
Astérisque

HERBERT CLEMENS

JÁNOS KOLLÁR

SHIGEFUMI MORI
Higher dimensional complex geometry, A Summer Seminar
at the University of Utah, Slat Lake City, 1987

Astérisque, tome 166 (1988)
<http://www.numdam.org/item?id=AST_1988__166__1_0>

© Société mathématique de France, 1988, tous droits réservés.

L’accès aux archives de la collection « Astérisque » (http://smf4.emath.fr/
Publications/Asterisque/) implique l’accord avec les conditions générales d’uti-
lisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou
impression systématique est constitutive d’une infraction pénale. Toute copie
ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AST_1988__166__1_0
http://smf4.emath.fr/Publications/Asterisque/
http://smf4.emath.fr/Publications/Asterisque/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


166 ASTÉRISQUE 

1988 

HIGHER DIMENSIONAL COMPLEX 
GEOMETRY 

Herbert CLEMENS, János KOLLÁR, Shigefumi MORI 

A Summer Seminar at the University of Utah, 
Salt Lake City, 1987 

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 
Publié avec le concours du CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 



A.M.S. Subjects Classification : 14-02, 14-C-30, 14-C-99, 14-E-05, 14-E-30, 
14-E-35, 14-J-30, 32-J-25, 53-B-35, 53-C-35. 



Introduction 
These notes originated at a seminar that was held during July 

and August of 1987 at Salt Lake City. Th e original aim of the 
seminar was to get an overview of the following three topics: 

1. Recent advances in the classification program of three (an d 
higher) dimensional algebraic varieties. 
2. Existence of rational curves and other special subvarieties. 
3. Existence and nature of special metrics on varieties. 

We also hoped to then go further and study the relationships 
between these three approaches. Tim e however proved to be 
insufficient to complete even the limited program. 

The first part of the program was considered in detail. I n 
that part, the central theme is the investigation of varieties on 
which the canonical class is not numerically effective. Fo r 
smooth threefolds this was done in [Ml ] and later extended 
considerably. Th e original approach of [Ml ] is geometrically very 
clear, therefore it is given in detail. Subsequen t 
generalizations were also considered at length. 

Considerable attention was paid also to the study of special 
curves on hypersurfaces and some related examples. Ther e seems to 
be a lot of experimental evidence to indicate that there is a very 
close relationship between the Kodaira dimension of a threefold ( a 
property of a threefold from classification theory) and the 
existence of rational curves. Thes e problems are very interestin g 
but they also seem quite hard. Ou r contribution i n this direction 
is mostly limited to presenting some examples and conjectures. 

In the second direction, one of the questions we were 
interested in was that of understanding rational curves on quintic 
hypersurfaces i n P4. Late r this was scaled down to understand 
lines o n quintic hypersurfaces i n P4, but even this seems a hard 
problem. W e began to understand it more completely only after the 
seminar had ended (se e [J ] ) . 

Very little time was left to consider the third direction. W e 
were fortunate to have a series of lectures, but we could not 
pursue this interesting and important direction in any detail. 

The style of the seminars was very informal. W e tried to keep 
them discussion-and-problem oriented . Note s were taken by H. 
Clemens who typed them up by the next day. Thes e notes 
constituted the first version of the present text. Durin g the 
seminar and afterwards, these notes were considerably revised , 
cut, expanded and edited. Durin g this process we tried to keep 
the original informality of the talks alive. 

The regular participants of the seminar were J. Jimenez, T. 
Luo, K. Matsuki and the three of us. Severa l other people joine d 
us for various length of time. A  hopefully complete list is: 
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HIGHER DIMENSIONAL COMPLEX GEOMETRY 

J. Carlson, L. Ein, M. He, Y. Ma, D. Ortland, S. Pantazis, 
P. Roberts, D. Toledo, S. Turner, and Stephen Yau. W e are very-
grateful for their contribution to the success of the seminar. 

We are especially thankful to those people who gave talks. 
The following is a list of the lectures of a mathematician other 
than one of the three of us. 

J. Carlson: Maxima l variations of Hodge structures; 
L. Ein: Submanifold s of generic complete intersections in 

Grassmanians; 
L. Ein: A  theorem of Gruson-Lazarsfeld-Peskine an d a lemma of 

Lazarsfeld; 
K. Matsuki: Con e Theorem; 
K. Matsuki: Non-vanishin g Theorem; 
D. Toledo: Kahle r structures on locally symmetric spaces; 
D. Toledo: Proo f of Sampson's theorem; 
D. Toledo: Abelia n subalgebras of Lie algebras. 

At the final editing of these notes some talks were left out. 
This was the fate of the following talks: 

H. Clemens: Abel-Jacob i maps; 
S. Turner: Ellipti c surfaces in characteristic p ; 
S. Yau: Eule r characteristic of Chow varieties. 

These talks were about topics that we had no time to pursue 
further, and therefore they did not fit neatly into the final 
version of the notes. 

Our aim was to keep the notes advanced enough to be of 
interest even to the specialists, but understandable enough so 
that a person with a good general background in algebraic geometry 
would be able to understand and enjoy them. Especiall y at the 
beginning, the lectures are rather informal and concentrate on the 
geometric picture rather than on a proof that is correct in every 
technical detail. W e hope that this informal introduction to [Ml ] 
will be helpful. Thes e matters occupy the first two lectures. 

The classification theory of surfaces is reviewed from the 
point of view of threefold theory in Lecture 3. Thi s leads 
naturally to the next lecture which is an introduction to the 
study of cones of curves. Lectur e 5 discusses the aims of Mori's 
program in more detail, concentrating mainly on flips, the 
presence of which is perhaps the most important difference between 
algebraic geometry i n two and in three dimensions. A t the end of 
this lecture, a table compares the basic results in the birational 
geometry of surfaces and threefolds. Eve n though the list was 
selected with bias, the similarities are striking. 

Lecture 6  is a little more technical. I t discusses the 
singularities that arise naturally in the study of smooth 
threefolds. Thes e are the three dimensional analogues of the 
rational double points of surfaces. Thei r structure is however 
more complicated and not completely known. 
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INTRODUCTION 

Lecture 7 discusses extensions of the Cone Theorem to relative 
situations and equivariant settings. I n Lecture 8 we give quick 
proofs of some vanishing theorems that are needed for the proof of 
the Cone Theorem. 

This leads directly to the next big section, which is the 
proof of the general Cone Theorem. Thi s is done in Lectures 9-13 . 
Here the proofs are (o r at least are intented to be) also 
technically correct. Th e proof of the final step (give n in 
Lecture 11) is new, and makes it possible to avoid the rather 
technical relative case. A t least for us, this made the proof 
much clearer. 

The end of the first part of these notes is a discussion of 
flops and flips. I f a rational curve on a quintic threefold i n P4 
can be contracted, then it can be flopped. Thu s understanding 
flops yields results about rational curves on quintic threefolds 
in P4 . Th e simplest question to which this approach leads is: 

Is it true that, if C is a smooth rational curve on a quintic 
threefold in P4 which has normal bundle 0t(2) +0C(-4), then 
some multiple of C moves? 

There are no such lines, but this situation can occur for plane 
conies on some special quintic threefolds in P4. ( A negative 
answer to the question in that case appears in [C3] , written after 
the completion of these notes.) 

Two lectures are devoted to flips. Lectur e 14 is a general 
introduction, and Lecture 15 is an essentially complete proof of 
the local description of a threefold along a contractible rational 
curve that has negative intersection with the canonical class. 
This should give a fairly clear idea of the content of the first 
seven chapters of [M3] , and should enable the reader to go 
directly to Chapter 8 (afte r reviewing some additional definition s 
and statements). The n the introduction of [M3 ] should give a good 
idea of how the proof proceeds in the final chapters of [M3] . W e 
hope that this introduction will encourage people to study in more 
detail the complete proof. Lectur e 16 is a short discussion of 
flops. Thes e are much easier than flips and are very well 
understood. 

Lectures 17-2 0 are devoted to studying Kahler structures on 
Riemannian locally symmetric spaces. Th e results are due to J. 
Carlson and D. Toledo. Buildin g on results of Eels and Sampson, 
they give unified proofs of some old and some new results. I n 
short, a compact Riemannian locally symmetric space has a 
Kahlerian complex structure only if it is one of the classically 
known spaces, in which case the complex structure is the expected 
one. Thes e lectures show one example of the applications of 
harmonic maps to complex geometry. 
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For lack of time we could not go into other questions like one 
of the ones we originally intended to attack: 

Is there a relationship between the Kahler-Einstein metric of 
a quintic threefold in alon g a rational curve and the 
deformation theory of that rational curve? 

The last part is the study of special curves on general 
hypersurfaces. I n short, these results claim that a general 
hypersurface of high enough degree does not contain any low genus 
curves. I n Lecture 21, earlier results of Clemens are extended to 
singular curves. Th e results are very close to being best 
possible, but unfortunately they fall short of what we would like 
to have. Therefor e in Lecture 22 we can give only a conjectural 
discussion concerning quintic hypersurfaces in an d abelian 
varieties. Thi s would be a very interesting direction to pursue. 
The above results can be extended to complete intersections in 
Grassmanian varieties; these generalizations are due to, and were 
presented by, L. Ein. H e also reviewed the proof of the 
Castelnuovo bound for smooth space curves proved by 
Gruson-Lazarsfeld-Peskin whic h was used in the previous lecture. 

Note: In Lectures 1-3 21, and 23-24, we work in arbitrary 
characteristic, however, in the remaining lectures, 
characteristic 0 is always assumed. 

Once again we would like to express our thanks to all of the 
people who contributed to the success of the seminar, and to all 
those, including F. Serrano-Garcia, P. Roberts, T. Luo, and the 
referee, who made corrections to, and improvements on, these 
notes. Partia l financial support was provided by NSF under Grant 
numbers DMS-8702680 and DMS-8707320. 
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Notes on Terminology 

The following is a list of terminology that is getting to be 
generally accepted in higher dimensional geometry but may not be 
well known outside the field. 

In pre-Bourbaki algebraic geometry it was customary to use maps 
that were not defined everywhere. Thes e were called rational 
maps. W e use simply the name map for them and they are indicated 
by a dotted arrow > . A  morphism is an everywhere defined map 

of schemes. I t is denoted by a solid arrow >  . 

A map g: X > Y between two varieties is called birational if 
it is an isomorphism between dense open subsets. Tw o varieties 
are called birational if there is a birational map between them. 
(Note that we deliberately avoid the old expression "birationall y 
isomorphic" since it is confusing.) 

A variety X of dimension n  i s called rational (resp . ruled) if 
it is birational to Pn (resp . YXP^ for some variety Y of 
dimension n-1). 

A variety X of dimension n  i s called uniruled if there is an 
n-1 dimensional variety Y and a map f: YX pi > X which is 
generically surjective . I f n < 2 then this is equivalent to 
ruledness, but not in higher dimensions. 

A Cartier divisor D on a scheme V is called nef if, for every 
complete curve C contained in V, the intersection number C-D is 
non-negative. Thi s notion is usually used only if V is proper. 

A Cartier divisor D on a proper irreducible variety V is called 
big if the map given by the linear system |mD|i s birational for m 
sufficiently large. 

A Q-divisor i s a formal linear combination D = X a-j_Dj_ wher e the 
a-j_ are rational numbers and the D¿ are irreducible Weil divisors. 
It is called effective if all the a-¡_ are nonnegative. 

A divisor (or , more generally, a Q-divisor) D is called Q-Cartier 
if some positive integral multiple mD is Cartier. A  Q-Cartier 
Q-divisor D is called nef (resp . big, ample,...) i f mD is nef 
(resp. big, ample...). 

The index of a Q-Cartier Weil divisor D is the smallest positive 
integer m such that mD is Cartier. Then , if kD is Cartier, k  i s 
a multiple of m . Th e index of a variety X is the index of its 
canonical divisor Kx (provide d that it is defined). 

A divisor with simple normal crossings on a non-singular 
variety is a sum of non-singular divisors intersectin g 
transversely with each other. 
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Lecture #1: Finding rational curves when Kx is negative 

(l.D This chapter will serve as a warm-up to the first 16 lectures. 
In it we explore the general theme: 

How do rational curves on a variety influence the 
birational geometry of that variety? 

We will see that the absence of rational curves has some very 
pleasant consequences. Late r this will be turned around, and we 
will see that certain complications of birational geometry of a 
variety X are caused precisely by certain special rational curves 
on X. 

The simplest example is in the theory of surfaces: 

If X is a smooth proper surface, then there is a non-trivial 
birational morphism 

f : X >  Y 
to a smooth surface Y iff X contains a smooth rational curve with 
self-intersection -1. 

One side of this is easy to generalize as follows: 

(i.2) Proposition: Let X be smooth of any dimension and f: Y > X 

a proper birational morphism. Fo r any x e X, either 
f_1(x) is a point or f-1(x) is covered by rational 
curves. 

Proof: Let us consider first the case when X is a surface. W e 
resolve the indeterminacies of f-1 by successively blowing-up 
points of X. A t each step we introduce a P*-. Thu s every f~Mx ) 
is dominated by a union of some of these P^-'s. B y Liiroth's 
theorem, every f ~1(x) is a union of rational curves. 

The general case can be proved the same way provided we know 
how to resolve indeterminacies of maps. Howeve r a much weaker 
version of resolution is sufficient. Sinc e we will use (1.2 ) 
later only when X is a surface, we only sketch the proof in the 
higher-dimensional case: 

We may assume that Y is normal. B y van der Waerden's 
theorem, the exceptional set of f  i s of pure codimension one. 
Let E CY b e an irreducible component of the exceptional set. A t a 
generic point ee E, (Y,E ) is isomorphic to a succession of 
blow-ups with smooth centers. Thu s there is a rational curve C in 
E that passes through e  suc h that f(C) is a point. Sinc e a 
rational curve can specialize only to unions of rational curves, 
there is a rational curve through every point of E. 
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d.3) Corollary: Let g: Z > X b e a rationa l map from a smooth 
variety. Le t 

Y C X X Z 
be the closure of the graph of g , and let q  an d 
p b e the coordinate projections. Le t S cZ b e the 
set of points where g is not regular. The n q(p~^S) 
is covered by rational curves. 

(1.4) Corollary: Let X and Z be algebraic varieties, Z smooth and X 
proper. If there is a rational map 

g: Z --> X 
which is not everywhere defined, then X contains a 
rational curve. 

The simplest situation where one could apply this corollary is 
when Z is a surface which we obtain as a family of curves. I n 
some cases one can assert that a map g  a s in (1.4 ) can not be 
regular: 

(1.5) Rigidity Lemma: Let f: Y > Z be a proper morphism with 
connected fibers and assume that Z is connected. 
If g: Y > X is a morphism and for some ZQ e Z, 

g(f_1(zo)) is a closed point, then g(f_1(z)) is also 

a closed point for every z e Z . 

Proof: The set of z e Z such that g(f_1(z)) is a point is clearly 
closed. Thu s it is sufficient to prove that it is also open. Le t 
U be an affine neighborhood of g (f~^-(ZQ) ). The n g~l(U) i s an open 
neighborhood of f_1(zQ) . Sinc e f  i s proper, there is a 

neighborhood V of ZQ such that, whenever z e V, then 

g-1(U) z> f-1(z). Thu s g(f_1(z)) is contained in U. Sinc e this 
set is also proper and connected, it is a single point. 

Y 

f 

z 
Z 

g 

£ x 

The Rigidity Lemma says that 
this diagram is impossible. 

10 



CURVES WHEN Kx NEGATIVE 

(i.6) Corollary: Let X be a proper variety, C a smooth proper 
curve, p e C a point, and 

g0: C > X 
a non-constant morphism. Assum e that there is a 
non-trivial algebraic family 

gt : C >  X 
parametrized by a (possibl y non-proper) curve DQ such 
that 

go (P) = gt (P) 
for every t . The n X contains a rational curve through 
g o ( P ) • 

Proof: We compactify DQ to a proper curve D, and so we have a 
rational map g : CXD >X . I f C itself is rational, then we have 
our rational curve. Otherwis e g  mus t have two-dimensional 
image, since C can not have a one-parameter family of 
automorphisms that keep the point p fixed. W e claim that g  i s 
not a morphism. T o see this apply (1.5 ) to the projection map 

f : CXD — > C . 
f~1(p) is mapped to a single point; thus the same holds for every 
fiber, and the image is one-dimensional, a contradiction. Thu s g " 
is not defined somewhere along {p}XD . B y (1.4) , X contains a 
rational curve. Usin g (1.3) , we see that there is a rational 
curve through the image of {p}XD , that is, through gg(p) . 

It is interesting to note that the algebraicity assumption is 
essential: 

d.7) Example: Let E be an elliptic curve and let M be a line 
bundle of degree > 2 with generating sections G and T. I n 

V = M + M, 
the sections 

(<J,T), ( i a , - i x ) , (x,-a), (it, ia) 
are everywhere independent over R, thus they generate a "lattice 
bundle" L over E. Le t X = V/L and 

C = the zero section in V/L. 
Then C must move leaving a point fixed by the positivity of the 
bundle V, yet V/L has no rational curves. 

Conclusion: The family of deformations of the mapping of C into X 
(leaving a point of C fixed) has no non-trivial 
compactifiable subvarieties. 

We are ready to formulate and prove the first main result 
about the existence of rational curves. Thi s first result is of 
independent interest , even after we consider a later variant which 
is, in some aspects, considerably sharper. 
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(i.8) Theorem: Let X be a smooth projective variety suc h that -Kx 
is ample. The n X contains a rational curve. I n fact, 
through every point of X there is a rational curve D 
such that 

D- (~KX) <  1 + dim X. 

Proof: This will be done in several steps. 
d.9) Step 1: We intend to apply (1.6) . Thu s we have to find a 
morphism 

f: C > X 

which we will be able to deform. Pic k any curve C. I f we want to 

find a rational curve through a given point x e X, then we require 

C to pass through x  an d pick pe C such that its image is x . 

d.io) Step 2: Morphism s f  o f C into X have a deformation spac e of 
dimension 

> (h°(C , f*Tx)-h1(C, f*Tx) ) = f(C)-C!(X) + (l-g(C ) )-dimX 

by the Riemann-Roch theorem. Sinc e it is dim X conditions to fix 
the image of the basepoint p  unde r f , morphisms f  o f C into X 
sending p  t o x  hav e a deformation spac e of dimension 

> (h°(C , f*Tx)-h1(C, f*TX) ) - dimX = f(C)-ci(X) - g(C)-dimX. 

Thus whenever the quantity 
f (C) -C! (X) - g (C) -dimX 

is positive there must be an actual one-parameter famil y of 
deformations o f the map f: C >X keeping the image of p  fixed . 
By (1.6 ) therefore, we obtain a rational curve in X through x . 
We remark that this part of the proof works also for Kahler 
manifolds, but by (1.7 ) it fails for arbitrary compact comple x 
manifolds. 

d.ii) Step 3: W e show how to get ( f (C)-c1(X) - g(C)-dimX) > 0. T o 

do this, we need to get f(C)-C]_(X) big enough. W e take cases: 

i) g(C) = 0. I f f(C)-c1(X) > 0, then C moves in X, but we 
already knew that X has a rational curve through x . 

ii) g(C) = 1. I f f(C)-ci(X) > 0, compose f  wit h the 
endomorphism of C given by multiplication by the integer n . The n 

( (f o n) (C)-ci (X) - dimX) = n2 (f (C)-C! (X) ) - dimX 

so this time some multiple of C moves (s o that one point of some 
sheet over the image stays fixed) . 
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iii) g(C) > 2 . Th e problem here is that if, for example, we try 
to move an m-sheeted unbranched cover of C, we are only guaranteed 
a deformation spac e of dimension 

m[ (f (C)-ci (X) -g(C)-dimX) ] + (m-l)dimX. 

This does not necessarily get positive by making m  large , even 

when f (C) •c1 (X) > 0 . 

(1.12) Thus we are in trouble in the case g(C) >1 because C does not 
admit endomorphisms of high degree. However , there is a situation 
in which a curve C does in fact admit endomorphisms "o f high 
degree", namely, in finite characteristic. Th e Frobenius morphism 
is such an endomorphism. W e next see how to pass from our 

original situation to one over a field of characteristic • p>0. 

(1.13) Step 4: Take a curve C in a smooth manifold X in Pn. Firs t 
suppose that both C and X are defined by equations with integral 
coefficients: 

h ! ( X 0 , . . . , X N ) , h R ( X 0 , . . . , X N ) defin e X 
ci(XQ,•••,XN), cs ( X 0 , . . . , X N ) defin e C. 

Let F(p) be the field with p  element s and F(p)A it s algebraic 
closure. The n the equations h-j_ and CJ above define varieties Cp 
and Xp respectively in the projective space (F(p)^)Pn. Thes e 

varieties are non-singular, and dim Cp = 1, for almost all p . The 
mapping 

(X0, . . .,Xn) > (X0P, . . .,XnP) 

gives an endomorphism -j^ of Cp, which, although it is injective in 
a set-theoretic sense , should be thought of as a morphism of 
degree pdimC e gy "generic flatness over Spec Z", C]_ (Xp) , g(Cp), 
and %(TxICp), are constant for almost all p . Th e dimension of 
the "base-pointed" deformation spac e of the morphism 

lpm:CP >  CP >  XP 

has dimension bounded below by 

pm(Cp-Cl (Xp) ) - g(Cp)-dimX. 

So, since Cp-ci(Xp) is constant (an d assumed positive) for almost 
all p , we can pick an m s o that the above expression 

pm(Cp-c1(Xp) ) - g(Cp)-dimX 
is positive fo r almost all p . Then , as in Step 2, we produce a 
rational curve Rp on Xp for almost all p. 

13 
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d.i4) Suppose now that we are in the general case in which the 
coefficients of the h-j_ (defining X in Pn) , the fj (definin g C in 
Pm) and the gj (definin g the graph of the map in PnxPm) ar e not 
integers. I n any case, these coefficients generate a finitely 
generated ring ft over Z. Le t p b e any maximal ideal in ft. Then 

ft/p* is a finite field (sinc e otherwise we would have a field 

Q [x]_, xr ] = Z [x]_, xr ] which cannot happen because there are 

infinitely many prime numbers). S o ft/p is isomorphic to F(pk), 
the finite field with pk elements for some p . I n this case, our 

Frobenius morphism i s given by raising the homogeneous 

coordinates (XQ,...,Xn ) of (F(pk)*)P m to the pk-th power. Th e 

rest of the argument proceeds as above, giving us a rational curve 

Rp,, for all closed points p, in some Zariski open set of Spec ft. 

d.i5) Step 5: Now we assume that C]_ (X) is ample and that X is 
embedded by mc^(X) for some positive integer m . I n this step, we 

wish to replace Rp, with a rational curve Sp, with 

ci <xp,) ' sp < ^imX + !• 

To do this, notice that, if 

ci (Xp,) ' Rp > dimX + If 
then the morphism from Rp, to X^ deforms with two point s fixed in 
at least a two-parameter family . Sinc e P^ has only a 
one-dimensional famil y of automorphisms leaving two points fixed, 
the image of Rp, in Xp, must move. A s in Step 2, we construct a 

rational mapping from DXR^ into Xp, taking D x {q} to x  an d 

DX{q'} to x' . Takin g a minimal resolution Z of this map and 

contracting all curves (i n fibres of Z >D ) that are mapped to a 

point by Z >  X, we obtain either that Rp, degenerates somewher e 
into a sum of two or more curves each of lower degree or that 
there is a morphism from a P^-bundle ove r D into Xp, that sends one 
section to x  an d another section to x1 . 

The latter case is impossible since it would imply 
negative-definite intersectio n matrix on the Neron-Severi group of 
the pl-bundle. S o we must be able to find a rational curve of 

lower degree as long as Rp/ (-Kx) >  (dimX+1 ) . 
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CURVES WHEN Kx NEGATIVE 

(i.i6) Step 6: In this last step, we must conclude the existence of 
a rational curve on the variety X of characteristic zero from the 
existence of the Rp of bounded degree for almost all p . (Th e 

general case using jjx in Spec ft is analogous.) 

Principle: If a homogeneous system of algebraic equations with 
integral coefficients has a nontrivial solution in F(p)A 
for infinitely many p  (fo r a Zariski dense subset of 
Spec ft) , then it has a nontrivial solution in any 
algebraically closed field. 

Proof: By elimination theory, the existence of a common solution 
to a system of equations is given by the vanishing of a series of 
determinants of matrices whose entries are polynomials (wit h 
integral coefficients) in the coefficients of the equations. A 
determinant vanishes if it vanishes modp for an infinite number of 
primes p . 

In our situation, for most p  w e have homogeneous form s 

((gP)(v (gP)n ) 

of degree m(dimX+l) i n (tQft]_ ) giving the map 

P1 > XÇPn 
such that 

hi((gP)0' ••• * <gP)n) = 0 

identically i n (tg , t]_) for all i . Thi s condition can be 
expressed as a system of equations in the coefficients of the g^. 
Since this system has a solution for a Zariski dense subset of the 
primes p , it has a solution in any algebraically closed field by 
the above principle. 

d.i7) Step 7: Finally, we should remark that Steps 2 and 5 allow 
the construction of a rational curve of degree < (dimX + 1) through 
any pre-give n point of X. So , if C]_ (X) is positive, X must be 
covered by an algebraic family of rational curves of 
degree < (dim X + 1) . 

(1.18) References: Most of these results are due to Mori[Ml]. (1.2 ) is due to 
Abhyankar [Ab, Prop.4]. (1.7) is taken from [Bl] . Th e existence of rational 
curves through any given point is implicit in [Ml]; it was first noted 
explicitly in [Kol]. 
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Lecture #2: Finding rational curves when Kx is non-semi-
positive 

(2.D Now let's weaken our hypotheses about X in (1.8) . Namely , 
from now on we only assume that, for some fixed f , 

c1(X)-f(C) > 0, 

rather than assuming the positivity of (X) . We also fix a 
hyperplane section H of X. I f 

(*) (f(C)-ci(X) - g(C)-dimX) > 0, 

then C deforms with one point fixed. A s before, this family must 
degenerate to 

f'(C) + (sum of rational curves). 

As before, to achieve (*) , we pass to finite characteristic, 
and compose f  wit h the m-th power of the Frobenius morphism. 
For m » 0, we are able to degenerate pm-f(Cp) to 

(**) cp,m + zp,itu 

where Zp^m is a sum of rational curves. Notic e that the ratio 

(f (Cp)-ci(Xp) )/(f (Cp)-Hp) =M 

is constant for almost all p  an d does not change if we replace 
f wit h its composition with a power of Frobenius. I f 

(cp,m'cl<xp) " g(Cp)-dimXp) > 0, 

we can move Cp,m as before (without composin g again with the 
Frobenius morphism). W e iterate these moves. Eac h time the 
intersection number of Hp with the component corresponding to Cp m̂ 
goes down, so the process must stop. Thu s we reach an equation 
(**) whic h is a degeneration of the original pm-f(Cp) and which 
has 

Cpfm-ci(Xp) < g(Cp)-dimXp. 

Let a = cp,m'cl<xp) 

b = zp,m-ci(Xp) 

c = cp, m ' Hp 

d = zp, m ' Hp • 

For large m , (c+d) is large, (a+b) /(c+d) = M, so (a+b) must be 
large. Bu t a  i s bounded, so b  mus t get large. 
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(2.2) Lemma: Suppose c>0 an d d>0. The n 

(a+b)/(c+d) < max {(a/c), (b/d)}. 

Proof: Suppose a' = (a/c ) < b' = (b/d) . Pu t d' = (d/c) . The n 

(a'+d'b')/(1+d') < b'. 

(2.3) If a/c < M, then b/d > M, since otherwise we contradict (2.2 ) . 
For large m , if c  get s large then indeed we eventually get 

a/c < M. 

But if c  stay s bounded, then d  mus t get large and 

(a+b)/(c+d) 

must approach b/d. So , given any 8 > 0, we can find an m  s o that 

<ZP/m-ci(Xp))/<Zpfm-Hp) > M-E. 

Now the Lemma gives that for some irreducible component Ep of Zp^m 
we also have the inequality 

( * * * ) (Ep-C! (Xp) ) / (Ep-Hp) > M - £ . 

(2.4) Suppose now that (Ep-c i (Xp) ) > (dim X + 1). Then , as in (1.10) , 
we can move the rational curve Ep with two points fixed and the 
moving curve must degenerate somewhere into a sum of two or more 
distinct rational curves. W e use (2.2 ) again to conclude that the 
inequality (*** ) mus t hold for at least one of the components E'p 
of the degeneration. I f 

(E'p-c1(Xp)) > (dimX+1), 

E'p moves and as above we find E"p for which (*** ) holds . Thi s 

process cannot continue indefinitely, since at each step Ep-Hp 

goes down. S o eventually we arrive at a curve (whic h we again 

call Ep) such that 0 < (E P-C! (Xp) ) < (dimX+1) . S o 

0 < (Ep-Hp) < (dim X + 1 ) / (M - £) . 

Since this bound is independent of p , we can reason as in (1.11 ) 
to conclude the existence of a rational curve E on the complex 
projective manifold X. I f C]_(X)-E > dimX + 1, we can apply (1.10 ) 
repeatedly until we find an E with 

ci (X) -E < dim X + 1 . 

17 
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(2.5) Remark: This argument does not allow us to say anything about 
the position of the rational curves on X. A  different argument, 
however, shows that, through any point of C there is a rational 
curve. 

We can summarize our results in the following 

(2.6) Theorem: Let X be a smooth projective variety, and let H be 
an ample divisor on X. Assum e that there is a curve 

C C X suc h that C-(-Kx) > e(C-H) for some e>0. The n 

there is a rational curve E c X suc h that 

(dimX+1) >E-(-Kx) >e(E-H). 

(2.7) References: All these results are in [Ml]. 
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Lecture #3: Surface classification 

O.I) We will now begin to see what finding a rational curve has to 
do with classification theory of algebraic varieties. W e begin by 
remarking that any algebraic curve X admits a metric of constant 
curvature, and that, for any Kahler manifold X, C]_ (X) is 
represented by the Ricci form associated to the curvature. Not e 
that, for an algebraic manifold, Kx = -C]_ (X) . 

List : 
c1(X) > 0 : X = CP1 
C]_(X) = 0 :  X = (C/lattice) 
C]_ (X) < 0 : many X. 

(3.2) Principle of classification of surfaces: 
Surfaces tend to be negatively curved in the sense that the 
divisor corresponding to -c\(X) tend s to be nef, or even ample. 
Often using the fact that we can produce a rational curve on a 
surface X whenever -C]_ (X) is not nef, we can make a list of 
surfaces which are not negatively curved. 

(3.3) There are three possible ways to describe the notion of 
negative curvature: 

1) Tx has a metric with negative Ricci curvature. 

2) j\dimXTx = £ (_Kx) has a metric with negative Ricci 
curvature. (Thi s is equivalent to 1) by Yau's famous 
theorem.) 

3) c1(X)-C < 0 for all curves C on X. 

Notice that 2) always implies 3), but that to obtain 2) from 3) 
for surfaces, one must show that 3) implies that (ci(X)) 2 > 0 and 
so, by the Nakai-Moishezon criterion , Kx is ample. Th e proof that 

(C! (X) ) 2 > 0 
for surfaces fo r which 3) holds comes a posteriori usin g the 
classification theory of surfaces, and so is unsatisfactory i n 
some sense. 

(3.4) Question: Is there a manifold X for which 3) does not 
imply 2)? 

(3.5) Definition: A divisor D on X is called semi-negative if 
C-D < 0 

for all curves C on X. 
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(3.6) Problem: Suppose C]_ (X) is semi-negative. Doe s det Tx admit a 
metric with semi-negative curvature form? 

(3.7) Exercise: Produce a line bundle L such that C]_ (L)-C < 0 for 
all curves C, yet no metric on L has curvature everywhere less 
than or equal to zero. 

(3.8) So now let's start trying to classify surfaces according to 
the above principle. Firs t assume (X ) is not semi-negative. 
Then there is a curve C on X for which 

(ci (X)-C ) > 0. 
So, by what we have done before, we can produce a rational curve E 
such that, for 

f: E >  X, 
we have 

0 < (c1(X)-f(E) ) < 3 = dimX + 1. 

We need to assume a result which we will discuss next time 
(see (4.7)) , namely, that we can take C = f(E) to be "extremal," 
which roughly means that E generates an edge of the cone NE(X) of 
effective divisor classes on X. 

Case 1: C 2 < 0. 
So, from the formula 
(*) C 2 + C-Kx = 2g(C) - 2, 
we see that the only possibility is 

g(C) =0 an d C2 = -1. 
So C is an exceptional curve of the first kind and we 
can blow it down to a smooth point. Sinc e we decrease 
the second Betti number of X each time we do this, we 
can eventually assume that X has no extremal curves C 
with C 2 < 0. 

Case 2: C 2 = 0. 
So, by (*) , g(C) = 0, and f  i s an embedding. 
Since (c^(X)-C ) = 2, f ha s at least a four-dimensional 
family of deformations (b y the formula in (1.10) ) . Bu t 
C has only a three-dimensional famil y of automorphisms, 
so C must actually move. S o X is ruled, and the fact 
that C gives an edge of NE(X) means that all fibres of 
the ruling must be irreducible. 

Case 3: C 2 > 0. 
Next time (Corollar y (4.4)) , we show that this implies 
that E lies in the interior o f NE(X) in the vector space 
spanned by NE(X). Bu t E is also on an edge. Thu s the 
Picard number of X is one. Le t H be an indivisible 
ample divisor on X. The n Kx = -aH for some a>0 . 
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For the rest of the argument we assume that we are over 
C. Th e result is true in general but the proof is 
harder. 

By the Kodaira Vanishing Theorem, 
E°r 1 (X) = H°/ 2 (X) = 0 . 

Thus H generates H2(X; Z) modulo torsion, and so by 
Poincaré duality 

H-H = 1, 
and C2(X) = 3 . B y Noether's formula 

ci(X)2 = 9 and Kx = -3H. 
By the Riemann-Roch formula, 

dim|H| = 2. 
Since H2 = 1, IH I has no basepoints and so defines a 
morphism to CP^ . Thi s morphism has degree one and 
separates points, thus it is an isomorphism. 

(3.9) Except for the above X, there only exist surfaces X with C]_ (X) 
semi-negative. W e list known results about these: 

Case 1: C]_(X)-C = 0 for all curves C. 

It is known that £X (12Kx) is the trivial bundle in this 
case. The n it can be shown that X is either an abelian 
surface, a K3-surface, or a finite quotient of one of 
these two under a free action of a finite group. (I f X 
comes from a K3 surface, then the group in question must 
be Z/2Z, sinc e the Euler characteristic of the structure 
sheaf of a K3-surface is 2.) Som e other cases exist in 
characteristic 2 and 3. 

Case 2: c1(X)-c1(X ) = 0 but ci (X)-C * 0 for some curve C. 
Then it can be shown that X maps to a curve D with 
elliptic fibres, and that some multiple of C]_ (X) is the 
pull-back of a negative divisor on D. Som e other cases 
exist in characteristic 2 and 3. 

Case 3 : ci (X) -ci (X) > 0 . 

Then it can be shown that, for m » 0 , th e divisor 
-mc]_ (X) defines a birational morphism into some 
projective space. I f this contracts a curve, the curve 
is rational. 

(3.10) References: These results are classical. See [GH] for curvature and 
related topics. Also see [BPV] and the references there for further results. 
For (3.3), see [Y]. 
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Lecture #4: The cone of curves, smooth case 

(4.D Our main goal today is to prove the Cone Theorem, which gives, 
among other things, the existence of the extremal rational curves 
which we used to help classify surface s in Lecture #3. First , we 
will motivate things with some definitions and examples. 

(4.2) Let X be a non-singular projective variety. Le t C be an 
irreducible curv e on X. W e denote the homology class of C in 
H2 (X; R) by [C ] . Le t 

NEQ(X) (resp . N E ( X ) ) 

be the subset of H2(X; R) given by 

{X ai [Ci] : Ci an irreducible proper curve on X, 
ai E Q (resp. ai e R), and ai > 0} 

Clearly NEQ(X) is dense in N E ( X ) . 

Sometimes we 
will only 
draw a transverse 
slice of the 
cone NE(X). 

N E ( X ) C H2(X;R) 

For any divisor D, let 

D>0 = {Ç: C-D>0} 
(similarly for >0, <0, and <0). 

Next we work out some examples where X is a surface, H a 
hyperplane section . Then , 

< N E ( X ) > , the closure o f N E ( X ) , 

lies in H>Q and only its vertex 0 lies in H-L (the real hyperplane 
annihilated by H) . 
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(4.3) Lemma: If D is a divisor on the surface X with D2 > 0, then 
either |  nD | * 0 o r |  -nD | * 0 fo r n » 0 . 

Proof: By the Riemann-Roch Theorem, 
h°(nD) - h!(nD ) + h°(Kx-nD ) = (n 2/2)D2 - (n/2)D-Kx + % (0^) 

h°(-nD) - h1(-nD) + h°(Kx+nD) = (n 2/2)D2 + (n/2)D-Kx + X(&x). 
Letting n  ge t large, we notice that the right-hand-side of each 
equation gets big. Bu t it cannot be true that both h^(Kx-nD) and 
h^(Kx+nD) get big, since the two divisors sum to a fixed linear 
system 2KX. 

(4.4) Corollary: If [D ] e <NE (X) > an d if D2 > 0, the n [D ] lies in 

<NE ( X ) > ° , th e interior of <NE ( X ) > i n the vector space it 
spans in H2(X; R) . 

Proof: Pic k H ample. By ( 4 . 3 ) , H- D >  0 . I f D'gNEQ(X) i s near 

D, the n D'2 >  0 and -D'-H < 0 . mD 1 i s an integral cycle for some 

m > 0 , an d so we can apply ( 4 . 3 ) to mD' to obtain that mD'ENE ( X ) 
and hence D ' e N E ( X ) . Therefor e [D ] e <NE ( X ) > ° . 

(4.5) Lemma: If C is an irreducible curve on X and C2 < 0, the n 

[C] e 3NE(X) . I f C2 < 0, [C ] e (edge of NE (X) ) . 

Proof: Suppose, for irreducible D, D-C < 0 . The n D = C. S o NE(X) 
is spanned by [C] and NE(X) nC>Q . 

(4.6) Let's now look at our series of examples: 

4 . 6 . 1 ) Suppos e X is a P^-bundle ove r a curve of genus at least 2 . 
Then NE(X) = cone in R2. Le t f  b e the homology class of the 
fibre, ^ the other edge. 

NE (X) 

f 

L 
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By (4.4) , £2 < 0. I f ^2 < 0, take a sequence Dn of effective 

curves converging to a point of R>o[^L an d notice that, for n » 0, 
Dn2 < 0. Ther e is an irreducible component En of Dn such that 

En2 < 0 , hence by the Lemma just above, En€ R> o t y . I f ^2 = 0, 

fix any irreducible D other than f . The n D and f  spa n H2(X; R) . 
Write 

(xf + yD)2 = 2xy(f-D) + y2(D-D) = 0. 

Then ^ is a solution to 2x(f-D) + y (D-D) = 0, so £, must have a 
rational slope, but its slope need not be represented by any 
effective Q-divisor. B y the adjunction formula, f  e (Kx)<o• 

4.6.2) Let A be an abelian surface with an ample divisor H. Sinc e 
the self-intersection of any curve on an abelian surface is 
non-negative, it follows from (4 .3) that <NE(X)> is given by the 
conditions D2 > 0 and D-H > 0. I f rk NS > 3 (e.g . A = E X E for 
some elliptic curve E) , the n <NE(X)> is a "circular" cone. 

4.6.3) Del Pezzo surfaces: Characterized by the condition C]_ (X) 
ample (positive) . 

We shall see that, in this case, either X ~ o r one can find 
rational curves C]_ , . . . , Cr such that Cj_2 < 0 and 

NE (X) =  R>0[Ci] + ... +R>0[Cr]. 
So, in particular, NE(X) = <NE(X)>, a cone over a finite 
polyhedron. 

4.6.4) Let X1 = blow n up at the 9 basepoints of a generic 
pencil of cubic curves. Choosin g one of the 9 points as the zero 
section, we get an infinite group generated by the other 8 
sections. S o X' has infinitely many exceptional curves of the 
first kind. Al l of these deform under a generic deformation of X' 
(obtained by moving the 9 points into general position). B y 
(4.5), each of these curves gives an edge of the cone NE(X). No w 
-Kx is represented by the unique elliptic curve through the 9 
points and -Kx is semi-positive. (However , no multiple of -Kx 
moves.) S o NE (X) is not locally finite near Kx̂ -. 

With these examples in mind, we are ready to state the first 
result of Mori for varieties of arbitrary dimension. Th e proof of 
the result in the smooth case is more geometric so we consider it 
first. Th e proof in the general case will be given in Lecture 
#11. 
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(4.7) Cone Theorem: Let X be a non-singular projective variety. 
There exists on X a set of rational curves Cj_, 
i e l , wit h 0 < Ci-(-Kx) <  dimX+1 such that: 

1) <NE(X)> = Z(R>0) [Ci] +  (<NE(X)>Pi (KX)>0) . 

(The (R>o)[Ci], which, together with (<NE(X)> n (Kx)>o> , 
form a minimal generating set for <NE(X)>, are called 
extremal rays.) 
2) For any £ > 0 and ample divisor H, 1) gives 

<NE(X)>n (Kx + £H)<o 
= (<NE(X)> Pi (KX + £H)=o) + ̂ finite(R>0) tCj]• 

Proof: Recall that in Lecture #2 we showed that, if H is any ample 
divisor, and if C is an irreducible curve with C-Kx < 0, then 
there exists a rational curve C wit h 0 < C'-(-Kx) < dim X + 1 and 

C - (-Kx) 
C - H > c- (-KX) 

C • H 
- e 

for any e > 0. Th e numerator on the left-hand-side takes only 
finitely many values, so we can set £ = 0 in the inequality. 

Now let [CjJ , iel, be the collection of classes of rational 
curves with 

0 < Ci-(-Kx ) < dimX + 1. 

Let U be the cone generated by the [C -jJ and <NE (X) > n (KX)>Q. 
Choose a rational divisor J such that 

(<NE(X)>n (Kx)>o) £J>0U{°} -

By the convexity of <NE(X)>, the closed set 

£J>0 (J-^KX)-Ln (<NE(X)>n (Kx)>0) * {0}} 
is disjoint from the closed set 

£J>0 (J-JlKxjJ-n (<NE(X)>n (Kx)<0) * {0}}. 
We represent the various regions and subspaces we are considering, 
and the relationships between them, in the following diagram: 
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Rotation of Nj¿= (J-|IKX) as [l changes: 

J<0 
J1= N0 

0<M-«1 J>0 

£J>0 -1«]I<0 

£ 

[I »0 

K 

;<NE(X)> n(Kx) 

"NLi fX<<0 

Kx<0 

KX> 

KX>O 

£J>0 

<NE(X)> n(Kx)2Q 

Let |J.j be a positive rational number strictly between the two 
above sets. W e will need 

(4.8) Kleiman's Criterion: If X is a non-singular projective 
variety and D is any divisor, then D is ample if and 
only if 

D>Q 3 <N E (X) > - {0} . 

(4.9) By Kleiman's Criterion, (J- |LJKX) i s ample, so we can set 

H = HJ = ( J - | I JKX) 

in the considerations at the beginning of the proof. No w suppose 

we have [C ] £ TL. The n we can pick a rational J wit h [ C]g(J<Q) and 

U c ( J > 0 ) . 
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forced to 
exist C . C 

Kci'Hjci'Hjci 1 
in. 

1 
Kx 

We have seen that there is a C-[_ with 

ci'Hjci' 
ci'Hj 

> c • ( - K X ) 

C . Hj 
by our previous considerations. Bu t 

(Hj+̂ ljKx)-Ci > 0 and ( HJ+^JKX)-C < 0, 
giving a contradiction. Thi s gives 1) in the Cone Theorem. 

The second statement is now immediate from the finiteness of 
the number of connected families of C-j_ with 

dimX + 1 > Ci- (-Kx) >  X (Ci'H) . 

(4.10) Kleiman's Criterion tells us that a proper smooth algebraic 
variety X is projective if and only if <NE(X)>-{0} lies in a 
proper half-space of H2(X; R) , that is, if and only if <NE(X)> 
contains no straight lines. I n the case that X was a surface, if 
C was a curve with C2 < 0 and the variety Y obtained by 
contracting C to a point was smooth, then this says that Y must be 
projective. 

If X is a projective threefold, here are some cases where C is 
an irreducible curve inside a smooth divisor D on X, and D-C < 0 : 

Case 1: I f H2 (D; R) has one-dimensional image in H2 (X; R) , then 
just as in the Lemma for surfaces, C must lie on an edge 
of NE(X). Contractio n of D corresponds to projection 
from this edge. So , if the variety Y obtained by 
contraction is smooth, it is projective. 

Case 2: Suppos e D is a smooth ruled surface with C as fibre and 
D-C = - 1 . The n the contracted variety Y is smooth by 
Nakano1s Criterion. So , if C is on an edge of NE(X), 
then, by Kleiman's Criterion, the contracted variety is 
projective. 

(4.11) References: Example (4.6.4) is an old example of Nagata[Nag]. Kleiman's 
Criterion(4.8) can be found in [Kl]. (4.7 ) is in [Ml]. 
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Lecture #5: Introduction to Mori's program 

(5.1) Example: We begin letting 

g: X >P2 

be the blow-up of P2 at 12 points P]_ , . . . ,Pi2 on a smooth cubic 
plane curve D. Le t C be the proper transform of the plane cubic. 
C2 = -3, so that C can be blown down via an analytic morphism 

f : X > Y 
to an analytic surfac e Y. Howeve r Y cannot be projective if the 
12 points are in general position. T o see this, suppose M is any 
line bundle on Y. Then , f*M = L is given by a divisor 

g*Op2(b) + ZaiEi 
where Ej_ is the exceptional curve above P-j_. Bu t the divisor 

(g*er,p2(b) + EaiEi)-C 

must be linearly equivalent to 0 (denote d " ~ 0 ") on C. S o we 
would have to have 

aD(b) + SaiPi - 0 

on D, which is clearly impossible for generic choice of the Pj_. 

However, if the Pj_ are the points of intersection of a quartic 
curve Q with D, then the linear system determined by the proper 
transform of Q in X realizes f: X > Y as a morphism into a 
projective space. 

These examples show that there can be no numerical criterion 
for contractibility in the projective category. A  major point of 
what follows is that for extremal rays such criteria can exist. 
The result is: 

(5.2) Theorem: Let X be a non-singular projective variety. I f R is 
an extremal ray, then there is a morphism 

f : X >  Y 
onto a normal projective variety Y so that f  contract s 
an irreducible curve D to a point if and only if [D] 
generates R. Th e morphism f  is called the extremal 
contraction o f the ray R 

(A proof will be given in Lecture 11.) 
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(5.3) Th e theorem completely characterizes Y as a set. T o get an 
idea of its projective structure, find a Q-divisor L so that 

[D]-L = 0 

and 

<NE(X)> - (R>0[D]) 

lies in L>Q . B y Kleiman's Criterion, (mL-Kx ) is ample for m » 0 . 

So, by the Kodaira Vanishing Theorem, 

H1(X;mL) = 0 

for i>0. On e uses this to show that |  mL | is basepoint-f ree for 

m » 0 . Thi s linear system gives the morphism f : X > Pn. 

Also mL - Kx is ample which implies that 

(-KX-D) > 0 

for all D lying in a fibre of f . W e will later prove 
a vanishing theorem (8.8 ) which implies that therefore all the 
higher direct-image sheaves R^-f*^^ are zero. 

(5.4) It is the vanishing of R^*©^ whic h insures that the 
contractions take place in the projective category. Roughl y this 
is because then R1f*GCx* injects into R2f*Z. Then , with Y as in 
(5.2), we use the exact sequence 

PicY >  PicX >  Rif *&x*, 

to see that the criterion for a line bundle on X to come from one 
on Y is numerical. 

(5.5) We will denote the contraction morphisms constructed above as 

contR: X >Y . 

For X a non-singular projective threefold, we will categorize the 
possibilities for cont^ according to the following types: 
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Exceptional : 

If dimY = 3, then f=cont^ is birational and there are 
five types of local behavior near contracted curves: 

El) ContR is the blow-up of a smooth curve in the set of 
non-singular points on Y. 

E2) ContR is the blow-up of a smooth point of Y. 

E3) ContR is the blow-up of an ordinary double point of 
Y. Analytically , an ordinary double point is 
given locally by the equation 

x2+y2+z2+w2 = g. 

E4) Contp> is the blow-up of a point of Y which is 
locally analytically given by the equation 

x2+y2+z2+w3 = 0. 

E5) ContR blows down a smooth CP^ with normal bundle 
8, (-2) to a point of multiplicity 4 on Y which is 
locally analytically the quotient of b y the 
involution 

(x,y,z) > (-x,-y,-z) . 

Conic : 
If dimY = 2, then f  = cont^ i s a fibration with fibres 
conic curves. (Th e generic fibre is, of course, 
smooth.) 

CI) If f  ha s singular fibres, then f  i s a "conic 
bundle". 

C2) If f  ha s no singular fibres, f  i s an etale 
CP^--bundle . 

Del Pezzo: 
If dimY = 1, the generic fibre of cont^ is a del Pezzo 
surface since the canonical divisor of the fibre, 
"KXI fibre' is ample. 

Fano : 
If dimY = 0, -Kx is ample. X  is a "Fano variety". B y 
Kodaira Vanishing Theorem, 

H1 (X; CC) = 0 for i > 0, 
so R generates H2(X; R) . 
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(5.6) Now we are in a position to give a short summary of the aim of 
Mori's program. Le t X be a smooth projective variety. I f Kx is 
not nef, then we can find a morphism, called the contraction 
morphism of an extremal ray or an extremal contraction, 

f = contR: X >Y . 

In low dimensions we have the following basic cases: 

5.6.1) dimX = 2: 

Then either 

dim Y < dimX: In this case we have a complete structure 
theory for X. 

or 
dim Y = dimX: In this case Y is again smooth and 

rk NS (Y) < rk NS (X) . 
Thus Y can be considered "simpler " than X. 

In short, either we obtain a description of X or we can simplify 
its structure. 

5.6.2) dimX = 3 : 

Then either 

dim Y < dim X: In this case we again have a nearly 
complete structure theory for X; in 
particular we obtain that X is covered by 
rational curves. 

or 

dim Y = dimX: In this case Y can unfortunately be 
singular (case s E3,E4,E5). 
Thus it is not clear that Y is any 
"simpler" than X. 

(5.7) Thus we see that we have to put up with certain singularitie s 
in higher dimensions. W e have to establish a suitable category of 
singularities to work with, and it is not at all clear a priori 
that a reasonable class can be found. I t is a priori possibl e 
that contraction morphisms create worse and worse singularities. 
The correct class will be called "terminal" singularities. The 
definition is unimportant for the moment and will be given only 
later—for now we only note one defining property: 

For terminal singularities, some multiple of i s 
Cartier, thus it makes sense to talk about Kx being nef. 
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Next we will have to prove the existence of the contraction 
morphisms in this wider class of "mildly singular" varieties: 

(5.8) Theorem: Let X be a projective variety with only Q-factorial 
terminal singularities such that Kx is not nef. 
Then there exists a morphism 

f : X >  Y 
such that -Kx is f-ample and one of the following holds 

a) dimX > dimY and f  i s a Q-Fano fibration. 
b) f i s birational and contracts a divisor 
(divisorial contraction). 

c) f i s birational and contracts a subvariet 
of codimension > 2 (smal l contraction). 

(5.9) Comments: 
Case a) of the theorem: This means that the general fiber of 

f i s an algebraic variety where -Kx i s ample. Thus , at least in 
principle we reduce the problem of understanding X to 
understanding the lower dimensional variety Y and the fibres of 
f. Moreove r these fibres are of very special kind--they are 
analogues of CP̂ - and of Del Pezzo surfaces. 

Case b): In this case, Y again has terminal singularities an< 
so we manage to stay inside the class of singularities we started 
with. Moreover , 

rk NS (Y) < rk NS (X) , 
thus Y can be considered to be "simpler" than X. 

Case c): This is a new case. I t could never happen for 
surfaces for dimension reasons, and it did not happen for smooth 
threefolds X. I n this case, Y can have a very bad singularit y 
where no multiple of Ky is Cartier. Thu s the expression "Ky is 
nef" does not even make sense. S o we are led out of the class of 
varieties that we can control. I n order to continue at this 
point, we have to introduce a new operation called a flip. Thi s 
is the algebraic analogue of codimension-two surgery: 

Instead of contracting some curves U Cj_ c: X, we remove 
them, and then compactify 

X - UCj_ 

by adding another union of curves UDj. (Fo r the 
moment, it is not at all clear that this operation 
exists or that it is well-defined, let alone that it 
improves things.) 

32 



MORI'S PROGRAM 

We first study an example of this situation. I n the example, 
the (directed ) flip will remove the curve C = CP1 from the 
singular variety X and replace it with D = CP1 to achieve the 
"improved" variety X* (whic h in this case is non-singular). Th e 
process is most easily explained in reverse, as a sequence of 
blowing-ups 

X* < BX* i B W 

followed by a sequence of blowing-downs 

BW > W > X : 

refers to 
"F " tne corres 

ruled 
surface 

ci 

ci neg. 
sec. 

BX BW 

Fl 

Fo 

normal bundle 1 
^er.(-i) +O.(-2) 

CP " K ample 
correct move 
in progression 
,to "min. model" 
called 
"flip" 

C-K = -1/2 

I x 
c g 

E5 type > 
contraction 

^ 2s CP 

C-K = 0 c 

w X 
f contracts to 

"bad" non-Gorenstein 
singularity 

Y 
can be put in 3-fold 
with K ample outside 
point 

We start with the threefold X* which contains a smooth 
rational curve whose normal bundle is 0C(-1) +0L(-2) . Assum e that 
this curve can be contracted to an algebraic variety Y. 

If we blow up this curve, we get BX* which contains the ruled 
surface F]_ as the exceptional divisor. W e can blow-up the 
negative section of this F]_ to get BW. Th e new exceptional 
surface is FQ = P1xP1. Thi s can be blown down in the other 
direction to obtain W. Th e exceptional curve of F^ i s blown down 
so this becomes a CP2. Th e image of FQ in W is a curve C with 
normal bundle 

et(-i) +<S(-d , 
in particular C-Kw = 0. 
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The normal bundle of the CP2 can be computed as follows. I t 
has to be & (k) and we need to compute k . W e can do this by 
restricting to a line which does not intersect C. Th e pre-image 
of this line in BW is a section S of F]_ which does not intersec t 
FQ. W e can also look at the image of this section S1 i n BX*. 
Thus we need to compute the restriction of the normal bundle of F^ 
in BX* to a general section of F]_. Thi s can be done easily and we 
obtain that k = -2. 

Now the CP2 can be contracted, this is the case E5 in (5.5) . 
X is locally a quotient at x, thus Kx is only Q-Cartier. I f 

g*Kx = KW + aCpZ 

for some rational number a , then from the adjunction formula 
applied to CP2 we get that a = 1/2. Thu s C-Kx = -1/2. 

One can see that C in X generates an extremal ray and that C 
is the only irreducible curve whose homology class is in that ray. 
Thus the corresponding contraction morphism contracts only C and 
leads to the very singular space Y. 

(5.10) The operation that happens at the lower left corner of the 
above diagram can be formalized as follows: 

(5.11) Definition: Le t f: X > Y be an extremal contraction such 
that the exceptional set E in X has codimension 
at least two. A  variety X+ together with a map 

f+: X+ > Y 
is called the flip of f  i f X+ has only Q-factorial 
terminal singularities and Kx+ is f+-ample. B y a slight 

abuse of terminology, the rational map X >  X+ 
will be called a flip. 

X 

isomorphism 
in codim 1 x + 

-K̂  f-ample 
f 

Y 

f + 

only Q-factorial 
terminal singularities 

V f+-ample 

If we perform a flip, it is not clear that X+ is any "simpler" 
than X. I n the example above this happens since X is singular but 
X+ is smooth. W e will see that in general flips lead to simpler 
singularities. 
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(5.12) Mori's program: 
Starting with an algebraic variety X, we perform a 
sequence of well-defined and understandable birationa l 
modifications, until we arrive at a variety Y (possibl y 
with terminal singularities) suc h that either 

i) Y has a fiber-space structure whose generic fiber is 
a Q-Fano variety (i n particular Y and X are covered by 
rational curves) 

or 

ii) KY is nef. 

(5.13) At the moment this program is complete only in dimension 2 
and 3. Eve n there much remains to be done. Th e applicability of 
the program hinges on our ability to understand the process that 
creates Y, so that we can interpret structura l properties of X in 
terms of those of Y. Furthermor e we need to learn a lot about 
threefolds with K nef and about fiber spaces whose general fibers 
are Fano varieties. Eve n in the case in which the general fiber 
of the fiber space is P^, i t is not known how to decide when two 
such fiber spaces are birational. 

(5.14) Here we give some examples of extremal contractions in higher 
dimensions: 

i) If X is a smooth projective variety and X 3 Z is a smooth 
irreducible subvariety , then the inverse of the blowing-up 

BZX > X 

is an extremal contraction. 

ii) Over Pn let V be the total space of the rank k  vecto r bundle 

ei(-l) + ...+&(-!) , 
and let 

i(-l) + ...+&(-!) ,i(-l) + ...+& 

(Note: The Grothendieck conventio n for projectivization i s used.) 

If k < n, then the line in 

Pn Ç V Ç V 
generates an extremal ray in V .  Th e corresponding contractio n 
morphism contracts Pn to a point and is an isomorphism outside Pn. 
Thus, if k > 2, then the exceptional set is not a  divisor. This 

gives such examples for dimV > 4. N o such examples exist for 
smooth threefolds. 
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iii) Let Y be the space of non-zero linear maps from 

cn+l > cn 

modulo constants. 
Y = pn(n+l)-lf 

thus Y is smooth. Le t X be the set of pairs (g,L ) where g eY, and 
L is a one-dimensional subspace in the kernel of g . Le t 

f: X > Y 

be the natural morphism. Thi s f  wil l turn out to be an extremal 
contraction. X  has a natural morphism p  ont o 

PN (=th e set of one-dimensional subspace s in C N + ^ ) , 

given by 
p (g, L) = L . 

The fibers are all projective spaces of dimension n2-i. Thu s X is 
also smooth. Defin e 

and 
F = {g : rk g < n-1}, 

E ={ (g,L) : rk g < n-1}. 

The restriction of p  t o E exhibits E as a fiber bundle over PN 
whose fiber over L is the projectivization of the set of singular 
maps 

Cn+1/L >cn, 

thus E is irreducible. I f g e F, then f ( g) i s a projective 

space of dimension ( n - rk g) . Thus , for general ge F, it is a P V 
If n>2, then there is a ge F such that 

rk g = n-2 f 
and so 

f-l(g)= P 2 . 

This shows that f  canno t be a smooth blow-up. I n fact, one can 
see that F is singular at g  if f 

rk g < n-2. 
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(5.15) Comparison between surface case and threefold case: 
We have the following table of parallel results: 

X a smooth projective surface : 

1) The canonical ring 

0 H°(X; mKv) 
m>0 X 

is finitely generated. 

2) H°(X; mKx) = 0 for all m>0 
if and only if X is ruled. 

3) If f: X —• Y is a birational 
morphism of smooth projective 
surfaces, then f  i s a 
succession of blow-downs. 

4) Le t (Z,p ) be a germ of a 
surface singularity (not 
necessarily isolated). The n 
there exist projective birational 
morphisms f , g, and h : 

X 
h 

Y 
smooth 

i %¨£ 

z 

only RDP'S 
(rational 
double 
points) 

Kx is f-semi-ample, that is, 
there is a morphism (ove r Z) 
F : X •  ZXPn 

with F*Q.(1) = mKx for some m>C 

KY is g-ample, that is, 
there is an imbedding (ove r Z) 
G: Y •  ZXPn 

with G*&(1) = mKy for some m>0 

X is unique and is called the 
minimal resolution . 
Y is unique and is called the 
canonical resolution . 

X a smooth projective threefold: 

1) The canonical ring 

0 H°(X; mK ) 
m>0 A 

is finitely generated. 

2) H°(X; mKx) = 0 for all m>0 
if and only if X is uniruled. 

3) If f: X • Y is a birational 
morphism of smooth projective 
threefolds, then f  i s a 
succession of divisorial 
contractions and flips. 

4) Let (Z,p ) be a germ of a 
threefold singularity (not 
necessarily isolated). The n 
there exist projective birational 
morphisms f , g, and h : 

only 
Q-faĉ nQi ̂  
terminal 
singularities 
(these are in 
codim 3) 

X h Y 

f 

Z 

g 

only 
canonical 
singularities 
(these are in 
codim 2) 

Kx is f-semi-ample 

KY is g-ample. 

X is unique outside a union of 
rational curves and is called a 
Q-factorial terminal 
modification . 
Y is unique and is called the 
canonical modification . 

(5.16) References: Example (5.1) is due to Zariski [Z]. (5.5) is in [Ml], 
while the example in (5.9) is in [F]. General references for Mori's program 
are [KMM], [Ko4] and [W]. Example (5.14.iii) was pointed out to us by L. Ein. 
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Lecture #6: Singularities in the minimal model program 

(6.i) Let X be a variety of dimension > 1 such that mKx is Cartier. 
Suppose 

f : Y >  X 

is a proper birational morphism from a normal variety Y. Le t e 
denote a generic point for a divisor E which is exceptional for 
f. 

If E is locally defined (a s a scheme) by g = 0, then locally 

f*(generator of &(mKx) ) = gm"a <E> (dy!A...Adyn) ®m 

for some rational number a(E) such that m-a(E) is an integer, 
where the y-j_ form a local coordinate system at e . 

a(E) is independent of f  an d Y in the sense that, for any 

f ' : Y' >  X 

such that Y and Y' are locally isomorphic (ove r X) at a generic 
point of E (resp. E1), 

a(E) = a(E') . 

If f: Y >X is a proper birational morphism such that Ky is a 
line bundle (e.g . Y is smooth), then mKy is linearly equivalent to 

f* (mKx) + Im-a(Ei) -E^, 

where the Ê  are the exceptional divisors. Usin g numerical 
equivalence, we can divide by m  an d write 

KY = f*(Kx) + Sa(Ei) -Ei. 

(6.2) Definition: a(E) is called the discrepancy of X at E. The 
discrepancy of X is given by 

discrep(X) = 
inf{a(E): E exceptional for some f: Y >X} . 

For example, if X is smooth, discrep(X) = 1. 

38 



SINGULARITIES 

(6.3) Claim: Either discrep (X) = -«> or -1 < discrep (X) < 1. 

Proof: Blowing up a locus of codimension two which intersects the 
set of smooth points of X, one sees that 

discrep(X) < 1. 

Next take a desingularization 
f : Y > X 

and E exceptional fo r f . Suppos e a(E) < -1, so locally near 

general S E E 

KY = f*Kx - (l+c) E with c>0. 

Let S be a generic codimension 2 locus through s  whic h is 
contained in E. Le t Z = B5Y, and let 

g: Z >  Y 
denote the blow-up of Y at S  an d E s the exceptional variety 
above S . The n 

(*) K Z = g*KY + ES 
= g*f*Kx - (l+c)g* E + Es = g*f*Kx - (l+c) F - cEs 

where F is the proper transform of E. Le t P  b e a component of 

F n E 5. Then , if W = BpZ, Ep occurs in K^j with multiplicity -2c. 

The picture fo r surfaces is: 

,-c 

-2c 

-l-c • 

P 

-c -l-c 
s 

-l-c . 

Repeat the blowing-up, this time at the point of intersection of 
the proper transform of F and Ep to get a component with 
discrepancy -3c , etc. 

(6.4) Definition: We say that X has 

terminal >  0 
canonical singularitie s i f discrep(X ) ^  0 
log-terminal >  -1 
log-canonical >  -1 
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(6.5) Proposition: Let f: Y > X be a resolution of 
singularities. I f 

a(E) > c for some l>c>0 , 
for every f-exceptional diviso r E, then 

discrep(X) > c. 

If the exceptional set of f  i s a 
simple-normal-crossing diviso r and if 

a(E) > c for some I>c>-1 , 
for every f-exceptional diviso r E, then 

discrep(X) > c. 

Proof: By an analogous calculation to (* ) above , a(Eg) >.a(E) f 
ScE. T o compare with a(E') at e 1 o n another desingularizat i 

f 1 : Y' >X , 
notice that there is a sequence of blow-ups Y" of Y with an 
exceptional divisor at a generic point of which Y" is locally 
isomorphic to (Y',e') . 

(6.6) Lemma: If D is a generic hyperplane section of X, 
discrep(X) < discrep(D). 

Proof: This is a trivial application of the adjunction formula. 

(6.7) Proposition: Let g: X' > X be proper. The n 

i) (de g g)(discrep(X) + 1) > (discrep(X' ) + 1); 

ii) if g  i s etale in codimension 1 on X1, then 
discrep(X') > discrep(X). 

Proof: The proof of i) follows from commutativity i n the 
fibred-product diagram with exceptional divisors given below: 

r = ramification index of E'/E 
e' e E ' E 

Y ' h • Y 

f » 

X' __2_ 

f 

x 

r < de g g 

Near e' : K yl =f'*Kxl+a(E,)E ' 

"A ̂  B" means 
"A-B effective" 

f '*g*Kx + a(E')E' 

h* f* Kx + a(E')E' 

K y i = h* K Y + (r-l)E' 
= h*f* Kx +  h*(a(E)E) +  (r-l)E' 

= h*f* KY + (a(E) r + (r-1 ) )E' 

If g  is étale in codimension 1, then " "  above becomes "=". 
This implies ii). 
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(6.8) Definition: We define an index-one cover as follows: 

Assume X is a germ of a normal variety for which Kx is 
Q-Cartier wit h index m . The n 

&(mKx) « &x 

so that the preimage X1 of the section "1 " unde r the 
m-th tensor power map 

Kx >Qr.x 

has the property that Kxi = &Xi. S o X' has index one. 

X1 is called the index-one cover of X (well-define d 
only up to analytic isomorphism). 

Notice that X' is étale in codimension one over X, and that the 
discrepancy of an index one variety must be an integer. So , by 
(6.7) : 

(6.9) Proposition: A germ X is log-terminal if and only if it is a 
cyclic quotient of a canonical singularity via 
an action which is free in codimension one. 

(6.io) Proposition: For surfaces X: 

1) X has terminal singularities if and only if X is 
smooth; 

2) a singularity of X is canonical if and only 
if it is DV, that is a DuVal singularity (als o called a 
rational double point). 

Proof: Let X be a surface germ. Suppos e X has (a t most) canonical 
singularities, and let f : Y > X b e a minimal resolution. The n 

KY = f*Kx + Xâ E-L 

with all a-L > 0. I f not all the a-j_ are zero, there must be some 

Ej such that KY -Ej < 0 because 

KY -£aiEj_ = (ZaiEj_) 2 < 0. 

But then, by the adjunction formula, Ej must be smooth and 
rational with self-intersection -1, which contradicts the 
minimality of the resolution. S o Ky = f*Kx. So , again by the 
adjunction formula, all E^_ are smooth and rational with 
self-intersection -2 . Th e normal singularities with this property 
are exactly the DuVal singularities. 
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(6.11) Proposition: For a normal surface germ (X,x) , the following 
are equivalent : 

1) (X,x ) is log-terminal, 

2) (X,x ) is a quotient of (C^,0) unde r the action of a 
finite group which is free in codimension 1, 

3) (X,x ) is a quotient of (C^r0) unde r the action of a 
finite group. 

Proof: For any normal surface germ X with Kx Q-Cartier let 
g: X' >  X 

be its index one cover. 

To see that 1) implies 2): 
We saw in (6.7)that X1 is log-terminal if X is. Sinc e Kx» is 
Cartier, discrep(X') > -1 and is an integer. S o X' is canonical. 
Thus, X1 is DV and therefore a quotient of C2 under a group which 
acts freely in codimension one. S o C^-{0} is the universal cover 
of X-{x} and 2) is proved. 

To see that 3) implies 1): 

If (X,x ) is a quotient of (0^,0) under the action of a finite 
group, then the inequality 

(deg g) (discrep (X) + 1) > (discrep (X') + 1) 

shows that (X,x ) is log-terminal. 

A somewhat more detailed analysis leads to: 

(6.12) Proposition: A normal surface germ is log-canonical if and 
only if it is log-terminal or "simple elliptic" or a 
"cusp" or a quotient of one of these two latter types of 
singularity. 

Using that discrep(X) < discrep(H), where H is a generic 
hyperplane section of X, and the characterization of terminal and 
canonical surface singularities, we obtain: 

(6.13) Corollary: If X has only canonical singularities, 
then X is Gorenstein in codimension 2. 

If X has only terminal singularities, 
then X is smooth in codimension two. 
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(6.14) Theorem: All log-terminal singularities are rational, that 
is, for some (any ) resolution f: Y >  X, 

Rif *©:Y = 0 for i > 0 . 

Outline of proof for threefold singularities: 
As we saw above, the index one cover X' has only canonical 

singularities, so we reduce to the case in which X has only 
canonical singularities and Kx is Cartier. 

First we blow up the one-dimensional singula r set (if there is 
one). A t a general point, this set is locally analytically 
isomorphic to the product of a disc and a DV surface singularity , 
so Kx pulls back to KX", where X" is the blow-up. Le t 

f: Y >X " > X 
be a resolution, and write Ky = f*Kx + S for some effective 
Cartier divisor S. B y the above, S lies over a finite set in X. 
S is a hypersurface, so it is Gorenstein. 

We check that R1f*OCY = 0. Applyin g f* to the sequence 

o—>aY—>aY(s) —>as(s) — > o, 
we obtain an exact sequenc e 

... >H°(aS(S) ) ^Rif^ Y >R1f*aY(S ) 
If i s the ideal sheaf for S, then, by the 
Grauert-Riemenschneider Vanishin g Theorem (8.8) , 

Rif*ClY(S) =  R ^ *^ =  0, for i = 1,2, 
and so, by the above sequence, also 

H2(as(S)) = H2(COYMCOY) = 0. 
Since C0S = &S(2S), we also have by duality that H0(&S(S)) = 0. 
Using the above sequence again, we see that R^-f*©^ = 0. 

To see that R2f*Q-Y = 0, a relative duality theorem (th e Leray 

spectral sequence and Serre duality) gives that R2f*£XY is dual to 

&X(KX)/f*&Y(Ky) . Bu t this last sheaf is zero since, for X 

canonical, all sections of Kx lift to sections of KY. 

(6.15) Corollary: If X is canonical, local and g: XT > X is the 
index one cover, then any flat deformation {Xs } of X is 
covered by a deformation of X1. 

Idea of proof: Let Z = {index > 1 points in X}. The n g 
restricts to a cyclic cover over X-Z. Usin g a Lefschetz-type 
argument, one shows that the fundamental group of Xs-Zs maps onto 
the fundamental group of X-Z via retraction to the central fibre. 
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(6.16) Corollary: I f X/S i s flat with fibres having canonica l 

singularities. 
0,x(qKx) = ©.^((Cù^/s®^**) 

and so the formation of (©X/s®^) ** commutes with 

base change. 

Idea of proof: The assertion is local on X. B y (6.15), 

f : X1 > X commute s with base change as does COy »/3- Decompose 

f * « ) i ' / s = (0>X/s>** + <°>X/s2>** + • • • + 
(COx/sm-l).* + (O^/gl*)* * 

locally free 

Structure of 3-dimensional canonical singularities; 

(6.17) Definition: I f (Zn,z ) is a Gorenstein singularity , it is 
elliptic if, for some (any ) resolution f : Y »  Z, 
one has 

DRif*©^ = 0 for 0 < i < n-1 ,  and 

ii)Rn~1f*aY = C. 
By the same relative duality theorem used in (6.14) , 
ii) is equivalent to 

ii') f*CDY = ZC0Z . 

(6.18) Theorem: I f (X,x ) is a Gorenstein canonical singularity and 
H is a generic hyperplane sectio n through x , then 
(H,x) is either rational or elliptic. 

Proof: Let f: Y > X be a resolution of X which resolves H and 

which is such that the scheme f-1(x) is a Cartier divisor E, and 
the line bundle L = f-1^TLx x is generated by global sections, so 

f*H = E + L. 

Then C0H = CDX(H) |H, so that, if s  locall y generates C0X and h 

locally defines H, residue(s/h) generates C0H. Nex t let e  defin e 

E locally and let I defin e L locally. Then , if ae fn. 

f*a-f*s/f*h = (f*a/e)•(f*s /i). 

Here f*a/e is regular along E and f*s/i e CDy (L) . So , 

residue(f*a•f*s/f*h) e r(COY(L)). Takin g f* of this section, we 

get back to a  • residue (s/h) . S o any section of /n̂ x H&>H is a push-

forward. S o f*coL = /rrtx HcoH (elliptic ) or f*coL = coH (rational) . 
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SINGULARITIES 

We now give, without proof a series of results in dimension 3: 

(6.19) Proposition: Let (S,s ) be an elliptic surface singularity. 
1) If multsS > 3, then the blow-up 

g: BSS = B > S 
has only DV singularities, and 

0)B = g*C0 s ® g - l ^ s ^ s . 
2) If multsS = 2, then some weighted blow-up 

g : B >  S 
has only DV singularities, and 

coB = (g*cos® g-1™S/S) **• 

(6.20) Corollary: Let (X , x) be a 3-dimensional canonica l 
singularity such that, for generic hyperplane H 
through x , H is elliptic at x . Then : 

1) if multxX > 3, then the blow-up 

g: BXX = B > X 

has only canonical singularities, and 

a>B = g*cox. 

2) If multxX = 2, then some weighted blow-up 

g: B > X 
has only canonical singularities, and 

coB =g*cox. 

(Roughly, this corollary i s proved by running backwards through 
the proof of (6.18). ) 

(6.21) Corollary: Let X be a Gorenstein threefold with only 
canonical singularities. The n there exists a 
proper and bimeromorphic morphism 

g: X' >  X 

such that, for every x' e X', the generic hyperplane 
section H through x ' ha s only rational singularities. 
So H is Gorenstein and has only rational double points. 

(6.22) Definition: A threefold singularity (X,x ) is called 
compound DuVal (cDV ) if a generic hyperplane section 
through x  i s a DV surface singularity. 

So all cDV singularities are smooth or hypersurface double points 
(and so are also Gorenstein). 
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(6.23) Theorem: A threefold singularity is terminal and Gorenstei 
if and only if it is isolated cDV. 

Outline of proof: Using (6.20) , one direction of the proof 
becomes easy: W e know that a terminal singularity must be 
isolated. I f an isolated singularity has generic hyperplane 
section elliptic, the blow-up will have discrepancy zero and so 
cannot be terminal. Thus , if the singularity is terminal, the 
section must be DV. W e will outline the proof of the other 
direction later (16.1 ) . 

By passing first to a Gorenstein cover and then taking 
quotients, after some computation one arrives at: 

(6.24) Theorem: I f X is a threefold with only canonical 
singularities, then there is a projective birational 
morphism f: Y > X such that 

KY = f*Kx (i.e . f  i s crepant) 
and Y has only terminal singularities. 

Inductive structure of canonical singularities: 

(6.25) Theorem: I f X^ has only canonical singularities, there 
exists a sequence of morphisms: 

Y = XQ > XQ_! > ... » X1 > XQ = X 
such that: 

1) X-L is Q-factorial and canonical for i>l; 

2) X]_ > X contracts only finitely many curves, and 
is an isomorphism if X is Q-factorial; 

3) for i>l, Xj_ *xi- l contracts exactly one divisor 
and NE (X-j_/Xj__i) has dimension one; 

4) Y has only terminal singularities; 

5) Ky is the pull-back of Kx, in fact, the Q-Cartier 
canonical divisor of each X-j_ is the pull-back of Kx. 

(6.26) References: Terminal and canonical singularities were defined by Reid 
[R2]. The log-versions were introduced later in [Ka4]. (6.5-6.8) can be 
found in [R2]. (6.9) was noticed in [Ka4]. (6.12) is in [Kal]. (6.14) was 
proved by Shepherd-Barron[S-B] in dimension three, and by Elkik[El] and by 
Flenner[Fl] in general. The proof given is due to Shepherd-Barron[R5]. 
(6.15-16) are in [Ko2]. (6.17-24) are all due to Reid[Rl,R2]. (6.19) was 
also done by Laufer[LI] . (6.25) is in [Ka5] . 
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Lecture #7 : Extensions of the mimimal model program 

We discus s thre e usefu l extension s o f th e minimal mode l 
program : 

1) Relativizatio n 
2) Analytic cas e 
3) Varieties wit h grou p action s 

(7.1) Relat ivizat ion 

X 
(not nec. 
pro jective) 

If X i s projective, w e define : 

N (X) = {group generate d b y irreducibl e 
curves modul o numerica l equivalence } ® R 

£ (projective 
morphism) 

On th e othe r hand , i f f  i s a projectiv e 
morphism: 

Y (not nec. compact 
or algebraic) 

N(X/Y) = 

{Z-module generate d b y 
irreducible C  suc h tha t f(C ) =  pt. } <g> R 

{cycles Z  such tha t Z- D =  0 
for al l Cartie r divisor s D } 

NE(X/Y) = effective con e (define d 
as before ) 

The Con e Theore m an d Contractio n Theore m ar e jus t a s i n th e 
absolute cas e (wit h the sam e proofs) . I n the techniqu e use d t o 
prove th e Con e Theorem , i f the startin g curv e C  has f(C ) =  point, 
then al l curve s produce d g o to th e same point i n Y . 

If X above i s a  threefold whic h i s smoot h (o r has onl y 
Q-factorial termina l singularities) , then successiv e contraction s 
over Y  must lea d eithe r t o a  minimal mode l ove r Y  or a  Q-Fan o 
fibration g' , wher e 

X' 
g' 

z ' 

f ' h' 

Y 

g1 ha s connecte d fibre s 

-Kx, i s g'-ample 

dim Z ' < dim X' 

In cas e f  i s birational, then b y a  successio n o f divisoria l 
contractions an d directe d flips , we arriv e a t 

f ' : X' Y 
with Kx » f'-nef . Thi s implies , analogously t o th e surfac e case , 

that Kx » i s f'-semi-ampl e (se e Lectur e 3 ). 
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"Factorization" o f birational morphism s ove r Y  follow s from : 

(7.2) Proposition: Le t g : Z  > X be a  birational prope r morphis m 

(over Y ) o f norma l algebrai c (o r analytic) varietie s 
such tha t K z i s Q-Cartier an d suc h tha t X  has onl y 
Q-factorial termina l singularities . Then , i f Kz i s 
g-nef, g  i s a n isomorphism . 

(7.3) Analytic cas e 

The situatio n her e whic h w e ca n handl e i s f : X  >  Y, wit h Y  a n 
analytic spac e wit h som e mil d finitenes s assumption s an d f 
projective. Th e sam e result s hol d a s i n the relativ e case , 
because th e require d relativ e vanishin g theorem s ar e tru e i n thi s 
situation. W e wil l se e thes e relativ e vanishin g theorem s i n 
upcoming seminars . 

(7.4) Varieties wi th grou p actions 

Suppose a  projective variet y X , smoot h o r with onl y 
Q-factorial termina l singularities , i s acted o n by a  finit e grou p 
G. The n w e hav e Con e an d Contractio n Theorem s fo r NE(X)G i n 
N(X)G. Th e onl y differenc e i s that th e G-orbi t o f a n extrema l ra y 
is a n extrema l face , sinc e K x i s G-invariant. S o the Contractio n 
Theorem involve s contractio n o f G-invarian t extrema l faces . 

There ar e application s i n othe r settings , too. Fo r example , 
suppose X  i s a  surfac e define d ove r a  fiel d k . W e achiev e a 
minimal mode l ove r k  b y lettin g G  = Gal(K/k) , wher e K  = 
algebraic closur e o f k . Althoug h thi s i s not a  finit e group , it s 
action o n th e Neron-Sever i grou p o f X K factor s throug h a  finit e 
group, s o the constructio n o f a  G-minimal mode l proceed s a s i n th e 
case o f algebraicall y close d bas e field . 

(7.5) I n cas e X  i s a  smoot h comple x projectiv e surfac e wit h 
G-action, G  a  finit e group , we procee d a s before wit h th e 
classification wit h som e mino r changes . A  G-extrema l ra y i s 

generated b y a  one-cycle o f the for m C  = ZCj_, where th e C -j_ are 
irreducible rationa l curve s i n a  G-orbit . 

1) I f C ^ < 0 , on e easil y see s tha t th e Cj _ must b e 
smooth, mutuall y disjoint , eac h wit h self-intersectio n 
-1. Thu s al l th e C± ca n be blown dow n t o smoot h points . 

2) I f C ^ = 0 , then th e connecte d component s o f C  mus t 
have th e form : 
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\ -1' 
or 0 

3) I f C2 >  0 , then N(X)G =  Z , and -Kx is ample, so tha t 

X is a del Pezzo surface. 

(7.6) Theorem: Suppos e no w X i s i n the clas s o f projectiv e 
G-threefolds wit h terminal , GQ-factorial singularitie s 
(i.e. ever y G-stabl e Wei l diviso r i s Q-Cartier). An y 
such X i s G-birational to : 

1) a G-threefold Y in the sam e birationa l 
equivalence clas s wit h K Y nef, 

or 

2) a  G-threefold Y  i n the sam e clas s whic h ha s 
a G-morphis m f  t o a  normal projectiv e 
G-variety Z  such that -K y i s f-ample an d 

dim Z < dimX. 

(7.7) Finally, let' s outlin e a  proof (usin g the minima l mode l 
program) o f Peternell' s theore m tha t ever y smoot h Moishezo n 
threefold Z  which i s not projectiv e contain s a  rational curve : 
(The original proo f wa s don e before th e completio n o f Mori' s 
program i n dimension three . I t require d ver y skillfu l 
computations usin g onl y th e existenc e an d structur e o f extrema l 
contractions o n smoot h threefolds. ) 

We begi n b y recallin g tha t w e ca n fin d a  birational morphis m 

f : X > Z 

where X  i s a smoot h projective threefold . W e appl y th e step s o f 
the absolute minima l mode l program t o X as lon g a s the morphis m t o 
Z ca n b e maintained. The n eithe r 

1) we arriv e a t X ' minimal , i n which case , by Propositio n (7.2), 
X' woul d hav e t o be isomorphi c t o Z  (rule d ou t by assumption) , 

or 

2) w e com e t o a n extrema l contractio n f':X ' >  X" suc h tha t th e 

rational ma p X " > Z i s not a  morphism. Sinc e th e latte r ma p i s 
not a  morphism, b y Zariski' s Mai n Theore m a t leas t on e fibr e o f 
f' i s not contracte d t o a  point i n Z . Bu t th e fibre s o f f ' ar e 
covered b y rationa l curves , thus Z  must contai n a  rational curve . 

(7.8) References: (7.3) was worked out by N a k a y a m a [ N a k ] . The original proof 
of (7.7) is in [P]. The present proof is due to Rollar. The rest of the 
chapter is in [M3] . 
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Lecture #8 : Vanishing theorems 

(8.i) Principle: I f the cohomology o f a sheaf T come s fro m 

topological cohomology , the n ther e i s a Kodaira-typ e 
vanishing theorem . 

By thi s we mean that , i f L is an ample lin e bundle o n X, the n 

H1 (X; V ® L"1) = 0, i < dimX. 

(8.2) We illustrat e thi s principl e b y using i t to prove the 

classical cas e o f the theorem, th e case T = &x, X a smoot h 

projective variety : 

8.2.1) Step 1: 

A coheren t shea f V i n the analytic topolog y i s also a  shea f of 

abelian groups . Fin d a  topologically constructible sheaf F and a 
natural map 

F -> V 
such tha t th e induced map on cohomologies i s surjective. (Th e 

coherent cohomolog y o f a coherent analyti c shea f i s the same a s 

its cohomolog y a s a sheaf o f abelian groups. ) Fo r T = £X th e 

constant shea f Cx will suffice , sinc e Hodg e theor y tell s u s tha t 

the natura l mappin g 

Hi(X; Cx) Hi(X; Cr,x) , 

induced by inclusio n o f sheaves , is surjective . 

8.2.2) Step 2 : 

Suppose L m is very ample . Le t s  b e a general section . The n 
the zer o se t D of s  i s a smooth, ver y ampl e divisor . Conside r 
the diagram : 

Z = (preimage s(X) in L) L 
. m 

s (X) 

m to one 

cyclic 

branched 

covering 's 

D = (branch locu s o f p ) C X 
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By Hodg e theory , th e ma p 

H1(Z; Cz) H1 (Z; az) 
is surjective . Sinc e th e fibre s o f p  ar e zero-dimensional , 
there ar e no higher direct-imag e sheaves , s o 

H M X ; p *Cz) H1 (X; p*ttz) 

is surjective . Th e actio n o f Z/m Z o n Z  decomposes thi s las t 
morphism int o a  direct su m of morphisms o n eigenspaces . The 
intersection pairin g o n 

H* (X; p*Cz) = H*(Z; Cz) 

respects thi s decomposio n int o eigenspaces ; Poincaré duality 
respects th e decompositio n also . 

8.2.3) Step 3: 

Let £ be th e primitive m-t h roo t o f unity e^7 ^ l/m# ^e can 
decompose 

p*Cz = 0C[£r] , 

where C[^r] denote s th e loca l syste m that ha s monodrom y qr i f we g o 

around th e diviso r D  once . I f one denote s b y H*(X ; p *Cz)[^r] th e 

^r-eigenspace o f th e Z m action o n H*(X ; p *Cz), the n w e hav e 

H*(X; p*Cz) [Çr] H*(X; C [Çr ] ) . 

UJ11M1Ü.MJ.IJ1IJI.IJHLLI.LMIJ (X-D) the natura l ma p 

C [Çr ] >i.(C[Çr]Iv-n) 

is an isomorphism , wher e i j means th e extensio n t o X which ha s 
zero stalk s a t points o f D . Thu s 

H*(X; p*Cz) [Çr] H*(X; C[^r]) 

H*(X; i. (C[^r] |X_D)) = H*(X-D; C[^r]|X_D). 

8.2.4) Step 4: 

We ar e no w read y t o finis h th e argument . Sinc e (Z-D ) i s affine, 
it has th e homotop y typ e o f a real n-dimensiona l CW-complex . 
'n = dim^X.) S o fo r i < n , 

0 =  H2n_i (Z-D; C) H2n-i(x-D; p*Cz), 
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and, usin g th e abov e identification s an d duality , 

0 =  H2n-ì(X-D; C[^r]|X_D) H2n"i(X;p*Cz)[^r] 

which i s dual t o (X ; p*Cz) [̂ r] fo r i < n an d r*m . So , b y 

surjectivity, 

Hi(X; p*az) [̂ r] 0 fo r i  < n. 

But H 1 (X; p*Cr,z) [£r] = H1 (X; p*az [̂ r] ) . Als o p*&z [̂ r] =  L_r, sinc e 

D i s given locall y i n Z  by z m = g fo r z  a  functio n o n L  (i.e . a 

section o f L~l) . Thi s complete s th e proof . 

Using th e sam e basic construction , w e obtain : 

(8.3) General Vanishing Theorem for Line Bundles: 
Let X  be a  smoot h comple x projectiv e variety . Le t L  b e 
a lin e bundl e o n X  suc h tha t 

C! (L) =  M +  XaiD i 

such tha t 

1) M i s a nef an d big Q-divisor , 

2) l D | i s a simpl e normal-crossin g divisor , 

3) 0<a-j_<l , and a ^ G Q fo r al l i . 

Then 

H1 (X; L"1) 0 fo r i < d i m X . 

Proof: Firs t w e giv e th e proo f i n the specia l cas e i n whic h M i s 
ample. Th e proo f i n this cas e i s much simpler , an d thi s i s th e 
main cas e tha t w e wil l use . Choos e a  positive intege r m  s o tha t 

M®m i s Cartie r an d ver y ampl e an d m-aj_ is an intege r fo r eac h i . 

Take a  general diviso r B  fro m th e linea r syste m o f M®m. The n B  i s 

smooth an d meet s th e D-s transversely. Als o 

D =  B +  Ema^D^ 

is the zer o se t o f som e sectio n o f L^ m Again w e consider : 

Z =  (preimag e s(X ) i n L ) L 
m 

S (X) 

'm to one 

cyclic 

branched 

covering S 

D =  (branc h locu s o f p ) X 
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The proof no w goe s jus t a s i n the specia l cas e w e di d 
previously, excep t tha t w e have t o take car e o f tw o problems. Le t 
ZA b e th e normalisatio n o f Z . I n general Z A i s singula r bu t 
Z^-p~l (D) is stil l smoot h an d affine thus i t has th e homotop y typ e 
of a  real n-dimensiona l complex . Th e singularitie s o f Z A ar e al l 
quotient singularities , thu s Poincaré duality hold s wit h Q 
coefficients. 

The othe r proble m i s that i t i s the shea f 

P*ecz ax + L"1 + .. . L-(M"1) 

which obviousl y contain s L  ^  as a  direct summand . Thu s i t remain s 
to be checked , that , under th e inclusio n 

P*er,z (P*) *aZA, 
L 1  goes t o a  summand . Thi s i s where conditio n 3 ) i n th e 
statement o f th e theore m enters . 

Let e(i ) =  ma-j_ , and suppos e tha t D -j_ is locall y define d b y fj _ = 0 

and B  i s locall y define d b y g  = 0. The n Z  is give n locall y b y th e 

equation 

zm = g-IIf ie (i) . 

The r-t h summan d o f (pA ) *£XZ/s i s locall y generate d b y 

(zr/g a n f i b ( i ) ) 

with m-th powe r i n &x. So a = 0 , and r-e(i ) > m-b(i), tha t is , 

r-aj_ > b(i) . When r  = 1 , this mean s tha t al l b(i ) = 0  by 

Condition 3) of the Theorem . Thu s L~ l i s a  summan d o f (pA)*&z/ w 

and th e theore m i s proved whe n M is ample . 

The res t o f the proo f i s somewha t technical . The reade r wh o 
is intereste d mainl y i n the application s ca n ski p th e res t o f thi s 
chapter. W e nee d th e followin g auxiliar y results : 

(8.4) Corollary: Le t X  be a  smoot h variet y an d le t Z  be a 
codimension c  smoot h subvariety . Le t 

f: Y  • X 

be th e blow-u p o f Z  in X, an d le t E  be th e exceptiona l 
divisor. The n fo r 0  < i  < c- 1 w e hav e 

i) f  *CûY (-iE) = C0X ; 

and 

ii) RJ f *CDY (-iE) 0 for j  > 0. 
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Proof: Sinc e CDY = f * CQ x((c-l)E), th e firs t assertio n i s trivial. 

The secon d on e wil l b e proved usin g th e Theore m o n Forma l 
Functions. Fo r simplicit y o f notation , w e comput e th e cas e whe n Z 

is a  point. The n E  = P 0 " 1 , an d 0)Y(-iE) |E = & E(i+l-c) = G)E(i+l) . 

Thus 

HJ (E; COy(-iE) (-kE) |E ) 0 

for k  > 0  and j  > 0 . I f denote s th e kth-orde r neighborhoo d o f 

E the n w e hav e a n exac t sequenc e 

0 C0Y(-iE) (-kE) |E co Y(-iE )<g>a ( k + 1 ) E 
coY(-iE)®a k E 

0. 

Thus th e vanishin g o f HJ(E; C0 Y(-iE)(-kE)| E) give s inductivel y th e 

vanishing o f H  J (C0Y (-iE) ® &k E ) fo r ever y k  > 0  an d j  > 0 . Thi s 

is what w e wanted . 

(8.5) Definition: 

(i) Let X  be a  smoot h algebrai c variety , Z  a 
subvariety an d Dj _ divisors. W e sa y tha t Z  and th e Dj_ 
cross normally if , fo r ever y poin t x  o f X , ther e i s 
a loca l analyti c coordinat e syste m (XJ ) such tha t 
locally ever y Dj _ passing throug h x  i s a  coordinat e 
hyperplane and , i f Z  passes throug h x , Z  i s th e 
intersection o f som e coordinat e hyperplanes . ( Z may li e 
in som e o f the D-j_.) 

(ii) Given a  birational morphis m g : Y  > X betwee n 

smooth varieties , a  subvariet y Z  of Y  and divisor s D -j_ on 
X w e sa y tha t Z  and th e Dj _ cross normally i f Z , th e 

proper transform s o f th e Dj _ and th e exceptiona l 

divisors o f g  cros s normall y o n Y . 

(8.6) Corollary: Le t X  be a  smoot h variet y an d le t Z  be a 

codimension c  smoot h subvariety . Le t f : Y  >X b e 

the blow-u p o f Z  in X, an d le t E  be th e exceptiona l 

divisor. Le t L , M an d Dj _ as i n (8.3 ) . Assum e Z  and D-j_ 

cross normally . Le t Dj_ 1 be th e prope r transfor m 

of D- ; . The n ther e i s 0  < k < c- 1 suc h tha t fo r 

f*(XaiDj_) - kE = XaiDi' + bE 
we hav e 

i) 0  <  b <  1 , 

and 

ii) H J (Y; C0Y (-kE) ® f *L) HJ (X; C0X ® L) . 
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Proof: Assum e tha t ,  D p ar e thos e divisor s tha t contai n Z 

Since th e Dj _ intersect transversally , p  < c . E  appears i n 

f*(ZaiD-j_) wit h multiplicity ai+...+a p <  c . No w le t 

k = [ai+...+ap], 

where " [ ] " denotes "greates t intege r in. " Statemen t ii ) no w 
follows fro m (8.4 ) an d th e Lera y spectra l sequence . 

(8.7) Proof of (8.3): Pic k an y ampl e diviso r H . Fo r larg e k , 

H°(kM) »  H°(kM|H ) . Thu s w e ca n writ e k M = H + B, where B  i s 

effective, an d s o we ca n writ e fo r each positive intege r N : 

M =  N-1(H+ (N-k)M) + N_1B, 

where th e firs t summan d i s ample an d th e secon d on e i s effective . 

Let £  be suc h tha t a-j_/ £ is integra l fo r ever y i . No w choos e a 

resolution f : Y  > X wit h exceptiona l diviso r ZE -j_ and the n N 
sufficiently larg e suc h tha t 

i) f i s a composition o f blowing-ups wit h center s Z-j_ i 

f±: Y ± yi-1 
such tha t Zj__] _ and Dj _ cross normally . 

(X = Y0 an d Y = Yn), 

ii) E Ej_ + f * (B + ZDj_) has simpl e norma l crossing s only , 

iii) f*(N_1( H + (N-k)M)) ZpjEj i s ample fo r som e 

0 < pj « e, 

iv) ever y diviso r i n f* N ̂ - B + EpjEj appear s wit h 

coefficient les s tha n e. 

The troubl e i s that i n (lDj_ ) the exceptiona l divisor s ca n appea r 
with coefficient s large r tha n 1, therefore w e canno t appl y ou r 
vanishing fo r the pull-back . Quit e miraculousl y th e situatio n 
becomes tractabl e i f we conside r th e dua l for m o f vanishing . 

Repeatedly applyin g (8.6 ) w e ge t tha t ther e i s a linea r 
combination 

EkjEj 

such tha t 

i) the k j are integers , 

ii) i n f  Ea-^D-L - ZkjEj, ever y diviso r appear s wit h 

coefficient les s tha n 1, 

iii) H J (Y; C0Y(-£kjEj) ® f*L) = RJ (X; COx®L) . 
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Now w e ca n loo k a t 

f*L - ZkjEj = 

{f*(N_1(H + (N-k)M) ) - EpjEj} + f*N_1B + ZpjEj f^ZaiDi - EkjEj . 

In f *L aj_D-j_ - L k jE j , every diviso r appear s wit h coefficien t les s 

than 1, and s o by th e choic e o f £ in fac t wit h coefficien t < 1-e, 

Thus 

f*L - EkjEj 

is written a s th e su m of a n ampl e diviso r an d o f a  Q-divisor wit h 
normal crossing s an d coefficient s les s tha n 1 . Thu s by th e 
already prove d cas e 

HJ(Y; Cöy® f *L(-XkjEj) ) 0 for j  > 0 . 

By iii ) above , this give s tha t 

HJ (X; G)X®L ) 0, 

which i s the require d vanishing . 

(8.8) Corollary: Le t f : Y  >X b e a  birational morphism , Y 

smooth. Assum e tha t M  i s a nef lin e bundl e o n Y . 

Then, fo r i  > 0, 

RÎf * (COy ® M) = 0  . 

In particular , 

RÌfaCOy = 0 

Proof: Choos e H  ample o n X . Appl y (8.3 ) t o L  = f*H® M o n Y  an d 
then us e th e following : 

(8.9) Proposition: Le t f : Y  > X b e a  morphism an d le t T b e a 

sheaf o n Y . The n th e followin g ar e equivalent : 

i) H3(Y;F®f*L) = 0  for ever y L  which i s sufficientl y 

ample o n X , 

ii) RJf* F = 0. 

Proof: Choos e L  suc h that H 1 (X; L ® Rkf *F) =  0  for al l i > 0 an d k . 

Then th e Lera y spectra l sequenc e degenerate s a t E2 . Thu s 

HJ (Y; T ® f *L) H° (X; L ® RJf *?) . 

(8.10) References: The General Vanishing theorem was first proved by 

Miyaoka[Mi] for surfaces and by Kawamata[Ka2] and Viehweg[V] in general. The 

special case of (8.8) is due to Grauert-Riemenschneider[GR]. 
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Lecture # 9 : Introduction to the proof of the Cone Theorem 

In Lecture #4 , we proved th e Con e Theore m fo r smoot h 
varieties. W e no w begi n a  sequenc e o f theorems leadin g t o th e 
proof o f the Con e Theore m i n the genera l case . Thi s proof i s 
built o n a  very differen t se t o f ideas . Applie d eve n i n th e 
smooth case , i t gives result s no t accessibl e b y th e previou s 
method; namel y i t proves tha t extrema l ray s ca n alway s b e 
contracted. O n th e othe r hand , i t gives littl e informatio n abou t 
the curve s tha t spa n a n extrema l ray . Also , thi s proo f work s onl y 
in characteristi c 0 . Befor e proceeding , w e reformulat e slightl y 
the Vanishin g Theore m prove d i n Lecture 8 : 

(9.D Le t Y be a  non-singular comple x projectiv e variety . Le t 

Idj_Di be a  Q-divisor o n Y , written a s a  sum o f distinct prim e 

divisors, an d le t L  be a  lin e bundl e (o r Cartier divisor). Let 

D =  L + ZdiDi. 

We defin e th e round-up 

fol 
of D  to be th e diviso r 

L + Ze-¡_Dj_, 

where e-j _ is the smalles t intege r > dj_. 

o.2) Theorem: Suppos e tha t D  as above i s nef an d big an d tha t 

ZDj_ ha s onl y simpl e norma l crossings . The n 

HÎ(KY +  I D I ) 0 for i > 0 . 

We wil l prov e fou r basic theorem s finishin g wit h th e Con e 
Theorem: 

(9.3) Basepoint-free Theorem: 

Let X  be a  projective variet y wit h onl y canonica l 
singularities. Le t D  be a  nef Cartie r diviso r suc h 
that 

aD - Kx 

is nef an d big fo r som e a > 0 . The n |  bD | has n o 

basepoints fo r al l b » 0 . 
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(9.4) Non-vanishing Theorem: 

Let X  be a  non-singular projectiv e variety , D  a ne f 

Cartier diviso r an d G  a Q-divisor wit h Tel effective . 

Suppose 

i) aD + G -  Kx i s ample fo r som e a > 0 , 

ii) th e fractiona l par t o f G  has onl y simpl e 
normal crossings . 

Then, fo r al l m » 0  , 

H° (X; m D + |G I ) * 0 . 

(9.5) Rationality Theorem: 

Let X  be a  projective variet y wit h onl y canonica l 
singularities suc h tha t K x i s not nef . Le t H be a n 
ample Cartie r divisor , an d defin e 

r = max{teR: H +  tKx nef}. 

Then r  i s a rational number o f the for m u/ v wher e 

0 <  v < (indexX) (dimX + 1 ) . 

(9.6) Cone Theorem: 

Let X  be a  projective variet y wit h onl y canonica l 
singularities. The n 

1) <NE(X)> (<NE(X)>n (KX)>0 ) £(R>0)[Cj] 

for a  collectio n o f curve s C j with Kx-C j < 0 . 

(The su m has th e property tha t th e se t o f C j i s 
minimal—no smalle r se t i s sufficien t t o generat e th e 
cone. Th e (R >o)[CjJ which , togethe r wit h 

(<NE(X)>n (KX)>Q), form a  minimal generatin g se t fo r 

<NE(X)>, ar e calle d extremal rays.) 

2) For an y e > 0  and ampl e diviso r H, 1 ) gives 

<NE (X) > n (K x + £H) <o 

(<NE (X)>n (KX + £H)=0) Efinite(R>0> tcj] • 
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(9.7) Th e logica l orde r o f proof o f thes e theorem s i s the following : 
Non-vanishing Theore m => Basepoint Fre e => Rationality Con e Theorem . 
However fo r better understandin g w e prove firs t Basepoin t Freenes s 
and the n th e Con e Theorem . Th e proofs o f Non-vanishing an d o f 
Rationality utiliz e th e sam e ideas , bu t the y ar e technicall y mor e 
involved. Thes e proof s wil l be presented a t th e end . 

(9.8) The basic strateg y fo r proving th e Basepoint-fre e Theore m (a s 
well a s fo r proving th e Non-vanishin g an d Rationalit y Theorems ) i s 

as follows . W e wor k wit h resolution s f : Y  >X , an d wit h smoot h 

divisors F j whic h ar e eithe r fixe d divisor s o f IaD | or exceptiona l 

over X . W e sho w tha t w e ca n singl e ou t on e Fj , call i t F, an d a n 

effective su m A' o f exceptiona l divisor s s o tha t 

H° (F; (b-f *D + A 1 ) I F) * 0 (Non-van. Th.) 

and 

H1 (Y; b-f*D + A' - F) = 0 (Van. Th.), 

for sufficientl y larg e b . Sinc e 

H°(X; b-D ) •H° (F; (b-f*D) |F) 

since A' effective 

H° (Y; b-f *D + A' ) H° (F; (b-f *D + A ' ) I p) 

this mean s tha t f(F ) i s not containe d i n the bas e locu s o f IbD| b y 

Hu (Y; b-f *D + A' ) H° (F; (b- f *D + A' ) |F: H1 (Y; b-f *D + A' - F) , 
non-zero zero 

(although f(F ) i s containe d i n the base locu s o f IaD|) . A n 
iteration wil l the n eliminat e th e base locu s altogethe r fo r al l 
sufficiently hig h multipl e o f D . 

(9.9) S o we wil l nee d t o worr y abou t th e restrictio n o f Q-divisor s 
and thei r round-up s t o smoot h hypersurface s F  o f a  non-singular Y . 
We onl y restric t divisor s 

D =  L + EdiDi 

where eithe r F  ^ Dj_ for an y i , o r F = Dj fo r som e j  fo r whic h 

dj i s a n integer . I n the latte r case , we absor b djD j int o L 

before restricting . I n either case , we onl y conside r situation s 

in which th e su m o f th e remainin g Fj _ meets F  i n a  simpl e norma l 

crossing divisor . The n round-up commutes with restriction. 

(9.10) References: The proofs of these four theorems are fairly interwoven in 
history. For smooth threefolds Mori[Ml] obtained some special cases. The 
first general result for threefolds was obtained by K a w a m a t a [ K a 3 ] , completed 
by Benveniste[Bl] and R e i d [ R 4 ] . Non-vanishing was done by S h o k u r o v [ S h ] . The 
Cone Theorem appears in [Ka4] and is completed in [Ko3]. 
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Lecture #10: Basepoint-free Theorem 

(lo.i) Step 1 : I n this step , we establis h tha t |mD | ^ 0 fo r ever y 

m » 0 . B y ou r assumption s o n X an d D , w e have a s i n (8 . 7 ) tha t 

aD - Kx = (ampl e divisor ) +  N-^-(fixed effectiv e divisor ) 

for N » 0. S o we ca n construc t som e resolutio n 

f : Y > X 

which ha s a  simple-normal-crossin g diviso r ^ F j suc h tha t 

1) KY = f*Kx + EajFj wit h al l a j >  0 , 

2) f*(aD-Kx ) ~  ^PjFj ^ s amPle fo r som e a > 0 an d fo r 

suitable 0 < p j « l . 

On Y , w e writ e a  diviso r 

f*(aD-Kx) - sPjFj =  af* D +  (SajF j ~  £PjFj) - (f*Kx +  ^ajFj ) 

; af*D + G -  Kv, 

where G  = Z(aj-pj)Fj. B y assumption , | G| is an effectiv e 

f-exceptional diviso r (a j > 0  only whe n F j i s f-exceptional), 

af*D + G - KY 
is ample, an d 

H°(Y; mf* D + TGI) = H°(X; mD). 

We ca n no w appl y Non-vanishin g t o ge t tha t 

H°(X; mD ) 0 for al l m » 0. 

(10.2) Step 2 : We le t c  >1 and defin e 
B(c) = reduced bas e locu s o f IcD| . 

Clearly 

B(ca) c B(cb ) 

for an y positiv e integer s a > b . Noetheria n inductio n implie s tha t 

the sequenc e B(cn ) stabilizes , an d w e cal l th e limi t Bc . So 

either B c i s non-empty fo r som e c  o r Bc an d Bc i are empt y fo r 

two relativel y prim e integer s c  an d c1 . I n the latte r case , 
take a  an d b  suc h tha t B(ca ) an d B(c'k ) ar e empty , an d us e 
that ever y sufficientl y larg e intege r i s a linea r combinatio n o f 
ca an d c1 ^ with non-negativ e coefficient s t o conclud e tha t |mD | is 

basepoint-free fo r al l m » 0 . So we mus t sho w tha t th e assumptio n 

that som e B c i s non-empty lead s t o a  contradiction . W e le t m = ca 

such tha t B c = B(m) an d assum e tha t thi s se t i s non-empty . 
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Starting wit h th e linea r syste m obtaine d fro m th e 
Non-vanishing Theorem , w e ca n blow up furthe r t o obtai n a  ne w 

f : Y >  X 

for which th e condition s o f Ste p 1 hold, and , fo r som e m > 0 , 

f*ImDI I L I (moving part) + ZrjFj (fixed part ) 

with I LI basepoint-free . Therefore {f (Fj) : rj 0} is the bas e 

locus o f ImDI . Note tha t 

|mDI i s basepoint-f ree 
if an d onl y i f 

f*|mD| i s basepoint-f ree 
if and onl y i f 

rj = 0  for al l j  . 

We obtai n th e desire d contradictio n b y findin g som e F j wit h r j > 0 

such that , fo r al l b > > 0 , f(Fj ) i s not containe d i n the bas e locu s 

of |bD| . 

(io.3) Step 3 : For a n intege r b > 0 an d a  rationa l numbe r c > 0 suc h 

that b>cm+a , w e defin e divisors : 

N(b,c) = bf*D - KY + S (-erj+aj-pj)Fj 

f* (b-cm-a)D + c(f*mD - ZrjFj) (f* (aD-Kx) - XpjFj) . 

nef basepoint-free ample 

Thus, N(b,c ) i s ample. 

Since N(b,c) i s ample fo r b>cm+a, w e have, by th e Vanishin g 
Theorem, 

H1(Y; fN(b,c )l + KY) = 0 
where 

fN(b,c)l bf*D + Z -crj+aj-pjlFj - KY. 

(io.4) Step 4 : c  an d th e pj ca n be s o chose n that , fo r som e F  = 

Fji, w e hav e tha t 

Z (-crj+a-j-pj) Fj = A - F, 

where |A | is effectiv e an d A does no t hav e F as a  component. I n 

fact, w e choos e c > 0 s o tha t 

min{-crj + aj - pj} = -1. 
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If this las t conditio n doe s no t singl e ou t a  unique j , we wiggl e 
the pj slightl y t o achiev e th e desire d unicity . Thi s j  wil l 
have r j > 0  an d 

fN(b,c)l + KY = bf*D + TAI - F. 

Now Ste p 3 implies tha t 

H°(Y; b-f* D + TAI) H°(F; (b-f* D + TAI) |F) 

is a  surjectio n fo r b > cm+a. 

Note: I f that i f any F j appear s i n IAI, then a j >  0 , so Fj i s 

f-exceptional. Thu s TAI is f-exceptional . 

(io.5) Step 5: Notice tha t 

N(b,c) |F (bf*D + A - F -  KY)IF 

(bf*D + A)|F - KF 

So we ca n appl y th e Non-vanishing Theore m o n F to ge t 

H° (F; (b- f *D + TAI) |F) * 0  . 

So (Y ; b-f*D + TAI) has a  sectio n no t vanishin g o n F . But , sinc e 

TAI i s f-exceptiona l an d effective , 

H° (Y; b- f *D + TAI) H°(X; b-D ) H° (Y; b-f *D) . 

So, a s i n ( 9 . 8 ) , f  (F) i s not containe d i n the base locu s o f |b-D | 

for al l b>> 0 . Thi s complete s th e proof o f th e Basepoint-fre e 

Theorem. 

(10.6) Reference: This proof is taken almost verbatim from [R4]. 
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Lecture #11: The Cone Theorem 

(li.D Firs t w e giv e a n infoma l explanatio n o f the wa y th e 
Rationality Theore m i s used t o ge t informatio n abou t th e con e o f 
curves. 

If (Picard no. o f X ) > 2 an d H is ample, we have i n N(X) : 

h = 0 

H+rK =0 

I A 

K X = O 

<NE (X) > 

Since r  i s rationa l b y th e Rationalit y Theorem , m( H + rKx) i s 

Cartier fo r som e m > 0 . Not e tha t m( H + rKx) i s nef bu t no t ample . 

Thus (<N E (X) > n {H+rK x = 0} ) is a "face " of <NE(X)>. Startin g wit h 
various ampl e divisors , w e ge t variou s face s o f <NE(X)> . Th e 
proof o f the Con e Theore m turn s ou t t o be a  completely forma l 
consequence o f this observation . T o be precise, th e Con e Theore m 
follows immediatel y fro m th e Rationalit y Theore m an d th e followin g 
abstract result : 

(11.2) Theorem: Le t N z be a  fre e Z-module o f finit e ran k an d N R th e 
base chang e t o (tenso r product ove r Z with) R. Le t <NE > 
be a  closed conve x con e no t containin g a  straigh t line . 
Let K  be a n elemen t o f th e dua l Z-module Nz * such tha t 

(K-C) <  0  for som e Ce<NE> . Assum e tha t ther e exist s 

a > 0 suc h that , fo r al l H € N Z * wit h H  > 0  on <NE>-{0} , 

r =  max{t 6 R : H  + tK > 0  on <NE> } 

is a rationa l numbe r o f th e for m u/ v suc h tha t 0 < v < a . 
Then 

<NE> = (<NE (X) > n K>0) £(R>0) tèi] 

for a  collectio n o f £ • e Nz wit h (i^-K ) <  0  such tha t th e 

<*>o> t̂ ± ] don't accumulat e i n K <Q (see 2 ) o f (9.6)) . 
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Proof of Theorem (11.2) and the Cone Theorem: 

We may assume tha t K x is not nef. 

(ii.3) Ste p 1 : Let L be any non-ample, nef divisor clas s suc h tha t 
L-L does no t meet (<N E (X) > n (Kx)>n ) excep t a t 0.  Defin e 

FL = L-Ln<NE(X)>. 

Then, b y Kleiman's criterion , F L * {0} . Let H be an arbitrar y 

ample Cartier divisor. Fo r V e N, let e = ( ( index X) (dim X + 1 )) ! and 

rL(V,H) max{teR: V L + H + (t/e)Kx i s nef}, 

By the Rationality Theorem , rL(V,H ) i s a (non-negative ) integer , 

and, sinc e L  is nef, rL(v,H) i s a non-decreasing functio n o f V. 

Now rL(V,H ) stabilize s t o a fixed r L (H) fo r V > V Q since , i f ^ e F L, 

then 

rL(v,H) < e(H-Ç)/(-Kx-Ç) . 

Also L  and 

V0eL + eH + rL(H)Kx 

are bot h non-ampl e ne f divisors, so, putting 

D(VL,H) = VeL + eH + rL(H)Kx, 

we hav e 

0 * FD(VL,H) FL fo r V > Vg . 

(11.4) Step 2: We claim that , i f dim FL > 1, then we can find an 
ample H with 

dimFD (VL,H) dim FL. 

To se e this, choos e ampl e divisor s Hj _ which giv e a  basis fo r 

N(X)*. I f dim FL > 1, the equation s 

VL + Hi + (rL(Hi)/e)Kx = 0 

cannot al l be identicall y satisfie d o n FL sinc e the y giv e 
independent conditions . Repeatin g th e argument ove r successivel y 
smaller faces , w e obtain tha t fo r every L  there i s an L' such tha t 

F L = > F L and di m F î = 1 . 

6 4 



CONE THEOREM 

(ii.5) Step 3: We clai m tha t 

<NE(X)> (<NE(X)>n (KX)>0) + <IFL>, 

where, a s above , we su m ove r L  suc h tha t di m FT, = 1. 

(Recall that " < >" mean s "closure". ) 

To prove this , assum e tha t th e right-hand-sid e o f th e claime d 
equality i s smaller . The n ther e i s a divisor s o that th e 
hyperplane 

M = 0 

misses th e right-hand-sid e bu t no t th e left-hand-side : 

H=M+aKx H + r K t x 

M KX < 0 

Kx 

There's 
an F L 
here ! RHS 

KX > 0 

The straightforwar d applicatio n o f the Rationalit y Theore m t o 
r i n the abov e picture , followe d b y Ste p 2, gives a 
contradiction. 

(ii.6) Ste p 4 : Next w e sho w that th e one-dimensiona l F L "don' t 
accumulate" i n (KX)<Q . T ° see this , le t 

(H(i) } 

be a  se t o f ampl e Cartie r divisor s which , togethe r wit h K X , form a 

basis o f N(X)* . Fo r eac h one-dimensiona l F L an d i , tak e V(i ) suc h 

that 

FD(V(i)L,H(i) ) = FL • 

Then, fo r £, generating F L an d fo r al l i , 
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(*) (Ç-H<i))/(S-Kx) (integer)/e. 

If the F L accumulate d somewher e i n (Kx)<o the n th e points o f 

the projectivizatio n 

(N(X)-{0})/R* 

of N(X) t o whic h the y correspon d woul d hav e t o accumulat e 
somewhere i n th e affine subset U  of (N(X)-{0})/R* give n b y 

KX#0 

But th e equatio n (* ) jus t abov e rule s ou t tha t possibility , 
because 

eEU ((^•H(i)) /(Ç-Kx))i 

is a n affine coordinate system . 

(ii.7) Ste p 5: Finally, fo r eac h one-dimensiona l F L , the Rationalit y 
and Basepoint-fre e Theorem s sho w tha t ther e exist s a  morphis m 
contracting onl y F L an d s o 

FL = (R>0)[C] 

for som e curv e C . S o we no w hav e 

<NE (X) > (<NE (X)>n (KX)>0) + £ (R>0> [Cj] , 

and th e Con e Theore m i s proved . 

(11.8) References: This proof of the cone theorem is new. It grew out of 

conversations among J. Kollar, T. Luo, K. Matsuki and S. M o r i . 
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Lecture #12 : Rationality Theorem 

(12.D Proof of the Rationality Theorem: 

Step 1 : Suppose Y  i s a smooth projectiv e variety , an d suppos e {Dj_ } 

is a finit e collectio n o f Cartie r divisor s an d A i s a fractiona l 

simple-normal-crossing diviso r wit h TAI effective. Conside r th e 

Poincaré polynomial 

P (ulf . . . ,uk) = XfLuiDi+l Al) . 

Suppose that , fo r som e value s o f the u±, EUJ _D-}_ i s ne f an d 

XUJ_DJ_ + A - Ky i s ample . 

Then, fo r al l integer s m » 0 , 

Emuj_Dj_ + A - Ky 

is stil l ampl e s o tha t 

H1 (EmuiD-j + TAI) = 0 

for i  > 0 by th e Vanishin g Theorem , an d 

&(5LmuiDi + TAI) 

must hav e a  sectio n b y th e Non-vanishin g Theorem . Therefor e 

^(ZmuiDi + TAI) * 0. 

Thus P  (u]_, . . ., ufc) is not identicall y zer o an d it s degre e i s les s 

than o r equa l t o di m Y. 

(12.2) Step 2 : 

Claim: Le t r g R. 

a) Le t P(x,y ) b e a  non-trivial polynomia l o f degre e <  n , 
and assum e tha t P  vanishes fo r al l sufficientl y larg e 
integral solution s o f 

0 <  ay - rx < £ 

for som e fixe d positiv e intege r a  an d positiv e £. 

Then r  i s rational . 

b) Le t r  b e a s i n Part a ) . Then , i n reduce d form , 
r ha s denominato r 

< a(n+1)/£. 
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Proof: a) Firs t assum e r  irrational. The n an infinite numbe r o f 
integral point s i n the (x,y)-plan e o n eac h sid e o f the lin e 

ay - rx = 0 

are close r tha n e/(n+2 ) t o tha t line . S o there i s a larg e integra l 
solution (x',y' ) wit h 

0 <  ay' - rx' < £/(n+2) . 
But the n 

(2x',2y'),. . ., ( (n+l)x',(n + l)y') 
are als o solution s b y hypothesis . S o 

(y'x-x'y) 

divides P , sinc e P  an d (y'x-x'y ) hav e (n+1 ) commo n zeroes . Choos e 

a smalle r e  and repea t th e argument . D o thi s n+ 1 times t o ge t a 
contradiction. 

b) No w suppos e r  = u/v (i n lowest terms) . Fo r give n j , let 
(x'.v1) be a  solutio n o f 

ay - rx = aj/v. 

(Note tha t a n integra l solutio n exist s fo r an y j. ) The n 

a(y'+ku) -r(x'+akv) = aj/v 

for al l k . So , as above , i f 

aj/v < e. 

(ay - rx)-(aj/v) mus t divid e P . S o we ca n have a t mos t n  suc h 
values o f j . Thus 

a(n+1)/v > e. 

( 1 2 . 3 ) Ste p 3 : Let E be a  positive number . Le t H  be a n ampl e 

Cartier divisor . Le t a  e Z b e suc h tha t aK x i s als o Cartier . 

Assume tha t K x i s not ne f an d le t 

r =  max{t G R: H  +  tKx nef}. 

For eac h (p,q), let 

A(p,q) base locu s (wit h reduce d schem e structure ) 

of th e linea r syste m |pH+qaKx | o n X . 

By definition , A(p,q ) = X i f |pH+qaKx | = 0 . 

(12.4) Claim: Fo r (p,q ) sufficientl y larg e an d 0  < aq-rp <  £, 

A(p,q) i s the sam e subse t o f X . We cal l thi s subse t A Q . 
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Proof: Conside r th e followin g diagra m o f divisors o n X : 

xH+yaKx 

not ne f 

y 

(p,q) 

(kp,kq] 

(P',q') 

xH+yaKx 

ample 

ay-rx = 0 

x 

Since angle bounded 

away from edge of 

ample cone, this 

arrow becomes 

very ample once 

its length reaches 

some fixed size. 

The abov e diagra m show s tha t 

A(p' ,q» ) ç A(p,q) , 

which prove s th e clai m by th e Noetheria n conditio n o n 
subvarieties. 

(12.5) For (p,q ) a s i n (12.4), the linea r syste m |pH+qaKx | cannot b e 

basepoint-free on X  sinc e pH+qaK x i s not nef . W e le t ^ ç Z x Z be 

the se t o f (p,q ) fo r whic h 
0 <  aq-rp < 1 

and A(p,q) =  AQ . Le t u s emphasiz e tha t Jl contains al l 

sufficiently larg e (p,q ) wit h 0  < aq-rp <  1 . 

(12.6) Step 4: Suppose X  has onl y canonica l singularities . Le t 

g: Y  >X 
be a  resolution whic h i s a composite o f blow-ups o f close d 
subvarieties suc h that th e exceptiona l se t i s a  divisor L J Ej_ wit h 

simple norma l crossings . W e ca n choos e £ ^ > 0 such tha t 

-E = -Se-E-i 

is g-ample. Let A  = Z a-j_Ej_ be a n effectiv e Q-diviso r suc h tha t 

A = Ky _  g*Kx. Le t D1 = g*H an d D2 = g*(aKx). 

Then w e pu t 

P (x,y) %(xDi+yD2+rAl) . 

Since D] _ is nef an d big, P  i s not identicall y zer o b y 

Riemann-Roch. Since A ' i s effective an d g-exceptional , 

H° (Y; pD1+qD2+rA~|) H° (X; pH+qaKx) . 
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(12.7) Ste p 5 : Suppos e no w tha t th e assertio n o f th e Rationalit y 
Theorem tha t r  i s rationa l i s false. I f 

0 <  ay-rx <  1 , 

then 
xDi+yD2+A-Ky 

is numerically equivalen t t o the pull-back o f the ampl e Q-diviso r 

xH +  (ay-l)Kx . 

Thus, fo r som e 1 » 5 > 0 , 

xDi +  yD2 +  A -  KY -  5E 

is ampl e an d |A - 8e I TAI. Thus, b y th e Vanishing Theorem , 

H M Y ; xD1+yD 2+rAl) 0 fo r i  > 0 . 

By Ste p 2 , there mus t exis t arbitraril y larg e (p,q ) wit h 

0 < aq-rp < 1 for whic h 

P(p,q) h° (Y; pD1+qD2+fAl) *  0 , 

since otherwis e P(x,y ) woul d vanis h "to o often" implyin g tha t r 
is rational fo r X  an d H . Thu s 

|pH+qaKx| 

forali (p,q)eJL Se e (12.5) , 

(12.8) Step 6 : Fo r (p,q ) e Jl, choose a  resolutio n 

f: Y • X 

such tha t ther e exist s a  simple-normal-crossin g diviso r Z F j wit h 

the followin g properties : 

a) K Y =  f*K x + ZajF j for a j non-negative an d rational . 

b) f*(pH+(qa-1)Kx ) -  ZpjFj i s ample fo r som e sufficientl y 

small, positiv e pj. 

(This i s possible sinc e pH+(qa-l)Kx i s ample. ) 

c) |f*(pH+qaKx ) |L| (basepoint-free part) + ZrjFj (fixed part ) 

for som e non-negativ e integer s r j 
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(12.9) Ste p 7 : Let (p,q ) G b e a s chose n i n (12.8 ) . A s before , w e 

can choos e rationa l c  > 0 and p j > 0 so tha t 

X (-crj+aj-pj)Fj = A' - F 

with I  A' I  effective, A1 no t involvin g F . B y examinin g 

coefficients, w e notic e tha t F maps int o som e componen t B  of th e 

base locu s A(p,q) o f |pH+qaKx| . Defin e 

N(p',q') = f*(p'H+q'aKx) + A' - F -  KY 

= f*( (p'-(l+c)p)H+ (q'-(l + c)q)aKx) + f*((l+c)pH+ ( l + c)qaKx) 

+ X(-crj+aj-pj)Fj - KY 

= cL bp-free 

+ f*( (p'-(l+c)p)H+ (q'-(l + c)q)aKx) nef if p',q' big enough 
and (q,-(l+c)q)a<r(p'-(l+c)p) 

+ f*(pH+(qa-l)Kx) - EpjFj ample 

Notice tha t i f p 1 an d q ' ar e big enoug h an d 

aq1-rp' <  aq-rp, 

then 

(q'-(l+c)q)a < r (p'-( 1 + c)p) , 

so N(p',q') i s ample. Thus , b y th e Vanishin g Theorem , th e ma p 

H° (Y; f * (p'H+q'aKx) +fA'l) H°(F; (f * (p»H+q'aKx) +TA'1) |F) 

is surjective. 

(12.10) Ste p 8: By th e adjunctio n formula , th e restrictio n o f th e 
divisor 

f* (p'H+q'aKx) + A' - F -  Ky 

to F is the diviso r 

(f* (p'H+q'aKx) + A1) lF ~ KF-

As i n Ste p 1, the Poincaré polynomial 

X(F; (f*(p'H+q'aKx ) + rA'l) lF) 

is not identicall y zero . 
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But, for 0 < aq'-rp' < aq-rp, 

(f*(p'H+q'aKx) + A ' ) I F - Kp 

is ample, so, in this strip, 

%(F; (f*(p'H+q'aKx) + rA'l) lF) hO(F; (f*(p'H+q'aKx)+rA'l) |F) . 

So, by Part a) in Step 2 applied to the Poincaré polynomial on F 

with £ = aq-rp, there must be arbitrarily large (p',q') such that 

0 < aq'-rp1 < aq-rp 
and 

h°(F; (f*(p,H+q,aKx) + fA,l) lF) * 0 . 

(i2.il) Step 9: We are now ready to derive a contradiction. By 

assumption A (p,q) = AN. For (p',q') as in Step 8 

H° (Y; f * (p'H+q'aKx) +[A!) H°(F; (f* (p,H+q,aKx)+rA,~|) If) * 0 

is surjective. Thus F is not a component of the base locus of 

If*(p'H+q'aKx) + TA1| . Since [a] is f-exceptional and effective, 

H0 (y; f * (p'H+q'aKx) +TA1) H°(X; p'H+q'aKx), 

and so, as in (9.8), this implies that f(F) is not contained in 

A(p',q') . Thus A (p',q') is a proper subset of A(p,q) =AQ, giving 

the desired contradiction. 

(12.12) Step 10: So now we know that r is rational. We next 
suppose that the assertion of the Rationality Theorem concerning 
the denominator of r is false. We proceed to a contradiction in 
much the same way. 

Using part b) of Step 2 with £ = 1, conclude as in Step 5 that 

there exist arbitrarily large (p,q) with 0 < aq-rp < 1 such that 

P(p,q) = h°(Y; pD1+qD2+rA~|) * 0, 

since otherwise P(x,y) would vanish "too often". Thus 

|pH+qaKx| * 0 

for all (p,q) G tJI by (12.5) . 
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Choose (p,q ) e suc h that aq-r p i s the maximum; sa y i t i s 

equal t o d/v . Choos e a  resolutio n f  a s i n Ste p 6 . I n the stri p 

0 <  aq'-rp' < d/v, 

we hav e a s before tha t 

%(F; (f*(p'H+q»aKx)+rA'l) |F) h°(F; (f * (p'H+q'aKx) + TA'1) |F) 

By part b ) of Ste p 2, there exist s (p',q') i n the stri p 

0 <  aq'-rp' 1 with e = 1 

for whic h 

h° (F; (f*(p,H+q,aKx) + fA,l) lF) * 0. 

But the n 
aq'-rp' < d/v = aq-rp 

automatically. Th e desire d contradictio n i s then derive d a s i n 
Steps 7-9. This complete s th e proo f o f the Rationalit y Theorem . 

(12.13) The us e o f the Poincaré polynomial i n the proof o f th e 
Rationality Theore m i s analogous t o it s use i n proving a  classica l 
result abou t th e divisibilit y o f Kx: 

Suppose a  smoot h projectiv e variet y X  has dimensio n n  an d 

-Kx i s ample . Suppos e m H =  Kx, thus - H i s ample. Th e Poincaré 

polynomial %(VH ) fo r H  has a t mos t n  zeros , s o i t i s non-zero fo r 

some 1  < V < n+1. However , i n this range , 

%(VH) = ±hn(VH) = ±h°(Kx-VH). 

So m < n+1. 

(12.14) References: The proof is from [Ka4] with simplifications and additions 
of [Ko3]. See also [KMM, 4 . 1 ] . 
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Lecture #13: Non-vanishing Theorem 

(13.1) Proof of the Non-vanishing Theorem: 

First notic e tha t w e ca n assum e tha t D  i s not numericall y trivial , 
since otherwis e 

h°(X; mD+rd) Y(mD +TG1) xdVb h° (X; TGI) 0, 

so the assertio n o f the theore m i s trivially satisfied . 

(13.2) Now pick som e simpl e poin t x e X which doe s no t li e i n th e 
support o f G . (W e will blo w u p thi s poin t firs t i n th e 
construction o f f  below. ) W e clai m tha t w e ca n pick positiv e 

integers q o ^ a an d e  (q) fo r eac h q>qo s o tha t 

i) (e(qD+G-Kv ) KX) is ample fo r al l e > e ( q ) , 

and 

ii) fo r an y k > 0 ther e i s e(q,k) suc h tha t fo r al l e>e(q,k ) 

such tha t e - (qD+G-Kx) i s Cartier, ther e i s a diviso r 

M(q,e) e |e (qD+G-Kx) | 

with multiplicit y > ek-dimX a t x . 

To se e tha t thi s i s possible, le t d  = dimX an d writ e 

(qD+G-Kx)d ((q-a)D+aD+G-Kx)d. 

Since D  i s nef, D+e (ample) i s ample . Lettin g e—>0 , w e se e tha t 

Dd' -(an y d'-dimensional subvariety ) >  0 . 
Thus 

(qD+G-Kx)d ((q-a)D+aD+G-Kx)d (q-a) D- (aD+G-Kx) d_1. 

There i s som e curv e C  s o that D- C > 0  and som e p  suc h tha t 

(p(aD+G-Kx))d~l i s represente d b y C  plus a n effectiv e one-cycle . 

So D- (aD+G-Kx)d_1 >  0 . Thu s th e right-han d quantit y goe s t o 
infinity wit h q . Then , by th e Riemann-Roc h formul a an d th e 
Vanishing Theorem s (cf . i ) above an d (9.2)) , 

hO(e-(qD+G-Kx) ) (1/d!) (qD+G-Kx)d-e d (lower powers o f e ) . 

On th e othe r hand , th e numbe r o f condition s o n M(q,e) tha t x 
be a  point o f multiplicity > dek o n M(q,e) i s at mos t 

(1/d!)(dk)d-ed + (lower powers o f e ) . 

Since (qD+G-Kx) d —» oo as q  —» <», we hav e more section s tha n 

conditions. Thi s prove s th e claim . 
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(13.3) Lemma: Le t X  and G EgiGi b e a s i n (9.4). Let 

f : Y > X 

be an y prope r birationa l morphis m wit h Y  smoot h an d le t 

KY + f*G f*Kx + XbjFj, 

where th e F j ar e distinct . Le t 5 be a  positive number . 
If >  -1+8 fo r ever y i , then als o bj >  -1+5 fo r 

every j . 

Proof: Thi s i s essentially th e sam e a s the secon d par t o f (6.5) . 
It i s sufficien t t o chec k thi s fo r on e blow-up wit h smoot h center . 
In this cas e i t i s a n easy explici t calculation . 

(13.4) With d  a s above , le t 

f = f<q,e): Y > X 

be som e resolutio n o f the singularitie s o f M(q,e) wit h a 

simple-normal-crossing diviso r XF j (no t necessarily exceptional ) 

in Y  suc h tha t f  dominate s th e blo w u p BXX o f x  e X  an d 

a) Ky + f*G = f*Kx + EbjFj, 

where w e not e tha t b j > - 1 by (13.3), 

b) fo r suitabl e 0 < p j « l , 

(1/2)f*(aD+G-Kx) LpjFj 

is ample, 

c) f*M(q,e ) =  ZrjFj wit h j  = 0 corresponding t o th e 

exceptional diviso r o f th e blow-up o f x . 

(13.5) We defin e 

N(b,c) = bf*D + X (-crj+bj-pj)Fj - Ky. 

As before, w e wan t t o make N(b,c ) ample . W e calculat e 

N(b,c) bf*D + X (-crj+bj-pj)Fj - Ky 

= bf*D - cef*(qD+G-Kx) - EpjFj + f*G - f*Kx 

= (b-a)f*D + (1-ce) f * (aD+G-Kx) - ^PjFj 

= (b-a)f*D + (1/ 2 - ce) f* (aD+G-Kv) + {  ( 1/2) f* (aD+G-Ky) - Xp-iF-W. 
nef nef ample 

Now a s lon g a s c e < 1/ 2 and b > a, N(b,c ) wil l b e ample . 
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(13.6) Now choose k = 2 in (13.2) and pick 

c = min{(1+bj-pj)/rj}, 

where minimu m i s taken ove r thos e j  such tha t r j > 0. The n c  > 0. 

As before, we wiggle th e pj so that thi s minimum i s achieved fo r 

only on e value j 1 o f j  an d set F = F j i . B y the choice o f FQ, 

bn =  d-1, and rn > dek, 

and therefor e 
c < (l+(d-l)-po)/2de < l/2e 

Thus, ce < 1/ 2 ,  and so, for b > a, N(b,c) wil l be ample . 

(13.7) The rest o f the story i s as in the proofs o f the 
Basepoint-free an d Rationality Theorems . Writ e 

N(b,c) = bf*D + A - F - KY. 

Note tha t th e coefficient o f Fj in A i s (-crj+bj-pj ) < bj and 

therefore TGI - f* (fAl) is effective. Thu s we hav e 

H°(Y; bf* D + TA]) c H°(X ; bD + [g]) . 

Since N(b,c ) i s ample, 

H1(Y; bf* D + TAI - F) = H1(Y; bf*D + TA-F1) = 0, 

so H°(X; bD + TGI) * 0 if we sho w tha t 

H° (F; (b f *D + TAI) |F ) * 0  . 

This las t inequalit y ca n be achieved b y making a n induction o n 

dimX. W e can assume tha t w e have alread y prove d the Non-vanishin g 

Theorem fo r varieties o f dimension <  dimX. Applyin g th e inductio n 

assumption t o F, we complete th e proof o f the theorem . 

(13.8) This complete s th e proof o f the firs t ste p i n Mori's program . 
If X is a projective variet y wit h canonica l singularitie s an d if 
Kx i s not nef, then on e can find an extremal ra y and the 
corresponding contractio n morphism . Th e next ste p i s to prove the 
existence o f flips . S o far this i s known onl y i n dimension three . 
The proof i s too long and complicated t o present i n detail, but we 
will try to discuss som e o f the main points , frequentl y ignorin g 
technical difficulties . 

(13.9) References: The proof is from [Sh]. 
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(14.1) Today w e retur n t o th e minimal mode l progra m i n dimensio n 
three whic h w e discusse d i n Lecture #5 . Th e on e par t o f th e 
program tha t w e hav e no t ye t examine d wa s th e ste p calle d flip, 
defined i n (5.11) . Tw o thing s mus t b e shown : 

1) Existence o f flips . 

2) Terminatio n o f flips . 

We begi n wit h a  discussion o f th e latter . 

(14.2) Recall tha t i n the definitio n a  threefold X  with termina l 
singularities, w e too k a  resolutio n 

f : Y > X 

and ha d 

KY = f*Kx + XajEj, a-j>0 . 

We defin e th e difficulty o f X, d(X) , to be th e numbe r o f the a-j_'s 
such tha t a-j _ < 1 . Th e difficult y i s independen t o f th e resolutio n 
Y. Th e point i s that, under flips , th e difficult y goe s down, s o 
that an y sequenc e o f flip s mus t terminate : 

(14.3) Theorem: I f 

X X + 

-Ky i s f-ampl e 
f " 

z 

Kx+ i s f+-ampl e 

is a  flip , the n d(X+ ) < d(X). 

Proof: Le t 

X 

g Y 

X + 

be a  common resolutio n o f X and X+ . Then 

Ky = g*Kx + Zaj_Ej_ and K y = (g+)*Kx+ + ZbiEi. 

We tak e a n intege r r  larg e an d divisibl e enoug h s o that rKx + i s 

Cartier an d f+-very-ample . Choos e generi c D + e |rKx+1 . Then , fo r 

the lif t D ' = (g+)*D+ , 

D ' + E rb-îE-j G  I rKY I . 
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If D denotes th e imag e o f D' i n X, D e IrKxl an d K x i s f-negative , 
so D must contai n th e unio n C  of curve s contracte d b y f . S o g* D 
contains al l th e Ej _ as components , an d 

Df +Erb-j_Ej_ = rK Y = g^D + Xra^Ei D 1 + X CiEj_ + Z ra-j_E-̂  

where Cj _ > 0 fo r ever y i . 

So a-j _ < bj_ for eac h i . W e ca n choos e Y  i n suc h a  way tha t i t 

dominates th e blow-u p o f C + i n X+ whose associate d exceptiona l 

divisors wil l al l hav e b i =  1 . S o the difficult y decrease s b y a t 

least one . 

For th e existenc e o f flips , w e have: 

(14.4) Flip Theorem: 
Let f : X  > Z b e a  proper birationa l morphis m o f 
normal threefold s suc h tha t X  has onl y termina l 
singularities, f  contract s n o divisors , and suc h tha t 

-Kx i s f-ample . The n ther e exist s a  proper birationa l 

morphism f+ : X+ > Z suc h tha t X + ha s onl y termina l 

singularities, f + doe s no t contrac t an y divisors , an d 
Kx+ i s f+-ample : 

X x + 

-Kx i s f-ampl e 

Z 

Kx+ i s f+-ampl e 

(14.5) An outlin e o f th e strateg y o f th e proof i s roughl y a s 
follows: 

14.5.1) B y workin g i n the analyti c category , w e ca n contrac t th e 
components o f th e curve s contracte d b y f  on e a t a  time. W e ar e 
thereby reduce d t o proving a  "local " version o f th e Fli p Theorem , 
that is , a version i n which X  i s replace d b y th e ger m o f X  alon g 
an irreducibl e curv e C  with C  • Kx <  0 . Thi s ger m i s also calle d a n 
extremal neighborhood. (An y fli p i s a  composition o f thes e 
analytic flips , don e on e a t a  time. ) 

14.5.2) I n the abov e situation , R1f*C0 x =  0 an d R1f*ft x = 0 . I f X 

is smooth , the n thes e ar e consequence s o f (8.8 ) . Her e w e hav e 
singularities, an d s o (8.8 ) doe s no t apply , bu t essentiall y th e 
same proo f goe s through . 
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14.5.3) W e clai m tha t C  must b e smoot h an d rational . B y 2 ), 

R1f*dv = 0 . So , applying f * t o the exac t sequenc e 

0 cl OX ax/j o, 

we obtai n tha t H M Ö ^ M ) = 0  and C  = CP1. 

14.5.4) We clai m tha t X  must necessaril y b e singula r alon g C : 

Suppose X  i s non-singular. Sinc e C •KX < 0 , 

(h°(C; f*Tv)-h1(C ; f  *TV) ) > 3 
by th e formul a i n (1.2) , an d C  deforms, contradicting th e fac t 
that C  i s the whol e exceptiona l set . 

14.5.5) W e nex t sho w that X  can have n o more tha n two singula r 
points alon g C  where th e inde x i s > 1  (se e (6.8) . W e wil l presen t 
a purel y topologica l argumen t t o se e this : 

If a terminal singularit y (U,p ) o f dimension thre e ha s inde x 
m, the n 

Kn (U-{p}) = Zm, 
because (U,p ) i s the quotien t o f a  hypersurface singularit y b y Zm. 
(Here U ca n b e though t o f as a  suitabl e smal l neighborhoo d o f p. ) 

We wil l analyz e th e loca l topolog y nea r th e CP^. Suppos e tha t 
we ha d thre e singula r point s o f inde x >  1 : 

P,Q,R. 
Denote th e thre e indice s b y i , j, and k . Assum e fo r simplicit y 
that X  has quotien t singularitie s a t P,Q, R an d i s smoot h 
elsewhere. The n 

(X-{P,Q,R}) 
has th e homotop y typ e o f S ^ with thre e littl e ope n disc s removed , 
and the n wit h thre e len s space s 

Lj_, L-j, and L]̂  
sewn i n a t th e respectiv e holes . Th e essentia l cas e i s the on e i n 
which th e boundary o f the hol e i s identifie d wit h a  generator o f 
7C2. of tn e correspondin g len s space . The n 

K± (X-{P,Q,R}) <a,ß,y>/{aßy= l, a1 = l, = 1, yk = 1}. 

Algebra fact : Thi s grou p ha s a  finit e quotien t G  i n whic h 

a ha s orde r i , (3 has orde r j , and J has orde r k . 

The kerne l o f th e homomorphis m fro m t o G  defines a  finit e 
Galois coverin g X n o f (X-{P,Q,R}) . B y fillin g i n finitel y man y 
points ove r P , Q , an d R , on e complete s X n t o a  connected coverin g 
space X ^ o f X . Bu t the n X " i s smooth , an d 

C"-KXa < 0 , 
gives a  contradiction a s i n 4) above. 
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(Note that , i f we hav e onl y tw o singula r points , the fundamenta l 
group i n the abov e argumen t i s usually trivial . Th e proof i n th e 
case o f fou r o r more singula r point s i s very similar. ) 

14.5.6) Now w e hav e th e contractio n 

f: (X,C ) (Z,p). 

Let J be a  shea f o f ideal s whos e radica l i s the idea l shea f A o f 

C. Applyin g f * to th e sequenc e 

0- f o,x ox/f • o, 

and t o tha t sequenc e tensore d wit h Cûx, and using 14.5.2), we 

conclude tha t 

(*) H1 <ac/&> 0 and H1 (cox/#cox) 0. 

We alread y sa w an importan t consequenc e o f this vanishin g 
result i n 3 ) . We wil l se e that thes e vanishing s impos e ver y 
strong restriction s o n th e possible singularitie s an d o n th e 
global structur e o f th e extrema l neighborhood . Her e w e deriv e tw o 
such result s tha t wil l be neede d i n the sequel . Le t agai n A b e 
the idea l shea f o f th e curv e C . 

14.5.7) CDxMcox = 0C(-1) + (torsion sheaf ) : 

From 6) we kno w tha t th e Ĥ - of this shea f i s zero , thus th e 
degree o f the torsio n fre e part i s at leas t -1. On th e othe r han d 
we hav e a  natural ma p 

p: (©xM©x)®m 
ac(mKx) 

which i s generically injective . Th e lin e bundl e o n th e righ t ha s 

negative degre e thu s de g (G)xMcox) < 0. 

As a  corollarv o f this argumen t w e als o obtai n tha t 

-1 < C-Kx < 0 . 

14.5.8) J I M 2 = &(a ) + &(b) + (torsion sheaf ) wit h a, b > -1: 

In the lon g cohomolog y sequenc e associate d t o 

0 M M 2 aM2 er,M •o, 

note tha t H ° ( & M 2 ) •H0(tt ,M) is ont o an d H^aM2) = 0. Thus 

H 1 ( J I M 2 ) = o. 
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FLIPS 

14.5.9) Th e mai n par t o f th e proof o f the existenc e o f flip s 
consists o f a n intricat e an d technical analysi s i n which w e ar e 
able t o construc t a  Weil diviso r E  i n |-2KX | such tha t th e doubl e 
cover 

p: W X 

induced b y E  has onl y canonica l singularities . Thi s W ha s onl y 
canonical singularitie s an d 

KW s P*KX +  d/2)p* E 
is trivial. 

On W, w e ar e i n a situatio n i n which w e ca n d o a  flop, whic h 
is described b y th e followin g diagram : 

W W + 

some - D i s f-ampl e 
ft 

D+, th e proper transfor m 
of D , i s f+-ampl e 

Kw i s f-trivia l 

Z 
K ,  is f+-trivia l 
w+ 

where D  i s som e divisor . Agai n ther e i s an existenc e theore m fo r 
flops an d a  termination theore m fo r sequence s o f flops . 

We obtai n th e desire d fli p o f the irreducibl e curv e C  by 
taking a s X+ th e quotien t o f W+ unde r th e involutio n induce d b y 
the involutio n o n W . 

(14.6) I n most cases , w e wil l be abl e t o fin d a  divisor D e |  -Kx I 
such tha t D  has onl y DuVa l singularities . Followin g Reid , suc h a 
D i s calle d a  DuVal elephant. I t i s conjecture d tha t a  DuVa l 
elephant alway s exists . Usin g th e explici t descriptio n o f 
terminal singularities , i t i s easy t o se e tha t th e existenc e o f a 
DuVal elephan t implie s th e existenc e o f the abov e doubl e cove r 

W >  X. 

To ge t a n ide a wh y generi c Wei l divisor s i n |-Kx | should hav e 
only DuVa l singularities , w e loo k a t th e cas e i n which th e 
singularities o f X ar e al l ordinary , tha t is , they ar e al l cycli c 
quotient termina l singularities . Thes e ar e al l o f the for m 

C3/^r 

where th e generato r o f th e grou p Jl r of r-t h root s o f unit y act s 

by th e rul e 

(x, y,z) (Ex, Г Ч , taz) 

with a  prim e t o r . 
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On C-3 above a  cyclic quotien t singularity . 

-KC3 = CC(dxAdyAdz) ~1. 

If we le t C O = dxAdyAd z ,  then th e actio n o f £ on CO is give n b y 

CO > £aco. 

So the sectio n z /co descend s t o giv e (locally ) a  Weil diviso r D  fo r 

- K X -

The diviso r D  i s given a s a  quotient singularit y b y th e 
action 

(x,y) (Ех,Е-!у: 

on C^, an d henc e i s a DuVal singularity , embeddin g int o C3 vi a th e 
map (xy , xr, yr). 

(14.7) References: (14.3) is due to Shokurov[Sh], (14.4) to M o r i [ M 3 ] , (14.5.5) 
to [M3] and also to B e n v e n i s t e [ B 2 ] . The idea of taking double covers appears 
in K a w a m a t a [ K a 5 ] . 
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Lecture #15: Singularities on an extremal neighborhood 

(i5.i) The ai m o f today' s lectur e i s to elaborat e o n the par t 
(14.5.9) o f th e proo f o f th e Fli p Theore m (14.4) , namel y w e tr y t o 
outline th e loca l classificatio n o f th e points occurrin g o n 
extremal neighborhoods . W e cove r al l th e importan t technique s 
that ar e containe d i n section s 2- 7 o f Mori's paper . Thu s b y 
reviewing som e definition s an d theorem s i n those sections , th e 
reader shoul d b e abl e t o proceed t o th e las t tw o sections , whic h 
are th e rea l cor e o f the article . 

(15.2) Let X  be th e extrema l neighborhoo d containin g a  singl e 
extremal rationa l curv e C  and le t p  b e a  point o f C . We inten d 
to giv e a  classification o f the triplet s (X,C,p) . For 
illustration, assum e tha t X  has a  quotient singularit y a t p . A s 
we saw , C  i s a  smoot h curv e an d therefor e on e might thin k tha t 
knowing (X,p ) uniquely determine s th e triple t u p t o isomorphism . 
This i s however fa r fro m being true . Befor e w e giv e som e 
examples, w e se t u p th e notatio n tha t wil l b e used t o describ e 
the situation . 

(15.3) Notation: Le t Zm be th e cycli c grou p o f orde r m . 

Fix a  primitive m-t h roo t o f unity Assum e tha t Zm act s o n Cn 
linearly, an d tha t th e coordinat e function s ar e eigenfunction s o f 
this action , tha t i s 

1 e Zm act s o n x-j_ as 1 (XJ_) Ca(i)x. 

In this cas e w e sa y tha t Zm acts o n Cn wit h weight s 

(a(l) , . . .,a(n) ) . 

Similarly, i f f  i s a polynomial functio n o n Cn whic h i s a n 
eigenfunction o f this action , the n w e sa y tha t th e grou p act s wit h 
a certai n weigh t o n f . We denot e th e weigh t o f f  b y wt(f) . 

(15.4) Example: Le t Zm ac t o n C3 wit h weight s (l,a,m-a ) o n th e 

coordinates (X]_,X2,X3) . Le t 

V Ç C 3 

be th e monomia l curv e give n a s th e imag e o f th e ma p 

t (tkm+1, ta, tm"a) 

Then c3/Zm i s a terminal singularity , an d V/Zm i s a  smoot h curv e 

germ insid e thi s singularity . 
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If we g o back t o the proble m o f findin g a  good member D  of -Kx , 
we se e tha t {xi=0 } descend s t o suc h a  good membe r a t leas t 
locally. Assum e no w tha t th e abov e singularit y i s the onl y on e o n 
an extrema l neighborhoo d X . On e wa y t o fin d a  good membe r o f -K x 

is to us e D  whic h i s transversal t o th e curv e C , s o that, i n a 
small enoug h neighborhoo d o f C, i t will b e a  global divisor . D  i s 
a membe r o f |-Kx I i f i t has th e correc t intersectio n wit h th e 
curve C . I n our case , one ca n easil y obtai n tha t th e intersectio n 
number i s 

D-C = k+(1/m) , 

whereas w e kno w tha t 
-1 < C-Kx < 0. 

Thus w e must hav e k = 0 t o hav e an y chanc e a t all . 

This show s tha t w e have t o analys e th e locatio n o f C  near th e 
singularities o f X very carefully . 

(15.5) Proposition: Assum e tha t Zm act s o n Cn with weight s (aj_ ) 

Let V  <z Cn be a n irreducibl e curv e ger m whic h 
is Zm-invariant. Assume tha t V /Zm i s smooth . 
Then, afte r a  suitabl e Zm-invariant coordinat e 
change, V  becomes monomial ; namely, i t will b e 
the imag e o f 

t -> (tkd) ) 
for som e (b (i)) 

Proof: W e ca n assum e tha t Zm act s faithfull y o n V. Zm act s o n 
the normalizatio n o f V. W e le t t  b e a  loca l parameter o n VA 
which i s a n eigenfunction . The n th e rin g o f Zm-invariant 
functions o n V i s generate d b y tm . Sinc e V /Zm i s smooth , 

W z m • v / z m 

is a n isomorphism . Therefor e ever y Zm-invariant regula r functio n 

on V i s also regula r o n V. Fo r ever y i , w e ca n writ e 

Xi = tb(i)gi(t) 

where gj _ is Zm-invariant wit h non-zer o constan t term . Sinc e gj _ is 

Zm-invariant, it i s the restrictio n o f a n invertibl e Zm-invariant 
function hj _ on Cn. No w w e ca n introduc e ne w coordinate s b y th e 

rule 

y i = Xi-iWhjL. 

In this ne w coordinat e system , V  i s obviously monomial . 
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(15.6) Notation: Le t 

( X , c , P ; 

be th e neighborhoo d o f a point i n an extrema l neighborhood . Th e 
index-one cove r (constructe d i n (6.8) ) wil l be denote d b y 

(X#,C#,p#). 

Thus th e grou p Zm act s o n this cove r an d th e quotien t i s (X,C,p) . 
In general i t i s not tru e tha t C # i s irreducible , but fo r th e 
purpose o f this lectur e w e will alway s assum e this . N o ne w idea s 
are neede d t o handle th e more genera l case . 

As w e saw , ever y three-dimensiona l termina l singularit y i s th e 
quotient o f a  smoot h point o r o f a  hypersurface doubl e point . 
Thus w e ca n alway s assum e tha t (X#,C#,p# ) i s embedded i n i n 
which i t i s define d b y a n equatio n 

O = 0 , 

where O define s eithe r a  smoot h poin t o r a  double poin t a t th e 
origin. 

By th e abov e considerations , w e ca n choos e a  coordinat e syste m 

on z > X# suc h tha t C # becomes a  monomial curve . I f f  i s an y 

regular functio n o n X# ' then b y 

ord f 

we denot e th e orde r o f vanishing o f f  o n th e normalizatio n o f 

C#. Th e value s or d f form a  semigroup , whic h i s denoted b y 

ord C#. 

If ord x-j_ = a-̂ , then thi s semigrou p i s generated b y th e a-j_ ' s. 

If (aj_-m ) is i n ordC#, the n w e ca n write dow n a  monomial M  i n th e 

x-|_1 s which ha s th e orde r (a-j_-m ) and introduc e th e ne w coordinat e 

x-|_-M. Thu s w e may alway s assum e tha t (a-j_-m ) is not i n ordC* . 

Note tha t or d XJ_ depends onl y o n C# , whereas th e choic e o f th e 

weight o f a  functio n depend s o n the choic e o f a  generator o f Zm . 

We ca n clearl y choos e th e generato r i n suc h a  way tha t 

ord XJ_ = wt x-j_ (mo d m) 

holds fo r ever y i . W e shal l alway s assum e i n the seque l tha t 
such a  choic e wa s mad e 

(15.7) Definition: A  coordinat e syste m whic h satisfie s th e abov e 

conditions wil l be calle d a  normalized I -coordinate 
system. 
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(15.8) Threefold terminal singularities ar e ver y specia l quotient s 
of smoot h o r doubl e points, and a  complete lis t i s known. W e 
ignore finitel y man y exceptions , and loo k onl y a t th e mai n serie s 
where w e ca n choos e th e orde r o f the coordinate s x-j _ in suc h a  wa y 
that th e followin g condition s ar e satisfied : 

a2 + a3 0 (mod m) , (aia2a3, m) = 1 , a4 = 0  (mod m) , 

wt(O) = 0 (mod m ). 

Note tha t sinc e C  i s smoot h an d C # > C ha s degre e m , w e hav e 

ordC#3m; thus , a s w e noted above , =  m . 

Next w e defin e tw o o f th e simples t loca l invariant s invente d 
by Mor i t o measure th e effec t o f the singularit y (X,C,p ) o n th e 
extremal neighborhood . 

(15.9) Definition: i ) Given a  triplet (X,C,p) , le t m  b e th e inde x 
of X  at p . A s w e saw , ther e i s a natural ma p 

ß: (CûxMû)x)®m &c (mKx) 

and w e defin e Wp = m 1  • (length coke r (3). 
(In Mori's origina l notation , thi s i s Wp(0).) 

ii) We ca n defin e natura l map s 

A/A2 x A/A2 xcoc a>x®ac cox Mcox grO(cox) 

given a s 

x x y x zdu —> zdxAdyAdu 

where gr u (cox) i s the locall y fre e part o f CO x/Jlcox. 

This i n turn define s a  homomorphis m 

a: A2 (A/Az) ® o)c gr° (cox) . 

Now le t 

length coke r a . 

(This i s ip(l ) o f Mori. ) 

The result s o f Lectur e #14 now imply : 

(15.10) Proposition: i ) X Wp < 1  ; 

ii) £ ip < 3  . 
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Proof: Th e firs t statemen t follow s fro m (14.5.7 ) sinc e 

m • X Wp -m • deg gr̂  (CDX) degac(mKx) . 

The secon d par t follow s fro m the definitio n usin g (14.5.8) . 

This resul t show s tha t th e loca l invariant s o f th e 
singularities combin e t o giv e a  global invariant , an d tha t w e hav e 
some restriction s o n the possible singularitie s o f a n extrema l 
neighborhood. Therefor e w e se t ou t t o comput e o r a t leas t 
estimate th e abov e invariant s fo r the triplet s (X,C,p) . 

Computation o f wp: 

(i5.il) X* i s a hypersurface singularit y give n b y equatio n O, thu s 

0 = (d<3?/dxi) _1dx2Adx3Adx4 =  Res 0-1dxiAdx2Adx3Adx4 
is a loca l generato r o f th e dualizin g shea f o f X#, where Re s i s 

the Poincaré residue map . Clearl y a  i s a Zm-eigenvector wit h 

wt (a) =  I a j _ (mod m) . 
Thus Gm i s invariant , an d i t descends t o giv e a  loca l generato r o f 

(mKx) . I n order t o ge t a  loca l generato r o f gr ^ (co) , we have t o 

look fo r a  sectio n o f the dualizin g shea f o f whic h i s 

invariant. W e ca n loo k fo r on e o f the for m Ma, wher e M  i s a 

monomial. The n M mGm i s a loca l generato r o f gr ^((0)m; s o 

wp =  m_1 dim(& c (mKx) /M1^11̂  (mKx) ) 

Therefore w e ge t tha t 

Wp = m lordM . 

If we denot e b y à the remainde r o f th e intege r a  (mo d m ), 
then fo r th e serie s o f singularitie s w e ar e considering , 

wt(a) =  ài. 

Thus, fo r the abov e monomial M , w e hav e 

ord M +  à]_ = 0  (mo d m) , 

If we tak e int o accoun t tha t Wp < 1 , then w e ge t a n equatio n o f 

the for m 

Xb-^a-L + ài = m. 
Therefore b 4 =  0 , an d on e o f b2 an d b 3 i s als o zero , sa y th e 

latter one . Thu s w e hav e 
b]_aj_ +  b2a2 +  à]_ = m . 

This alread y show s tha t a] _ or a 2 i s les s than m , thu s th e curv e 

C # i s not arbitraril y complicated . 
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Computation o f ip : 

(15.12) We alread y hav e a  loca l generato r o f gr ^ (CO) , namely Ma . I f 

t i s a  loca l parameter o n the normalizatio n o f C # which i s a 

Zm-eigenvector, the n dtm=dx 4 i s a  loca l generato r o f COQ . Le t J# 

denote th e idea l o f C # i n C4 and $ # { 0 } T N E S ET OF Zm-invariant 

functions i n J #. (Fo r any shea f T wit h Zm-action , ^{Q} denote s 

the subshea f o f Zm-invarian t section s o f T . ) Loca l generator s o f 

the locall y fre e part o f A/A lif t bac k t o element s f  an d g  o f 

£#{0}r thu s fAgAdt m i s a loca l generato r o f A2 (A/A2) <8 > coc. 

We ca n se e th e relationshi p betwee n M a an d th e imag e o f fAgAdt m i n 

gr^ (CO) a s follows : 

d f A d g A d x 4 Res O 1  dOAdfAdgAdx 4 

Res O 3(O,f,g)/d(x^, x2 , X 3 ) d x i A d x 2 A d x 3 A d x 4 

M-13((D,f,g)/3(x1,X2,X3) Ma, 

where d(, , )/d{ , , ) is the Jacobia n determinant . Thu s 

ip = m_1(-ordM +  ord d (O, f , g) /d (x]_, x2, X 3 ) ) . 

In the cas e w e ar e considering , O  i s also a n elemen t o f $ # { 0 } ' 

thus w e ca n furthe r simplif y t o obtai n 

m-ip >  -ord M +  ord 9 (h, f, g)/3 (xi , x2, X3) 

where f,g, h generat e th e locall y fre e part o f {Q}/$#2{ 0 } • 
It i s a n eas y exercis e t o se e tha t thi s doe s no t depen d o n th e 
choice o f f, g an d h . 

Now w e ar e read y t o deriv e th e main resul t o f thi s section : 

(15.13) Theorem: Give n (X,C,p ) wher e (X,p ) i s a  three-dimensiona l 
terminal singularit y an d C  i s the ger m o f a 

smooth curv e throug h p  wit h w p < 1 and i p < 3 , the n 

either 

i) or d i s generated b y tw o elements , 
i.e. C # i s planar; 

or 

ii) 3 e o r d C # ,  so multp# C# < 3 . 
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(15.14) Remark: i ) This theore m say s i n particular that , i f (X,C,p ) 
appears o n a n extrema l neighborhood , the n th e singularit y o f C # i s 
not to o complicated . W e wil l prov e thi s onl y fo r th e mai n serie s „ 
of singularities , althoug h th e statemen t i s true i n general. Th e 
proof i n the additiona l case s i s very easy . 

ii) I n fact , ord i s always generate d b y tw o element s 
if (X,C,p ) appear s o n an extrema l neighborhood , bu t th e proo f o f 
this woul d requir e th e consideratio n o f a  new invariant . 

(15.15) Proof: W e alread y note d tha t W p < 1  implie s 

b]_a]_ + b2a2 + ä]_ = m. 

If ai < m, the n thi s reduce s t o 

(bi + l)a]_ + b2a2 = m. 

We clai m tha t i n this cas e or d i s generated b y a] _ and a2. 

Indeed, sinc e a 4 = m, a 4 i s a linea r combinatio n o f an d a2. 

Since a 2 +  a3 =  0 (mod m) , for som e c > 0 we ca n writ e 

a3 =  (bi+l)a i + (b2~l)a2 + cm. 

Thus a 3 i s also a  linea r combinatio n o f a ^ an d a2 , provided 

b2 >  0 . I f b2 =  0 , then a ^ divide s m . Sinc e (m,a^ ) =  1 , thi s 

implies ai =  1 , and i n this cas e or d i s generated b y 1 . 

Therefore w e ar e lef t wit h th e cas e when a ^ >  m. Not e that , 

in this case , the identit y 

b]_a^ + b2a2 + ä]_ = m 

reduces t o 
ba2 + ä]_ = m. 

We ca n als o writ e 

a]_ = cm + ä]_ (for som e c> 0 ) 
and 

a3 = km-a2 (fo r som e k > 0 ) . 

Note als o tha t a 2 < m and a 4 = m. W e wan t t o prove tha t thes e 

conditions, togethe r wit h i p < 3 , impl y tha t a 2 o r a 3 i s at mos t 

3. W e conside r th e formul a fo r ip : 

m-ip > -ord M + ord3 (h, f, g)/3 (x]_, X 2, X3) 

where f,g, h generat e th e locall y fre e part o f J # { 0 } / J ^ 2 { 0 } • 
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Since ^# is the set of invariant element s i n the ideal of a 

monomial curv e and 

a 4 — m, 
a moment s reflectio n show s tha t i t has a linear basi s consistin g 
of element s o f the form 

x4e(N - x 4 W N ) / m ) 

where N is a monomial i n the variables x i , X 2 , x 3 suc h tha t m 

divides ordN . W e can pick monomial s i n the variables X ] _ , x 2 , x 3 , 
which we call F, G, and H, such tha t 

f = F - x4(ordF)/m/ g  = G - x4(ordG)/m, h = H - x4 <ord H> /m 

generate the locally fre e part of J#{Q}/$#^{0} 

It is clear tha t 

ord Э (h, f, g) /Э (xi, X 2 , x3 ) = ord F + ord G + ord H -а]_-а2~а3. 

Now the formula fo r ip becomes 

m(c+k+4) > min {ordF +  ord G + ordH: F,G, and H are monomials in 

the variable s x ^ , X 2 , x 3 whos e orde r i s divisible by 

m an d such tha t non e of them divide s the other}. 

Thus we have to search for such monomials of low order. Sinc e 
the orde r of X 2 X 3 i s divisible by m , we only hav e to conside r 
monomials o f the following forms : 

X 2 X 3 , whic h has order k-m; 

X ] _ e X 2 c * , wher e the smallest orde r i s o r d x i X 2 l D =  (c+l)m ; 

X]_ex3d, whic h all have fairl y larg e order ; 

X 2 m (res p x3m) , which has order ma2 (resp . ma3) . 

If one spends fiftee n minute s computin g the orders of the 
various term s one will see that i f min{aj_} > 3, then the only way 
to satisf y the above inequalit y i s to pick 

X 2 X 3 , X ] _ X 2 b an d X 2 m (resp . x3m) 

for F,G H. W e also must necessaril y hav e tha t a2 or a3 is at most 

three. I f ordC# 3 2 , the n ord i s generated by 2 and the 
smallest od d element i n it. Thu s agai n we end up in case i ). 

Otherwise or d C# 3 3. Thi s was what we had to prove. 
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( 1 5 . 1 6 ) Mor i ha s t o conside r infinitel y man y loca l invariants . The y 
are use d partl y t o ge t more restriction s o n th e individua l 
singularities o n a n extrema l neighborhood , partl y t o detect th e 
interrelation o f differen t singularitie s o n the sam e neighborhood . 

The inequalitie s Xw p < 1  and X ip < 3 are th e simples t example s o f 
the latter . Th e firs t inequalit y shows , fo r example , tha t ther e 
can be a t most on e index-tw o poin t o n a n extrema l neighborhood ; 
the secon d ca n be use d t o giv e a  proof tha t ther e ca n be a t mos t 
three singula r point s o n a n extrema l neighborhood . 

(15.17) References: The classification of three dimensional terminal 
singularities is due to Reid[R3], Da n i l o v [ D ] , Morrison-Stevens[MS] and 
Mori[M2]. See [R5 ] for a good overview. All the rest is taken from [M3] with 
minor simplifications. 
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Lecture #16: Small resolutions of terminal singularities 

Today w e wil l discus s i n greater detai l th e characterizatio n 
of termina l Gorenstei n singularitie s o f threefolds, thei r smal l 
resolutions, an d thei r relatio n t o flops . Flop s ar e much easie r 
to understan d tha n flips ; stil l th e emergin g pictur e i s ver y 
similar. Firs t w e complet e th e proof o f (6.23) . 

(16.1) Theorem: A  threefold Gorenstei n singularit y i s terminal i f 
and onl y i f i t i s a n isolate d cD V point. 

Outline of proof: On e directio n wa s discusse d i n (6.23) . 
Suppose no w tha t (X,x ) i s an isolate d cD V point whic h i s no t 
smooth. Let 

f: B > X 

denote th e blow-up o f X a t x  an d le t 

E =  exceptiona l locu s =  projectivized tangen t con e o f X . 
Then, sinc e x  i s a  double point , the adjunctio n formul a give s 

KB = f*Kx + E. 

We clai m tha t B  has onl y rationa l singularities . I f we sho w 
this, w e wil l be done . Indeed , rationalit y implie s that , i f 

g: Y  >B 

is a  resolution , the n g*Cfl Y = <*>B. Therefore , sinc e som e sectio n o f 

KY pushes forwar d t o a sectio n o f KB vanishin g o n E , 

KY = g*f*Kx + E' +  F 

where E f mean s prope r transform , an d F  involve s every exceptiona l 
divisor o f g  sinc e the y al l li e ove r E . 

To se e tha t B  has onl y rationa l singularities , w e reaso n a s 
follows. Sinc e (X,x ) i s cDV , ther e ar e loca l analyti c coordinate s 
such tha t X  i s given b y th e equatio n 

(*) p(x,y,z) + tq(x,y,z,t) = 0 , 

where p(x,y,z ) =0 i s a rational doubl e poin t an d th e (generic ) H  i s 

given b y t  = 0. On e the n form s a  fla t famil y ove r th e e-lin e b y 

replacing t  wit h £ t i n (* ) . B y equi-multiplicity , th e blow-u p 

of th e lin e {(0,e) } i s flat . A t 6 = 0 , a n explici t analysi s o f 

possible equation s show s tha t al l singularitie s o f th e blow-u p ar e 

rational. Al l fibre s fo r e^O ar e isomorphic , an d rationalit y i s 

an ope n condition , s o nearby singularitie s mus t b e rationa l a s 

well. 

92 



SMALL RESOLUTIONS 

Small resolution s o f termina l singularitie s 

(16.2) Proposition: Le t X  be a  normal threefol d singularity , an d 

let f : Y 3 » x3 be a  proper morphis m whic h 

contracts onl y finitel y man y curves . Assum e 
that Y has onl y canonica l singularitie s an d 
that K Y i s f-trivial . The n 

1) Y  terminal implie s X  terminal; 

2) Y  Gorenstein implie s X  Gorenstein . 

Proof: Choos e H  on X  s o that mK y +  f*H i s a nef Cartie r divisor , 

and (m-l)K y +  f*H i s nef an d big. Th e Basepoint-fre e Theore m 

(9.3) hold s unde r thes e hypotheses , s o tha t 

n(mKY + f*H) 

.s basepoint-f ree for n » 0. Usin g thi s fo r som e larg e n  an d 
i+l, we conclud e tha t mK y must b e th e pull-back o f a  lin e bundl e 
>n X. Sinc e ther e ar e n o exceptiona l divisors , this lin e bundl e 
lust be mKx- Bot h conclusion s no w follo w immediately . 

(16.3) Corollary: Le t f : Y 3 >X3 
be a  morphism o f compac t threefold s whic h 
contracts onl y a n irreducibl e curv e C . Suppos e 
that Y  i s smoot h an d C-K Y =  0 . The n C  = CP* an d 
NC/y = a(-i) ea(-i) o r aea(-2) o r em) eft(-3) 

Proof: B y (16.2 ) X  has onl y terminal , hence onl y rationa l 

singularities, s o R!f*ftY = 0 . A s w e have see n i n (14.5.6) , thi s 

implies tha t H1(ftc ) = 0  so that C  = CP1. I n the sam e wa y 

H 1 ( f t M 2 ) = 0 , wher e A i s the idea l shea f o f C . Thu s 

H ^ J L / J r ) = 0, 

from which th e secon d conclusio n follow s sinc e N^/ y =  ft (a) ©ft(b) 

with a + b =  -  C-Ky-2. 

(16.4) Proposition: Le t f: Y 3 > X3 b e a  smal l contractio n wher e 

Y is smoot h an d X  has onl y cD V singularities . 

Then 

1) Ky = f*Kx ; 

2) i f H i s generic throug h th e singula r point s 

of X, the n f* H i s normal an d 

f *H H 
is a partial resolution . 
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Proof: Th e first assertio n i s immediate sinc e KY and f*Kx are both 
line bundles an d they agre e i n codimension one . No w 

Kf*H = KY + f*H|f*H = f*(Kx + H|H) = f*KH . 

If g: H' >  f *H is the normalization, the n 

COHf =  (conducto r ideal ) g*COf*H. 

On the other hand , C0 H i z> (fg)*COf*H r since H  is a DuVa l 

singularity. Therefor e f* H i s normal. Let h: H" >f* H be the 

minimal resolution . The n h* COf*̂  z> COHn ( a property o f the minimal 

resolution o f any normal Gorenstei n surfac e singularity) . O n the 

other hand , CO Hn => h* Of *H = N*F * sinc e H is a DuVa l 

singularity. Henc e the y ar e equal an d f*H has only DuVa l 

singularities. 

(16.5) Partial resolution s o f DV singularities an d their 
deformations giv e a  way to construct example s o f smal l 
contractions. W e begin wit h a  partial resolutio n o f a DV 
singularity 

f : H* > H 

which contract s a  singl e (smoot h rational ) curv e C  to a point 

x e H. W e smoot h H ' via a deformation wit h smoot h tota l spac e Y. 

It turn s ou t that f  extends t o a map (als o denote d by f) 

f: Y >X, 
where X  is a deformation o f H. No w X may be singula r alon g a 
curve, but , by "opennes s o f versality," ther e i s always a 
deformation o f H' so that th e deformation o f H in X is smooth . 

(16.6) Theorem: Suppos e C  contracts t o an isolated singula r poin t 

X G X. The n th e following ar e equivalent: 

1) C has normal bundl e 0.(1) ® & ( - 3 ) ; 

2) f - 1 f T L x x  does no t generate th e ideal o f C in X 

at a  generic poin t o f C; 

3) f - 1 f T V x H , does not generate th e idea l o f C in Hf 
at a  generic poin t o f C. 

Proof: Le t A denot e th e ideal of C in Y. I f Nc/V is 

et(-i) eeu-i) or a © a ( - 2 ) , 
then 

^ M 2 = a ( d e a u ) or aeer,(2), 
so tha t 

Hl(C,JlnMn+1) H1 (C, Sn (A/A2) ) = 0, 
and therefor e 
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HO ( e , M n + 1 ) H°(0 :Mn) 
is surjectiv e fo r al l n . 

So we obtai n tw o forma l function s definin g C . B y th e theore m 
on forma l functions , this means tha t ther e ar e two function s 
defined i n a neighborhood o f C i n Y which generat e A a t a  generi c 
point o f C . But , sinc e X  i s by definitio n normal , these function s 
are pull-backs o f element s o f fru^. x. S o 2 ) implie s 1 ). 

2) an d 3 ) ar e equivalen t sinc e H ' itsel f i s define d b y th e 

pull-back o f a n elemen t o n / r r tx x . Finally , i f C  has norma l bundl e 

ec(D e a < - 3 ) , 
the idea l o f C  i n O/l2  is not eve n generate d by f  ^"m' x x-

d6 .7 ) Notic e tha t th e abov e proof give s a n invarian t o f (1,-3 ) 

curves, namel y th e lengt h o f ftY/f~1^nrtx x. Som e examples : 

16.7.1) D4~singularit y o n H with th e partially shade d curve s 
contracted o n H' : 

length =  2 

16.7.2) E3~singularit y o n H with the partially shade d curve s 
contracted o n H' : 

length =  6 

Another loo k a t flop s : 

(16.8) Suppos e w e have a  smal l contractio n f : Y  > X o f threefold s 
resulting i n a  Gorenstein termina l singularit y (X,x ) with f-1(x ) 
irreducible. The n th e singularit y i s cD V an d s o ca n be writte n i n 
terms o f appropriat e coordinate s a s 

x2 +  q(y,z,t) =  0. 

Then C-K Y =  0.  Suppos e w e have a  Weil diviso r D  with C- D <  0 . 

Form th e involutio n l  over a  ball i n C*3 given b y 

(x,y, z,t) (-x,y, z, t) 
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and th e fibre d produc t 

f + 

Y+- Y 

X 
I 

X 

f 

Define 
D+ = (l 1 )_1(D) . 

f+(D + ) = -f (D) 

since 

f(D) + if(D ) =  0  . 

The rationa l ma p (f+)~1°f : Y - - > Y+ (no t (if ) l) over X  i s th e 

D-flop. Th e flo p 

Y Y + 

f 

X 

f+ 

is a n isomorphis m outsid e C  (resp . (I' ) 1 (C)) . 

(16.9) I f f : Y > X i s a smal l contractio n an d X  has threefol d 

terminal singularitie s (no t necessarily Gorenstein) , the n w e ca n 
take th e inde x on e cove r o f X ,  apply th e abov e constructio n t o 
the coverin g an d tak e th e quotien t again . Thi s wil l giv e th e flo p 

of f  : Y >X. 

(16.10) References: (16.1) is due to Reid[R2], this proof is from [KS] . (16.3) 
is due to Laufer[L2]. (16.4) is again in [R2]. The existence of flops for 
threefolds with terminal singularities is due to Reid[R3]. (16.6-7) are due to 
Kollar. The proof given in (16.8-9) is due to Mori. 

[Autumn '88: Recently J, Stevens ("On canonical singularities as total spaces 
of deformations," preprint, Hamburg) proved that if a hyperplane section of an 
isolated Gorenstein singularity is rational then the singularity is terminal. 
He also proved that, if mKx is Cartier and the general member of I -KxI is 
rational, then X is canonical.] 
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Lecture #17: Kahler structures on locally symmetric spaces 

Today we will look at an entirely different aspect of the 
Hodge theory of Kahler manifolds, namely, a relation between Hodge 
theory and harmonic maps. A  possible relation between this and 
other things we have studied in the seminar will come from the 
study of period mappings of families of subvarieties of an 
algebraic manifold. Th e set-up is as follows: 

(i7.i) Definitions: Let G be a semi-simple Lie group with no 
compact factor, and let K be a maximal compact subgroup of G. 
Examples are 

17.1.1) G = SL(n,R) and K = SO(n), 

17.1.2) G = SO(p,q) and K = SO(p) XSO(q) , 

The Cartan involution on the Lie algebra g of G gives a 
decomposition int o +1 and -1 eigenspaces 

9 = fce^. 

Since the involution normalizes K, it induces an involution on 
Y = G/K which acts as -1 on the tangent space Çt to Y at {K } . Via 

conjugation, one obtains, for each ye Y, an involution fixing y 
and acting as -1 on the tangent space at y . Th e Killing form on 

$<w 
decomposes into the sum of a negative-definite for m on fe, and a 

positive-definite for m on p,, giving Y an invariant metric so that 
the involutions mentioned above are all isometries. Thu s Y is 
called a symmetric space. Fo r the Lie bracket we have 

<w;:ù$*mù$ and $$;l<x,;^* 

The curvature tensor at {K } is given by 

R(X,Y)Z = -[[X,Y],Z] . 

In example 1) above, the Cartan involution is simply minus 
transpose, so that ft is the collection of symmetric nxn matrices 
of trace zero, and Y is the set of positive definite matrices of 
determinant one. (Thi s is just the fact that every invertible 
matrix has a unique "polar " decomposition int o a product of a 
positive-definite matrix and an orthogonal matrix.) 
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In example 2), the Cartan decomposition is given by 

skew 

vc 
A 

skew cb 
skew 

b0 

0 

skew 

0 

b< 
A 

0 

For the theorem which follows, we need to assume that Y = G/K 
is "of non-compact type", that is, G and K are as described above. 
In this situation, all sectional curvatures on G/K are 
non-positive. Finall y we must assume that Y is not Hermitian 
symmetric. 

(17.2) Theorem: Suppose that Y is as above, that T is a discrete 
subgroup of G which acts freely (o n the left) on Y 
such that r\Y i s compact, and that 

f: M >T\Y 
is a continuous mapping from a Kahler manifold M. 
Then f  i s homotopic to a non-surjective map, or, 
what is equivalent i n case dimM = dimY, the 

fundamental cycle of T\Y is not in the image of 
H* (M) . 

(17.3) In what follows, we want to give some idea of how this 
theorem is proved. Firs t notice that an immediate corollary of 
the theorem is that T\Y itself cannot have a Kahler structure. I n 
fact we make the stronger conjecture: 

(17.4) Conjecture: If G/K and T are as above, then T cannot be the 
fundamental group of any compact Kahler manifold. 
(The conjecture is true if G = SO(n,l), n>2. Se e [CT].) 

(17.5) Note that (17.1.2 ) above is closely related to another 
example in which T\Y is the period space arising from the 
polarized Hodge structure on the primitive second cohomology of 
algebraic surfaces: 
17.5.1) G = S0(2p,q) and K = U(p)XSO(q), 

T = S0(2p,q) nGL(2p+q,Z) . 

Here G/K is a complex manifold since it can be realized as a 
locally closed subvariety of the variety of (p,p+q)-flag s (F2, F1) 
in Ve, where V is a R-vector space with a non-degenerate symmetri c 
bilinear form of signature (2p,q) . However T\Y is not compact. 
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(17.6) An example in which T is co-compact is given by replacing G 
in (17.5.1 ) by the orthogonal group of the quadratic form 

Q = |x|2 - V2|y|2 

on R2p+q, and replacing • T by 

SO(Q) nGL(2p+q,(ring of integers of Q(^2))). 

If a denotes conjugation in Q(V2), then T has discrete image in 

SO(Q)XSO(Q) under the map 

Y > (Y, 7°). 

It can be shown that the image of T is co-compact and so we get 
the desired co-compactness by the map induced by projecting onto 
the first factor. I f it is not true that 

p = 2 or q = 2, 
we conclude that the complex manifold T\Y does not admit a Kahler 
structure, even though it is "pseudo-Kahler" (tha t is, it has a 
natural indefinite metric whose Kahler form is closed). 

(17.7) Outline of a proof of Theorem(7.2): 

17.7.1) The first ingredient is a theorem of Eells and Sampson 
which says that every continuous map from a compact Riemannian 
manifold to a compact Riemannian manifold with non-positive 
sectional curvature is nomotopic to a harmonic map. ( A map 

Ò: M >  N 
is harmonic if it is a local minimum of the energy function 

M 

ld<|>| 
2 

^cn; = E«|» 

where the norm is induced from the metric on N.) S o from now on 
we can assume that f  i n the statement of the theorem is harmonic 
(and then we no longer need assume T\Y compact) . 

17.7.2) The second ingredient is another theorem of Sampson for 
f: M(compact Kàhler) >T\Y. 

Namely, the differential d f o f f  take s the holomorphic tangent 
space TifQ(M) Ix at a point x  int o the complexified tangent space 

to T\Y at f(x). This latter vector space can be identified with 
r 
via the left G-action on Y. Sampson' s result is that the image 

c 
of T]_ o (M) |x must lie in an abelian subspace of ft , that is, 

[df, df] = 0. 
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(In this result, it is allowed that T\Y have Euclidean factors.) 
Sampson's theorem is proved using Bochner-type identities—we will 
give the proof in a later seminar.) 

17.7.3) The final ingredient comes by measuring the size of n 
abelian subspaces of Ct : 

Theorem: Assum e that g has no factor isomorphic to <^i(2,R) . 
n 

If a i s an abelian subalgebra of ft , then 
dimca < (1/2 ) -dimcçtC. 

Furthermore, equality holds only in the case in which 
Y=G/K i s Hermitian symmetric, and a corresponds to the 
(1,0)-tangent space of one of the standard Hermitian 
symmetric structures on T\Y. 

(17.8) References: For a general introduction to symmetric spaces see [H]. 
(17.2) is due to Carlson-Toledo[CT]. (17.7.1) is in [ES], (17.7.2) in [Sa] 
and (17.7.3) in [CT]. 
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Lecture #18: Proof of Sampson's theorem 

Today we will prove the theorem of Sampson that is used in 
(17.7.2) 

(18.D Notation: Giver 
f : M >N = r\G/K, 

let "T( )" denote the "tangent bundle". W e consider the bundle 
f*T(N)c on M, with metric induced from the Riemannian metric on N, 
This metric induces a connection 

V: T(f*T(N)c) >T(T * (M)®f*T(N)c) 

Let V = V' + V" be the decomposition of V given by the 
decomposition 

T*(M) = T1'0(M) + T0'1^) . 

The curvature tensor R is given by 

-R(X,Y)s = VxoVY(s) - VYoVx(s) - V[x Yj (s) 

(18.2) Theorem: If M and N are as above, then f  i s harmonic 
if and only if 

i) for X,Y e TlfQ(M), the n R(X,Y) = 0, (s o also for 
X, Y e T0, i (M) , R (X, Y) = 0) ; 

ii) df : T]_̂  o (M) »f*T(N )C is a holomorphic mapping 
of holomorphic vector bundles where the holomorphic 
structure on f*T(N)C is one such that V" becomes 
the d~-operator. (Suc h a holomorphic structur e 
exists by i).) 

Proof: The Euler-Lagrange equation for the above-defined energy 
function E of a harmonic map f  i s gotten as follows: 

IdfI 2 = tr(t(df) -df) 

so the variational formula for a local minimum is 

T(f)x = tr(Vdf)x = ZVx(i)df (X(i) ) lx = 0 

for x eX an d an orthogonal basis {X(i) } of T(M)X. (Recal l that df 

is a section of the bundle T* (M) ®f*T(N) with connection induced 
by the Riemannian connections on T*(M) and f*T(N). Intuitively , 
the energy function E (<()) is measuring how far a mapping (J) is from 
being an isometry.) 
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(18.3) We will get the result we want by covariant differentiation s 
of f*(gjj)f wher e g^ denotes the metric on N. Sinc e M is Kahler, 
these covariant differentiations will respect the decomposition of 
f*(g^) into types and, more precisely, we will get the desired 
result by following the summand of f*(gN) of type (2,0 ) through a 
commutative diagram of covariant differentiations: 

r(S2T*M 

r(T*M<S>S2T*M) 

T( T* M ) 

" [_ " denotes the contraction 
induced by the metric on T*(M) 

. r(T*M® T*M®S2T*M) 

r (T*M® T* M ) 

d* 

L® L 

T(R) 

Here V means the covariant differentiation induced from the Kahler 
metric on M. 

We apply the composition of maps in the diagram to f*(g^), for 
f harmonic . W e will obtain an expression of the form 

| |Vdf ||2 + RicciM(. . .) -%(...) 

where the "(...) " mean s an expression in the Ricci curvature of M 
and an expression in the curvature of f*T(N) respectively. Sinc e 
this expression is in the image of d* , it will have to integrate 
to zero over M. But , since there are terms with opposite signs, 
we don't get much information from this fact. 

(18.4) However, if we apply the composition of the maps in the 
diagram to the (0,2)-componen t of f*(g^), the term involving the 
Ricci curvature of M drops out and we obtain an expression 

| | V " d ' f ||2 - ZZ<R ( z(i ) " , z(j ) " )d f (Z(i)") , df(Z(j)") > 

where "  denotes the (0,n)-componen t and d'f is the restriction of 
df to T ^ Q ( M ) . Agai n this expression must vanish for harmonic f 
when we integrate over M. Th e vanishing of the first term 
corresponds to the second assertion of Sampson's theorem and the 
vanishing of the second term corresponds to the first assertion. 
We now compute, first for the entire tensor f* (gjj) : 
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V7f*(gN)(X,Y) = dz(f*(gN)(X,Y)) - f*(gN)(VZX,Y) - f*(gN)(XfVZY) 

= <Vz(df(X)), df(Y) > + <df(X), Vz(df(Y))> 

f*(gN) (VZX,Y) - f*(gN) (X, VZY) 

= <(Vzdf) (X), df(Y)> + <df(X), (Vzdf ) (Y)> 

(Warning: Vz sometimes means the connection on S2T*(M), sometime s 
the connection on f*T(N), sometime s the connection on 
T* (M) ®f*T(N) . Decid e by looking at the vector Vz operates on!) 

Therefore 

VTATV7f* (gN) (X,Y) = <VTATV7df (X) , df(Y)> + <Vwdf(X), V7df(Y) > + 
<Vzdf(X), Vwdf(Y) > + <df(X), VwVzdf(Y)>. 

Using normal coordinates at a point p  an d an orthonormal basis 
{X(i)} for T(m) such that [X(i),X(j) ] = 0 at p , we use the above 
formula and the Euler-Lagrange formul a 

Z V x m d f (X(i) ) = 0 
for harmonic maps to compute the image at p  o f f* (ĝ j) under the 
composition of maps in the diagram given in (18.3 ) : 

I I V x ( j ) V x ( i ) f M g N ) (X(i),x<j)) 

= ZZ<VX( . }d f ( X ( i ) ) f V x ( i ) d f (X( j ) )> 

- Z£<df (x<i) ) , Vx(j)Vx(i)df (X(j))> 

= | |Vdf | |2 + £L<df (X(i) ) , V x ( i ) V x ( i ) d f (X(j) )> 

- EZ<df (X(i) ) , V x m VxM)df (X(j) )> 

= II Vdf II 2 - £Z<df (X(i) ) , R®(X( j) ,x(i) )df (x( j) )> 

where R® here is the curvature of the connection on the bundle 

T* (M) <8) f *T (N) 
But the curvature of a tensor product of two bundles with the 
tensor-product connection satisfies a Leibniz rule so that we 
finally get: 

ZSVX(j) VX(i)f*(9N) (X(i),X(j)) = 

|| Vdf ||2 + ZZ<df (X(i) ) , df (RM(X(j) ,x(i) )X(j) )> 
- XZ<dfX(i) , RN(dfX( j) ,dfx(i) ) (dfx( j) )>. 

(The change in sign on the second term comes in the passage from cotangent to tangent 
bundle.) 
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(18.5) Now since M is a Kahler manifold, covariant differentiatio n 
Vz respect s types in S2T*(M). W e replace the orthonormal basis 
(X(i)} with a standard Hermitian basis { Z ( i) ',Z ( i)"} for 

T(l,0) (M)+T(0,i) . 

Applying the composition in (18.3 ) to the (0,2)-componen t of 
f*9N' we Set 

22L<V7Mv„df (Z(i) ' ) , V 7 m „ d f (Z(j) ')> 
+ EI<df (Z(i) ") , df (RM(z(j)",z(i)")z(j)")> 

- ZZ<dfZ(i)", RN(dfZ ( j) ",dfZ (i) ") (dfZ(j)")>. 

The Kahler identities for R^ imply that the term involving R^ 
vanishes. Applyin g the definition of R^, the above expression 
becomes 

ZS<Vz(j)„df (Z(i) ' ) , Vz(i)„df (Z(j) ')> 
+ ZL<dfZ(i)M, [ [dfZ ( j) ",dfZ (i) "] ,dfZ ( j) "]>. 

Now using the identity for the Killing form 

<[X,Y],Z> + <Y,[X,Z]> = 0, 

the above expression becomes 

ZZ<Vz( j ) „df (Z(i) ') , V z ( i ) „df (Z(j) ')> 

+ ZL<[dfZ (j) »,dfZ (i) "] , [ [dfZ (j) ",dfZ (i) "] ]> 

as desired. 

(18.6) References: This proof is a reformulation of the original one in [Sa] 
Finding a Bochner formula not involving the Ricci tensor of M was first 
accomplished by Siu[Si]. 
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Lecture #19: Abelian subalgebras of Lie algebras 

Finally, we want to discuss the proof of the last step in the 
program presented in Lecture #17: 

(19.D Theorem: Assume that o i s a semi-simple real Lie algebra. 

Let p b e the -1 eigenspace of the Cartan 
involution (se e (17.1)). If W is an abelian 
subalgebra of tt , then 

dimcW < (1/2 ) dimRçt. 

Furthermore, if g has no sl(2,R) factor, then 

equality holds only in the case in which g i s th< 
Lie algebra of infinitesimal isometries of an 
Hermitian symmetric space and W is the (1,0) -
tangent space to a natural symmetric complex 
structure. 

Notice that for the sake of simplicity, we will only treat the 
case in which g is simple. (Th e general proof is essentially the 
same.) 

The steps in the proof are: 

C 

(19.2) Suppose that W is a maximal abelian subspace of p, . W e first 

reduce to proving the case WnW~ =  0. Suppos e that a = W O W " * 0, 
where " " denotes "coniugate". Then 

a ç t ç a , 

where t is the tangent space to a maximal flat subspace of G/K. 

(19.3) From the theory of roots for a real semi-simple Lie group, 
the action of t on 

wn;;^^ù$< 

is as follows: 

There is a finite set of roots {a} and Xae k, Yae jx such that 

[x,xa] = a(x)Ya, [x,Ya] = a(x)xa 

for all X G t. 
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(19.4) Let &a denote the one-dimensional space generated by Xa an d 

let {Xn denote the one-dimensional space generated by Ya . The n 

9- = t + 2Fc r 

Also, if we let { p } c { a} be the collection of roots which vanish 

on a. Sinc e the roots generate the dual space of a, 

#{p} + dima < #{a} . 

(19.5) Using that W was chosen to be maximal, one shows that the 

subspace çt' orthogonal to a i n (t + Ep-p) wit h respect to the 

Killing form is again a symmetric space of the same (non-compact ) 

type because it is closed under [ [ , ] , ] . Since (t + £ftg) i s the 

centralizer of a i n çt, 

W ç (t + Ep-g) c 

so that W = a 0 W, wher e W = (çt1 OW) . Notice that 

W1 n (W ) _ = 0 . 

Suppose we know that 
dimcW < (l/2)dimRp,V 

Then, since the codimension of çt1 in p, is at least twice dim^a, 

we conclude 
dimcW < (l/2)dim Rçt. 

Notice also that equality is only possible if a = 0 in the first 
place. 

(19.6) Since we may now assume that W OW = 0 , the inequality 

dim^W < (l/2)dimRp, 

is automatic. W e need only show that equality implies that G/K is 
Hermitian symmetric with W = p» ̂  0 ) or W = p,^ ^ . Th e conditions 

W O W " = 0 and W © W " = p,C 

mean that W induces a complex structure J on p, 
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(19.7) Equivalent conditions which imply that G/K is Hermitian 
symmetric are: 

1) J e K, that is, J is induced by and element of K under 
the adjoint representation, 
ii) J is an isometry for the Killing form, 
iii) W is K-invariant under the adjoint representation, 
iv) W is isotropic for the Killing form. 

(19.8) We will complete the proof by showing that, if rank (G/K) > 1, 
then J is an isometry, and, if rank(G/K) = 1, W is isotropic for 
the Killing form. 

19.8.1) rank(G/K) > 1: Let t be a maximal abelian subalgebra of p. 
Then one sees easily that J(t) must also be abelian. Bu t K 
operates transitively on the set of maximal abelian subalgebras of 
p, s o there must be an element k e K so that Ad(k)J takes t to 
itself. Agai n one shows that Ad(k)J must permute the "singular" 
hyperplanes of t. given by the roots. Since , by irreducibility, 
there are 

dim t + 1 
of these in general position, Ad(k)J must be a multiple of the 
identity on t. On e then shows that this implies that Ad(k)J is a 

multiple of the identity on all of p. S o 

<JX,JY> = m<X,Y> 
for all X and Y in p. Bu t J2 = -1. S o m = 1. 

19.8.2) rank(G/K) = 1: We will prove that W is isotropic for 
< , >. Recal l that G/K has rank one if and only if K operates 
transitively on 

S (ft) = {Xep: <X,X> = 1}. 

One then shows that this implies that Kc operates transitively on 
{X e pC: <X,X> = 1} 

So, if < X , X > * 0, then the K<—orbit of X has codimension one in C 
p . Suppose now that X E W. Le t c denote the centralizer of X in 

pC. The n YGC i f and only if Yl [kC,X] sinc e 

<[X,Y],Z> = -<Y,[X,Z]>. 

Since we are in the case in which dimW > 2, the codimension of 

, W] in pC must be > 2, so that the codimension of the Kc-orbit 
of X in pC must be > 2, so that <X,X> = 0. 
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Notice that the above result implies the following: 

(19.9) Rigidity Theorem of Siu: 
If G/K is hermitian symmetric, irreducible, and not the 
hyperbolic plane, and if M is compact, Kahler, and if 

f: M >N = T\G/K 
is harmonic, and if, at some x e M, rankxf = dimN, then 
f i s either holomorphic or anti-holomorphic. 

Outline of proof: By Sampson's result, df i s a holomorphic 
bundle map and so is of maximal rank off a proper complex analytic 
subvariety M'. Abov e we showed that p  ̂an d p-^ Q) ARE T^IE 
only maximal rank abelian subspaces of p- , so d"f must map to one 
of these. Exten d the map over M1 by analytic continuation. 

(19.10) References: (19.1) is proved in [CT] and (19.9) in [Si]. 
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Lecture #20 : Maximal variations of Hodge structures 

Today we will discuss a result on "variation of Hodge 
structures" which is closely related to the results on harmonic 
maps described in Lectures 17-19. 

(20.D The geometric model for a variation of Hodge structure come: 

from an analytic family {Xs : s G S} of Kàhler manifolds. Afte r 

framing H*(XS; Z) locally, the Hodge decomposition 

Hk(Xs) = 
p+q = k 

HP,q 

gives a continuously varying direct-sum-decomposition o f a fixed 
complex vector space H~Hk(Xs). Alternatively , the decreasing 
filtration 

Fp = 
p'> p 

HP'<<ù' 

gives a holomorphically varying family of subspaces of H. A s we 
shall see below, this realizes {FP(XS) } locally as a holomorphic 
map of S into a product of Grassmann varieties. Th e image will 
lie in a locally closed complex analytic subvariety D of the 
product of Grassmannians. D  is a complex manifold and a 
homogeneous space. 

(20.2) Rather than define things in generality, we illustrate this 
construction fo r polarized Hodge structures of weight two. Give r 
a complex vector space H of dimension 2p+q with an integral 
structure which has an integral-valued symmetric bilinear form 
< , > of signature (2p,q) , we define D to be the space of all 
filtrations 

{F° = H, F1, F2, F3 = 0} 

with dimF^ = p+q, dim F2 = p, such that with respect to < , > we 
have : 

20.2.1) (FP) -1 = F3"P, 

20.2.2) the subspaces 

Hp,2-p = FPn (F2"P)-

give a direct-sum-decomposition o f H (where " " means 
"conjugate"), 

20.2.3) - <iP Ç[ ( ), ( ) >  is a positive definite Hermitian for m on 
HP'Ç whenever p+q = 2. 
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(20.3) Picking a reference Hodge structure He D, D becomes the 
homogeneous space 

SO(2p,q)/U(p)XSO(q) =G/V . 

The complexified Lie algebra 
xn; 
^$ùù of G has a direct sum 

decomposition 

s ° - ®8"p'p 

where g i s the subspace of elements of the Lie algebra which 
takes each H P ' ^ ' t o H P ' - P ^ ' + P . 

If we take the sum © g ~ P ' P onl y over positive p , we obtain 

the holomorphic tangent space to D, which we will denote as g . 
If we frame H by taking a unitary basis for H^^O, the conjugate 
basis for H0,2^ and an orthonormal basis for H^'l, we can write: 

wx,;^$$< 
< 

p q p 
'0 0 1 
0 -I o 
' 1 0 0 

p 
q 
p 

a " = 

p q p 

0 
0 
0 

p . 
q 
P " 

Z = t X 

Y skew 

a ' " 2 ' 2 ' e<-i,i> 

(20.4) Griffiths showed that a family of surfaces {Xs}ses induce s 
locally an analytic map 

f: S >D, 

called the period mapping, and that this mapping is horizontal, 
that is, 

dFP/ds ç FP"1. 

Calculating at any reference point H, we see that f  i s 
horizontal at H if and only if d f take s values in the subspace 

wx^$ùx; 
<<n,;:ù$* 
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(20.5) Definition: A (local ) variation of (polarized , weight two) 
Hodge structures is a horizontal analytic map 

f: S >D 
where S is any complex manifold (no t 
necessarily the parameter space of a family of 
surfaces). 

From the above matrix presentation of £J w e see that 
horizontality of f  i s automatic if and only if p = 1 (i n which 
case D is Hermitian symmetric) . 

We wish to address the following question: 

How large can the rank of df be? 

To answer this, we begin with the following observation: 

(20.6) Lemma: The image df(TQlfOS) in the holomorphic tangent 
space of D  ca n be identified with a subspace 

wx;:=$$lù!! 
^$<<w,;:::w< 

-1 1 
which satisfies [a,a] ç g ' . 

One would like to say "this follows from the integrability 
condition on vector fields tangent to an integral submanifold". 
However, one must distinguish between Lie bracket of vectorfields 
on D  an d Lie bracket of left-invariant vector fields on the 
group, and one must also choose the identification to be used. W e 
must therefore give an argument : 

Proof: Let 

wx,;! 
^$*< 

o 

X 

Y 

0 

0 

fcx 

o" 

0 

0 

be an element of ^  ,  and consider the map which sends £  t o 

e^FQ* wher e FQ * i s a reference filtration. Thi s map defines 
a local coordinate system on a neighborhood W  o f the reference 
filtration, and the map n  whic h sends e^FQ * to define s a 

lifting of W  int o the group. Le t CO = n_1d n b e the associated 
Maurer-Cartan form, and set 

a = f *co(T0l, Os) 
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By construction, CO is a form with values in ^$wcvv  v.e., i n the 
space of matrices 

0 

X 

0 

0 

0 

m 

v 

0 

0 

0 

Now pull the integrability condition dco —COACO = 0 bac k via f 
and evaluate on a pair of tangent vector fields U  and V t o get 

U(f*CD (V) ) - V(f*CD (U) ) - f *CD ( [U,V] ) - [f *CD (U) , f*CO (V) ] = 0 . 

Since the first three terms lie in ;,^$$$$ so must tne last. Bu t 
this is the assertion to be proved. 

With this result in hand we can establish a fundamental 
property of the subspaces a : 

(20.7) Lemma: If a i s the tangent space to a variation of Hodge 
-1 1 

structure, identified with a subspace of g '  a s above, 
then 

[a,a] = 0. 

In other words, the tangent spaces to variations of Hodge 
structure are abelian. 

Proof: For formal reasons one has 

[a,a] cvo 2'2 

By the previous lemma, 

[a,a] eg<<mù$$$ 

-1 1 - 2 2 
But g ' an d g '  ar e complementary, so [a,a] = 0, as required. 

Remark: The condition [a,a] = 0 is inspired by, but slightl y 
stronger than, the analogous condition for infinitesimal 
variations of Hodge structure. 
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Let us now draw the consequences of this last result. I f one 
writes a horizontal tangent vector as 

N(X) = 

p 

X 
0̂ 

q 
0 
0 

bx 

p 
0 
0 
0 

p 
q 
p 

then the condition that a be abelian becomes 

(*) tx-x1 - tx ' - X = 0, 

whenever N(X),N(X') e a. W e therefore consider the following: 

(20.8) Lemma: Let a be a space of qxp matrices satisfying (* ) . 
If p > 1, then 

dima < (l/2)pq. 

Proof: Let {e-j_ } be the standard basis of CP, let {fj } be the 
standard basis of le t (  , ) be the complex bilinear form given 
by the rule fj_-fj = 8j_j . Defin e 

<ij = {Xea: X(e-j_) = 0 for all i < j} 

with CCQ={all qxp matrices} . The n {<i j : 0<j<p} i s a decreasing 

filtration of CL . W e also define the subspaces 

Sj = aj/aj + l = aj^ej + l) ^cq-

Then we have 

a = eai/ai+1 = © Si . 

To conclude, we observe the following: 

20.9.1) Si±Si fo r i<j, since 

tX(ei + 1) -Y(ej + 1) = tY(ei + 1) -x(e-j + 1) = 0 

for Xea,, Y G a j . 
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20.9.2) If S]_, . . . , S^ is a collection of mutually perpendicular 

subspaces of C/î and k > 1, then ZSJ < (1/2)kq , where Sj =  dimSj . 

To see 20.9.2), notice that if i < j, then 

SÌ + sj < q, 

since Sj_ŒSj-'- and dim Sj + dimSj-^ = q. Consequently 

i< j 
(Si + Sj) <  (l/2)k(k-l) q 

and also 

i< j 
(Si + Sj) =  (k-1 ) S3 

from which the lemma follows. 

We have therefore established the following: 

(2o.io) Theorem: Let D be a period domain for polarized weight-two 
Hodge structures. Le t 

f : S >  D 

be a local variation of Hodge structures. Then 

rank f < (1/2) h2'°h1r1 . 

If hl'l is even and h^O >  2, the above bound is sharp, as we 
will show below. However , not all variations are contained in 
variations of rank 

(l/2)h2'Oh1'1. 

For example : 

(20.il) Theorem: With three exceptions, variations of Hodge 
structures coming from hypersurfaces of dimension 

n > 2 
are maximal. 

(For surfaces of dearee d i n Cp3 

(l/2)h2'Oh1'1 

grows like wherea s the variation dimension grows like d3.) 
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(20.12) To see sharpness, let q = 2q'. Le t V be a maximal totally 
isotropic subspace of wit h respect to (  , ). The n dim V = q' . 
For example, V might have basis 

{(l,i,0,...,0),(0,0,l,i,0,...,0),etc.}. 

Then 
cq = v + V", 

and {N(X) : XeHom(CP, V)} defines an abelian subspace of <^^^^vg 
In fact, the corresponding variation of Hodge structure is easily 
seen to be induced from the group homomorphism 

SU(p,q') >SO(2p,2q' ) . 

Moreover, all maximal-dimensional variations are of this form in 
the case ĥ -'^ even and h^O >  2. 

(20.13) The dimension bound for variations of Hodge structures can 
be seen as an analogue to the bounds on the dimension of harmonic 
maps from a Kahler manifold to a symmetric space of non-compact 
type given in Lectures #17-19, and the sharpness result can be 
seen as an analogue of Siu's Rigidity Theorem. I n fact, we can 
give more substance to this analogy as follows: 

(20.14) Let D = G/V where V is compact. Fin d a maximal compact 
subgroup K containing V. Le t 

D0 = G/K. 
The group 

T<G 
of integral-valued < , >-isometries i s a discrete subgroup, and we 
have 

K: T\D >r\D0 
with fibre K/V. 

(20.15) Theorem: I f M is a complex manifold and 

f: M >T\D 

is a variation of polarized weight-two Hodge 
structures, then Kof i s harmonic. 

Sometimes the converse holds. Fo r example, if DQ is quaternionic 
hyperbolic space, then all harmonic maps to T\DQ of rank greater 
than two lift to variations of Hodge structures. 
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(20.16) Remark: Sharp bounds on the rank of a variation of Hodge 
structure in arbitrary weight have recently been obtained in joint 
work of Carlson, Kasparian and Toledo. Fo r weight two, these 
results give an improved (an d sharp) bound for the case of h1'1 
odd: 

rank f < (l /2)h2'°(h1'1 - 1) + 1 , 
where h2'0 > 1. 

(20.17) References: (20.10) is due to Carlson [Ca]. (20.11) is in [CD]. (20.15) 
is in [CT]. 
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Lecture #21 : Subvarieties of generic hypersurfaces 

(21.D W e work over an arbitrary algebraically-closed base field 
We consider generically finit e morphisms 

f : X V c Y 

of a projective manifold X into a subvariety V of an 
ambient projective variety Y. W e require that V and Y be smooth 
at points of f(X). Th e normal sheaf, whose sections 
measure first-order deformations of f  whic h leave the target 
space V fixed, is given by the formula 

Nf,v = f*Tv/Tx 

Typical of the estimates we obtain is the case in which X is a 
rational curve and V is a generic hypersurface of degree m  i n 
Pn. I f X denotes the length of the torsion subsheaf of Nf y 
and let 

c = rank of Nf/V/(image of H°(Nffv® &x) ) . 

Then 
c > (m - (n+1)) + ((2+T)/(deg f ) ) . 

So, the more positive the canonical bundle of V is, the harder it 
is to find rational curves on V. 

(21.2) We begin by developing these ideas in a general setting. 
We assume that we are in a situation in which the normal sheaf 
Nf,Y to f  l n tne ambient space Y has enough sections to generate 
f*Ny^Y- l n this situation, we have a surjective morphism of 
locally free sheaves 

Y- H°(NFFJR) ® < \ f *N 
V , Y 

induced by the natural map of normal sheaves. Le t denot e the 

kernel of this map. The n K i s a locally free sheaf on X. 

Furthermore, we have the natural morphism of exact sequences of 
sheaves : 

0 wx:ù 

0 Nf,v 

H°(Nf^) ® ^ 

Nf,Y 

• f*N 
V , Y 

f *N 
V , Y 

-0 

•0 
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Intuitively, K cuts out the directions in Nf y taken by points 
"left behind" in V as f  move s in Y. 

Let us denote 

& =  det f *NV, y. 

(2i.3) Lemma:cvv i s generated by global sections.b<< 

Proof: Given a vector O(x) in the geometric fibre of K at a point 

x G X, G(x) determines a unique section XQ of (Nf f y) <E> &x which 

has the value O(x) at x . Choos e sections X j_ such that \|/(Xj_) , 
i = l,...,r, generate the geometric fibre of f*Ny^Y at x - Tn e 
section reauired bv the lemma is 

i=0 

r 
(-1 b)1 dbetb ( y(t0 )... ¥(̂ i_i) ... V(xr )) x i 

(2i.4) Lemma: Let b e the image of Y. in Nf^y Tn e sequence 

0 •  Nf v / A, • Nf Y / & •  f *N v f y • 0 

is split. 

Proof: The map \\f is surjective. Th e result now follows 
immediately fro m the commutative diagram in (21.2) . 

(2i.5) More generally, suppose we have a transverse intersectio n 

V = v, . v2 • .. . • vs 

for s  varietie s in a projective variety W, and 

f : X • V ç W 

with V, the Vj_, and W all smooth along f (X) . W e let 

Y , = 
wxù$ 

V. 
3 

and require that, for each i , the mapping 

y/. H °(N ftY. ) ® 0^ f*N = f*N 
V rYi VIRW 

be surjective. The n as above there is a sheaf fo r each 

i = 1,...,r, and a diagram: 
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0 <wlm • e H°(NF ) 

o • Nf ,V Nf,W 

^^ùv 
xw;:! 

• e f *N V , Y . 

f*N 
V,W 

0 

•0 

We let 
£ . =  de t f*N =  detf*Nv_^ w 

and suppose that & i s a line bundle on X such that, for each i 

and each x  e X, we have morphisms 

£i w<ùù ::$$$$<<$$ 

which are surjective at x . Then , as in Lemma(21.3) above, we 
conclude- that i C ® ^ is generated by global sections. Furthermore , 

letting A, = © & ^, we again have that the sequence in Lemma (21.4) 

splits. 

(2i.6) Let &Q be the subsheaf of Nf^y generated by its global 

sections. Clearl y ^ 2 A / n . B y the adjunction formula 

f*C!(W) = Cl(X) + Cl(NffW) 

= C!(X) + f*C!(NV/w) + C!(NffV/^) + c1(&,/&,Q) + c1(&,Q) 

so that 

f*c1(V) = Cl(X) + c1(NfAv/^) + c1(^/^Q) + c1(&0) 

But ,^ù is generated by global sections, as is (&/& Q) <8>&, and 

Nf,v/^ ls a quotient of Nf^w. I n what follows, we will apply the 

above equality in case Nf  ̂is "semi-positive" to conclude a lower 

bound on the rank of A,/A,Q and therefore an upper bound on the 

rank of &q . 

(2i.7) As an example of the use of the formula in (21.6) , suppose 
that X is a curve, and that 

X = length of torsion subsheaf of Nf y 

As in [C2], we define a sheaf on X to be semi-positive if it has 
no quotients of negative degree. 
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(21.8) Theorem: If X is a curve and 
f: X • V c W 

is as in (21.5), if Nf^w is semi-positive, and if <£, 

is a "basepoint-free multiple" of each <£,̂ , then 

rank(Ä,/Ä,0) (deg &) >  (deg f*Kv) + (2-2g) + X, 
where Kv denotes the canonical bundle of V. 

Proof: The theorem results from writing down the formula in 
(21.6). I n this case ci(X) =  2-2g where g = genus X. Als o 

ci (&0) > X, 

and, by Lemma (21.4), c1(Nf^v/A.) > 0. 

(21.9) To give an example of the use of this theorem, we restrict 
further to the case in which X is a rational curve, W is a 
generic hypersurface of degree m  i n pn+m, and V is cut out in W 
by a generic linear space of dimension n . (Th e semi-positivity 
of Nf ^ is shown in [C2]. ) Sinc e X is rational, we have the 
formula 

Bf,V = CC(ai) 0 ... ©a(an_2) 

for the "locally free part" Bf v °f Nf V' where 

Sa^ = -(deg f*Kv) - 2. 

The semi-pos it ivity of Nf y/A, implies that the injection 

(loc. fre e part A/n! { a (aj) : aj<0} 

cannot project to zero on any factor. So , for example, we have 

aj > -(deg &) , j = 1, . . .,r. 

(2i.io) Suppose now that we are studying rational curves on generic 
hypersurfaces of degree m  i n Pn. Theorem(21.8 ) tells us that 

rank(Ä,/Ä,0) > ( m - (n + 1) ) + (  (2+x) / (deg f ) ) . 

So, i n particular, to have any rational curves at all, m must be 
less than or equal to 2n-2. 

(2i.il) Finally, we give a lemma which indicates how the existence 
of a rational curve of degree d  o n a generic hypersurface of 
degree m  i n Pn influences the distribution of rational curves of 
degree d  o n generic hypersurfaces of degree m  i n higher 
dimensional projective spaces. 
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Lemma. : Suppose V is a generic hypersurface in Pn of 
degree m > (n+1): 

a)If m  > (2n-l), then V contains no rational curves. 
b) If m  = (2n-2) and V contains a rational curve of 
degree d , then the generic hypersurface Z in Pm of 
degree m  i s covered by deformations of that rational 
curve, each of which span (a t most) a Pn. 
c)If m = (2n-2)-k and V admits a family of rational 
curves of degree d , covering a subvariety of dimension 
(k+1), then the generic hypersurface of degree m  i n Pm 
is covered by deformation s of that family of rational 
curves, each of which span (a t most) a Pn. 

Proof: Suppose V admits a rational curve: 
f : X V 

Let W be a generic hypersurface of degree m  i n Pm+n. A s in 
[C2], Nf  ̂is semi-positive. Th e fact that f  deform s with every 
deformation of the linear section V in W, says that, in all the 
above consideration, we can replace 

H°(Nf(Y.) 

with a subspace R-j_ of sections arising from deformations of the 
pair V in Yj_, that is, by a vector space obtained by picking a 
deformation of f  compatibl e with each geometric deformation of V 
in Y-! . Th e formula in (21.6) says in this case that 

rank(&/&0) > (m-(n+l)) + (2+T)/(deg f). 

Since ran k (&/&Q) < n-2, we know that m < 2n-2, and, if 
m = 2n-2, we must have 

(deg f) > (2+T) and rank(AV&Q) = n-2. 

To finish b), we express V as the intersection of hyperplane 
sections Vj_ of W, and write f*Nv,w as a direct sum as in (21.5) . 
By general position and the genericity of V and W, for every (n-2) 
values of the index i , the corresponding subsheave s o f Nf v̂ 

must generate a subsheaf o f rank n-2. Thi s says that, for the 
generic hypersurface Z of degree 2n-2 in P2n~2, 

Nf .z 
is generically generated by global sections coming from the 
geometric deformations of the pair (f ,V) in W. Bu t these 
deformations comes from deformations of n-dimensional linea r 
subspaces of Pn+m which lie in p2n-2 to first order. Sinc e (f,V) 
and the deformations are generic, they can be taken to lie in 
p2n-2 to all orciers^ anc} so come from geometric deformations of 
(f,V) in Z. 
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The proof of c) is the same—by hypothesi s 

rank(&/&0) < (n-2-k ) 

so, by the above formula, equality must hold. Again , every choice 
of (n-2-k ) values of the index i  mus t give ' s which together 

generate a subsheaf of &/&Q of maximal rank. 

(21.12) Reference: Most of these results in the case of embedded submanifolds 
appear in [C2]. The generalization to the singular case is due to Clemens. 

122 



Lecture #22 : Conjectures about curves on generic quintic 
threefolds 

Today, we will outline a series of conjectures about 
threefolds V with Kv trivial. Th e prototype will be the quintic 
hypersurface i n CP4. Ou r starting point will be: 

(22.D Conjecture: The generic quintic hypersurface in CP4 admits 
only a finite number of rational curves of 
every positive degree. 

Remark: S. Katz has shown that there exist isolated rational 
curves of each degree on a generic quintic threefold. H e has also 
shown that the Conjecture is true for low degrees, and has counted 
the conies (609,250). It was known classically that there are 
2875 lines on a generic quintic. 

We wish to discuss a (conjectural ) corollary of the above 
Conjecture. I n what follows, let V denote a non-singular quintic 
threefold: 

(22.2) Conjecture: If V is generic, then V cannot be covered by 
elliptic curves. 

(22.3) A s a warm-up to a discussion of these conjectures, let us 
recall that no complex projective threefold V with Ky trivial can 
be covered by rational curves. Thi s is clear from the adjunction 
formula, but we presen t another method of proof which will be 
useful later: 

Proof: Suppos e that V can indeed be covered by rational curves. 
Then we have the following diagram: 

(proper flat 
morphism whose 
fibers are 
unions of 
rational curves) 

P 

T 

xw q - v (dominant 
morphism) 

(smooth 
projective 
surface) 

If we let H be a generic hyperplane section of V, then by taking 
fibred product over p  wit h q"1(H) and resolving any 
singularities of the resulting parameter surface q-1(H), we can 
assume in the above diagram that the fibration p  ha s a section 
s suc h that 

q(s(?)) = H. 
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q 
Now, the cup-product pairing is non-degenerate on H3(V; Q ) and 
is a generically finite morphism, so the natural map 

q*: H3(V;Q) »H 3(£;Q) 

is injective since cup product is non-degenerate on its image. W e 

analyze H 3Q ) usin g the Leray spectral sequence for p . Sinc e 

all fibres are unions of rational curves, R^p*Q = 0. Also the 

image of H3(?;R°p*Q) i n H3 (£; Q) intersects q*H3 (V; Q) only in 

{0}, since the image of H3(F;R0p*Q) restrict s isomorphically onto 

H3 (s (V) ; Q) 

whereas q*H3 (V; Q) restricts to 0  becaus e H3 (H; Q) = 0. Thu s all 

of q*H3 (V; Q) is generated by H1(F; R2p*Q) . Bu t this implies by 

duality that the mapping 

q*p*: H1(F;Q) > H3 (V; Q) 

is surjective. Thi s contradicts the fact that the image of this 
last map is annihilated by H3'°(V) * 0. 

Next we check: 

(22.4) Proposition: The generic quintic hypersurface can be 
covered by curves of genus 2. 

Proof: The Grassmann variety of plane sections of 
V c CP4 

has dimension 6 . Fo r each fixed plane P and a generic set of 4 
points p j e P, the set of quintics tangent to P at each p j i s a 
linear space codimensio n 12 in the set of all quintics. S o the 
set of pairs (P,V ) with P four-times tangent to V has codimension 

12 - (4-2 ) = 4. 
If we can show that the is some four-tangent pair (P,V ) has the 
property that P only moves in a two-dimensional famil y when V is 
fixed, then we have shown that the generic V admits a 
two-parameter family of plane quintic curves with four nodes, 
i.e., a two-parameter family of curves of genus 2. Fo r example, 
let V be given by the equation 

F(X0,...,X4) = f(X0,XlfX2) + X3-g(X0,X1,X2) + X4 • h (X0, X1, X2 ) = 0 

where f  give s a plane quintic with 4 nodes Pi,...,P4, and g  an d 
h ar e generically chosen plane quartics which vanish at the pj. 
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Deformations of the plane 

X3 = X4 = 0 
are given by 

X3 = a(X0,XlfX2) X4 = p(X0,XlfX2) 

and it is immediate to check that the condition on tangency of the 
deformations reduces to the statement that the the plane curves 

f (Xo,xlfx2) +a(x0,x1,x2) •g(x0,x1,x2) +p(x0,x1,x2) •h(x0,x1,x2) = 0 

which have four nodes is of (local) codimension 4. S o generic 
quintics V admit a two-parameter family of (plane) curves of genus 
2. I f the generic family were to lie in a divisor D on V, then 
the dual mapping from D to pencils of hyperplanes in P4 would be 
4-1, which is impossible since, if the dual mapping is finite, 
double dual is the original variety. Thu s the family covers V. 

(22.5) Finally, we turn to Con jecture (22 .2) . Th e derivation from 
Conjecture(22.1) proceeds as follows: 

Step 1) Assume that V can be covered by elliptic curves. Then , as 
above, there exists a diagram: 

(proper flat 
morphism with 
generic fibre 
elliptic) 

wc 

P 

q v 
(dominant 
morphism) 

( smooth 
pro jective 
surface) 

Again, by base extension, 
we can assume that p  ha s 
a section s  whos e image 
maps to a generic hyperplane 
section H of V. 

We can assume that T has been blown up sufficiently that the 
modular map to the compact if icat ion of the moduli space TTL1 of 
curves of genus one 

j : V > (Tfl^) -CP1 
is a morphism. 

Step 2) Using Conjecture (22.1), we can assume that we have chosen 
H so that it intersects each of the countable collection of 
rational curves on V transversally. Thi s means that (qos) maps 
the divisor j" 1 (») to a zero-dimensional set in V, so that, if j 
is not constant, just as in Lecture #1, we would have a 
"disappearing curve" 

(qos) ( j"1 (t) ) 

as t  goe s to infinity. Thu s j  mus t be constant. 
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Now there are two ways to continue further. One is global and 
the other is local. W e start with the global one. 

Step 3) Let U cz PN be the subset parametrizing quintic 
hypersurfaces with at worst ordinary nodes as singularities. Th e 
complement of U has codimension at least 2. No w if the general 
quintic is covered by elliptic curves then there is a family 
covering the universal quintic over U. A s we saw, the generic 
quintic is covered by copies of the same elliptic curve and this 
elliptic curve can vary with the quintic. I f it indeed varies 
then on a codimension one subset of U, it degenerates to a 
rational curve. Henc e a (possibl y nodal) quintic hypersurface 
would be covered by rational curves. Thi s however contradicts 
(22.3), since ordinary nodes do not effect the adjunction-theoretic 
argument. S o all quintic threefolds are covered be the same 
elliptic curve. 

Step 4) Let V/XJ be the universal quintic and let 

q: (T7U)X E > IT/U 
be the covering family of elliptic curves where T/13 is generically 

a family of surfaces. W e can blow up (?/U)x E suitably to get 

Z >(?/U)XE , 

where Z admits a regular map onto TT/U. Le t 

U ' çz U 
be the open set above which the maps 

q: Z > U and h : V > U 

are smooth. Thu s we have two variations of Hodge structures over 
U' and a natural injection: 

R3h*Ou- > R3g*Cz 

The variation of Hodge structures R3g*Cz split s as a direct sum 
of variations of Hodge structures as follows. 

We get one component coming from (f/U)XE . 
This is a weight two variation, namely 
R2p*C^ (comin g from H2 of the surfaces in T/13) 

tensored with the constant variation of Ĥ - (E; C) . 

The other components come from the blowing up process 
that created Z. 

In each fiber we blow up a point or a smooth curve one at a time 
The first one leaves H3 unchanged and the second one changes it 
with the Jacobian of the blown-up curve. Thu s these give weight 
three variations in which there are only two non-trivial Hodge 
subbundles. 
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Step 5) The monodromy representation on R3h*Cqj is irreducible; 

thus R3h*Q|j- maps into one of the above summands of R3g*Cz. B y the 

above considerations, the only possibility i s that we have an 
injection 

R3h*CTJ- > R2p*C^ ® H1 (£; C) . 

This is impossible, since the left-hand-side has a degeneration 
with o f the weight filtration non-zero, but obviously the 
right-hand-side can not have such a degeneration. Thi s completes 
the proof. 

The more local approach is the following: 

Step 3') By further base extension, we can achieve a dominant 
rational map 

q : T x E > V . 

If q  i s in fact a morphism, then, as before, H3 (V; Q) injects 
into 

H2(f)®H1(E) + H1(?)®H2(E). 
(Again use H3 (H) = 0 to eliminate H3 (F )®H°(E) .) 

Step 4f) It cannot be that q*H3(V; Q) lies entirely in 
H2 (?) (S) H1 (E) , since, as before, the latter has type (2,1 ) + (1,2). 
In fact, these two subspaces can only intersect i n {0} since the 
cup-product pairing is non-degenerate on q*H3(V; Q) . (I n case q 
is not everywhere defined, this statement must be modified, but 
the argument proceeds in essentially the same way, so we will 
continue to assume q  i s a morphism.) 

Step 5') We let V vary over the projective space fP, of all quintics 
in CP4. The n for each V we have an elliptic curve Ey. Le t 13 be 
a divisor on <P, along which the modulus of the elliptic curve Ey is 
constant. Therefor e first and second derivatives of the period 
mapping along 13 send H3'°(V) into H1(E)-^-. Le t SNd denote the set 
of homogeneous forms of degree d  i n n  variables . Vi a 
Griffiths' theory of residues for hypersurfaces, this fact about 
first and second derivatives along 13 gives rise to a hyperplane 

HCZS55 
such that 

1) H contains dF/dXj, j=0,...,4, for a generic quintic form F, 
2) H-H lies in a hyperplane of S51(^. 
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But this is impossible because of the following lemmas: 

(22.6) Lemma: Suppose a proper subspace W cz ha s no common 
zeroes. Suppos e k = codim(W,SNd) < d+1. The n 

SNk-W = SNk+d. 

(22.7) Lemma: Let d = N, and let H be a hyperplane in S N̂ such that 
the conductor W = [H.-SN1] C Snn 1 has no common zeroes. 
Then 

H-H = SN2N. 

Proof: W  = [HISN1] = n{ [ H : P ] : Pe S^1 } c SNN_1. 
So codimW < N . Thus, by Lemma(22.6), SNN-W - SN2N_1. Therefore , 
again using Lemma(22.6), 

H-H 3 W - S N 1 ^ = w-sNN+1 = sN2N. 

(22.8) References: S. Katz's results appear in [Kat]. The conjecture (22.1) 
appeared first in [CI]. The (conjectural) Corollary(22.2) of (22.1) evolved in 
discussions involving H. Clemens, J. Kollar and S. Mori. The alternative 
local approach to the end of the proof was pointed out to us by C. Voisin. 
Lemma(22.6) appears as a special case of Theorem 2.16 in [G] and Lemma(22.7) 
is due to Voisin. We are grateful to her for allowing us to use her 
unpublished results. Griffiths' theory of residues for hypersurfaces appears 
in [CGGH]. 
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Lecture #23: Submanifolds of generic complete 
intersections in Grassmannians 

(23.1) Today we will give a generalization of the results for curves 
on hypersurfaces given in Lecture #21. The situation is as 
follows : 

V = (n+1)-dimensiona l complex vector space 

G = Grassmann variety of r-dimensional quotien t space s of V 
X c G a generic complete intersection of type (ni]_ , . . . , m )̂ 

We will let 

Hx = irreducible open subset of the Hilbert scheme of X 
parametrizing smooth irreducible subvarieties of X 
of some given type. 

Zx = { (Z, x) : Z e Hx, x e Z} . 

Z 

z 

xv 

G 

ZX 

Hx 

F 

= P 1(X) 

X Ç G 

x e A 

P 

x 

x F 
G 

parameter space of 
complete intersections 
of the given type 

(23.2) Theorem: Let m = Em-j. Le t IRQ be the least integer s 
such that 

h° (KZ ® a z (s) ) * 0 . 
Then 

a) Nz/x ® (!) is generated by global 
sections ; 

b) codimxF(Zx) > m + m g - n - l . 

(23.3) Corollary: a) If m > dim X + n + 1, then every such Z is of 
general type. 

b) If m > dimX + n, then every such Z has 
non-zero geometric genus. 

(The Corollary follows since, for example, if Z is not of general 
type, hO(Kz®az(-l)) =0. ) 
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For example, w e might have G = CPn, and X a generic 
hypersurface of degree m>2n-l. The n X contains no rational curve. 

(23.4) Proof of theorem: The proof will begin with the 
construction of the Koszul resolution which resolves the ideal of 
the graph of a morphism 

f : Z > G 

into the Grassmann variety G: 

Given f: Z G 

r = (graph f] Z X G 

71 

Z 

P 

G 

xw,; V x z • 

z 

:; 

f * 

universal 
sub-bundle 

S V X G 

G 

Q 

universal 
quotient 

then, putting 

we obtain the resolution 
t, = 7C*Si <8>p*Q* 

. . . > A2£ >Qr'ZxG >QrT > °* 

a<8>Ç A 
a®£ »£(a) 
wxcm^$ 

$ùcxbb;: 

We will apply this construction in the case of 
f : Z >P (V) =P. 

Here the exact sequence 

(#) o — > ftp1 — > ap (-U ©n+i — > ap — > o 

gives that 
S = ftp1 (1) and Q  = Op(l) . 

We take the above Koszul resolution above and tensor it with 
&p (m) . W e then apply 7t* to pass from a complex of sheaves on ZX P 

to a complex of sheaves on Z. Sinc e the higher direct-image 
sheaves are given by 

RÎ71* = Hi(ap(m-k)®Ak(f*ftp1(l) ) ) , 

which are zero for i>0, exactnes s is preserved. W e obtain: 

...—>H°(ap(m-i) )® f*Qpi(i) —(*)->H°(e,p(m) )®az >az(m) >0 . 
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Let T be the sheaf which is the image of the arrow to the left 
of (*) and the kernel to the arrow to the right of (*). 
Now Qp!(2) is generated by the global sections 

Xj_dXj - XjdX-L, 
so : 

1) F(8)öt7(l) is generated by global sections. 

Suppose that f: Z > P factors through X ç P and that 

HO (Op (m) ) >  H° (tf,x (m) ) 

is surjective. Le t >£L denote the kernel of 

H°(ax (m) ) ® az — > az <m) 

Then the Snake Lemma implies 

2) JfcL<8>&7 (1) is generated by global sections, 

In fact, using a lemma of Lazarsfeld which we will prove next 
time, we can do a little better in the case in which Z is a curve. 

We achieve this by examining f*Qp^(l) a little more closely in 

case f: Z > P is generically injective. Le t T be as above, and 
let 

d = degree f 

ng = dimension of linear subspace of P spanned by f(Z). 

(23.5) Lemma: There is a line bundle £ of degree (d-ng+1 ) 
such that 

xcw^$$$ 

is semi-positive. 

Proof: Bv (#) one has 

f*^1^) = (n-n0)azeïïi. 

Lazarsfeld's lemma then says that, for (nn-1) general points pj on 
Z, there is an exact sequence 

o—>az(Zpj)<g>az(-i) —>ttl—>eaz(-Pj) — > o . 

Let ^ = &z (-Ip j) ® & z (1) . Sinc e the sections of <£, have no base 

points, SjS) 0, (-p j) has a section for each j . S o Tfl,®& sits in an 
exact sequence whose extremes are semi-positive. 
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(23.6) Lemma: KQ = ttç(-n-l) . 

Proof: Tensor the secruence 
0 >  S >  V <8> &G > Q > 0 

with Q*. Sinc e QQ1 = S <S> Q* an d Q ® Q* i s self-dual and so has 

trivial determinant, Kn = Ar(n+1) (V®Q*) . No w use that 

ArQ* = aG(-l) . 

(23.7) We now finish the proof of Theorem (23.2) announced at the 
beginning of this lecture. Ou r situation is: 

Z 

z 

n, 

G 

zx 

Hx 

F 
X C G 

= P \x) 

,:; 

h 

,:,v 

P 

x G 4 

_F 
• G 

parameter space of 
complete intersections 
of the given type 

We begin with the diagram: 
0 - Tz vn z h * T « Z 

0 

0 Tz vnn 

dF 

z 

b,v 

NZ/G 0 

NX/G Z 

Notice that the composition wè is exactly a direct sum of maps 

H0(©,x (m J ) ) (8) az > az (m j ) 

considered above, if we denote the kernel of this composition by 
J£L, w e obtain the diagram: 

0 w<l^$ xc,;:ù 
z NX/G Z 0 

0 • Nz/x NZ/G NX/G z 
0 

where, by 2) above, JfcL <E>&z (1) i s generated by global sections. 

Thus, as in the two Lemmas from Lecture #21, Nz/x®^'z ̂  ^s also 

generated by global sections, giving a) of the theorem. 
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(23.8) Next we consider the map 

h*TH 
X z Nz/x 

and let Ei and E2 respectively denote its image and coimage modulo 
torsion. I f ej_ = rank Ej_, then e2 = codimxF(Zx), the integer we 
need to estimate for b) of the theorem. Outsid e a subset of 
codimension two we have 

Aei + e2Nz/x - AeiEx <g> Ae2E2 

with 

Aei + e2Nz/x - AGlE1®Ae2E2 - OL (D) ® &(D' ) (-e2 ) 

where D and D1 are effective divisors. O n the other hand 

Aei + e2Nz/x - KX1(S)KZ - a (-m+n+1) ® k z 

so, if mg is the least integer such that (K z ® GC (mo) ) ^ 0, then 
IHQ < e2 - m + n + 1. 

So the proof is complete. 

(23.9) Since the earlier Lemma showed that a somewhat "les s 
positive" bundle T <8> £ is generated by global sections in the case 
Z = C , an imbedded curve of degree d , we get a correspondingly 
sharper estimate in this case: 

(23.10) Theorem: Let C be a smooth curve on a generic X. The n 
codimx F(CX) > (l/(d-n0+l))[ (2-2g) + (m-n + 1)d] , 

where, as before, ng = dimension of linear span of C . 

(23.il) Lastly, for curves of "small" degree d  < min{mj} +nQ-l, we 
show that the Hilbert scheme HC is smooth at C when H M N Q / Q ) = 0. 
(Note: This condition is always satisfied for rational curves.) 

Proof: We must show that H 1 ( N C / X ) = 0. Bu t this will follow 
immediately from the normal bundle sequence if we can show that 
the map 

H ° ( N C / G ) > H O ( N X / G | C ) 

is surjective. Sinc e C lies on generic X, H ° ( N C / G ) map s onto the 

image of H° (Nx/G) = 0H°(ax(mj)) in H ° ( N X / G | C ) . But , by a theorem 

of Gruson-Lazarsfeld-Peskine which we will prove tomorrow, the 
maps 

HÛ (Cr,x (m j ) ) >  HO (ftc (m j ) ) 

are surjective whenever ni j > d - ng + 1. 

(23.12) Reference: These results appear in [E]. 
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Lecture #24: A theorem of Gruson-Lazarsfeld-Peskine and a 
lemma of Lazarsfeld 

Today, we want to look at the proof of: 

(24.1) Theorem: Let CcPn b e a smooth curve of degree d  whic h 
does not lie in a hyperplane. The n 

H° (Pn; & (a) ) >H ° (C; &(a) ) 

is surjective if a > d-n+1. 

Proof: Let Ln~3 be a generically chosen linear subspace of 
dimension n-3 in Pn. Le t PA be the blow-up of Pn along L. The n 
PA is a projective space bundle over P^, i n fact, 

pa = p(ap2(i) e (n-2)ttp2) 
We have 

C c 

C C 

PA 

h 

• 
Pn 

f 2 
P 

We define the bundles 
er.pA(a,b) = h*Opn(a) <8>f*Op2(b) 

Then, for example, 0^(1,0) is the tautological line bundle, so 

that f*apA(l,0) = ecp2(l) © (n-2)Q:p2. Conside r the sequence 

o — > Jtca,o) —>apA(i,o) —>ac(i,o) — > o . 
Notice that &c(l,0) = &c(0,l) since C does not meet L. W e apply 

f*. B y the projection formula, we obtain 

(*) 0 >t,(l) >ttp2(l) 0 (n-2)ttp2 >f *ac®ftp2(l) > 0 

since R1^(l) = 0 because no fibre of f  contain s more than two 

points of C. Also , by writing down a local basis for f*JlG(l,0 ) 

explicitly, one sees that that sheaf is locally free. B y tracing 
through the definition, one sees that the surjection in (* ) i s 
given by 

(a, (a3, ...,an) ) >  (a + 33X3 +  ... + anXn) , 
so that, to prove the theorem, it suffices to show that 

H1(t(b)) = 0 
for b  abov e the given bound. 
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(24.2) We beqin with 

0 >& >&p2 0 (n-2)&p2 (-1) >  f *ac > 0 

from (* ) above . W e have 
rankt = (n-1 ) and det & = ap2(n-2) ®ap2(-d) . 

Next we resolve 
M = 0aH°(f*ac(a) ) 

as a module over S = k[Xo,Xi,X2J 

... >  S + S (-1) r"2 + T]_' > M >  0 

where r+1 is the dimension of H°(&c(l)). (Th e first factor S goes 

onto the constants and the linear span of X Q , X ^ , X2.) Puttin g 

Tl = Tl' + S(-l)r_n, we get a diagram of coherent sheaves on P^ : 

0 

0 

0 

d 

wc 

x 

0 

0 

ap2 0  ap2 ( -D 
I 

n-2 

ftp2 0 ap2 ("D 
n-2 

xv vv 

0 

0 3 1-

xa2j 

jvn,;ù 

0 

• 0 

So, in particular, £)Q is locally free and, by construction, 

H1 («cl2 (a) ) =0 fo r ail a  . 

This means that ^ mus t be a sum of line bundles, since, 
restricted to a line, the bundle splits, and the induced 
isomophism from a sum of tt(nj_) 's to ^ I  line must come from a 
morphism on all of P^ which is an isomorphism off a set of 
codimension > 2. 

(24.3) We are reduced to analyzing the kernel of the epimorphism 
3 2 >€J1 

of sums of line bundles in the diagram above. Ther e is a standard 
tool for analvzincr the kernel of an eoimorohism 

<)): a — > u 
of vector bundles (o f ranks a  an d b  respectively ) over a 
variety X . I t is the Eagon-Northcott complex, another form of 
Koszul resolution: 
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- » Ab+3Cl<g>S2U* >Ab+2Q®S1U* >Ab+1Q >Cl(8>detU >U(8>detU->0 

a1A . . .AAB+1 ->E(-l) ĜCjDj 

where Dj is the determinant of the <t>(ak) for k * j . T o see 
exactness, we reason as follows: 

Let ft(l) be the hyperplane bundle for f : P (U) »X . Th e 

canonical morphism f*Cl > f *11 >ft(l ) induces a Koszul resolution 

(*)... — > A3f*a<g>e:(-2) —>A2f*a<8>ft(-i) — > f*a j—>fta) — > o. 

Apply f* and notice that the R1f* vanish except for i = 0 (for f*Cl 
and ft (1)) and for i=b (fo r AJ + 1f *CL <8> ft (-j) when j>b). Also , by 
the projection formula and Serre duality, 

Rbf* (A3 + 1f*CL<g>ft(-j) ) j= AJ + 1Cl®Rbf*ft(-j) 

= AJ + 1Cl<8> (f * ft (j) <8> (Op (ft) /x) * 

= AJ + 1CL<8>(f*ft(j-b)<8>detU) * 

So by looking at the spectral sequence associated to the double 
complex given by an injective resolution of (*), we obtain the 
Eagon-Northcott complex, 

(24.4) Using the Eagon-Northcott comple x to resolve w e obtain: 

... >A t ,+232 <8)(At'^1) *—(#)-> At '+1^2 ®(At j j *  >  0. 

Let >£L denote the kernel of the map (#) . Then , since the ar e 

sums of line bundles, we have injections 

H1 (1(b) ) >H 2 (jtl(b) ) 

for all b . Also , by dimension, we have surjections 

H2 (At' +2d? (8) $ * (8) j(At '31 ) * (b) ) >jj H2 (JtL (b) 

for all b . So , we will be finished if we can show that 

H2(At'+2^2(8)^1*(8) (Att<)1)* (b)) = 0 
for b > d-n+1 
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(24.5) To do this, write 

a1 = eoKai), i = i,...,t-, 

a1 = eoKai), i = i,...,t-, 

and notice that, by construction, 

aj_ < -1, for each i , 
h-\ < -2, for each j . 

Notice that 
Atn32<g> (At 'ä1) * = Ae& = ©,(-n+2-d) . 

Also t"-t' = rank€, = n-1. Th e rest is elementary arithmetic—i f 

b > d-n+1, 

one computes that the degree of every summand of 

At,+232 <8)c)1* ®(At 'Ö1) * (b) 

is greater than or equal to -2, so H2 = 0. 

We should remark that the bound in the theorem is sharp. A 
rational curve of degree d  i n pd~l gives the required example. 
Also the theorem still holds if one only assumes that the curve C 
is reduced and irreducible, but the proof is more complicated. 

(24.6) We also need to prove the lemma of Lazarsfeld used last time: 

Lemma: Suppos e an irreducible curve CQ spans a projective space 
P = Pn. Le t 

ttl = f^p1 (i) . 
Then, for (n-1 ) general points pj on Cq, there is an 

exact sequence 

o—> ac(£pj ) ® ac(-i) — > ï ï l — > © ac(-pj) — > o. 

Proof: Let C be the normalization of CQ, and let D = Ep-j. Le t £ 

denote the pull-back of n,;mù^$ to C. W e have the exact sequence 

o — > ï ï l — > a c ® n + i — > £ — > o . 

Choose a linear subspace L of P of dimension (n-2 ) meeting CQ in 
exactly the points pj. Projec t CQ to wit h center L. 
The lemma follows from the resulting diagram: 
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0 

0 

c 

0 

£-1(D) 

x 

vww<^$$ 

0 

0 

^ 0 2 

v® a 
c 

ae(n_1) 

o 

0 

& (-D ) 

v 

$ 
D 

0 

0 

0 

0 

(24.7) We end today with another example of the usefulness of the 
above lemma. Suppos e that i s some line bundle on a smooth curve 

C such that d = deg& > g(C) . Assum e 

h°(&) = r+1 and h 1 ^) = ô > 0. 

Suppose we want an upper bound on the local dimension of Wr^f 
the set of line bundles of degree d on C with index of 
speciality at least Ô. Let V = (&, ) . Tensor the sequence 

o —>ïïl — > v <s> ar — > &. — > o 

with KC<S>«£, 1 and take global sections to obtain 

0 > K ° (1Ì1® KC®<£ 1 ) >HO(&)<8>HO(KC®& 1 ) > H ° ( K C ) . 

The last map above is called the Petri map, and its image is the 
annihilator of the tangent space of Wr^ at ^. S o we can get the 

desired result by estimating the dimension of (1Y L ® KQ ® S^~^) . T o 
do this, we tensor the sequence 

o—>eu(Zp-j)®ar(-i) —>ttl—>ear(-pj) — > o 

with Kq®&, ^ and take global sections to obtain 

0 >H°(KC®& 2(D)) >H0(Tïl®Kc®<£ 1) >©H°(KC<8> & 1(-Pj)) . 

Since d > g, we get 
h° (TTL ® Kc ® & 1) < (r-1) (6-1) 

So the annihilator of the tangent space to Wr^ at <£, has 

dimension > (r+1)S - (r-1) (5+1) . 
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(24.8) There is a variant of Lazarsfeld' s lemma for vector bundles & 
with 

o—>ttl—> v ® a c — — > o 

for which 
f : P(&) >P(V) 

is generically injective. Le t m = rankTfl.,. B y a similar argument 

to the above, one obtains 

o—>ac(Zpj> <s>dett, 1 — > i r i — > e a c ( - P j ) — > o . 

Applying this to the "first-order jet bundle" associated to the 
line bundle <£, considered above, one achieves an upper bound on the 

local dimension of w;:: Wr<wthe ff space of pairs (C,£ ) , ¿ 6 Wr,j. 

(24.9) References: The x<< theorem of Gruson-Lazarsfeld-Peskine appears in [GLP]. 
Lazarsfeld's lemma appears in [GL]. 
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RÉSUMÉ 

Ce travail comprend vingt-quatre conférence s qui ont 

fait partie d'un séminair e d'été sur la géométrie complexe des 

variétés de dimension plus élevée qu'un. Le séminaire a eu lieu 

à l'Université d'Uta h pendant le s mois de juillet et août 1987. 

Les seize premières conférences fournissen t une introductio n au 

programme de Mori su r la recherche des modèles minimaux pour des 

variétés projectives complexes de dimension au moins trois. Le 

thème central est l'étude d e variétés su r lesquelles l a classe 

canonique n'est pas numériquement effective . Les conférences dix-

sept à vingt étudient l a géométrie de l'application de s périodes, 

et, plus généralement, des applications harmoniques des variétés 

de Kâhler compactes dans certaines variétés localemen t symétriques. 

Les quatre dernières conférences étudien t l'existenc e e t les pro-

priétés des courbes de genre petit su r des variétés projectives 

avec classe canonique suffisammen t ample. 
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