Xy + z2Xo +... (Xq ® Homg(Ux, Ug)),
with
dX*/dz + (t —o)X* + Z/(X"Cx — CoX") = Y~

Observe that the endomorphism L(X'— X'Cy — CsX') of Homg(U~, Ug) has
as its only eigenvalues the numbers of the form « — B where « (resp. B) is an
eigenvalue of Cr (resp. Cs); and IRe(x — B)I < 1 since C is reduced. The ex-
istence and uniqueness of the Xg follow from a simple calculation. Indeed, if
o = <, the Xq satisfy

(L+ g+ 1)(Xq+1) = Yq (9= 0),
andsince L + q + 1 isinvertible, we are done. If ¢ * <, let
T—0 =CqZ¥ +..+ cpz2 (r= 2, c#* 0);
then the equations for the Xq ,r(q > — (r—1)) become
Xg+r = C—r"1(Yq— Z2<j<r jXq+j— (L + g + 1)(Xq+1))
The existence and uniqueness of the Xq now follow by recursion. .

LEMMA 143 Let Ay, X", Y" be asin Lemma 1.4.2 and suppose that
F1e gZ(N, C{z}). If W C S1 jsanopen arcoflength <zn/(lrql —1) and Y is
a holomorphic map T (W) — End(CN) such that Y ~ Y*, then we can find a
holomorphic map X(T' (W) —> End(CN)) such thaton T (W),

VAI)X) = Y, X ~ XM

PROOF The proof is by reduction to the case F{ = 0. Suppose we
have proved the lemma in this case. Let ¢ € GL(N, C[[z]])1 be such that ¢[Aq]
= B. By, Theorem 2.2.4 3 a holomorphic x (T'(W)s — GL(N, C)) such that
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x[A1] = B and x ~ ¢ on T(W). If Y1"=¢ Y'¢-1, Yy =xY"x1, X4"=¢ X" ¢,
and Xj (T'(W)s —> End(CN)) is such that V(B)(X1) = Y1 and Xy ~ Xi{" on
T(W)s, then X = x=1 X4 x has the required properties. We shall now prove the
lemma when Aq = B. Select a holomorphic map Z(T (W)s —> End(CN)) with
Z ~ X" (T'(W)); we shall seek X intheform X = Z + P,P ~ O(T(W)). The

equation for P is then seen to be
dP/dz + [P, B] = Q,
where
Q =-dZ/dz - [Z,B] + Y ~ O(T(W)),
and this is equivalent to the system of equations
dPs</dz + (T —6)Pgx + z71 (Pgx Cx— Cg Pox) = Qgx, Pox ~ 0 (T(W))

forall o, te Z. f o0 + © we use |, Theorem 2.3.1 to obtain the existence of
Ps<. If o = <, then the equation becomes

dPss/dz + z71 (Pge Co — Co Poo) = Qgo. Pgs ~ 0 (T (W)).

Write h = exp(log z. C55), R = h—1Qgs h; then,as R ~ 0 (T (W)) we can find
holomorphic S (T (W)s — End(CN)) such that dS/dz = R on T(W)s and S
~ 0 (T'(W)); we may then take Pgg = h S h-1, .

Let us write, for any A € g £(N, C{z}), st(A) for the infinitesimal Stokes
sheaf of the pair (A XU, V(A)) and St(A) for the corresponding Stokes sheaf.

LEMMA 144 Let A = B + F,F e gf(N, C{z}). Define
R(A) = {Y e g&(N, C{z}) : Y = V(A) (X) forsome X e g&(N, C{z}), }.
Then there is a natural isomorphism of complex vector spaces
h:gZ(N, C{z}) / R(A) = H1(S1, st(A)).
In particular,

dime (g 2(N, C{z}) / R(A)) = d.
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PROOF Let .8 be the sheaf on S1 of germs of holomorphic maps
T'(U)s — End(CN) whose entries have asymptotic expansions in C[[z]] and
let A, be the subsheaf of those elements whose asymptotic expansions lie in
¢ Z(N, C[[z]])+- Then V(A) is a sheaf map of & into itself and the preceding
lemma implies that V.8, is precisely the sheaf 8. Let us next introduce the
sheaf . which is the subsheaf of &, of all elements that are in the kernel of
V(Ag). We then have the following exact sequence

0 > M, > A, > A > 0

where the map 8,——> 8 is the one defined by V(A). Let us now look at
the corresponding long exact sequence. It is easy to verify that

HO(S1, 44) = g &(N, C{z}), HO(S1, &) = g &(N, C{z}).
Moreover, as the kernel of V(A) on g £(N, C{z}),; is zero, we have
HO(S1, M) =0,
Hence we obtain the exact sequence
0 —— g &(N, C{z}), ——> g L(N, C{z}) —— H1(S!, M) ——
——> H1(S1, 8,) —— H1(S1, 8)—— O

where the map going from ¢ £(N, C{z}), to g£(N, C{z})is V(A). Thus we get
the exact sequence

0 —— g L(N, C{z})/R(A) —— H1(S1, M,) —— H1(S1, A,)
and it is a question of proving that
ker (H1(S1, M) —— H1(S1, 8,)) = H1(S, st(A)).

Suppose we take an element of this kernel and represent it by a cocycle (gij)
with respect to a finite covering (U;) of S1 by open arcs of sufficiently small
length. If gjj ~ gij", then V(A)(gj) = 0 = V(A)(gij') = 0;lemma 1.4.2 now
allows us to conclude that gj" = 0, as gji* liesin g Z(N, C[[z]]);. Thus the
cocycle belongs to st(A). In the other direction, suppose that we start with a
cocycle (gijj) associated to st(A). By the Miagrange-Sibuya Theorem (I,
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Theorem 4.4.1) we can find an element c* e g £(N, C[[z]]) and cje A(U;) so
that ¢; ~ ¢ and gjj = ci—c¢j. As c" is determined only mod ¢ £(N, C{z}),, we
may assume that c" e ¢ £(N, C[[z]]);. But this is just the assertion that the
cocycle trivializes in 8. .

Let us continue with Ag = B + F where F € g Z(N, C{z}). Consider a
family of connections V(L(»)) (» € A), A a polydisk in Cd, such that

(@) L) = Ao

(b) L(») = B + M(») where M(X) € gZ(N, C{z}), and for some & >0,
and some analytic map M (AXAgs—> g£(N, C)),

M(2)(Z) = M(»:2)

DEEFINITION V(L(%)) is an infinitesimally versal family if the linear
span I of (9L/ari)x -0 (1 < i< d) is linearly independent of R(A), R(A) be-
ing as in Lemma 1.4.4. Note that (A XU, V(L(»)) is an analytic family of
meromorphic pairs. It is clear from Lemma 1.4.4 that

gL(N, C{z}) = RA) P &.

It is also easy to see that we can always find such an infinitesimally versal family
of connections through A. Indeed, if & is a linear subspace of dimension d
complementary to R(A) in g £(N, C{z}) and {Bj}1< < d is a basis for &, and if
we set

L(A) = A+ Zicj<d NBj

then it is obvious that {L(%)} is an infinitesimally versal family of connections
through A.

Our aim now is to show that an infinitesimally versal family of connections
through A defines a universal family of local deformations of a pair (A, ¢). We
need a preparatory lemma.

LEMMA 145 Let q= 1 be an integer, A € CA a polydisk, and L
=B + M where M (AXA —> gi(N, C)) is analytic ; let L(x)(z) = L(x: z).
Let m be an element of GL(N, ) such that m[B] = AO. Foreach » = A let
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(A7) be the unique element of GL(N, C[[z]])1 such that «(A)[L(A)] = B. Then
€(» — £(») = nx(X)) defines an element of GL(N, ©q,1(A 1)) for some A
< A, and (V(L(A)), £(7)) is a family of marked meromorphic pairs formally
isomorphic to V(B). In particular, if L is infinitesimally versal, there is &1 C
A and € e GL(N, Oy, 1(A1)) such that (V(L), €) is a family of marked mero-
morphic pairs associated to V(A0).

PROOF 1t is enough to prove that o« (A —> «(A)) defines an element
of GL(N, ®q,1(A1)). In view of the uniqueness of £(%) it suffices to exhibit a
A4 and an element £ of GL(N, ®q,1(A 1)) suchthat Z[L] = B. Butthisis
precisely what is done in Corollary 6.7.6 of [BV 2]. The second assertion is
clear from Lemma 1.4.1. 13

PROPOSITION 1.4.6 Suppose {L(A»)} is an infinitesimally versal
family of connections through Ao and (V(L), €) the corresponding family of
marked pairs. Then (V(L), €) is universal for (V(Ao), £(0)).

PROOF We fix a finite covering & = (U;) of S1 by open arcs of length
< n/(lr4l — 1). Then, as in § 1.2 we obtain a cocycle g which is an analytic map
of a (sufficiently small) polydisk A into Z = Z(C: St(A%)) such that the
Malgrange-Sibuya class ®(L(*), £(*)) is the cohomology class of g(x). Now,
by ll, Theorem 2.7.6, the map

¢ :c—> c[g(0)]

ia an analytic diffeomorphism into Z. Let S denote the range of the differential
of this map. We must prove that the map » —> [g(*)] has an injective
differential at » = 0, and for this it is a question of proving that if wp (1 < p < d)
are complex numbers,

E15p5d Wp(ag/a)\p))‘=o e S = Wi{ = W2 =...= Wd = 0.
Let us fix the wp and assume that

(%) z1 <psd Wp (ag/akp); -0 = S.

Define
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M= Z1<p<d Wp (0o2p)x -0 = gL(N, C{z}).

It is then sufficient to show that if (x) is true, then M e R(A); for, as L isin-
finitesimally versal, the map

(uq, uz, ..., ug) — z1 <p=<d Up (al—/akp)x =0

is a linear isomorphism of Cd onto a subspace of ¢ £(N, C{z}) that is comple-
mentary to R(A).

For brevity write
Jd = E‘\ <psd Wp (a/a}\p)} =0-

Then (x) means that for some tangent vector © to C(Cl: St(A0)) at 1 we have
dg = (de)c = 1(T). Let t —> c(t) be an analytic map of a neighbourhood of 0
in C into C(C: St(A%)) suchthat c(0) = 1 and (dc/dt)i_o = ©. Then T €
C(C1: st(A0)), say T = (=j). If we write c(t) = (ci(t)), we have

3 = (dt) - o (cit) gij(0) city")
and hence
agij = i gij(0) — gij(0) =;j
on T(UjnUj)s. Butas gjj = xi x~1, we have, using the above formulae for agij,
xi(0)=1 3 — xi(0)~" i xi(0) = xi(0)~" 3xj = xj(0)~" ; xi(0)

on T (UinUj)s forall i, j. These relations show that there is an analytic map 2
of the punctured disk A * into End(CN) such that

(#) xi(0)~1 9% — xi(0)~1 ©i x(0) = 2

on T(Uj)s forall i. On the other hand, as <je st(A%)(U;), we have T; ~ 0 on
T (U;) while x{(0) ~ £(0) and o0x; ~ d¢ on the same sector. Hence,

z ~ £(0)719¢ = x(0)~1ox (T'(Uj)
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for all i. As usual we conclude that % is meromorphic on the full disk. As o« (A)
isin GL(N, C[[z]])1 forall X, dx e g £(N, C[[z]])+, so that z e g £(N, C{z}),.

To prove that M € R(A) it is enough to prove that
(% %) dz/dz + [£,A0] = — M.
First, as xj[L] = A0 on A{1XT(Ui)s we have,
dxi(A)/dz + x(3) L(x) — AOx(A) = O.
We take » = 0 in this and also apply 9d to it to get the following two relations
dx;j(0)/dz + xi(0) Ag — AOx{(0) = O,
(##)
d(@xj)/dz + (@xi) Ag + xi(0) M — AO(ax;) = O.

A not too difficult calculation based on the relations (#) and (##) shows that (*x)
follows from them. .

Essentially the same calculations lead to the following condition for de-
ciding when a given family is universal. Let Ag € ¢ Z(N, Fcqt), £olAo] = A0,

PROPOSITION 1.4.7 Let {L(A), (7))} be a family of marked mero-
morphic pairs defined for > in a polydisk A < CA with L(0) = Ag, £(0) =
€o0. Write I C g L(N, Fegt)Xg L(N, F) forthe linear span of (diL, dig), where
i = (9/9rj)) =0(1 <i<d). Let us now suppose that & satisfies the following
conditions:

(a) dimegds = q
(b) I3 is linearly independent of the range of the map
n—> (V(Ao)(n), — €M)
of gi(N, Feqr) into LN, Feg)XgL(N, F).

Then » —> ®((L(»), £¢(»)) has injective differential at » =0. Suppose q = d.
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Then {(L(X»), €(»)} is a universal family of local deformations of (Ao, £0)-

PROOF We proceed exactly as before and construct & € g Z(N, Fcqt)
such that V(Ag)(—2) = M = dL, with 2 ~ £(0)-1 0¢; as z is a convergent el-
ement, £ = £(0)~10¢. So, (V(Ap)(—Z), ¢0 Z) = (dL, 9¢), which implies, by (b),
that oL = 0,0¢ = O, sothat @ = O. .

1.5. In this section we shall drop the assumption that (V0, V0) is unramified.
Let b be an integer divisible by its ramification index and let us introduce the
complex plane C, of z = z1/b. We shall generally use the symbol ~ to indi-
cate the lift to C, of an objectin C,. We shall also identify H1(S?1, St(A0)) with
H1(S1, St(A0~))inv, the subspace of cohomology classes that are invariant un-
der the Galois group up, as we are allowed to do so by Il, Theorem 3.4.2.  Fix
a pair (Ao, £9) associated to AC so that €o[Ag] = AO. Let hg be the class in
H1(S1, St(A0)) defined by (Ag, £9). We write & (resp. ®~) for the Malgrange-
Sibuya map associated to (Ag, £0) (resp. (Ag™~, £0~)), so that

®(Ao, £0) = ®~(Ao™, £€0) = ho.

By what we have established so far, we can find a universal local deformation
{A'(n), €'(n)} of (Ao~, £0~)). By taking the preimage of the invariant classes
under the map p — ®~(A'(n), €'(n)) we see that there is a family {A(x), £()}
defined for A in a polydisk A of dimension d = dim H1(S1, St(A0)) with the
following properties:

(@) A(0) = Ao™, €(0) = 0~

(b) A —> ®~(A(N), £(X)) is an analytic diffeomorphism of A with an
open neighbourhood of hg in H1(S1, St(A0~))inv,

We shall show that this family is equivalent to a family coming from the z-plane.
More precisely we shall prove the following Proposition.

PROPOSITION 1.5.1 There exists an y €« GL(N, @) and a family
(B(®), n(»)) with B(x) € ¢ &(N, C{z}), n(») € GL(N, F), and n(»)[B(})] = A,
such that y(A)[A(R)] = B(A)~ and ¢(A)y~1 = n(»)~ forall .
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PROOF The proof requires three lemmas.

LEMMA 1.5.2 There is a finite covering ® = (U;) of S1.b by open
arcs and gauge transformations xj (AXT (Uj)s —> GL(N, C)) such that

(@ xi ~ & (AXT(Ujs)
(b) x[A] = A0~

(c) B is a good covering and the set of indices i admits a free action by
B such that wUi = Ugy(i) (w = up)

(d) the cocycles g(») = (xi(») xj(x)~1) are invariant under pp, i. e.,
Xew(@)(A: WZ) Xeo()(A: wZ)~1 = xi(A: g) xj(r: 2)~1

PROOF Let N be aninteger >> 1. We shall take U; = (i, tj . 2) where
the tj(ie Z, ti = tj, np) are points of division of S1.b into Nb arcs of equal
length, ordered counter clockwise; if w = e2iwb, then wUj = U, N. We first
find gauge transformations u; having the properties (a) and (b); the condition
(d) need not be satisfied, and the point of the proof is to show that the u; can
be adjusted so that this can be assured. The argument is a variation of the one
used in I, Proposition 1.3.3.

Let h(\) be the cocycle (ui(*)uj(»)~1). Then forany w = up the trans-
form of h(»x) by w—1 is given by

w1 h() = (0 el M) (W1 Ue@))  (Wluk(r:Z) = uk(r: wZ)).

The assumption is that w=1. h(}) and h(x) define the same cohomology class
for all ». So, by Il, Theorem 2.7.6 we can find unique c(w: A) € C(® : St(A0~))
such that w. h(3) = c(w: A)[h(X)] forall » and » —> c(w: A) is analytic for
all w. We have

(*) c(1: %) = 1, c(ow: ) = (0.c(w: A)) c(o: A),
where the action of w on the coboundary ¢ = (c(i)) is given by

(w. ¢)(i) = w. c(w=1() (w-H)(z) = (w=1Z))

182



LOCAL MODULI

We shall now construct an analytic map » —» d(x) into C(® : St(A0~)) such
that

(%) c(o:2) = (5. d(n)) d(r)-1

for all ». Supposing that we have done this, we shall now complete the proof of
the Lemma. By Lemma 1.2.1 we can view the map » —> d(*) as a collection
of analytic maps dj (A, £ —> d(x: £)(i)) into GL(N, C) such that di-1 ~ 1 and
di[A0~] = A0~ on AXT (Uj)s. Soif xj = di~! u;, then (a) and (b) are satisfied
obviously. Furthermore (d) is also true; for g(») = d(x)~1[h(}»)], and a simple
calculation shows that g(}) is invariant under pp.

it remains to construct d. We write each of the indices i (0 < i <N b)
uniquely as w(j) for some w e pup and some j, 0 < j < N, and the sections of
St(A0~) on U; uniquely as w.s where s is a section on Uj. Then we can
identify the collection (c(c: A)) with the collection of analytic maps (d(c, w, j))
where

d(c, w, j) : A —> St(A0~)

c(o: M) (w() = w. d(o, w, )(A).

The relations satisfied by the c(o: ») then translate into
d(1, w,j) = 1, d(owT, w, j) = d(<, s-lw, j) d(o, w, j).
It follows immediately from these that
d(t.n,j) = dn~'<, 1, j)dn1, 1, ).

If we define

d(A)(w())) = w.d(w=1,1,))(R),
the preceding relations retranslate into

c(e: A)(M() = = d(x)(T=n()) d(>r)(m@)-1,

which is just a restatement of (xx). .

LEMMA 1.53 Thereis t, = GL(N, Q) (w = pp) such that
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ty = g1 gw (w = up)
where £¢wW(A:Z) = &(7: w—1Z). In particular
twe = tw (L)«
PROOF From the relation (d) of the preceding Lemma we find that
Xi(A: 2)™1 Xy (h: w&) = xj(h: ) xw(@)(h: w)

on T(UinUj)s forall i, j, while the left side is asymptoticto &(x: z)~!1 £(h: wZ).
So we conclude in the usual manner that there is an element t'(w) € GL(N, @)
such that t'(w)(’: ) coincides with xi(»: £)~1 X @) (3: wZ) on AXT (Uj)s for
all i. If we write t,, = t'(w—1), we get, on replacing the x; by their asymptotic
expansions, the required relation between the £'s and t's. .

LEMMA 154 Thereisan ye GL(N, &) such that

tw = ylyw (w = pp).

PROOF The argument is a minor variation of the usual proof of the
vanishing of H1(G, GL(N, K) for a field K/k with Galois group G ([Se], p. 159).
Forany ¥ inthering End(®4,1N) of NXN matrices over ®g 1, we form the
sum over up,

D) = ey te ¥,

It is now a question of showing that for some ¥ e End(@zN), D(¥) € GL(N, ).
For, suppose this is true for ¥ = ¥¢. Then Lemma 1.5.3 shows that D(¥ o)
satisfies the relation D(¥g)* = t,~1 D(¥0), so that the proof is completed on
taking y = D(¥po)1.

To prove that D(¥) € GL(N, @) for some ¥ « End(C:N) we argue as
follows. Since t, = ¢~1¢%w we have D(¢~1) = b ¢-1 e GL(N, ®q,1). So,if &¢m
is the Laurent polynomial obtained by dropping from ¢ all terms zf withr>m,
we have, limm— o £¢m = ¢ inthe adic topology, so that £m & GL(N, @) if m
is sufficiently large. Hence,

limm — « D(§m™") = D(s~") « GL(N, Oq,1),
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showing that D(¢m~1) € GL(N, @) for sufficiently large m. .

The proof of Proposition 1.5.1 is now immediate. For, by Lemmas 1.5.3
and 1.5.4, we have,

gyl = (gy)w (w & pp),

and so there is n = GL(N, ®qg 1) suchthat ¢ y-1 = n~. Then n~y[A] = A0~ or
y[A] = n~—1[A0~], so that y[A] is invariant. We then define B(») by y[A(})] =
B(»)~. .

With this the proof of Theorem 1.1.2 is complete. .
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2 LOCAL MODULI SPACE FOR

MEROMORPHIC PAIRS

2.1 We shall now treat the moduli problem for the meromorphic pairs them-
selves without any markings. We fix a pair (VO, V0) as before and consider the
set M. (VO, VO) (resp. 9(VO, V0)) of asomorphism classes of marked (resp. un-
marked) pairs associated to (V0, V0). Let G0* be the group of automorphisms
of the formalization (M0*, V0*) of (VO, V0). By Theorem 4.5.2 GO* operates on
M (VO, v0) and we have a natural bijection

9(VO, VO)) = GO\, (VO, VO0);
the map
M (VO, VO0) —» 9(VO, V0))

is the one that takes the isomorphism class of ((V, V), £) to the isomorphism
class of (V, V). Our aim now is to prove the following proposition.

PROPOSITION 2.1.1 GO0" may be viewed in a natural manner.as a
complex affine algebraic group acting morphically on H1(S1, St0), and the ac-
tions on H1(S1, St0) and M. (VO, VO) commute with the Malgrange-Sibuya
isomorphism &.

The proof requires a little preparation. We begin with a few remarks on
sheaves of complex associative algebras. Let X be a topological space and
A be a sheaf of complex associative algebras (always with units). Then for any
C-algebra R we have a sheaf 4&(R) of associative R-algebras defined by
A(R)U) = RQ@cA(U), UC X being open; the assignment R—> A(R) isa
covariant functor. Hence, denoting the group of units of any ring M by MX, we
see that

AR)* : U — B(R)(U)*

is a sheaf of groups on X and that R—> &(R)* is a covariant functor. We thus
obtain a sheaf of group schemes over C (see Il, Chapter 2); if for an open set
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U, 4A(U) is finite dimensional, then R —> &(R)*(U) is an affine group scheme
over C. We shall be interested in the case when X = S1 and &(U) is finite
dimensional for all open arcs U. If %0 is the M-filtered local system of germs of
sectorial sections of (V0, V0), then taking 4 = End(30) or 4 = End(Gr %0)
we obtain examples of the above situation. We write Aut® and Aut0* for the
corresponding sheaves of group schemes of the units. It is clear that St0 is a
normal subsheaf of Aut0. Moreover, as the d-filtered structure of 30 arises
from Gr %0 on sufficiently small open arcs it follows that for such arcs U,

0 — StO(R)(U) — AutO(R)(U) — Aut®*(R)(U) — O
is exact. Hence
0 —> St0 — Aut0 — Aut0" — 0
is an exact sequence of sheaves of group schemes.
PROOF By I, Corollary 4.8.3, we have a natural isomorphism
GO0" = Aut(MO*, VO*) = Aut(Gr 369).

Now the right side is an affine algebraic group in a natural manner; indeed, we
may identify Aut(Gr(360)) with the group of graded automorphisms of the com-
plex vector space W = Gr %0 (1) that commute with the monodromy action of
Z. So the first assertion is proved. For the second assertion it is a question of
defining a natural action of Aut®" (R) on H1(S1, StO(R)) for each C-algebra R
that is functorial in R. Let ¥ e H1(S1, StO(R)) and n « Aut®* (R). Let (U;) be a
finite covering of S1 by sufficiently small arcs and let (gjj) be a representative
of ¥ associated to this covering. We choose y; € AutO(R)(U;) such that the im-
age of y; is M, and define

n. ¥ = [(yigijyi)]

where [a] is the cohomology class of the cocycle a. It is a routine matter to
verify that this class is independent of the choices made in the construction. If
we specialize R to be C, itis simple to verify that for any pair ((V, V), ¢) for
which &((V, V), ¢) = ¥, ®(V, V),nt) = n.?7. .
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REMARK It is not difficult to see that a map » —> m(») of a polydisk A
into Morph((M0*, v0*), (M0*, v0%)) is analytic if and only if the n(») are defined
by an element n € End(®q,1N). In particular, maps of A into GO are analytic
if and only if they are defined by elements of GL(N, ®q 1N).

PROPOSITION 2.1.2 We have a natural bijection

¥ : 9(VO, V0) = GOM\HI1(S1,St0).
PROOF This is immediate from Proposition 2.1.1. .
PROPOITION 2.1.3 G0 js connected.

PROOF Let W = Gr3#0(1) = P, « & (1) W and let L be the mon-
odromy actionof 1 € Z on W. Gpr may then be identified with the group of all
collections {g(w)} where g(w) e GL(W,,) and g(1. w) = L g(w) L1 for al
w. If {wi} is a system of representatives for the monodromy action of Z on
49(1) and b(i) is the order of the stabilizer of wj, then GO* = I1Gi where Gi
is the centralizer of Lb() for all i. But, if Z; is the subspace of End(W,,()) that
centralizes Lb(), G; is the subset of elements of Z; with nonzero determinant; it

is therefore connected because the complex line joining any two points in it
meets the complement in a finite set at most. .

2.2 The work of the preceding section shows that we are in a familiar
paradigm, namely that of algebraic actions of affine algebraic groups on affine
varieties. We want to look at the quotient

GO"\H1(S1, St0),

and recall the well known fact that to get a "good" quotient certain "bad” orbits
may have to be removed. We shall now discuss briefly what should be done in
the present context.

Let G be a connected complex Lie group acting on a connected com-
plex manifold M , the action being written g, x—> g. x. By a quotient of M by
G we mean a pair (Y, f) where Y is a complex manifold and f (M — Y) is an
analytic map which is everywhere submersive and whose fibres are precisely
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the G-orbits in M. It is easy to see that such a quotient, if it exists, is essentially
unique. For arbitrary M, G, let us form the orbit space

M* = G\M, n:M—> M¥,

equipped with the quotient topology and the sheaf G such that for any open
U* C M* G,(U*) is the algebra of G-invariant analytic functions on n=1(U*). A
point m € M (or its image m* e M*) is called smooth if M* looks like a com-
plex manifold at m*, and for some open U* containing m*, (U*, ) is a quo-
tient of =~—1(U*). If MS™M js the open set of smooth points and M*sSMm is its image
in Mx, it is then clear that (M*, &) is the quotient of MSM. However, M*sm
need not be Hausdorff. If 6(m) is the dimension of the orbit G.m (m € M) and
6 = maxme M (M), itis easy to see that {m e M: 6(m) = &} is adense G-in-
variant open set and that MSM is contained in that set; in particular,

dim M* = dim M- 5.

These remarks apply to the action of G0* on H1(S1, St0). We shall call a
pair smooth if its isomorphism class is in H1(S1, St0)sm, We then have

THEOREM 2.2.1 H1(S1, St0)*sm s a Jocal moduli space for the
meromorphic pairs that are formally equivalent to (V9, VO) and its dimension is
d* = d— & where & isthe maximum of the dimensions of the orbits of GO0"
in H1(S1, St0).

PROOF This is just a formal consequence of Theorem 1.1.2. We must
remember that in view of I, Theorem 1.5.1, given any isoformal family {(Vi, Vi)}
of meromorphic pairs formally equivalent to (VO, V0), we can always find an
analytic family of isomorphisms ¢3 of the formalizations of (V3, V3) with that of
(VO, V0) so that {((Vx, V1), £3} becomes a family of marked pairs associated to
(VO, V0). Then

¥(Va, Vi) = mo 2(((Va, Vi), €3)

The morphism property is now clear. Let {(V'y, V'\)} be another family with
¥(V'a, V') = ¥(Vy, Vi) e HI(S1, St0)*sm_ formally equivalent to (VO, V0),
and {((V'x, V'), ¢'3} a marked family associated to it. Then an elementary Lie
group theoretic argument shows that there is an anlytic map » — n3 into GO*
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such that ®((V's, V'3), nag'a) = ®((Va, Vi), €3). This implies the equivalence of
the families ((V'y, V'3), nag's) and ((V'y, V'), €3) and hence of {(V'x, V'\)}
and {(Vy, V3)}. Finally let {((V, V1), £3)} be universal for ((Vo, Vo), £0). Let
N be a submanifold through ¢((Vg, Vg), £0) of dimension d* such that =« is
a diffeomorphism on N and N'the preimage of N via the map

A—> Q((V}v V})' gl)s

then the restriction to a neighbourhood of 0 of A —> ¥ ((Va, V1)) is a univer-
sal local deformation of ¥ ((Vo, Vo)). .

We shall now obtain a criterion for a family to be universal at a given
point of the moduli space. We shall suppose that all the bundies are of the form
V = AXCN with the connections V(A), A € gZ(N, Fcqt). Forany subset E C

g2(N, F) let Egqt = E N gL(N, Feg). Define, forany A e g2(N, Fogt),
MYA) = (V(A)(g2(N, F))cgt,
M(A) = V(A)gL(N, Fcqr),
N(A) = {X": X" e gL(N, ¥), V(A)X") = O}.

PROPOSITION 2.2.1 Fix Ag € g L(N, Fcqgt), €0 = GL(N, F) such
that ¢o[Ao] = AO. If &p is the dimension of the orbitof o = ®((V, V(A0).£0)

under GO", then
dim (M*(Ag)/M(Ag)) = d — 6¢.
PROOF The key to the proof is contained in the following two lemmas.
LEMMA 2.2.2 We have
¢oN(Ao)éo~1 = Lie(G0"), ¢oN(Ao)cgt §0~1 = Lie(G0%),
G0*, being the stabilizer of « in GO".

PROOF ¢£oN(Ag)to~! is easily seen to be N(A0) which may obviously
be identified naturally with Lie(G0"). We now take up the second formula. We
choose and fix a finite covering €& = (Uj) of S by open arcs of sufficiently
small length and calculate all cohomologies using it. Let x; € GL(N, A1(T (Uj)))
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be such that xj ~ £0 and x[Ag] = A0 on T(U;) forall i, and let gjj = xj x;~! so
that g = (gjj) represents «. Letn e Lie(G0") = N(A9); by I, Theorerm 2.2.4 we
can find o; € End(A1(T (Uj))N) with oj ~ n and V(AO)(s;) = 0 on T'(Uj))s for
all i. Then it is not difficult to see that n e Lie(G0",) if and only if there are «j e
st0(U;) such that

oi Gij — Gij O = i Gij — Gij & on T(UiNU)s

forall i, j. Indeed, if yi(t) = 1 + toj (t € C), then t— yij(t) is a curve through 1
in GO* with n as its tangent vector at t = 0 and so the left side of the above
equation is just (d/dt); = o (yi(t) gij ¥j(t)~1); so the condition that n  Lie(G%",) is
that this derivative should be the same as the result of applying to g a tangent
vector to the orbit of g under C(Ci: St0), i. e., to an element of the form given by
the right side of the above equation. Substituting gjj = X x,-‘-1 we can rewrite
this as

iV oixi— x 1V ojxj = X~ o xj— XV & X
or
(%) X~ oixi— x5 i X = X1 o)X — X7 o X

on T(UiNUj)s for all i, j The expressions above are ~ ¢£o~1ng&p and are solu-
tions of the equation V(Ag)(u) = O (u € End(A1(T (Uj))N). The proof is now
completed quickly. If n e Lie(G9"), (*) is true and so there is % « End(F cgtN)
such that

z = x1 ojxi— X1 o X

on T(Ujs forall i. But £ = £9=1n &g, sothat £0z0~! = n and V(Ag)(Z) =
0, showing that Z e N(Ag)cgt- In the other direction if we start with £ e N(Ap)cgt
and define n to be £pz¢o~1, we have 1 = Lie(G0"); we choose oc; as before
and define the «; by the last displayed equation; then ;e st0(U;) and (x) is
satisfied, showing that n e Lie(G0"y). .

LEMMA 2.2.3 We can find a natural linear isomorphism

N(Ag)/N(Ag)cgt = A8 < H1(S1, st(Ap))
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and a natural linear isomorphism
M"(Ag)/M(Ag) = HI(S, st(Ag))/A.

PROOF We begin with a simple observation. Suppose V(Ag)(X") = Y*
where X" e g¢£(N, &) and U € S1 is an open arc of sufficiently small length. If
Y(T (U)s — End(CN)) is holomorphic and is such that Y ~ Y" (T"(U)), we can
find holomorphic X (T"(U)s —> End(CN)) such that X ~ X" and V(Ag)(X) = Y.
For proving this we may go over to a covering complex plane so that there is no
loss of generality in assuming that Ag is unramified. Further, by using 1,
Theorem 2.2.4, we may come down to the case when Ag is a canonical form.
The argument is now completed as in Lemma 1.4.3.

We shall now go on with the proof. Let B be the sheaf on S1 of germs
of elements of End(A{(T)N), i. e., of holomorphic maps T (U)s —> End(CN)
whose entries have asymptotic expansions in &F. Then V(Ag) is a sheaf map
of W, into itself and we write V&, for its range. The remark made in the pre-
ceding paragraph implies that V&, is precisely the subsheaf of 1. of those el-
ements whose asymptotic expansions belong to V(Ag)(End(FN)). Let us also
introduce the sheaves N, and N(Ag), where 9. is the subsheaf of ®. of all
elements that are in the kernel of V(Ag), and N(Ag) is the constant sheaf with
coefficients in N(Ap). We then have the following two exact sequences

0 > N > B VAo

> VR —— 0
00— st(Ag) —m/— . —> N(Ag)—— O

where * in the second sequence is the map that takes any element to its
asymptotic expansion and is surjective in view of the remark above. Let us look
at the corresponding long exact sequences. Since

HO(ST, ) = N(Ao)ogt, HO(S1, R) = gL(N, Fegqr), HUS!, VR) = M*(Ao),
we obtain the exact sequences
V(Ao)

g 2(N, Fegt) ——2— MY (Ag) — HI(S, ) ——

—— HY(S', R) —> HY(S!,VR) — 0
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and
0 —— N(Ag)cgt ——> N(Ag) —— H1(S1, st(Ag)) ——
——> H1(S1, ) ——— H1(S1, N(Ag)) ———— O.

Let

K4 kernel(H"(S1, n) —— HI(SY, 'ﬂ)),

Kz = kernel(H1(S1, ) — H1(S1, N(Ao))).

It is enough to prove that K; = Kpz; for then the first of the above exact se-
quences gives M"(Ap)/M(Ag) = Ky and the second gives an imbedding
N(AQ)/N(Ag)egt = A& < H(S1, st(Ag)) suchthat H1(S1, st(Ag))/ 8 = Ka. If
g = K1 and is represented by the cocycle (gjj associated to a finite covering
(Ui) of S1 by open arcs of sufficiently small length, then gjj = ¢ci—¢j, ci =
End(A1((T(Ui))N), and c; ~ ¢" forall i. As V(Ag)(gij) = O, we have V(Ao)(gi") =
0, so that V(Ao)(ci") = V(Ao)(cj"); if we then choose and fix an index k and write
di"* = ¢"—c’, then gj* = d"—d* and V(Ag)(di") = 0. Thus ge K. If ge Kz
then we have the relations gj* = ¢" — ¢i* with V(Ag)(ci*) = 0; choose ¢ ~ ¢
and write hj; = gjj— (ci — ¢j). Then (hjj) is a cocycle for the subsheaf of fiat sec-
tions of ®,. This is however the sheaf that occurs in the additive Malgrange-
Sibuya Theorem, and so by I, Theorem 4.4.1, we can find a" € End(FN) and a;
e End(A1(T'(U))N) suchthat a; ~ a" forall i and hj = aj— aj forall i,j. But
then gjj = ¢i'— ¢’ where ¢' = ¢i+a; ~ ¢ +a", proving that g maps to zero in
H1(S1, R.). .

The proof of Proposition 2.2.1 may now be completed easily. By the two
preceding lemmas

dim M"(Ag)/M(Ag) = d — (dim Lie(G0") — dim Lie(G0",) = d - é&¢.
This proves the Proposition. .

PROPOSITION 2.24 Let A < Cq, {(V, V(A(X))} an isoformal family
of meromorphic pairs and A(0) = Ag. If 33 is the C-linear span of dj A (di =
(0/07i)x =0, 1 < i< d), then & < M*(Ag). If we assume that ¥ (V, V(Ag)) isa
smooth point, dm 5 = q, and SNM(Ag) = 0, then the map
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A —> ¥(V, V(A(R)

has an injective differential at » = 0. In particular, when these assumptions
are made and q = d*, {(V, V(A(»))} is universalat » = 0.

PROOF We begin by showing that 9 A € V(Ag)(g £(N, &F)); this will
prove the first assertion. Now, by I, Theorem 1.5.1 thereisa § € GL(N, ©q 1)
such that £(A)[A(A)] = Ag forall ». If we apply d; to the relation

(de(hydz) €M)~ 1+ (M) AR)E(R) = Ao
we get, after.an easy calculation,

%A = — V(Ao)(o~19i€),

which proves what we want. To prove the injectivity of the differential of the map
¥ (AW —> ¥(V, V(A(»))) under the additional conditions assumed above we
proceed as in Propositions 1.4.6 and 1.4.7. Let « be the map y — y. [g(0)]
of GO into H1(C: St0)) and let d«y be its differential at the identity element of

this group. If 0 is as in loc. cit., we must then prove the following implication : if
N € Lie(G0"), then

(%) dxi(n)—3g =0 => 9 = 0.

Now Lie(G0") is the Lie algebra of all P € End(¥N) such that V(AO)(P) = O
and so we can choose by I, Theorem 2.2.4 y; € End( A1(T"(Uj))N) such that y; ~
n and V(AO)(yj) = O forall i. Going overto Z(Ci: St0) the condition decq(n)
dg then becomes

agij = <igij(0) — gij(0) Tj + yigij(0) — gij(0) yj

for a suitable element (<tj) = C(Q: s10). If we now substitute for gjj the expres-
sion x; xi~1 we get after some calculation the relations

xi(0)~1 ax; — xi(0)~1 i x(0) — xi(0)~1 y; x(0) =
Xj((])—1 oxj — )(i(O)"1 Tj Xj(O) - Xi(('))—1 yj xi(0)

on T (UjNUj)s) forall i, j. Asthese expressions are ~ £(0)-19¢ — £(0)~1m £(0)
we conclude as usual that there is £ € End(F cgtN) such that
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z = xi(0)~1 ax — xi(0)~"1 =i xi(0) — xi(0)~" yi xi(0) on T'(Ui)s
for all i. Exactly as in Propositions 1.4.6 and 1.4.7 we now find that
V(Ao)(z) = —0dA.

In other words, 0dA € M(Ag). This forces dA = 0 by our hypotheses and hence
weget 0 = 0. .

2.3 The obvious shortcoming of the above results is that there seems to be no
simple way to determine when ¥ ((V, V(Ag))) is smooth. We have however not
yet used the fact that we are in the algebraic cadre, a fact that becomes signifi-
cant especially when GO" is reductive. Let X be an irreducible affine variety
over C and let G be a connected reductive group over C operating morphi-
cally on X. Following Mumford [MF] we call a point x € X stable if G. x, the or-
bit of x, has maximal dimension and is closed in the Zariski topology (this is
equivalent to its being closed in the usual complex topology). Let Xst be the
set of stable points; it may be empty(look at the action »,t —> A.t of C* on
C), but if it is nonempty, then it is a Zariski open G-invariant set. Let us now
suppose that Xst + @&. As the subring of G-invariants of the coordinate ring
C[X] of X is finitely generated, it is an affine algebra which is an integral do-
main, and so we can introduce the irreducible affine variety X* which is its
maximal spectrum, together with the natural map = : X —> X*. It is now a con-
sequence of the geometric invariant theory of reductive groups (cf. [MF], pp. 27-
30, [Ses], pp. 283-288) that w(Xst) : = Xst* is openin X*, that Xst = g—1(Xstx),
and that (Xst*, ) is a good quotient of XSt by G. This last property means
the following :

(a) m: Xst—s Xstx s open and surjective
(b) the fibers of = above Xst* are precisely the G-orbits in Xst

(c) if U C Xst is a G-invariant open set and n(U) = U*, then a function
f on U* isregularifandonlyif fo & isregularon U = w=1(U*).

Let X# be the preimage in Xst of the set Xst¥ of simple points in Xst*_ It is then
clear that X# < Xsm, and that (XSt#, ) is a quotient of X# by G in the complex

195



D. G. BABBITT, V. S. VARADARAJAN

analytic category. We note that Xst* is automatically Hausdorff. Applied to our
special situation these remarks lead to the following Theorem. Write for brevity
H1 = H1(S1, St0). A meromorphic pair is called stable simple if there is a
marking for it so that the corresponding element of H1 is stable and simple for
G0* this is obviously independent of the choice of the marking.

THEOREM 2.3.1 Suppose that GO0" is reducive and H1.st js not
empty. Then it is Zariski open and GO"-invariant. If n : H1.st — H1.stx js the
natural map, then the open set of simple points of the quasi affine variety
H1.st* js a Jocal moduli space for the isomorphism classes of stable simple
pairs.

The obvious questions that arise now are the following :
1. Are there stable points ?

2. How does one recognize that a given pair defines a stable point in the
moduli space ?

We do not have definitive answers to these questions and so we shall devote
the remainder of this chapter to a few remarks and examples that illustrate the
notion of stability for meromorophic pairs.

Bessel and Whittaker connections(l,§5) The space H! is C2
while G0" is C* actingon H! by A, (a, b)—> (Aa, A—1b). It is then obvious
that H1.st is the set {(a, b) : ab + 0} and GO*/H1.st = C*. In particular all sta-
ble points are simple. Further H1.sm = C2 \{(0, 0)}, and it is easy to see that
GO0*/H1.sm s not separated; indeed, it is the classical example of a nonsepa-
rated analytic space where two copies of C with coordinates t{ and t are
glued along C* via the identification t{ = to. To get a Hausdorff quotient we
have to omit not only (0, 0) but at least one of the two coordinate axes. The
reader should go back to the discussion in 1,§5 for the criterion for the stability of
a Bessel or Whittaker connection.

Existence of stable points We assume that A0 = B where B is an
unramified reduced canonical form,

B= 2reL Drz' + z1C.
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The stabilizer of V(B) in GL(N, &) is then known to be Gpg, the stabilizer of B
in GL(N, C) ([BV 1], Theorem 7.2). Theorem 3.4.3 of ll gives a description of
H1(S1, St) and it is not difficult to see that the isomorphism there is Gg-equiv-
ariant. We thus have

PROPOSITION 2.3.2 The isomorphism
H1(S1, St) = Tlk> o0 [Toexk HY(S', Stkk+1,0)

is Gpg-equivariant, the action of Gg on the right side being obtained via the
natural maps Gg —> stabilizer of Byk41,o-

Let us now assume that the restriction of C to the spectral subspaces of
{Dr}r e L is simple, namely, has no repeated eigenvalues. We shall therefore
assume that the D, and C are all diagonal. Then Gpg is the diagonal sub-
group D of GL(N, C). We then have the following Theorem (cf. [BV 3]). We
identify C* with the subgroup of scalar multiples of the identity in D.

PROPOSITION 2.3.3 Under the above assumptions H1.stjs
nonempty, D/C* acts freely on H1.st, and H1.stx js a quasiaffine variety of
dimension equalto d — N + 1.

PROOF We shall begin by considering the special case when B has a
single level,

B = Drzr + z-1C,

where C is reduced. We do not assume that C has a simple spectrum on
each eigenspace of D, but shall consider the action of D on the cohomology.
Let {sj}1 <j<m bethe spectrum of Dr and fori # j let Sjj be the set of 2q
Stokes lines associated to (cj— o) zf where g = I rql— 1. We work with the
special good covering (Ux)xez Of S1 obtained by dividing S1 into 4q arcs of
equal length by the points tj (i € Z, tj = tj,4q) ordered counter clockwise and
taking Ux = (tx-1, tx +1); we shall suppose also that the tj are not on any
Stokes line.  Since the length of the Uy is m/q it is clear that each Sj; has
exactly one member meeting each Uy. So the sections of the Stokes sheaf St
on each U, are trivial and hence

H1(S1- St) = Z((Ux) : St) = T[1 < x <4q St(W), W = Ux N Ux +1.
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We denote the elements of H1(S1, St) by (g(x))1 < « < 4aq- We write the ele-
ments of End(CN) as block matrices (ajj)1 <i, j < M defined by the spectral de-
composition of Dy, the elements of D as (uj)1 < j < M, and for fixed i, j, denote
the entries of a;; by ajj,rs. We choose branches of the logarithm on the Wy
and identify (cf. 1, Proposition 3.4.1) St(W) with the subgroup of GL(N, C) of
block matrices (ajj) with

aj = 1, aj = 0 unless Re(—q~ 1(oj — 0j) z9) <0 on W (i +j).
The action of (uj)) € D on Z((U) : St) is given by
(up), (@(x)ij) —> (h(x)j)),  h(x)ijrs = Ui,r 9(x)ijrs Uj,s™7.

We now introduce A(g), the associative algebra with unit generated by the ma-
trices g(cx) and consider the condition

(%) foreach (i, j) with i * j and (r,s), 3 he A(g) suchthat hjjrs *+ O.

We shall now prove that if g satisfies the condition (x) then the stabilzer of g in
D is C* and that the D-orbitof g isclosed. Let u = (uj) « D stabilize g, so
that it centralizes A(g). Then by (x) we have ujr = ujs sothat ue C*. To
prove that the D-orbit of g is closed we must show that the map u— u. g
from D/C* into End(CN)44 is proper in the complex topology. If L is a com-
pact set in End(CN)4q, then for each h € A(g) there is a compact set K(h) in
End(CN) such that the subset Lg ofall u in D for whichu. g e L will satisfy u
h u-1 e K(h). Letus fix (i, j) with i + j and (r, s) and select h, h' € A(g) such
that hjjrs + 0 and h’jsr + 0. Then there is a compact set K< C such that

ue lg = ujrhijrsujst e K, ujsh'ji,sr uir 1 K.

It is easy to conclude from these relations that u belongs to a compact set mod
Cx.

In order to complete the proof of the existence of stable D-closed orbits of
dimension N — 1 in this special case we must show that there exist g such that
A(g) satisfies (x). Actually we shall construct cocycles g such that

(»*) foreach (i,j) with i # j and (r, s), 3 « suchthat g(x)jrs * O.
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In fact, for any o, we take g(«) to be a matrix such that g(«)jj = 0 except
when Re(—q~ 1(cj — 6j) z9) < 0 on W in which case we take it to be a matrix
with all entries nonzero. To see that g satisfies () consider four successive
valuesof «,say « = B,8+1,8 +2, B +3 andfixi, j, withi # j. Then exactly
two of the arcs W meet a Stokes line from S;jj, and these two arcs cannot be
adjacent ; further Re(—q~ 1(cj — cj) z-9) keeps the same sign on each of the
other two arcs and the two signs are opposite to each other. So g satisfies
(**) when o is one of these four indices. This finishes the proof in the special
case.

For the general case it is now enough to observe, using Proposition
2.3.2, that H1(S1, St4) is a closed D-stable subspace of H1(S1, St); here St
is the Stokes sheaf of Dy 2" + z=1C, r' being the principal level of V(B). This
proves the Proposition. .

From the preceding proof the following result is immediate.

PROPOSITION 2.34 Suppose B = Dyrz' + z—1 C where C is re-
duced and has a simple spectrum on each eigenspace of D,. Let & be the
space matrices with zero off-diagonal blocks and g a cocycle such that A(g) +
& = End(CN). Then g defines a stable cohomology class.

The above Proposition gives a useful criterion for stability in the special
case discussed because of recent results of Ramis on the structure of the Galois
differential group [Ra 2,3,4]. In the special situation considered by us, the results
of Ramis imply that the representing cocycle of a pair whose Galois differential
group has an irreducible action satisfies the condition of the above Proposition.
It is not difficult to give examples where the above condition is satisfied. For in-
stance, suppose that 2q > X, ; mjm; where m; is the multiplicity of the
eigenvalue o; of D,. Then essentially the same argument as in the proof of
Proposition 2.3.3 leads to the construction of a cocycle satisfying the condition
of Proposition 2.3.4. We shall not pursue these matters any further here.
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APPENDIX

SOME HISTORICAL REMARKS

1. The aim of this appendix is to provide a brief historical supplement to the
paper. Our intention is not to give an exhaustive historical survey but to give
some additional perspective to some of the themes treated here. The reader
may consult with profit the book of Majima [Maj] where another historical ac-
count is available as well as the article of Bertrand [Be].

D-modules, systems of meromorphic differential equations
and the categorical language

The classical theory of differential equations was entirely concerned with
solutions of differential equations of arbitrary degree N and the associated
NXN systems of degree 1. The concept of D-modules or differential modules
over differential rings and its use in the classification of meromorphic systems
was initiated by Manin [Ma] . Among other things he characterized the D-mod-
ules which arise from meromorphic systems with regular singularities. In a pio-
neering and influential work [De 1] Deligne developed the theory of meromor-
phic connections with regular singularities on bundles defined on smooth alge-
braic varieties of arbitrary dimension. Further, in his letters to Malgrange [De2],
Deligne outlined in the categorical language a complete description of the cat-
egory of germs of meromorphic pairs in the neighborhood of an irregular sin-
gular point (I, §4). Deligne's treatment used the formal classification of
Hukuhara-Turrittin-Levelt and the Malgrange-Sibuya isomorphism of the set of
isomorphism classes of marked meromorphic pairs at a point formally isomor-
phic with a given pair with the first cohomology of the Stokes sheaf of that
pair(see below).

Formal structure and reduction theory

It was Fabry who first constructed in his 1885 thesis [Fa] a full set of N
linearly independent solutions of a scalar meromorphic differential equation of
degree N,
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(*) Dnu =0, DN = (ddz)N+an-—1(z) (d/dz)N-1 + ... + ag(z),

in the neighborhood of a singular point, say z = 0. The solutions were con-
structed over the extension Fq = F[t],t = z1/q, and were of the form

fin = eQj® thj Zo<j<n (log t)iginj (0O<h<mj-1)

here Qj(t) are distinct Laurent polynomials in t containing only negative pow-
ers of t,the gihj arein C[ft]], and m; areintegers > 1 with my +mz2+... = N.
Then in the 1930's Cope took up this theme in two fundamental papers [Co].
He proved that any formal differential operator DN of degree N defined over
F can be factorized over a suitable extension Fq as a product of N differen-
tial operators of degree 1, and showed further the equivalence of linear NXN
systems of degree 1 with linear scalar differential equations of degree N. In
the language of differential modules this equivalence may be formulated as
follows. Let K be a nontrivial differential field of characteristic 0, 49 the alge-
bra of differential operators over K, and U any differential module of dimension
N over K;then U is a cyclic module, and U = J9/49Dy for a suitable Dy, the
set of possible DN being in canonical bijection with the set of cyclic vectors.
The factorization theorem was later reproved by Malgrange [Mal 2] using
Newton polygons and by Robba [Ro] using Henselian techniques. It is not diffi-
cult to show that the results of Fabry and Cope are completely equivalent.

The main question irf the formal theory of first order meromorphic sys-
tems

) dF/dz = A(z) F (A e g&(N, F))

is their reduction to a canonical form under GL(N, ¥) or GL(N, F¢l). This was
resolved by the combined efforts of Hukuhara [Hu}, Turrittin [Tu] and Levelt [Le].
See also [BJL 1] and [BV 1] for some refinements of this work. The principal
level or Katz invariant for a meromorphic system was explicitly discussed by
Katz [Ka]; Poincaré [Po] had treated this formal invariant in the context of scalar
equations of degree N.

The formal reduction theory for systems when the coefficients come from a
general differential ring was the main theme of [BV 2]. The complete description
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of the category of differential modules over R[[z]][z-1] where R is a local ring is
still not available, although [BV 2] contains a theory for the so-called well-be-
haved modules, which includes the reduction theory of (x) when A(z) depends
analytically on an arbitrary number d of complex parameters » = (hq, ...,Ad).
These results are essential for the discussion of moduli problems for the sys-
tems (*).

Analytic theory and asymptotic structures on sectors

It was Poincaré [Po] who first discovered the analytic significance of the
formal solutions of (*) when he showed that in generic cases of (x) there exist
analytic solutions which were asymptotic to Fabry's solutions in sufficiently
small sectors. Later Trjitzinsky [Tr] showed that there exist analytic solutions
asmptotic to fixed formal solutions of an arbitrary system (x) in sectors bounded
by certain "spectral curves” coming from the spectrum of the associated
canonical form. It was however Hukuhara [Hu] who obtained the definitive ver-
sion of the asymptotic existence theorem, and in doing this also discovered the
correct way to define the Stokes lines. Hukuhara proved that the asymptotic
existence theorem holds for sectors containing in their interior atmost one
Stokes line. As a corollary Hukuhara showed that given a formal reduction of
(*) to a "weak" canonical form and any sector as above there was an analytic
reduction asymptotic to this formal reduction in this sector. This was completed
by Malmquist [Malm] who was able to replace "weak" canonical form by canoni-
cal form. Turrittin [Tu] gave another independent proof of Hukuhara's asymp-
totic result.

Sibuya [Si 1] showed that the spectral splitting part of the asymptotic ana-
lytic reduction process could be carried out in suitable sectors and also treated
spectral splitting for the generic case when (x) depends analytically on one pa-
rameter.

Already in Turrittin's work the problem of refining the asymptotic theory by
introducing the setting of Gevrey classes of functions appeared in a natural
manner. This aspect, which we have not touched at all in this paper, has been
pursued in great depth by Ramis. The reader should consuit the papers of
Ramis [Ra] as well as that of Ramis and Sibuya [Ra-Si]. In addition much of the
theory discussed above is treated in Wasow's classic treatise [Wa]. For a more
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detailed survey of the history of the asmptotic existence theorems see the
excellent discussion in [Maj].

The Stokes sheaf and cohomological methods

A very important step in the modern approach to these classical prob-
lems was taken by Malgrange and Sibuya when they introduced sheaves of
functions with asymptotic expansions and introduced for the first time cohomo-
logical methods into the theory [Mal 3] [Si 2].Their work highlighted the impor-
tance of the Stokes sheaf and its cohomology for the classification of meromor-
phic systems and led to what we have labelled the Malgrange-Sibuya isomor-
phism theorem (cf. 1, §4). The work of Deligne [De 2] that we mentioned earlier
uses the Malgrange-Sibuya isomorphism theorem to obtain a natural equiva-
lence of the category of all meromorphic pairs at z = 0 with the category of -
filtered local systems on S1 (I, Theorem 4.7.3). For another but shorter exposi-
tion of Deligne's theorem see [Mal 4]. Majima [Maj] has extended much of this
theory to the case of integrable connections in several variables.

The affine nature of H1(S1, St)

Deligne had already observed in [De2] that H1(S1,St) was intrinsically a
smooth variety. Balser, Jurkat and Lutz [Bal] [BJL] [J] showed (transiating into
our language) that for a certain canonical good covering ¢ of S1 (or more pre-
cisely its universal covering space) H1( :St) = H1(S1, St) is an affine space
whose dimension is the irregularity of the endomorphism bundle of the formal
pair chosen as the formal model. In an earlier version of the present paper [BV4]
a proof was given in the unramified case that H1(S1, St) had an intrinsic affine
space structure and that its dimension was the irregularity of the of the endo-
morphism bundle. In [De3] Deligne outlined the proof given here. Of course the
essence of this proof is a much stronger statement giving conditions when the
H1 of a sheaf of unipotent group schemes on S1 is representable by an affine
space. The freeness of the action of the coboundary group on the space of co-
cycles, obtained in [BJL] [J] [BV 4] appears in our present version as the van-
ishing of the HO of all the twists of the Stokes sheaf (see Il, §§1,2). Earlier
Malgrange [Mal 4] had proved the intrinsic affine nature of H1(S1,St) when the
leading coefficient of the canonical form of the formal model has distinct eigen-
values.
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Local moduli

The precise notion of local moduli for isoformal unmarked pairs in the
unramified case seems to have first appeared in [BV3]. An exposition of this is
given in [BV5]. It should be pointed out that the formal reduction theory with pa-
rameters as given in [BV2] is essential for the treatment of local moduli. The
idea of treating the moduli problem for marked pairs so that H1(S1,St) itself
(and not a quotient of it as would be the case if only unmarked pairs are consid-
ered) is the moduli space goes back to Deligne [De 2] as mentioned in [Mal 4].
The moduli problem for certain nonlinear systems is considered in the paper of
Martinet and Ramis [MR].
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RESUME

La présente monographie est consacrée a I'étude locale des solutions
des systémes d'équations différentielles méromorphes linéaires au voisinage
d'un point singulier irrégulier. Si le point singulier est régulier, le groupe de
monodromie contient I'essentiel de l'information. En revanche, le cas d'un
point singulier irrégulier est bien plus compliqué. Cela est di au fait que les
solutions formelles de I'équation au voisinage d'un tel point sont d'ordinaire
divergentes. Néanmoins, les solutions formelles sont séries asymptotiques
pour les solutions analytiques dans tous les secteurs ayant la singularité pour
sommet, pourvu que l'angle soit suffisamment petit. En général, si I'on fixe une
solution formelle ¢, les solutions analytiques pour lesquelles ® est une série
asymptotique ne sont pas uniques. En fait, si I'on fait tourner le secteur, les
solutions analytiques pour lesquelles ¢ est une série asymptotique
changeront en général : c'est le € phénoméne de Stokes ». Le but de cette

monographie est de fournir une analyse systématique de ce phénoméne et
d'étudier comment il est affecté par des variations isoformelles des équations.

Le langage naturel pour exposer les principaux théorémes est celui de
germes de fibrés vectoriels holomorphes munis de connexions méromorphes.
Si on fixe une telle paire (Vg, Vo), le théoréme de Malgrange—Sibuya affirme
qu'il y a une équivalence naturelle entre I'ensemble de triplets :

{((V, V), ¢) | ¢ :(V,V)= (Vg, Vg) estunisomorphisme formel }

défini & un isomorphisme analytique pres, et la premiére cohomologie d'un
certain faiseau St(V, V) de groupes sur S1 . Ce faisceau, qui s'appele le
faisceau de Stokes de (V, V), est un faisceau de schémas en groupes
algébriques unipotents sur C. Le résultat fondamental de la Partie Il affirme
que le foncteur de premiére cohomologie est représentable par un espace
affine sur C dont la dimension est I'irrégularité du fiboré End(V, V). Dans la
Partie Ill on démontre que l'espace analytique complexe sousjacent a cet
espace affine est un espace de modules locaux pour les déformations locales
isoformelles de la paire (V, V). Dans la Partie | on développe le langage
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modernedes équations différentielles méromorphes linéaires. En particulier, on
expose les théorémes de Malgrange—Sibuya et Deligne qui traitent de la
catégorie de germes de fibrés vectoriels holomorphes munis de connexions
méromorphes.
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