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Introduction

These notes originated at a seminar that was held during July
and August of 1987 at Salt Lake City. The original aim of the
seminar was to get an overview of the following three topics:

1. Recent advances in the classification program of three (and
higher) dimensional algebraic varieties.

2. Existence of rational curves and other special subvarieties.
3. Existence and nature of special metrics on varieties.

We also hoped to then go further and study the relationships
between these three approaches. Time however proved to be
insufficient to complete even the limited program.

The first part of the program was considered in detail. 1In
that part, the central theme is the investigation of varieties on
which the canonical class is not numerically effective. For
smooth threefolds this was done in [M1] and later extended
considerably. The original approach of [M1l] is geometrically very
clear, therefore it is given in detail. Subsequent
generalizations were also considered at length.

Considerable attention was paid also to the study of special
curves on hypersurfaces and some related examples. There seems to
be a lot of experimental evidence to indicate that there is a very
close relationship between the Kodaira dimension of a threefold (a
property of a threefold from classification theory) and the
existence of rational curves. These problems are very interesting
but they also seem quite hard. Our contribution in this direction
is mostly limited to presenting some examples and conjectures.

In the second direction, one of the questions we were
interested in was that of understanding rational curves on quintic
hypersurfaces in P4, Later this was scaled down to understand
lines on quintic hypersurfaces in P4, but even this seems a hard
problem. We began to understand it more completely only after the
seminar had ended (see [J]).

Very little time was left to consider the third direction. We
were fortunate to have a series of lectures, but we could not
pursue this interesting and important direction in any detail.

The style of the seminars was very informal. We tried to keep
them discussion-and-problem oriented. Notes were taken by H.
Clemens who typed them up by the next day. These notes
constituted the first version of the present text. During the
seminar and afterwards, these notes were considerably revised,
cut, expanded and edited. During this process we tried to keep
the original informality of the talks alive.

The regular participants of the seminar were J. Jimenez, T.
Luo, K. Matsuki and the three of us. Several other people Jjoined
us for various length of time. A hopefully complete list is:
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J. Carlson, L. Ein, M. He, Y. Ma, D. Ortland, S. Pantazis,
P. Roberts, D. Toledo, S. Turner, and Stephen Yau. We are very
grateful for their contribution to the success of the seminar.

We are especially thankful to those people who gave talks.
The following is a list of the lectures of a mathematician other
than one of the three of us.

J. Carlson: Maximal variations of Hodge structures;

L. Ein: Submanifolds of generic complete intersections in
Grassmanians;

L. Ein: A theorem of Gruson-Lazarsfeld-Peskine and a lemma of
Lazarsfeld;

K. Matsuki: Cone Theorem;

K. Matsuki: Non-vanishing Theorem;

D. Toledo: Kédhler structures on locally symmetric spaces;

D. Toledo: Proof of Sampson's theorem;

D. Toledo: Abelian subalgebras of Lie algebras.

At the final editing of these notes some talks were left out.
This was the fate of the following talks:

H. Clemens: Abel-Jacobi maps;
S. Turner: Elliptic surfaces in characteristic p;
S. Yau: Euler characteristic of Chow varieties.

These talks were about topics that we had no time to pursue
further, and therefore they did not fit neatly into the final
version of the notes.

Our aim was to keep the notes advanced enough to be of
interest even to the specialists, but understandable enough so
that a person with a good general background in algebraic geometry
would be able to understand and enjoy them. Especially at the
beginning, the lectures are rather informal and concentrate on the
geometric picture rather than on a proof that is correct in every
technical detail. We hope that this informal introduction to [M1]
will be helpful. These matters occupy the first two lectures.

The classification theory of surfaces is reviewed from the
point of view of threefold theory in Lecture 3. This leads
naturally to the next lecture which is an introduction to the
study of cones of curves. Lecture 5 discusses the aims of Mori's
program in more detail, concentrating mainly on flips, the
presence of which is perhaps the most important difference between
algebraic geometry in two and in three dimensions. At the end of
this lecture, a table compares the basic results in the birational
geometry of surfaces and threefolds. Even though the list was
selected with bias, the similarities are striking.

Lecture 6 is a little more technical. It discusses the
singularities that arise naturally in the study of smooth
threefolds. These are the three dimensional analogues of the
rational double points of surfaces. Their structure is however
more complicated and not completely known.
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Lecture 7 discusses extensions of the Cone Theorem to relative
situations and equivariant settings. In Lecture 8 we give quick
proofs of some vanishing theorems that are needed for the proof of
the Cone Theorem.

This leads directly to the next big section, which is the
proof of the general Cone Theorem. This is done in Lectures 9-13.
Here the proofs are (or at least are intented to be) also
technically correct. The proof of the final step (given in
Lecture 11) is new, and makes it possible to avoid the rather
technical relative case. At least for us, this made the proof
much clearer.

The end of the first part of these notes is a discussion of
flops and flips. If a rational curve on a quintic threefold in p4
can be contracted, then it can be flopped. Thus understanding
flops yields results about rational curves on quintic threefolds
in P4. The simplest question to which this approach leads is:

Is it true that, if C is a smooth rational curve on a quintic
threefold in P4 which has normal bundle &.(2) +©.(-4), then
some multiple of C moves?

There are no such lines, but this situation can occur for plane
conics on some special quintic threefolds in P4. (A negative
answer to the question in that case appears in [C3], written after
the completion of these notes.)

Two lectures are devoted to flips. Lecture 14 is a general
introduction, and Lecture 15 is an essentially complete proof of
the local description of a threefold along a contractible rational
curve that has negative intersection with the canonical class.
This should give a fairly clear idea of the content of the first
seven chapters of [M3], and should enable the reader to go
directly to Chapter 8 (after reviewing some additional definitions
and statements). Then the introduction of [M3] should give a good
idea of how the proof proceeds in the final chapters of [M3]. We
hope that this introduction will encourage people to study in more
detail the complete proof. Lecture 16 is a short discussion of
flops. These are much easier than flips and are very well
understood.

Lectures 17-20 are devoted to studying K&hler structures on
Riemannian locally symmetric spaces. The results are due to J.
Carlson and D. Toledo. Building on results of Eels and Sampson,
they give unified proofs of some old and some new results. 1In
short, a compact Riemannian locally symmetric space has a
Kéhlerian complex structure only if it is one of the classically
known spaces, in which case the complex structure is the expected
one. These lectures show one example of the applications of
harmonic maps to complex geometry.
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For lack of time we could not go into other questions like one
of the ones we originally intended to attack:

Is there a relationship between the K&hler-Einstein metric of
a quintic threefold in P4 along a rational curve and the
deformation theory of that rational curve?

The last part is the study of special curves on general
hypersurfaces. In short, these results claim that a general
hypersurface of high enough degree does not contain any low genus
curves. In Lecture 21, earlier results of Clemens are extended to
singular curves. The results are very close to being best
possible, but unfortunately they fall short of what we would like
to have. Therefore in Lecture 22 we can give only a conjectural
discussion concerning quintic hypersurfaces in P4 and abelian
varieties. This would be a very interesting direction to pursue.
The above results can be extended to complete intersections in
Grassmanian varieties; these generalizations are due to, and were
presented by, L. Ein. He also reviewed the proof of the
Castelnuovo bound for smooth space curves proved by
Gruson-Lazarsfeld-Peskin which was used in the previous lecture.

Note: In Lectures 1-3 21, and 23-24, we work in arbitrary
characteristic, however, in the remaining lectures,
characteristic 0 is always assumed.

Once again we would like to express our thanks to all of the
people who contributed to the success of the seminar, and to all
those, including F. Serrano-Garcia, P. Roberts, T. Luo, and the
referee, who made corrections to, and improvements on, these
notes. Partial financial support was provided by NSF under Grant
numpbers DMS-8702680 and DMS-8707320.



Notes on Terminology

The following is a list of terminology that is getting to be
generally accepted in higher dimensional geometry but may not be
well known outside the field.

In pre-Bourbaki algebraic geometry it was customary to use maps
that were not defined everywhere. These were called rational
maps. We use simply the name map for them and they are indicated

by a dotted arrow —-—>. A morphism is an everywhere defined map

of schemes. It is denoted by a solid arrow —— .

A map g: X——>Y between two varieties is called birational if

it is an isomorphism between dense open subsets. Two varieties
are called birational if there is a birational map between them.
(Note that we deliberately avoid the old expression "birationally
isomorphic™ since it is confusing.)

A variety X of dimension n 1s called rational (resp. ruled) if
it is birational to PP (resp. yxPl for some variety Y of
dimension n-1).

A variety X of dimension n 1is called uniruled if there is an

n-1 dimensional variety Y and a map f: yxPl——>X which is

generically surjective. If n < 2 then this is equivalent to
ruledness, but not in higher dimensions.

A Cartier divisor D on a scheme V is called nef if, for every

complete curve C contained in V, the intersection number C-D is
non-negative. This notion is usually used only if V is proper.

A Cartier divisor D on a proper irreducible variety V is called
big if the map given by the linear system |mD|is birational for m
sufficiently large.

A Q-divisor is a fcrmal linear combination D = E:aiDi, where the
aj are rational numbers and the Dj are irreducible Weil divisors.
It is called effective if all the aj are nonnegative.

A divisor (or, more generally, a Q-divisor) D is called Q-Cartier
if some positive integral multiple mD is Cartier. A Q-Cartier
Q-divisor D is called nef (resp. big, ample,...) if mD is nef
(resp. big, ample...).

The index of a Q-Cartier Weil divisor D is the smallest positive
integer m such that mD is Cartier. Then, if kD is Cartier, k 1is
a multiple of m. The index of a variety X is the index of its
canonical divisor Ky (provided that it is defined).

A divisor with simple normal crossings on a non-singular
variety is a sum of non-singular divisors intersecting
transversely with each other.
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Lecture #1: Finding rational curves when Ky is negative

(1.1) This chapter will serve as a warm-up to the first 16 lectures.
In it we explore the general theme:

How do rational curves on a variety influence the
birational geometry of that variety?

We will see that the absence of rational curves has some very
pleasant consequences. Later this will be turned around, and we
will see that certain complications of birational geometry of a
variety X are caused precisely by certain special rational curves
on X.

The simplest example is in the theory of surfaces:

If X is a smooth proper surface, then there is a non-trivial
birational morphism

f: X—Y

to a smooth surface Y iff X contains a smooth rational curve with
self-intersection -1.

One side of this is easy to generalize as follows:

(1.2) Proposition: Let X be smooth of any dimension and f: Y——X

a proper birational morphism. For any x € X, either
£fl(x) is a point or £~1(x) is covered by rational
curves.

Proof: Let us consider first the case when X is a surface. We
resolve the indeterminacies of f~1 by successively blowing-ug
points of X. At each step we introduce a pl. Thus every f7+(x)
is dominated by a union of some of these plrs, By Liiroth's
theorem, every f'l(x) is a union of rational curves.

The general case can be proved the same way provided we know
how to resolve indeterminacies of maps. However a much weaker
version of resolution is sufficient. Since we will use (1.2)
later only when X is a surface, we only sketch the proof in the
higher-dimensional case:

We may assume that Y is normal. By van der Waerden's
theorem, the exceptional set of f 1is of pure codimension one.

Let ECY be an irreducible component of the exceptional set. At a

generic point e€ E, (Y,E) is isomorphic to a succession of
blow-ups with smooth centers. Thus there is a rational curve C in
E that passes through e such that f£(C) is a point. Since a
rational curve can specialize only to unions of rational curves,
there is a rational curve through every point of E.
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(1.3) Corollary: Let g: Z——>X be a rational map from a smooth
variety. Let
YCXXZ
be the closure of the graph of g, and let g and
p be the coordinate projections. Let SCZ be the

set of points where g is not regular. Then q(p‘ls)
is covered by rational curves.

(1.4) Corollary: Let X and Z be algebraic varieties, Z smooth and X
proper. If there is a rational map

g: 2——>X
which is not everywhere defined, then X contains a
rational curve.

The simplest situation where one could apply this corollary is
when Z is a surface which we obtain as a family of curves. In
some cases one can assert that a map g as in (1.4) can not be
regular:

(1.5) Rigidity Lemma: Let f: Y——> Z be a proper morphism with
connected fibers and assume that Z is connected.

If g: Y—> X is a morphism and for some zp € Z,
g(f‘l(zo)) is a closed point, then g(f'l(z)) is also

a closed point for every z € Z.

Proof: The set of z € Z such that g(f‘l(z)) is a point is clearly

closed. Thus it is sufficient to prove that it is also open. Let
U be an affine neighborhood of g(f‘l(zo)). Then g‘l(U) is an open
neighborhood of f‘l(zo). Since f is proper, there is a

neighborhood V of zp such that, whenever z € V, then

g~l() o £71(z). Thus g(f-l(z)) is contained in U. Since this
set is also proper and connected, it is a single point.

N
>

Vv

,/—————-~§.__________/ 7 The Rigidity Lemma says that

. this diagram is impossible.

10
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(1.6) Corollary: Let X be a proper variety, C a smooth proper
curve, pe€eC a point, and
gg: C—X

a non-constant morphism. Assume that there is a
non-trivial algebraic family

gg: C—X
parametrized by a (possibly non-proper) curve Dgp such

that

go(p) = gt (p)
for every t. Then X contains a rational curve through
g0 (pP) -

Proof: We compactify Dy to a proper curve D, and so we have a

rational map g: CXD-=-=>X. If C itself is rational, then we have
our rational curve. Otherwise g must have two-dimensional
image, since C can not have a one-parameter family of
automorphisms that keep the point p fixed. We claim that g 1is
not a morphism. To see this apply (1.5) to the projection map

f: CXD — C.
f‘l(p) is mapped to a single point; thus the same holds for every
fiber, and the image is one-dimensional, a contradiction. Thus g
is not defined somewhere along {p} XD. By (l1.4), X contains a
rational curve. Using (1.3), we see that there is a rational

curve through the image of {p} XD, that is, through gg(p).

It is interesting to note that the algebraicity assumption is
essential:

(1.7) Example: Let E be an elliptic curve and let M be a line

bundle of degree > 2 with generating sections 6 and T. In
V=M+M,

the sections

(0/ 1) 14 (io-r _it) , (T,-0), (itl iO')
are everywhere independent over R, thus they generate a "lattice
bundle" L over E. Let X = V/L and

C = the zero section in V/L.
Then C must move leaving a point fixed by the positivity of the
bundle V, yet V/L has no rational curves.

Conclusion: The family of deformations of the mapping of C into X
(leaving a point of C fixed) has no non-trivial
compactifiable subvarieties.

We are ready to formulate and prove the first main result
about the existence of rational curves. This first result is of
independent interest, even after we consider a later variant which
is, in some aspects, considerably sharper.

11
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(1.8) Theorem: Let X be a smooth projective variety such that -Kyx

is ample. Then X contains a rational curve. In fact,
through every point of X there is a rational curve D
such that

D-(-Kg) < 1 + dim X.
Proof: This will be done in several steps.

(1.9) Step 1: We intend to apply (1.6). Thus we have to find a
morphism

f: C—X
which we will be able to deform. Pick any curve C. If we want to
find a rational curve through a given point x € X, then we require

C to pass through x and pick pe C such that its image is x.

(1.10) Step 2: Morphisms f of C into X have a deformation space of
dimension

> (h0(c, f£*Ty)-hl(Cc, £*Ty)) = £(C)-cy(X) + (1-g(C))-dimx

by the Riemann-Roch theorem. Since it is dimX conditions to fix
the image of the basepoint p under f, morphisms £ of C into X
sending p to x have a deformation space of dimension

> (h0(c, fxTy)-hl(c, £*Tx)) - dimX = £(C):cy(X) - g(C)-dimX.

Thus whenever the quantity
£(C)-c1(X) - g(C)-dimX

is positive there must be an actual one-parameter family of
deformations of the map f: C—— X keeping the image of p fixed.
By (1.6) therefore, we obtain a rational curve in X through x.
We remark that this part of the proof works also for Ké&hler
manifolds, but by (1.7) it fails for arbitrary compact complex
manifolds.

(1.11) Step 3: We show how to get (£(C)-cp(X) - g(C)-dimX) > 0. To
do this, we need to get f(C)-cy(X) big enough. We take cases:

i) g(C) = 0. If £(C):cq(X) > 0, then C moves in X, but we
already knew that X has a rational curve through x.
ii) g(C) = 1. If £(C)c1(X) > 0, compose f with the

endomorphism of C given by multiplication by the integer n. Then
((fon) (C)-cp(X) - dimxX) = n2(f(C)-c1(X)) - dimX

so this time some multiple of C moves (so that one point of some
sheet over the image stays fixed).

12
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iii) g(C) > 2. The problem here is that if, for example, we try
to move an m-sheeted unbranched cover of C, we are only guaranteed
a deformation space of dimension

m[(£(C):c1(X) - g(C):dimX)] + (m-1)dimX.

This does not necessarily get positive by making m large, even
when f£(C)-cp(X) > 0.

(1.12) Thus we are in trouble in the case g(C) >1 because C does not

admit endomorphisms of high degree. However, there is a situation
in which a curve C does in fact admit endomorphisms "of high
degree", namely, in finite characteristic. The Frobenius morphism
is such an endomorphism. We next see how to pass from our

original situation to one over a field of characteristic " p>0.

(1.13) Step 4: Take a curve C in a smooth manifold X in PB. First
suppose that both C and X are defined by equations with integral
coefficients:

h1(Xgs.--+rXp)s «.., hpe(Xg,...,Xpn) define X
c1(Xgr-vrXn)sr ..y Cg(Xg, ..., Xp) define C.

Let F(p) be the field with p elements and F(p)” its algebraic
closure. Then the equations hj and cy above define varieties Cp

and Xp respectively in the projective space (F(p)”)PBR. These
varieties are non-singular, and dime = 1, for almost all p. The

mapping
(XQr o v s Xp) — (Xop, ...,an)

gives an endomorphism %p of Cp, which, although it is injective in

a set-theoretic sense, should be thought of as a morphism of
degree pdlmc. By "generic flatness over Spec 2", cl(Xp), g(Cp),

and X (Tx|Cp), are constant for almost all p. The dimension of
the "base-pointed" deformation space of the morphism

m.
fp o Cp—%p
has dimension bounded below by
pM(Cper (X)) = g(Cp)-dimX.

So, since Cpcl(xp) is constant (and assumed positive) for almost
all p, we can pick an m so that the above expression

is positive for almost all p. Then, as in Step 2, we produce a
rational curve Rp on Xp for almost all p.

13
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(1.14) Suppose now that we are in the general case in which the
coefficients of the hj (defining X in P®) , the f4 (defining C in

PM) and the gy (defining the graph of the map in PR X PM) are not
integers. In any case, these coefficients generate a finitely
generated ring R over Z. Let p be any maximal ideal in R. Then

R/P,is a finite field (since otherwise we would have a field
Q[x1,...,Xy] = Z[x1,...,%Xy] which cannot happen because there are
infinitely many prime numbers). So R/p,is isomorphic to F(pk),
the finite field with pK elements for some p. In this case, our
Frobenius morphism % is given by raising the homogeneous
coordinates (Xg,...,Xp) of (F(pk)")Pm to the pk—th power. The
rest of the argument proceeds as above, giving us a rational curve
RP' for all closed points p in some Zariski open set of Spec R.

(1.15) Step 5: Now we assume that cj(X) is ample and that X is
embedded by mcj (X) for some positive integer m. 1In this step, we

wish to replace R?,with a rational curve S?,with

To do this, notice that, if
cl(Xp) -R9’ > dimX + 1,
then the morphism from R? to XP deforms with two points fixed in

at least a two-parameter family. Since Pl has only a
one-dimensional family of automorphisms leaving two points fixed,

the image of R? in XP must move. As in Step 2, we construct a
rational mapping from D><R9,into XP taking DX {g} to x and

DX {gq'} to x'. Taking a minimal resolution Z of this map and
contracting all curves (in fibres of Z——D) that are mapped to a
point by Z—— X, we obtain either that RP degenerates somewhere
into a sum of two or more curves each of lower degree or that
there is a morphism from a Pl-bundle over D into X? that sends one
section to x and another section to x'.

The latter case is impossible since it would imply

negative-definite intersection matrix on the Neron-Severi group of
the Pl-bundle. So we must be able to find a rational curve of

lower degree as long as R?;(—KX) > (dimX+1) .

14
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(1.16) Step 6: In this last step, we must conclude the existence of
a rational curve on the variety X of characteristic zero from the
existence of the Rp of bounded degree for almost all p. (The

general case using p in Spec®R is analogous.)

Principle: If a homogeneous system of algebraic equations with
integral coefficients has a nontrivial solution in F(p)*
for infinitely many p (for a Zariski dense subset of

SpecR), then it has a nontrivial solution in any
algebraically closed field.

Proof: By elimination theory, the existence of a common solution
to a system of equations is given by the vanishing of a series of
determinants of matrices whose entries are polynomials (with
integral coefficients) in the coefficients of the equations. A

determinant vanishes if it vanishes modp for an infinite number of
primes p.

In our situation, for most p we have homogeneous forms

((gp)O/ ceey (gp)n)

of degree m(dimX+ 1) in (tgp,t1) giving the map
pl— 5 xcpen
such that

hi((gp)O/ ceey (gp)n) =0

identically in (tg,t7) for all i. This condition can be
expressed as a system of equations in the coefficients of the gy.

Since this system has a solution for a Zariski dense subset of the
primes p, it has a solution in any algebraically closed field by
the above principle.

(1.17) Step 7: Finally, we should remark that Steps 2 and 5 allow
the construction of a rational curve of degree < (dimX+ 1) through
any pre-given point of X. So, if c7(X) is positive, X must be
covered by an algebraic family of rational curves of

degree < (dimX+1).

(1.18) References: Most of these results are due to Mori[M1]. (1.2) is due to
Abhyankar [Ab, Prop.4]. (1.7) is taken from [BL]. The existence of rational

curves through any given point is implicit in [M1]; it was first noted
explicitly in [Kol].

15
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Lecture #2: Finding rational curves when Ky is non-semi-
positive

(2.1) Now let's weaken our hypotheses about X in (1.8). Namely,
from now on we only assume that, for some fixed £,

c1(X)-£(C) > 0,

rather than assuming the positivity of cp(X). We also fix a
hyperplane section H of X. If

(*) (£(C)-c1(X) - g(C):dimX) > O,
then C deforms with one point fixed. As before, this family must
degenerate to

f'(C) + (sum of rational curves).

As before, to achieve (*), we pass to finite characteristic,
and compose f with the m-th power of the Frobenius morphism.

For m>>0, we are able to degenerate pm~f(Cp) to
(**) Co,m * Zp,ms

where Zp m is a sum of rational curves. Notice that the ratio

(£(Cp)-c1(Xp)) /(£(Cp)Hp) = M
is constant for almost all p and does not change if we replace
f with its composition with a power of Frobenius. If
{(Cp,mC1(Xp) = g(Cp)-dimXy) > O,

we can move Cp,m as before (without composing again with the

Frobenius morphism). We iterate these moves. Each time the
intersection number of Hyp with the component corresponding to Cp,m

goes down, so the process must stop. Thus we reach an equation
(**) which is a degeneration of the original pm~f(Cp) and which
has

Cp,mc1(Xp) £ g(Cp)-dimXp,.

Let a = Cp,m-C1(Xp)
b = 245 n-c1(Xp)

c = Cp,m'Hp

= Zp,m Hp-

For large m, (c+d) is large, (a+b)/(c+d) = M, so (a+tb) must be
large. But a 1is bounded, so b must get large.

16
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(2.2) Lemma: Suppose c¢c>0 and d>0. Then

< max {(a/c), (b/d)}.

(a+b) / (c+d)
Proof: Suppose a' = (a/c) < b' = (b/d). Put d' = (d/c). Then
(a'+d'b')/(1+d') < b'.
(2.3) If a/c < M, then b/d > M, since otherwise we contradict (2.2).
For large m, if ¢ gets large then indeed we eventually get
a/c < M.
But if ¢ stays bounded, then d must get large and

(a+tb) / (c+d)

must approach b/d. So, given any € > 0, we can find an m so that

(Zp,m-C1(Xp)) / (Zp,m-Hp) > M~-e.

Now the Lemma gives that for some irreducible component Ep of Zp n
we also have the inequality

(x*%) (Epc1 (Xp)) / (EpHp) > M-eg.

(2.4) Suppose now that (Epcl(xp)) > (dimX +1). Then, as in (1.10),
we can move the rational curve Ep with two points fixed and the

moving curve must degenerate somewhere into a sum of two or more
distinct rational curves. We use (2.2) again to conclude that the
inequality (***) must hold for at least one of the components E'p

of the degeneration. If
(E'pcl(xp)) > (dimXxX +1),

E'p moves and as above we find E", for which (***) holds. This

process cannot continue indefinitely, since at each step EpHp
goes down. So eventually we arrive at a curve (which we again
call Ep) such that 0 < (Ep01(Xp)) < (dimX+1). So

0 < (EpHp) < (dimXx+1)/(M-¢g).

Since this bound is independent of p, we can reason as in (1.11)
to conclude the existence of a rational curve E on the complex

projective manifold X. If cj(X)E > dimX+1, we can apply (1.10)
repeatedly until we find an E with
c1(X)E < dimXx+1.

17
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(2.5) Remark: This argument does not allow us to say anything about
A different argument,

the position of the rational curves on X.
however, shows that, through any point of C there is a rational
curve.

We can summarize our results in the following

(2.6) Theorem: Let X be a smooth projective variety, and let H be
an ample divisor on X. Assume that there is a curve
Cc X such that C-(-Kyg) > €(C-H) for some £€>0. Then

there is a rational curve ECX such that
(dimX+1) > E-(-Kyx) > €(EH).

(2.7) References: All these results are in [M1].
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Lecture #3: Surface classification

(3.1) We will now begin to see what finding a rational curve has to
do with classification theory of algebraic varieties. We begin by
remarking that any algebraic curve X admits a metric of constant
curvature, and that, for any Kahler manifold X, ci(X) is
represented by the Ricci form associated to the curvature. Note
that, for an algebraic manifold, Ky = -cq1(X).

List:

c1(x) >0 : x =cpl
c1(X) =0 : X = (C/lattice)
c1(X) < 0 : many X.

(3.2) Princi ifi ion rf

Surfaces tend to be negatively curved in the sense that the
divisor corresponding to -cj(X) tends to be nef, or even ample.

Often using the fact that we can produce a rational curve on a
surface X whenever -cq(X) is not nef, we can make a list of

surfaces which are not negatively curved.

(3.3) There are three possible ways to describe the notion of
negative curvature:

1) Tx has a metric with negative Ricci curvature.

2) A3ty = @ (-Ky) has a metric with negative Ricci

curvature. (This is equivalent to 1) by Yau's famous
theorem.)

3) ¢c1(X)-C < 0 for all curves C on X.

Notice that 2) always implies 3), but that to obtain 2) from 3)
for surfaces, one must show that 3) implies that (cl(X))2 > 0 and

so, by the Nakai-Moishezon criterion, Ky is ample. The proof that
(c1(X))2 >0
for surfaces for which 3) holds comes a posteriori using the

classification theory of surfaces, and so is unsatisfactory in
some sense.

(3.4) Question: Is there a manifold X for which 3) does not
imply 2)7?

(3.5) Definition: A divisor D on X is called semi-negative if
CD <0
for all curves C on X.
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(3.6) Problem: Suppose cq(X) is semi-negative. Does det Ty admit a
metric with semi-negative curvature form?

(3.7) Exercise: Produce a line bundle L such that cq(L):C < 0 for

all curves C, yet no metric on L has curvature everywhere less
than or equal to zero.

(3.8) So now let's start trying to classify surfaces according to
the above principle. First assume ci(X) is not semi-negative.

Then there is a curve C on X for which

(c1(X):C) > 0.
So, by what we have done before, we can produce a rational curve E
such that, for

f: E — X,
we have

0 < (c1(X)'£(E)) £ 3 =dimX + 1.
We need to assume a result which we will discuss next time

(see (4.7)), namely, that we can take C=f(E) to be "extremal,"

which roughly means that E generates an edge of the cone NE(X) of
effective divisor classes on X.

Case 1: c? < 0.

So, from the formula
(*) CZ + CKx = 29(C) - 2,
we see that the only possibility is

g(C) = 0 and C2 = -1.
So C is an exceptional curve of the first kind and we
can blow it down to a smooth point. Since we decrease
the second Betti number of X each time we do this, we
can eventually assume that X has no extremal curves C
with ¢2 < 0.

Case 2: cZ = 0.
So, by (*), g(C) = 0, and f 1s an embedding.
Since (c1(X):C) = 2, £ has at least a four-dimensional
family of deformations (by the formula in (1.10)). But

C has only a three-dimensional family of automorphisms,
so C must actually move. So X is ruled, and the fact
that C gives an edge of NE(X) means that all fibres of
the ruling must be irreducible.

Case 3: cZ > 0.
Next time (Corollary (4.4)), we show that this implies
that E lies in the interior of NE(X) in the vector space
spanned by NE(X). But E is also on an edge. Thus the
Picard number of X is one. Let H be an indivisible

ample divisor on X. Then Ky = -aH for some a>0.
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For the rest of the argument we assume that we are over
C. The result is true in general but the proof is
harder.

By the Kodaira Vanishing Theorem,

HO,l(x) = HO,Z(x) = 0.
Thus H generates H2(X;Z) modulo torsion, and so by
Poincaré duality

H'H = 1,
and cp(X) = 3. By Noether's formula
cl(X)2 = 9 and Ky = -3H.
By the Riemann-Roch formula,
dim|H| = 2.

Since HZ = 1, AHI has no basepoints and so defines a
morphism to CP4. This morphism has degree one and
separates points, thus it is an isomorphism.

(3.9) Except for the above X, there only exist surfaces X with cqp (X)
semi-negative. We list known results about these:

Case 1: c1(X):C = 0 for all curves C.
It is known that @& (12Ky) is the trivial bundle in this

case. Then it can be shown that X is either an abelian
surface, a K3-surface, or a finite quotient of one of
these two under a free action of a finite group. (If X
comes from a K3 surface, then the group in question must
be 2/2Z, since the Euler characteristic of the structure
sheaf of a K3-surface is 2.) Some other cases exist in
characteristic 2 and 3.

Case 2: c1(X)cp(X) = 0 but ¢c1(X):C # 0 for some curve C.

Then it can be shown that X maps to a curve D with
elliptic fibres, and that some multiple of cp(X) is the

pull-back of a negative divisor on D. Some other cases
exist in characteristic 2 and 3.

Case 3: cp(X):cp(X) > 0.
Then it can be shown that, for m>>0, the divisor
-mcq (X) defines a birational morphism into some

projective space. If this contracts a curve, the curve
is rational.

(3.10) References: These results are classical. See [GH] for curvature and
related topics. Also see [BPV] and the references there for further results.
For (3.3), see [Y].
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Lecture #4: The cone of curves, smooth case

(4.1) Our main goal today is to prove the Cone Theorem, which gives,
among other things, the existence of the extremal rational curves
which we used to help classify surfaces in Lecture #3. First, we
will motivate things with some definitions and examples.

(4.2) Let X be a non-singular projective variety. Let C be an
irreducible curve on X. We denote the homology class of C in

Hy (X; R) by [C]. Let
NEQ(X) (resp. NE (X))

be the subset of Hp(X; R) given by

{Elai[ci]: C; an irreducible proper curve on X,

aj{€Q (resp. aj€ R), and aj > 0}

Clearly NEQ(X) is dense in NE (X) .

Sometimes we
will only
draw a transverse
slice of the
cone NE (X) .

For any divisor D, let

Dsg = {&: &D >0}
(similarly for >0, <0, and <0).

Next we work out some examples where X is a surface, H a
hyperplane section. Then,

<NE (X)> , the closure of NE(X),

lies in Hyp and only its vertex 0 lies in Hl(the real hyperplane
annihilated by H).
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(4.3) Lemma: If D is a divisor on the surface X with D2 > 0, then
either |nD| # @ or |-nD| # & for n>>0.

Proof: By the Riemann-Roch Theorem,
hO(np) - hl(nD) + hO(Kg-nD) = (n2/2)D2 - (n/2)DKy + X(Ty)
n0(-np) - hl(-nD) + hO(Kx+nD) = (n2/2)D2 + (n/2)DKy + X(Ty)

Letting n get large, we notice that the right-hand-side of each
equation gets big. But it cannot be true that both ho(KX—nD) and

ho(KX+nD) get big, since the two divisors sum to a fixed linear
system 2Kyx.

(a.4) Corollary: If [D] € <NE(X)> and if D2 > 0, then [D] lies in
<NE (X) >©, the interior of <NE(X)> in the vector space it

spans in Hp (X; R).

Proof: Pick H ample. By (4.3), H'D > 0. 1If D'e NEQ(X) is near
D, then D'2 > 0 and -D"'H < 0. mD' is an integral cycle for some
m>0, and so we can apply (4.3) to mD' to obtain that mD' € NE (X)
and hence D' e NE(X). Therefore [D] € <NE(X)>°.

(4.5) Lemma: If C is an irreducible curve on X and C2 < 0, then
[Cl€e ONE(X). If C2 < 0, [C]e (edge of NE(X)).

Proof: Suppose, for irreducible D, D-C < 0. Then D = C. So NE(X)
is spanned by [C] and NE(X)(\CZO.

(4.6) Let's now look at our series of examples:

4.6.1) Suppose X is a Pl-bundle over a curve of genus at least 2.
Then NE(X) = cone in R2. Let f Dbe the homology class of the

fibre, & the other edge.

NE (X)
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By (4.4), §2 < 0. If §2 < 0, take a sequence D of effective

curves converging to a point of Rzo[ﬂ, and notice that, for n>>0,
Dn2 < 0. There is an irreducible component E, of Dp such that

Ep2 < 0 , hence by the Lemma just above, Ep€ Ry lg]. 1If g2 = o,

fix any irreducible D other than f. Then D and f span Hjp(X; R).
Write
(xf + yD)2 = 2xy(fD) + y2(DD) = O.

Then ﬁ is a solution to 2x(f-D) + y(DD) = 0, so & must have a
rational slope, but its slope need not be represented by any
effective Q-divisor. By the adjunction formula, f € (Ky)<«qo-

4.6.2) Let A be an abelian surface with an ample divisor H. Since
the self-intersection of any curve on an abelian surface is
non-negative, it follows from (4.3) that <NE(X)> is given by the

conditions D2 > 0 and D*H > 0. If rkNS > 3 (e.g. A=EXE for

some elliptic curve E), then <NE(X)> is a "circular" cone.

4.6.3) Del Pezzo surfaces: Characterized by the condition cq (X)
ample (positive).

We shall see that, in this case, either X = P2 or one can find
rational curves Cqp,...,Cy, such that Ciz < 0 and

NE(X) = R50[C1) + ... + Ryol[Cyl.
So, in particular, NE(X) = <NE(X)>, a cone over a finite
polyhedron.

4.6.4) Let X' = P2 blown up at the 9 basepoints of a generic
pencil of cubic curves. Choosing one of the 9 points as the zero
section, we get an infinite group generated by the other 8
sections. So X' has infinitely many exceptional curves of the
first kind. All of these deform under a generic deformation of X'
(obtained by moving the 9 points into general position). By
(4.5), each of these curves gives an edge of the cone NE(X). Now
-Kyx is represented by the unique elliptic curve through the 9

points and -Ky is semi-positive. (However, no multiple of -Kyx

moves.) So NE(X) is not locally finite near KXL.

With these examples in mind, we are ready to state the first
result of Mori for varieties of arbitrary dimension. The proof of
the result in the smooth case is more geometric so we consider it
first. The proof in the general case will be given in Lecture
#11.

24



CONE OF CURVES

(4.7) Cone Theorem: Let X be a non-singular projective variety.

There exists on X a set of rational curves Cj,

ieI, with 0 < Ci'(-Kyx) < dimX+ 1 such that:
1) <NE(X)> = ZX(Ryg) [Ci] + (SNE(X)>N (Kx)>0).

(The (Ryp) [Cil, which, together with (<NE(X)>N (Kx)>0),
form a minimal generating set for <NE(X)>, are called
extremal rays.)

2) For any € > 0 and ample divisor H, 1) gives
<NE(X) >N (Kx + €H) <p
= (SNE(X)>N (Kx + €H)=g) + Zgjnire (Rx0) [CHl.

Proof: Recall that in Lecture #2 we showed that, if H is any ample
divisor, and if C is an irreducible curve with C-Kyx < 0, then

there exists a rational curve C' with 0 < C'-(-Kyx) < dimX+1 and
Cc' (-Ky) S C'(‘KX)
C'-H - C-H

- &

for any € > 0. The numerator on the left-hand-side takes only

finitely many values, so we can set € = 0 in the inequality.

Now let [C4], i€I, be the collection of classes of rational
curves with

0 < Ci(Kyx) < dimx+1.

Let T be the cone generated by the [Ci] and <NE(X)>N (Kx)>q-
Choose a rational divisor J such that

(KNE(X)>N (Kyx)>0) & JI>p WV {0}.
By the convexity of <NE(X)>, the closed set
(H: (J-pKyx) LN (KNE(X)> N (Ky) 50) # (0})
is disjoint from the closed set

{L: (J-pKy) LN (<NE(X) >N (Kx) <) # (0}}.

We represent the various regions and subspaces we are considering,
and the relationships between them, in the following diagram:
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Rotation of Ny = (J-pK,) as W changes:

J<0
Jgt=ny

-
- -

O<p<<1 ~

<NE(X)> N (Ky) 5

Let Wy be a positive rational number strictly between the two
above sets. We will need

(4.8) Kleiman's Criterion: If X is a non-singular projective
variety and D is any divisor, then D is ample if and
only if

Dyg 2 <NE(X)>- {0}.

(4.9) By Kleiman's Criterion, (J-HjKx) is ample, so we can set

H = HJ = (J—uJKx)

in the considerations at the beginning of the proof. Now suppose
we have [C] € M. Then we can pick a rational J with [C]e(J<qg) and

n < (Jso) -
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forced to
exist

We have seen that there is a Ci with
C i.(_Kx) C- ("Kx)
>
Cy'Hy = C-Hy

by our previous considerations. But
(Hg+HgKx):Ci > 0 and (HgtpsKy)-C < O,
giving a contradiction. This gives 1) in the Cone Theorem.

The second statement is now immediate from the finiteness of
the number of connected families of Cj with

dimX +1 > Cy-(-Kyx) > A(Cy-H).

(4.10) Kleiman's Criterion tells us that a proper smooth algebraic
variety X i1s projective if and only if <NE(X)>-{0} lies in a
proper half-space of Hp(X; R), that is, if and only if <NE(X)>
contains no straight lines. 1In the case that X was a surface, if
C was a curve with C2 < 0 and the variety Y obtained by
contracting C to a point was smooth, then this says that Y must be
projective.

If X is a projective threefold, here are some cases where C is
an irreducible curve inside a smooth divisor D on X, and D-C < 0:

Case 1: If Hp(D; R) has one-dimensional image in Hj (X; R), then

just as in the Lemma for surfaces, C must lie on an edge
of NE(X). Contraction of D corresponds to projection
from this edge. So, if the variety Y obtained by
contraction is smooth, it is projective.

Case 2: Suppose D is a smooth ruled surface with C as fibre and

D-C = -1. Then the contracted variety Y is smooth by
Nakano's Criterion. So, if C is on an edge of NE(X),
then, by Kleiman's Criterion, the contracted variety is
projective.

(4.11) References: Example (4.6.4) is an old example of Nagata[Nag]. Kleiman's
Criterion(4.8) can be found in [K1]. (4.7) is in [M1].
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Lecture #5: Introduction to Mori's program

(s.1) Example: We begin letting
g: Xx— P2

be the blow-up of P2 at 12 points P1,...,P12 on a smooth cubic

plane curve D. Let C be the proper transform of the plane cubic.
C4 = -3, so that C can be blown down via an analytic morphism

f: X—Y

to an analytic surface Y. However Y cannot be projective if the
12 points are in general position. To see this, suppose M is any
line bundle on Y. Then, f*M = L 1is given by a divisor

g*0p2(b) + ZajEj
where Ei is the exceptional curve above Pj. But the divisor
(g*&PZ(b) + Xa4qEq)-C
must be linearly equivalent to 0 (denoted " = 0 ") on C. So we
would have to have
@,D(b) + ZajPy = 0

on D, which is clearly impossible for generic choice of the Pj.

However, if the P4 are the points of intersection of a quartic
curve Q with D, then the linear system determined by the proper
transform of Q in X realizes f: X——Y as a morphism into a
projective space.

These examples show that there can be no numerical criterion
for contractibility in the projective category. A major point of
what follows 1is that for extremal rays such criteria can exist.
The result is:

(s.2) Theorem: Let X be a non-singular projective variety. If R is
an extremal ray, then there is a morphism
f: X—Y

onto a normal projective variety Y so that £f contracts
an irreducible curve D to a point if and only if [D]
generates R. The morphism f 1is called the extremal
contraction of the ray R

(A proof will be given in Lecture 11.)
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(5.3) The theorem completely characterizes Y as a set. To get an
idea of its projective structure, find a Q-divisor L so that

[D]'L = O
and
<NE (X)> - (R>o[D])
lies in Lyg. By Kleiman's Criterion, (mL-Ky) is ample for m>>0.
So, by the Kodaira Vanishing Theorem,
i (x;m1) = 0

for 1i>0. One uses this to show that |mL| is basepoint-free for

m>>0. This linear system gives the morphism f: X—— PD,
Also mL - Ky is ample which implies that
(-Kg'D) > 0
for all D lying in a fibre of £. We will later prove

a vanishing theorem (8.8) which implies that therefore all the
higher direct-image sheaves le*ﬁx are zero.

(5.4) It is the vanishing of le*ax which insures that the

contractions take place in the projective category. Roughly this
is because then le*&x* injects into R2f4Z. Then, with Y as in

(5.2), we use the exact sequence
PicY — PicX —— R1fx0,*,

to see that the criterion for a line bundle on X to come from one
on Y is numerical.

(5.5) We will denote the contraction morphisms constructed above as
contg: X— Y.

For X a non-singular projective threefold, we will categorize the
possibilities for contg according to the following types:
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Exceptional:

Conic:

Del Pezzo:

Fano:

If dimY = 3, then f=contg is birational and there are
five types of local behavior near contracted curves:

El) Contg is the blow-up of a smooth curve in the set of
non-singular points on Y.

E2) Contgr is the blow-up of a smooth point of Y.

E3) Contyr is the blow-up of an ordinary double point of

Y. Analytically, an ordinary double point is
given locally by the equation

x2+y2+22+w2 = 0.

E4) Contgr is the blow-up of a point of Y which is
locally analytically given by the equation
x2+y2+z2+w3 = 0.

E5) Contg blows down a smooth cP2 with normal bundle
O (-2) to a point of multiplicity 4 on Y which is

locally analytically the quotient of c3 by the
involution

(X,y,2) — (=%X,-y,-2) .

If dimY = 2, then f = conty is a fibration with fibres

conic curves. (The generic fibre is, of course,
smooth.)

Cl) If £ has singular fibres, then f 1is a "conic
bundle”.

C2) If £ has no singular fibres, f 1is an étale
cpl-bundle.

If dimY = 1, the generic fibre of contgy is a del Pezzo
surface since the canonical divisor of the fibre,
-Kx|lfiprer is ample.

If dimY = 0, -Kyx is ample. X is a "Fano variety"”. By
Kodaira Vanishing Theorem,
Hi(x; @) = 0 for i>0,

so R generates Hp(X; R) .
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(5.6) Now we are in a position to give a short summary of the aim of
Mori's program. Let X be a smooth projective variety. If Ky is

not nef, then we can find a morphism, called the contraction
morphism of an extremal ray or an extremal contraction,

f=contg: X—Y.
In low dimensions we have the following basic cases:

5.6.1) dimX = 2:
Then either

dimY < dimX: In this case we have a complete structure
theory for X.

dimY = dimX: In this case Y is again smooth and

rk NS(Y) < rk NS(X).
Thus Y can be considered "simpler" than X.

In short, either we obtain a description of X or we can simplify
its structure.

5.6.2) dimX = 3:
Then either

dim¥Y < dimX: In this case we again have a nearly
complete structure theory for X; in
particular we obtain that X is covered by
rational curves.

or
dimY = dimX: In this case Y can unfortunately be
singular (cases E3,E4,E5).
Thus it is not clear that Y is any
"simpler" than X.

(5.7 Thus we see that we have to put up with certain singularities
in higher dimensions. We have to establish a suitable category of
singularities to work with, and it is not at all clear a priori
that a reasonable class can be found. It is a priori possible
that contraction morphisms create worse and worse singularities.
The correct class will be called "terminal" singularities. The
definition is unimportant for the moment and will be given only
later--for now we only note one defining property:

For terminal singularities, some multiple of Ky is
Cartier, thus it makes sense to talk about Ky being nef.
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Next we will have to prove the existence of the contraction
morphisms in this wider class of "mildly singular" varieties:

(s.8) Theorem: Let X be a projective variety with only Q-factorial
terminal singularities such that Ky is not nef.

Then there exists a morphism
f: Xe—m——Y
such that -Kyx is f-ample and one of the following holds:

a) dimX > dimY and f 1is a Q-Fano fibration.

b) £ is birational and contracts a divisor
(divisorial contraction).

c) £ 1is birational and contracts a subvariety
of codimension > 2 (small contraction).

(5.9) Comments:

Case a) of the theorem: This means that the general fiber of
f 1is an algebraic variety where -Ky is ample. Thus, at least in
principle we reduce the problem of understanding X to
understanding the lower dimensional variety Y and the fibres of
f. Moreover these fibres are of very special kind--they are
analogues of cpl and of Del Pezzo surfaces.

Case b): In this case, Y again has terminal singularities and
so we manage to stay inside the class of singularities we started
with. Moreover,

rk NS(Y) < rk NS(X),
thus Y can be considered to be "simpler" than X.

Case c): This is a new case. It could never happen for
surfaces for dimension reasons, and it did not happen for smooth
threefolds X. In this case, Y can have a very bad singularity
where no multiple of Ky is Cartier. Thus the expression "Ky is

nef" does not even make sense. So we are led out of the class of
varieties that we can control. 1In order to continue at this
point, we have to introduce a new operation called a flip. This
is the algebraic analogue of codimension-two surgery:

Instead of contracting some curves UCy € X, we remove
them, and then compactify

X - uCy
by adding another union of curves UDj. (For the

moment, it is not at all clear that this operation
exists or that it is well-defined, let alone that it
improves things.)
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We first study an example of this situation. In the example,
the (directed) flip will remove the curve C = cpl from the

singular variety X and replace it with D=cPl to achieve the

"improved" variety X* (which in this case is non-singular). The
process is most easily explained in reverse, as a sequence of
blowing-ups

X* ——BX* «—BW

followed by a sequence of blowing-downs

BWN— W— X

refers to
"E‘*" the corres.

ruled

surface

normal bundle

O (-1)+0(-2)
m correct move

K ample in progression C'K = -1/2

called

< g9
"flip" .
E5 type
contraction
X
contracts to £ W
"bad" non-Gorenstein

singularity

can be put in 3-fold
Y with K ample outside
point

We start with the threefold X* which contains a smooth
rational curve whose normal bundle is @ (-1) +& (-2). Assume that
this curve can be contracted to an algebraic variety Y.

If we blow up this curve, we get BX* which contains the ruled
surface Fj1 as the exceptional divisor. We can blow-up the

negative section of this F1 to get BW. The new exceptional

surface is Fp = PlxPl. This can be blown down in the other
direction to obtain W. The exceptional curve of Fi is blown down

so this becomes a CP2. The image of Fo in W is a curve C with
normal bundle

O (-1) +0(-1),
in particular C-Ky = O.
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The normal bundle of the CP2 can be computed as follows. It
has to be @ (k) and we need to compute k. We can do this by

restricting to a line which does not intersect C. The pre-image
of this line in BW is a section S of F; which does not intersect

Fg. We can also look at the image of this section S' in BX*.

Thus we need to compute the restriction of the normal bundle of Fj
in BX* to a general section of Fp. This can be done easily and we
obtain that k = -2.

Now the CP2 can be contracted, this is the case E5 in (5.5).
X is locally a quotient at x, thus Ky is only Q-Cartier. If

g*Ky = Ky + aCP2
for some rational number a, then from the adjunction formula
applied to CP2 we get that a = 1/2. Thus C-Ky = -1/2.

One can see that C in X generates an extremal ray and that C
is the only irreducible curve whose homology class is in that ray.
Thus the corresponding contraction morphism contracts only C and
leads to the very singular space Y.

(5.10) The operation that happens at the lower left corner of the
above diagram can be formalized as follows:

(5s.11) Definition: Let f: X—— Y be an extremal contraction such
that the exceptional set E in X has codimension
at least two. A variety X' together with a map
ft: xt—s v
is called the flip of f if X* has only Q-factorial
terminal singularities and Kyx+ is f¥-ample. By a slight

abuse of terminology, the rational map X—-—>Xx*
will be called a f£lip.

isomorphism
i dim 1 .
X n.cocin @ X + only Q-factorial
terminal singularities
~Ky f-ample i Ko+ ft-ample
£ £
Y

If we perform a flip, it is not clear that X' is any "simpler”
than X. In the example above this happens since X is singular but
xt is smooth. We will see that in general flips lead to simpler
singularities.
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(5.12) Mori's program:

Starting with an algebraic variety X, we perform a
sequence of well-defined and understandable birational
modifications, until we arrive at a variety Y (possibly
with terminal singularities) such that either

i) Y has a fiber-space structure whose generic fiber is
a Q-Fano variety (in particular Y and X are covered by
rational curves)

or

ii) Ky is nef.

(5.13) At the moment this program is complete only in dimension 2
and 3. Even there much remains to be done. The applicability of
the program hinges on our ability to understand the process that
creates Y, so that we can interpret structural properties of X in
terms of those of Y. Furthermore we need to learn a lot about
threefolds with K nef and about fiber spaces whose general fibers
are Fano varieties. Even in the case in which the general fiber
of the fiber space is P+, it is not known how to decide when two
such fiber spaces are birational.

(5.14) Here we give some examples of extremal contractions in higher
dimensions:

i) If X is a smooth projective variety and XD Z is a smooth
irreducible subvariety, then the inverse of the blowing-up

ByX—> X

is an extremal contraction.

ii) Over PR let V be the total space of the rank k vector bundle

O(-1) +...+0(-1),
and let
VY = PO(1) +...+0(1) +O) .
(Note: The Grothendieck convention for projectivization is used.)

If k < n, then the line in

PRcvcv”
generates an extremal ray in V' . The corresponding contraction
morphism contracts PR to a point and is an isomorphism outside PR,
Thus, 1f k 2 2, then the exceptional set is not a divisor. This

gives such examples for dimV > 4. No such examples exist for
smooth threefolds.
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iii) Let Y be the space of non-zero linear maps from
Cn+1 —ch

modulo constants.
y = pn(n+l) -1,

thus Y is smooth. Let X be the set of pairs (g,L) where g €Y, and
L is a one-dimensional subspace in the kernel of g. Let

f: X—Y

be the natural morphism. This f will turn out to be an extremal
contraction. X has a natural morphism p onto

PR (=the set of one-dimensional subspaces in cR+l),

given by
p(g,L) = L.

The fibers are all projective spaces of dimension n2-1. Thus X is
also smooth. Define

F = {g: rkg < n-1},
and

E ={(g,L): rkg < n-1}.
The restriction of p to E exhibits E as a fiber bundle over PR

whose fiber over L is the projectivization of the set of singular
maps

cntl 5 cn,

thus E is irreducible. If g € F, then f‘l(g) is a projective
space of dimension (n - rkg). Thus, for general g€ F, it is a pl,
If n>2, then there is a g€ F such that

rkg = n-2,
and so
£71(g)= p2.
This shows that f cannot be a smooth blow-up. In fact, one can

see that F is singular at g 1iff

rkg < n-2.
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(5.15) Comparison between surface case and threefold case:

We have the following table of parallel results:

X a smooth projective surface : X a smooth projective threefold:
1) The canonical ring 1) The canonical ring
® 1% (X; mK,) ® 1°(X; mK,)
.m0 ) .m0
is finitely generated. is finitely generated.
2) HO(X; mKX) = 0 for all m>0 2) HO(X; mKX) = 0 for all m>0
if and only if X is ruled. if and only if X is uniruled.

3) If f: X —®»Y is a birational 3) If f: X —®Y is a birational

morphism of smooth projective morphism of smooth projective
surfaces, then f 1is a threefolds, then f 1is a
succession of blow-downs. succession of divisorial

contractions and flips.

4) Let (Z2,p) be a germ of a 4) Let (Z,p) be a germ of a
surface singularity (not threefold singularity (not
necessarily isolated). Then necessarily isolated). Then
there exist projective birational there exist projective birational
morphisms f, g, and h: morphisms f, g, and h:
X —-———13-————’ Y only RDP's only X +’ Y only
smooth (rational Q-factorial canonical
\ / double terminal X / singularities
points) singularities g (these are in
(these are in codim 2)
codim 3)
4 Z

Ky is f-semi-ample, that is,
there is a morphism (over Z)
F: X —® zxp®

Ky is f-semi-ample

with F* @ (1) = mKx for some m>0.

Ky is g-ample, that is, Ky is g-ample.
there is an imbedding (over 2)

G: Yy —® zxp"

with G*O (1) = mKy for some m>0. X 1s unique outside a union of
rational curves and is called a

X is unique and is called the Q-factorial terminal

minimal resolution. modification

Y is qnique and is called the Y is unique and is called the

canonical resolution. canonical modification.

(5.16) References: Example (5.1) is due to Zariski [2]. (5.5) is in [M1],

while the example in (5.9) is in [F]. General references for Mori's program

are [KMM], [Ko4] and [W]. Example (5.14.iii) was pointed out to us by L. Ein.
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Lecture #6: Singularities in the minimal model program

(6.1) Let X be a variety of dimension > 1 such that mKy is Cartier.
Suppose

f: Y —X

is a proper birational morphism from a normal variety Y. Let e
denote a generic point for a divisor E which is exceptional for
f.

If E is locally defined (as a scheme) by g=0, then locally
f* (generator of O (mKy)) = gm'a(E)(dylAmAdyn)®m

for some rational number a(E) such that m-a(E) is an integer,
where the y; form a local coordinate system at e.

a(E) is independent of f and Y in the sense that, for any
f': Y' —X

such that Y and Y' are locally isomorphic (over X) at a generic
point of E (resp. E'),

a(E) = a(g').

If f: Y—> X is a proper birational morphism such that Ky is a
line bundle (e.g. Y is smooth), then mKy is linearly equivalent to

f*(mKy) + X m-a(Ey) ‘Ej,

where the E{ are the exceptional divisors. Using numerical
equivalence, we can divide by m and write

Ky = £*(Kyg) + X a(Ey) ‘Ej.
(6.2) Definition: a(E) is called the discrepancy of X at E. The
discrepancy of X is given by

discrep (X) =
inf{a(E): E exceptional for some f: Y——>X}.

For example, if X is smooth, discrep(X) = 1.
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(6.3) Claim: Either discrep(X) = =—e or -1 < discrep(X) < 1.

Proof: Blowing up a locus of codimension two which intersects the
set of smooth points of X, one sees that

discrep(X) < 1.

Next take a desingularization
f: Y —X
and E exceptional for f. Suppose a(E) < -1, so locally near

general s € E
KY = f*KX - (1+c)E with ¢>0.

Let S be a generic codimension 2 locus through s which is
contained in E. Let Z = BgY, and let

g: 2 —Y
denote the blow-up of Y at S and Eg the exceptional variety
above S. Then

(*)  Kg = g*Ky + Eg
= g*f*Ky - (l+c)g*E + Eg = g*f*Kyx - (l+c)F - cEg

where F is the proper transform of E. Let P Dbe a component of
FNEg. Then, if W = BpZ, Ep occurs in Ky with multiplicity -2c.

The picture for surfaces is:

('|||||||||||||||l) <::f——;i:>
-1l-c

Repeat the blowing-up, this time at the point of intersection of
the proper transform of F and Ep to get a component with

discrepancy -3c, etc.

(6.4) Definition: We say that X has

terminal > 0
canonical singularities if discrep(x) 2 0
log-terminal > -1
log-canonical > -1
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(6.5) Proposition: Let f: Y—— X be a resolution of
singularities. If
a(E) > ¢ for some 1>c>0,
for every f-exceptional divisor E, then

discrep(X) > c.
If the exceptional set of f 1is a
simple-normal-crossing divisor and if
a(E) > ¢ for some 1>c>-1,
for every f-exceptional divisor E, then

discrep(X) > c.

Proof: By an analogous calculation to (*) above, a(BEg) > .a(E) for
SCE. To compare with a(E') at e' on another desingularization
fr: Y'—XK,

notice that there is a sequence of blow-ups Y" of Y with an

exceptional divisor at a generic point of which Y" is locally
isomorphic to (Y',e').

(6.6) Lemma: If D is a generic hyperplane section of X,

discrep(X) < discrep(D).

Proof: This is a trivial application of the adjunction formula.

(6.7) Proposition: Let g: X'——>X be proper. Then

i) (deg g) (discrep(X) + 1) > (discrep(X') + 1);

ii) if g 1is étale in codimension 1 on X', then
discrep (X') > discrep(X) .

Proof: The proof of i) follows from commutativity in the

fibred-product diagram with exceptional divisors given below:

r = ramification index of E'/E Near e': K ., = f'"*K_, + a(E")E"
e'e E' —P E ¥ X
n N "A D B" means > f'*g*Kx + a(E'")E'
v h > v "A-B effective"
= h*f* Kx+a(E')E'
f! f
Kyr = h*Ky + (r-1)E'
X! —q—> X = h*f* Ky + h*(a(E)E) + (r-1)E'
r < deg g = h*f* Ky + (a(E)r + (r-1))E’
If g 1is étale in codimension 1, then " " above becomes "=".

This implies 1ii).
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(6.8) Definition: We define an index-one cover as follows:

Assume X is a germ of a normal variety for which Ky is
Q-Cartier with index m. Then
0, (me) = &X
so that the preimage X' of the section "1" under the
m-th tensor power map
Ky— &X
has the property that Kyx: = &X" So X' has index one.

X' is called the index-one cover of X (well-defined
only up to analytic isomorphism) .

Notice that X' is étale in codimension one over X, and that the
discrepancy of an index one variety must be an integer. So, by
(6.7):

(6.9) Proposition: A germ X is log-terminal if and only if it is a
cyclic quotient of a canonical singularity via
an action which is free in codimension one.

(6.10) Proposition: For surfaces X:

1) X has terminal singularities if and only if X is
smooth;

2) a singularity of X is canonical if and only
if it is DV, that is a DuVal singularity (also called a
rational double point) .

Proof: Let X be a surface germ. Suppose X has (at most) canonical
singularities, and let f: Y——> X be a minimal resolution. Then

KY = f*KX + ZaiEi

with all aj > 0. If not all the aj are zero, there must be some
E4 such that Ky ‘E45 < 0 because
Ky ‘ZaiEi = (EaiEi)Z < 0.

But then, by the adjunction formula, Ej must be smooth and

rational with self-intersection -1, which contradicts the
minimality of the resolution. So Ky = f*Ky. So, again by the

adjunction formula, all E;{ are smooth and rational with

self-intersection -2. The normal singularities with this property
are exactly the DuVal singularities.
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(6.11) Proposition: For a normal surface germ (X,x), the following
are equivalent:

1) (X,x) is log-terminal,

2) (X,x) is a quotient of (C2,O) under the action of a
finite group which is free in codimension 1,

3) (X,x) is a quotient of (C2,0) under the action of a
finite group.
Proof: For any normal surface germ X with Ky Q-Cartier let
g: X'—X
be its index one cover.

To see that 1) implies 2):

We saw in (6.7)that X' is log-terminal if X is. Since Kyx' is

Cartier, discrep(X') > -1 and is an integer. So X' is canonical.
Thus, X' is DV and therefore a quotient of C2 under a group which
acts freely in codimension one. So C2-{0} is the universal cover
of X-{x} and 2) is proved.

To see that 3) implies 1):

If (X,x) is a quotient of (C2,O) under the action of a finite
group, then the inequality

(deg g) (discrep(X) + 1) > (discrep(X') + 1)

shows that (X,x) is log-terminal.
A somewhat more detailed analysis leads to:

(6.12) Proposition: A normal surface germ is log-canonical if and
only if it is log-terminal or "simple elliptic" or a
"cusp" or a quotient of one of these two latter types of
singularity.

Using that discrep(X) < discrep(H), where H is a generic
hyperplane section of X, and the characterization of terminal and
canonical surface singularities, we obtain:

(6.13) Corollary: If X has only canonical singularities,
then X is Gorenstein in codimension 2.

If X has only terminal singularities,
then X is smooth in codimension two.
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(6.14) Theorem: All log-terminal singularities are rational, that
is, for some (any) resolution f: Y— X,

Rif*ﬁY = 0 for i>0.

Outline of proof for threefold singularities:

As we saw above, the index one cover X' has only canonical
singularities, so we reduce to the case in which X has only
canonical singularities and Ky is Cartier.

First we blow up the one-dimensional singular set (if there is
one). At a general point, this set is locally analytically
isomorphic to the product of a disc and a DV surface singularity,
so Ky pulls back to Kgw, where X" is the blow-up. Let

f: Y— X"— X
be a resolution, and write Ky = f*Kyx + S for some effective
Cartier divisor S. By the above, S lies over a finite set in X.

S is a hypersurface, so it is Gorenstein.
We check that le*&y = 0. Applying fx to the sequence
00— 0y, — 0 (5) —>Og(S) —> 0,

we obtain an exact sequence
...—uo0 (©g5(8)) — le*&Y—> le*&Y (S) —> ...

If & is the ideal sheaf for S, then, by the
Grauert-Riemenschneider Vanishing Theorem (8.8),

rif,0, () = Rifi0y = 0, for i = 1,2,
and so, by the above sequence, also
H2 (O5(5)) = HZ (wy/Lwy) = 0.
Since w@g = GS(2S), we also have by duality that HO(&S(S)) = 0.
Using the above sequence again, we see that le*&Y = 0.

To see that sz*@Y = 0, a relative duality theorem (the Leray
spectral sequence and Serre duality) gives that sz*ﬂy is dual to

&X(KX)/f*&Y(KY)~ But this last sheaf is zero since, for X
canonical, all sections of Ky 1lift to sections of Ky.

(6.15) Corollary: If X is canonical, local and g: X'—— X is the
index one cover, then any flat deformation {Xg} of X is
covered by a deformation of X'.

Idea of proof: Let Z = {index>1 points in X}. Then g
restricts to a cyclic cover over X-Z. Using a Lefschetz-type
argument, one shows that the fundamental group of Xg-Zg maps onto

the fundamental group of X-Z via retraction to the central fibre.
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(6.16) Corollary: If X/S is flat with fibres having canonical
singularities,
Oy (qKy) = O, ®((wy /s®F) *%)
and so the formation of (05¢/5®q)** commutes with

base change.

Idea of proof: The assertion is local on X. By (6.15),

£: X'—>X commutes with base change as does Wy.,g. Decompose

Extyr /g = (W ) ** + (W g?) %% 4 oo+ (O /g™ h) *x + (g /™) **.

locally free

St]:”gt]”:e Cf 3__djmensjgna] CanQDjCﬁ] sjng”]arjtjes.

(6.17) Definition: If (21,z) is a Gorenstein singularity, it is
elliptic if, for some (any) resolution f: Y— 2,
one has

i)Rif«@, = 0 for 0 < i < n-1, and
i1)rRn-1£40, = C.
By the same relative duality theorem used in (6.14),
ii) is equivalent to

ii') f*(l)Y =m, ZO)Z'
14

(6.18) Theorem: If (X,x) is a Gorenstein canonical singularity and
H is a generic hyperplane section through x, then
(H,x) is either rational or elliptic.

Proof: Let f: Y—> X be a resolution of X which resolves H and

which is such that the scheme f~1(x) is a Cartier divisor E, and

the line bundle L = f‘lﬁnx X is generated by global sections, so
14

f*H = E+ L.
Then ®y = Wy (H) |y, so that, if s 1locally generates Wy and h
locally defines H, residue(s/h) generates Wy. Next let e define
E locally and let & define L locally. Then, if ae/m,
fxa-f*s/f*h = (f*a/e) (fxs/Q).

Here f*a/e is regular along E and f*s/L € oy (L) . So,

residue (f*a-f*s/f*h) € F(mY(L)). Taking fx of this section, we

get back to a-residue(s/h). So any section of M, y®Wy is a push-
r

forward. So fxW = ”nx,HwH (elliptic) or fx0p = Oy (rational).
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We now give, without proof a series of results in dimension 3:

(6.19) Proposition: Let (S,s) be an elliptic surface singularity.

1) If multgS > 3, then the blow-up

g: BgS=B—S
has only DV singularities, and

- -1

Wg=g*wg ®g mg o ge

2) If multgS = 2, then some weighted blow-up

g: B—S
has only DV singularities, and

mB=(g*wS®g-1mS,S) *k

(6.20) Corollary: Let (X,x) be a 3-dimensional canonical
singularity such that, for generic hyperplane H
through x, H is elliptic at x. Then:

1) if multyX > 3, then the blow-up
g: ByX=B—>X
has only canonical singularities, and
wB=g*(Dx.

2) If multyX = 2, then some weighted blow-up
g: B—>X

has only canonical singularities, and
W =g*y.

(Roughly, this corollary is proved by running backwards through
the proof of (6.18).)

(6.21) Corollary: Let X be a Gorenstein threefold with only
canonical singularities. Then there exists a
proper and bimeromorphic morphism
g: X'—>X
such that, for every x'e X', the generic hyperplane
section H through x' has only rational singularities.
So H is Gorenstein and has only rational double points.

(6.22) Definition: A threefold singularity (X,x) is called
compound DuVal (cDV) if a generic hyperplane section
through x 1s a DV surface singularity.

So all cDV singularities are smooth or hypersurface double points
(and so are also Gorenstein).
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(6.23) Theorem: A threefold singularity is terminal and Gorenstein
if and only if it is isolated cDV.

Outline of proof: Using (6.20), one direction of the proof
becomes easy: We know that a terminal singularity must be
isolated. If an isolated singularity has generic hyperplane
section elliptic, the blow-up will have discrepancy zero and so
cannot be terminal. Thus, if the singularity is terminal, the
section must be DV. We will outline the proof of the other
direction later (16.1).

By passing first to a Gorenstein cover and then taking
quotients, after some computation one arrives at:

(6.24) Theorem: If X is a threefold with only canonical
singularities, then there is a projective birational

morphism f: ¥ —— X such that
Ky = f*Kx (i.e. f 1is crepant)
and Y has only terminal singularities.

Inductive structure of canonical singularities:

(6.25) Theorem: If X3 has only canonical singularities, there
exists a sequence of morphisms:

+

Y=Xq Xq—l
such that:

X1 Xp=X

1) X;j is Q-factorial and canonical for i>1;

2) X7 — X contracts only finitely many curves, and
is an isomorphism if X is Q-factorial;

3) for i>1, X4—>Xj_1 contracts exactly one divisor
and NE (X;/X3-1) has dimension one;

4) Y has only terminal singularities;

5) Ky is the pull-back of Ky, in fact, the Q-Cartier
canonical divisor of each Xj is the pull-back of Ky.

(6.26) References: Terminal and canonical singularities were defined by Reid
[R2]. The log-versions were introduced later in [Ka4]. (6.5-6.8) can be
found in [R2]. (6.9) was noticed in [Ka4]. (6.12) is in [Kal]. (6.14) was
proved by Shepherd-Barron[S-B] in dimension three, and by Elkik[El] and by
Flenner[Fl] in general. The proof given is due to Shepherd-Barron[R5].
(6.15-16) are in [Ko2]. (6.17-24) are all due to Reid[R1,R2]. (6.19) was
also done by Laufer[Ll]. (6.25) is in [KaS5].
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We discuss three useful extensions of the minimal model
program:
1) Relativization
2) Analytic case
3) Varieties with group actions

(1.1 Relativization

If X is projective, we define:
(not nec.

X projective) N(X) = {group generated by‘irreduc%ble
curves modulo numerical equivalence}®R
g (projective On the other hand, if f is a projective
morphism) morphism:
{Z-module generated by
irreducible C such that f£(C) = pt.
M N(X/Y) = irreduci u (C) pt.} ® R
Y (not nec. compact {cycles Z such that Z:D = 0
or algebraic) for all Cartier divisors D}
NE (X/Y) = effective cone (defined

as before)

The Cone Theorem and Contraction Theorem are just as in the
absolute case (with the same proofs). In the technique used to
prove the Cone Theorem, if the starting curve C has f(C) = point,
then all curves produced go to the same point in Y.

If X above is a threefold which is smooth (or has only
Q-factorial terminal singularities), then successive contractions
over Y must lead either to a minimal model over Y or a Q-Fano
fibration g', where

g'
X' —» gz g' has connected fibres

Y

dim z2' < dim X'

In case f 1is birational, then by a succession of divisorial
contractions and directed flips, we arrive at

fr: X' —Y
with Ky+ f'-nef. This implies, analogously to the surface case,
that Ky is f'-semi-ample (see Lecture 3).
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"Factorization" of birational morphisms over Y follows from:

(7.2) Proposition: Let g: Z—> X be a birational proper morphism
(over Y) of normal algebraic (or analytic) varieties
such that Kz is Q-Cartier and such that X has only
Q-factorial terminal singularities. Then, if Ky is
g-nef, g 1is an isomorphism.

(7.3) Analytic case

The situation here which we can handle is f: X——Y, with Y an
analytic space with some mild finiteness assumptions and f
projective. The same results hold as in the relative case,
because the required relative vanishing theorems are true in this
situation. We will see these relative vanishing theorems in
upcoming seminars.

(7.4 Yarieties with group actions

Suppose a projective variety X, smooth or with only
Q-factorial terminal singularities, is acted on by a finite group
G. Then we have Cone and Contraction Theorems for NE(X)G in
N(X)G. The only difference is that the G-orbit of an extremal ray
is an extremal face, since Ky is G-invariant. So the Contraction

Theorem involves contraction of G-invariant extremal faces.

There are applications in other settings, too. For example,
suppose X is a surface defined over a field k. We achieve a
minimal model over k by letting G = Gal(K/k), where K =
algebraic closure of k. Although this is not a finite group, its
action on the Neron-Severi group of Xx factors through a finite

group, so the construction of a G-minimal model proceeds as in the
case of algebraically closed base field.

(7.5) In case X is a smooth complex projective surface with
G-action, G a finite group, we proceed as before with the
classification with some minor changes. A G-extremal ray is

generated by a one-cycle of the form C = £C;, where the Cy are
irreducible rational curves in a G-orbit.

1) If C2 < 0, one easily sees that the C4 must be

smooth, mutually disjoint, each with self-intersection
-1. Thus all the C4 can be blown down to smooth points.

2) If c2 = 0, then the connected components of C must
have the form:
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-1
X e |

3) If cZ > 0, then N(x)G = z, and -Kyx is ample, so that
X is a del Pezzo surface.

(7.6) Theorem: Suppose now X is in the class of projective
G-threefolds with terminal, GQ-factorial singularities
(i.e. every G-stable Weil divisor is Q-Cartier). Any
such X is G-birational to:

1) a G-threefold Y in the same birational
equivalence class with Ky nef,

2) a G-threefold Y in the same class which has
a G-morphism f to a normal projective
G-variety Z such that -Ky is f-ample and

dimZz < dimX.

(7.7) Finally, let's outline a proof (using the minimal model
program) of Peternell's theorem that every smooth Moishezon
threefold Z which is not projective contains a rational curve:
(The original proof was done before the completion of Mori's
program in dimension three. It required very skillful
computations using only the existence and structure of extremal
contractions on smooth threefolds.)

We begin by recalling that we can find a birational morphism
f: X—m 2

where X is a smooth projective threefold. We apply the steps of
the absolute minimal model program to X as long as the morphism to
Z can be maintained. Then either

1) we arrive at X' minimal, in which case, by Proposition (7.2),
X' would have to be isomorphic to Z (ruled out by assumption),

or

2) we come to an extremal contraction f':X'——> X" such that the

rational map X" —-->2Z 1is not a morphism. Since the latter map is
not a morphism, by Zariski's Main Theorem at least one fibre of

f' 1is not contracted to a point in Z. But the fibres of f' are
covered by rational curves, thus Z must contain a raticnal curve.

(7.8) References: (7.3) was worked out by Nakayama[Nak]. The original proof
of (7.7) is in [P]. The present proof is due to Kolldr. The rest of the
chapter is in [M3].
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Lecture #8: Vanishing theorems

(8.1) Principle: If the cohomology of a sheaf ¥ comes from

topological cohomology, then there is a Kodaira-type
vanishing theorem.

By this we mean that, if L is an ample line bundle on X, then
i (x; F®L"1) =0, i < dimX.
(8.2) We illustrate this principle by using it to prove the
classical case of the theorem, the case ¥ = &X, X a smooth
projective variety:
8.2.1) Step 1:
A coherent sheaf ¥ in the analytic topology is also a sheaf of

abelian groups. Find a topologically constructible sheaf F and a
natural map

F-oH7%
such that the induced map on cohomologies is surjective. (The
coherent cohomology of a coherent analytic sheaf is the same as
its cohomology as a sheaf of abelian groups.) For & = O the

constant sheaf Cyx will suffice, since Hodge theory tells us that
the natural mapping

wl(x; cx) —— i (x; 0y,
induced by inclusion of sheaves, is surjective.

8.2.2) Step 2:

Suppose LM is very ample. Let s be a general section. Then
the zero set D of s 1is a smooth, very ample divisor. Consider
the diagram:

Z = (preimage s(X) in L) € L ——V ™ o s (X)

m to one
cyclic

branched
covering

D = (branch locus of p)
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By Hodge theory, the map

ui(z; cg) —>H1(2; G,y)
is surjective. Since the fibres of p are zero-dimensional,
there are no higher direct-image sheaves, so

B (X; pxCy) —> B (X; px0,)

is surjective. The action of Z/mZ on Z decomposes this last
morphism into a direct sum of morphisms on eigenspaces. The
intersection pairing on

H* (X; pxCg) = H*(Z; Cg)

respects this decomposion into eigenspaces; Poincaré duality
respects the decomposition also.

8.2.3) Step 3:

Let & be the primitive m-th root of unity e2m-1/m  ye can
decompose

pxCy = @ C[ET],
where C[&r] denotes the local system that has monodromy &r if we go
around the divisor D once. If one denotes by H* (X; p*CZ)[ﬁr] the

ir—eigenspace of the Z, action on H* (X; pxCyz), then we have
H*(X; pxCy) [EF] = H*(X; C[E¥]) .
If r#m, then, for the inclusion 1i: (X-D)—> X, the natural map

ClEF] — i (CLEF) Ix-D)

is an isomorphism, where i, means the extension to X which has
zero stalks at points of D. Thus

H* (X; pxCg) [E¥] = H*(X; C[E¥])
= H*(X; 1, (C[E¥] Ix-p)) = H*(X-D; CIEF] |x—p) .
8.2.4) Step 4:
We are now ready to finish the argument. Since (Z-D) is affine,

it has the homotopy type of a real n-dimensional CW-complex.
n = dimgX.) So for i<n,

0 = H2n=i(z-p; Cc) = HZ2P~1(X-D; pxCy),
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and, using the above identifications and duality,
0 = Hzn‘i(X—D;C[ﬁr]lx-D) = H2n"i(x;p*cz)[§r]

which is dual to Hi(X; pxCy) [ET] for i<n and r#m. So, by
surjectivity,
Bl (X; px0,) (Y] = 0 for i<n.

But Hi(X;p*Gz)[ﬁr] = Hi(X;p*@Z[ar]). Also p*az[ﬁr] = L~T, since

D is given locally in Z by zM=g for 2z a function on L (i.e. a
section of L~1). This completes the proof.

Using the same basic construction, we obtain:

(8.3) General Vanishing Theorem for Line Bundles:
Let X be a smooth complex projective variety. Let L be
a line bundle on X such that

ci1(L) =M + ZaiDi

such that
1) M is a nef and big Q-divisor,

2) LDij is a simple normal-crossing divisor,

3) 0<ay{<1, and aj€ Q for all 1i.
Then
Hi (x; L=1) = 0 for i<dimX.

Proof: First we give the proof in the special case in which M is
ample. The proof in this case is much simpler, and this is the
main case that we will use. Choose a positive integer m so that

M®M is Cartier and very ample and ma; is an integer for each 1.

Take a general divisor B from the linear system of M®M,  Then B is
smooth and meets the Dj transversely. Also

D =B + XmajD;
is the zero set of some section of L®m, Again we consider:
Z = (preimage s(X) in L) € L ——P L™ 2 s(X)

\
m to one
cyclic
branched
covering

D = (branch locus of
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The proof now goes just as in the special case we did
previously, except that we have to take care of two problems. Let
Z"~ be the normalisation of Z. In general Z” is singular but
z~-p~1(D) is still smooth and affine thus it has the homotopy type
of a real n-dimensional complex. The singularities of Zz" are all
quotient singularities, thus Poincaré duality holds with Q
coefficients.

The other problem is that it is the sheaf
= -1 - (m-1)
pxQ, = Oy + L + ... L

which obviously contains L™l as a direct summand. Thus it remains
to be checked, that, under the inclusion

p*e'z c (pA)* g AT

-1 goes to a summand. This is where condition 3) in the
statement of the theorem enters.

Let e(i) = maj, and suppose that Dj is locally defined by fi =0

and B is locally defined by g=0. Then Z is given locally by the
equation
zM = g'Hfie<i) .
The r-th summand of (pA)*@ZA is locally generated by
(Zr/ganfib(i))
with m-th power in &X‘ So a = 0, and re(i) > mb(i), that is,
raj; > b(i). When r = 1, this means that all b(i) = 0 by
Condition 3) of the Theorem. Thus L~1 is a summand of (pA)*&ZA,
and the theorem is proved when M is ample.

The rest of the proof is somewhat technical. The reader who
is interested mainly in the applications can skip the rest of this
chapter. We need the following auxiliary results:

(8.4) Corollary: Let X be a smooth variety and let Z be a
codimension ¢ smooth subvariety. Let

f: ¥Y— X

be the blow-up of Z in X, and let E be the exceptional
divisor. Then for 0 < i < c-1 we have

i) f*(DY(—iE) = (DX ;
and
ii) RIfx@y(-iE) = 0 for j>0.
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Proof: Since Wy = £* Wy ((c-1)E), the first assertion is trivial.
The second one will be proved using the Theorem on Formal

Functions. For simplicity of notation, we compute the case when 2
is a point. Then E = pc-1l, and Wy (-iE) |g = GE(i+l—c) = Op (i+1) .
Thus

HI(E; Oy (-iE) (-kE) [g) = O

for k > 0 and j > 0. If akE denotes the kth-order neighborhood of
E then we have an exact sequence

0—— Wy (-iE) (-kE) |[g— @y (-iE)® Oy 1) — Oy (-iE)® O p — 0.

Thus the vanishing of HIJ (E; Wy (-1iE) (-kE) |g) gives inductively the

vanishing of Hj(wy(—iE)@NﬁkE) for every k > 0 and j > 0. This
is what we wanted.

(8.5) Definition:

(1) Let X be a smooth algebraic variety, Z a
subvariety and D;j divisors. We say that Z and the Dj

cross normally if, for every point x of X, there is
a local analytic coordinate system (x4) such that
locally every Dj passing through x 1is a coordinate

hyperplane and, if Z passes through x, Z is the
intersection of some coordinate hyperplanes. (Z may lie
in some of the Dj.)

(ii) Given a birational morphism g: Y——> X between
smooth varieties, a subvariety Z of Y and divisors Dj on
X we say that Z and the Dj cross normally if Z, the
proper transforms of the D; and the exceptional

divisors of g cross normally on Y.

(8.6) Corollary: Let X be a smooth variety and let Z be a

codimension ¢ smooth subvariety. Let f: Y——>X be
the blow-up of Z in X, and let E be the exceptional
divisor. Let L, M and Dj as in (8.3). Assume Z and Dj

cross normally. Let D' be the proper transform

of Dy. Then there is 0 < k < ¢c-1 such that for
f*(ZaiDi) - kE = ZaiDi' + bE

we have

i) 0 < b < 1,
and

ii) HI(Y; oy (-kE) ® £*L) = HI(X; 0y ®L).
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Proof: Assume that Dl,...,Dp are those divisors that contain 2.
Since the Dj intersect transversally, p £ c. E appears in

£*(ZaiDy) with multiplicity ai+...+ap < c. Now let
k = [agt...+apl,

where "[ ]" denotes "greatest integer in." Statement ii) now
follows from (8.4) and the Leray spectral sequence.

(8.7) Proof of (8.3): Pick any ample divisor H. For large Kk,
HO(kM) >> HO(kM|H)‘ Thus we can write kM = H+ B, where B is
effective, and so we can write for each positive integer N:

M= N~L1(H+ (N-k)M) + N-1B,
where the first summand is ample and the second one is effective.
Let € be such that aj/€ is integral for every 1. Now choose a
resolution f: Y—— X with exceptional divisor XE; and then N
sufficiently large such that

i) £ 1is a composition of blowing-ups with centers Zj_1
fi: ¥Yi—>Yi 4

such that Zj_.7 and Di cross normally.

(X = Yg and Y = Y,),

ii) ZEy + £*(B + ZD;i) has simple normal crossings only,

iii) £*Nn"la+ (N-k)M)) - ILp4E4 is ample for some
0<py<<g,

iv) every divisor in £*N"1B + ijEj appears with

coefficient less than €.

The trouble is that in f*(EDi) the exceptional divisors can appear

with coefficients larger than 1, therefore we cannot apply our
vanishing for the pull-back. Quite miraculously the situation
becomes tractable if we consider the dual form of vanishing.

Repeatedly applying (8.6) we get that there is a linear
combination
ijE'

J
such that

i) the ky are integers,

ii) in £*Za;Dy - Zk4E4, every divisor appears with
coefficient less than 1,
ii1) HI(Y; 0y (-Zk4E4) ® £*L) = HI(X; 0y ®1L).
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Now we can look at

* i

* - X g — *
{£* 1+ (N-k)M)) - ZpyE4} + £*N71B + TpyEy + £'TayDy - LkyE;.
In f*ZaiDi-ijEj, every divisor appears with coefficient less

than 1, and so by the choice of € in fact with coefficient < 1 -€.
Thus

£*L - Zk4Ey
is written as the sum of an ample divisor and of a Q-divisor with
normal crossings and coefficients less than 1. Thus by the

already proved case

HI(Y; @y ®£*L(-Zk4E4)) = 0 for j > 0.
By iii) above, this gives that
HI(X; 0x®L) = 0,

which is the required vanishing.

(8.8) Corollary: Let f: Y—— X Dbe a birational morphism, Y
smooth. Assume that M is a nef line bundle on Y.

Then, for 1>0,

Rifx (0y ®M) = 0.
In particular,

Rif*mY = 0.

Proof: Choose H ample on X. Apply (8.3) to L = f*H®M on Y and
then use the following:

(8.9) Proposition: Let f: Y—— X be a morphism and let ¥ be a
sheaf on Y. Then the following are equivalent:

i) HI(Y; F®£*L) = 0 for every L which is sufficiently
ample on X,

ii) RI£«F = 0.

Proof: Choose L such that Hi(X;Iﬂngf*?) = 0 for all 1i>0 and k.
Then the Leray spectral sequence degenerates at Ep. Thus

HI(Y; FR®£*L) = HO(X; LORIELT) .

(8.10) References: The General Vanishing theorem was first proved by
Miyaoka [Mi] for surfaces and by Kawamata[Ka2] and Viehweg[V] in general. The
special case of (8.8) is due to Grauert-Riemenschneider[GR].
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Lecture #9: Introduction to the proof of the Cone Theorem

In Lecture #4, we proved the Cone Theorem for smooth
varieties. We now begin a sequence of theorems leading to the
proof of the Cone Theorem in the general case. This proof is
built on a very different set of ideas. Applied even in the
smooth case, it gives results not accessible by the previous
method; namely it proves that extremal rays can always be
contracted. On the other hand, it gives little information about
the curves that span an extremal ray. Also, this proof works only
in characteristic 0. Before proceeding, we reformulate slightly
the Vanishing Theorem proved in Lecture 8:

(9.1) Let Y be a non-singular complex projective variety. Let

2 diD; be a Q-divisor on Y, written as a sum of distinct prime

divisors, and let L be a line bundle (or Cartier divisor). Let
D=1 + XdiDj.

o]

We define the round-up

of D to be the divisor
L + ZeyDjy,

where ej is the smallest integer > dj.

(9.2) Theorem: Suppose that D as above is nef and big and that
XDy has only simple normal crossings. Then

Hi(ky + [Dl) = 0 for i>0.

We will prove four basic theorems finishing with the Cone
Theorem:

(9.3) Basepoint-free Theorem:

Let X be a projective variety with only canonical
singularities. Let D be a nef Cartier divisor such
that

aD—KX
is nef and big for some a>0. Then |bD| has no

basepoints for all b>>0.
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(9.4) Non-vanishing Theorem:

Let X be a non-singular projective variety, D a nef

Cartier divisor and G a Q-divisor with [G] effective.
Suppose

i) ab + G - Kyx is ample for some a>0,

ii) the fractional part of G has only simple
normal crossings.

Then, for all m>>0,
HO(X; mD + [G]) = 0.

(9.5) Rationality Theorem:

Let X be a projective variety with only canonical
singularities such that Ky is not nef. Let H be an

ample Cartier divisor, and define
r = max{t € R: H + tKy nef}.
Then r 1is a rational number of the form u/v where

0 < v £ (indexX) (dimX + 1).

(9.6) Cone Theorem:

Let X be a projective variety with only canonical
singularities. Then

1) <NE(X)> = (<NE(X)>N (Kyx)>0) + Z(Rxp) [Cy]

for a collection of curves Cy with KyxCy < 0.

(The sum has the property that the set of Cj is

minimal--no smaller set is sufficient to generate the
cone. The (Ryq) [C4] which, together with

(<NE(X)>r\(KX)20), form a minimal generating set for
<NE (X) >, are called extremal rays.)

2) For any € > 0 and ample divisor H, 1) gives
<NE (X)>N (Kx + €H) <q
= (NE(X)>N (Kx + eH)=0) + Zfinite(R>0) [Cyl.

58



INTRODUCTION TO THE CONE THEOREM

(9.7 The logical order of proof of these theorems is the following:

Non-vanishing Theorem = Basepoint Free = Rationality => Cone Theorem.

However for better understanding we prove first Basepoint Freeness
and then the Cone Theorem. The proofs of Non-vanishing and of
Rationality utilize the same ideas, but they are technically more
involved. These proofs will be presented at the end.

(9.8) The basic strategy for proving the Basepoint-free Theorem (as
well as for proving the Non-vanishing and Rationality Theorems) is

as follows. We work with resolutions f: Y—— X, and with smooth
divisors Fj which are either fixed divisors of |aD| or exceptional
over X. We show that we can single out one Fj, call it F, and an
effective sum A' of exceptional divisors so that

HO(F; (b'f*D + A')|p) 2 0 (Non-van. Th.)
and
Hl(Y; b f*D + A' - F) =0 (Van. Th.),

for sufficiently large b. Since

HO(x; bD) —> HO(F; (b-£*D) |p)
i= since A' effective l

BO(Y; b £*D + A') —> HO(F; (0£*D + A') |p)
this means that f(F) is not contained in the base locus of |bD| by

HU(Y; b-f*D + A') —> HO(F; (b f*D + A') IF)———)Hl(Y; b-f*D +A' -F),

non-zero zZero
(although f(F) is contained in the base locus of |aD|). An
iteration will then eliminate the base locus altogether for all
sufficiently high multiple of D.

(9.9) So we will need to worry about the restriction of Q-divisors
and their round-ups to smooth hypersurfaces F of a non-singular Y.
We only restrict divisors

D =1 + £d;D4
where either F # Dy for any i, or F = Dy for some j for which
dj is an integer. 1In the latter case, we absorb dej into L
before restricting. 1In either case, we only consider situations
in which the sum of the remaining F; meets F in a simple normal
crossing divisor. Then round-up commutes with restriction.

(9.10) References: The proofs of these four theorems are fairly interwoven in
history. For smooth threefolds Mori[Ml] obtained some special cases. The
first general result for threefolds was obtained by Kawamata[Ka3], completed
by Benveniste([Bl] and Reid[R4]. Non-vanishing was done by Shokurov(Sh]. The
Cone Theorem appears in [Ka4] and is completed in [Ko3].
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Lecture #10: Basepoint-free Theorem

(10.1) Step 1: In this step, we establish that (mD| # & for every
m>>0. By our assumptions on X and D, we have as in (8.7) that
aD - Ky = (ample divisor) + N'l(fixed effective divisor)
for N>>0. So we can construct some resolution
f: Y—X
which has a simple-normal-crossing divisor ZFj such that

1) Ky = f*Ky + Zaij with all ay 2 0,

2) f*(aD-Kyg) - Eijj is ample for some a>0 and for
suitable O <pq<< 1.

On Y, we write a divisor
f*(aD - Kg) - ijFj = af*D + (Zaij - ijFj) - (f*Kyx + Zaij)

= af*D + G - Ky,
where G = Z(aj—pj)Fj. By assumption, rG1 is an effective
f-exceptional divisor (a5 > 0 only when Fj4 is f-exceptional),
af*D + G - Ky
is ample, and
HO(Y; mf*D + [G]) = HO(X; mD).

We can now apply Non-vanishing to get that

HO(X; mD) > 0 for all m>>0.

(10.2) Step 2: We let c¢c>1 and define
B(c) = reduced base locus of |cD|.
Clearly

B(c?) ¢ B(cDP)
for any positive integers a>Db. Noetherian induction implies that
the sequence B(ch) stabilizes, and we call the limit Bo. So
either B, is non-empty for some ¢ or B and B,r are empty for

two relatively prime integers ¢ and c¢'. In the latter case,
take a and b such that B(c®) and B(c'P) are empty, and use
that everg sufficiently large integer is a linear combination of
c@ and c¢'® with non-negative coefficients to conclude that [mD| is
basepoint-free for all m>>0. So we must show that the assumption
that some B. is non-empty leads to a contradiction. We let m = c@&

such that B. = B(m) and assume that this set is non-empty.
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Starting with the linear system obtained from the
Non-vanishing Theorem, we can blow up further to obtain a new

f: Y—X
for which the conditions of Step 1 hold, and, for some m>0,
f*|mD| = |L| (moving part) + erFj(fixed part)

with |L| basepoint-free. Therefore kJ{f(Fj): ry > 0} is the base
locus of |mD|. Note that

ImD| is basepoint-free
if and only if

f*|mD| is basepoint-free
if and only if

ry = 0 for all j.
We obtain the desired contradiction by finding some Fy with ry >0

such that, for all b>>0, f(Fj) is not contained in the base locus
of |bD].

(10.3) Step 3: For an integer b >0 and a rational number c>0 such

that b >cmt+a, we define divisors:

N(b,c) = bf*D - Ky + E(—er+aj—pj)Fj
=f* (b-cm-a)D + c(f*mD - erFj) + (f*(aD-Kyg) - ijFj).
nef basepoint-free ample

Thus, N(b,c) is ample.

Since N(b,c) is ample for b>cm+a, we have, by the Vanishing
Theorem,
Bl (v; [N(b,c) ] + Ky) = 0
where
[N(,c)] = be*D + = r-crj+aj—pjTFj - Ky.

(10.4) Step 4: ¢ and the P4 can be so chosen that, for some F =
Fyr, we have that

Z(-crj+aj—pj)Fj =A-F,
where FA] is effective and A does not have F as a component. In

fact, we choose ¢c>0 so that

min{—crj +tay - pj} = -1.
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If this last condition does not single out a unique Jj, we wiggle
the P4 slightly to achieve the desired unicity. This j will

have ry > 0 and
[N(b,e)] + Ky = be*D + [a] - F.

Now Step 3 implies that
HO(Y; b £*D + [Al) — HO(F; (b £*D + [Al) IF)
is a surjection for b > cmta.
Note: If that if any Fj appears in rA], then aj > 0, so Fj is

f-exceptional. Thus [a] is f-exceptional.

(10.5) Step 5: Notice that

N (b, c) IF = (bf*D + A - F - Ky) IF
= (bf*D + A) |y - Kp.

So we can apply the Non-vanishing Theorem on F to get
HO(F; (b-f*D + [Al)|p) # 0.

So HO(Y; b-£*D + rA]) has a section not vanishing on F. But, since

[al is f-exceptional and effective,
HO(y; b-£*D + [al) = HO(x; bD) = HO(Y; b-£*D).
So, as in (9.8), f(F) is not contained in the base locus of |b-D|

for all b>>0. This completes the proof of the Basepoint-free
Theorem.

(10.6) Reference: This proof is taken almost verbatim from [R4].
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Lecture #11: The Cone Theorem

(11.1) First we give an infomal explanation of the way the
Rationality Theorem is used to get information about the cone of
curves.

If (Picard no. of X) >2 and H is ample, we have in N(X):

P

Since r is rational by the Rationality Theorem, m(H + rKyx) is
Cartier for some m>0. Note that m(H+ rKy) is nef but not ample.

Thus (<NE(X)>N {H+rKx=0}) is a "face" of <NE(X)>. Starting with

various ample divisors, we get various faces of <NE(X)>. The
proof of the Cone Theorem turns out to be a completely formal
consequence of this observation. To be precise, the Cone Theorem
follows immediately from the Rationality Theorem and the following
abstract result:

(11.2) Theorem: Let Ny be a free Z-module of finite rank and Ng the

base change to (tensor product over Z with) R. Let <NE>
be a closed convex cone not containing a straight line.
Let K be an element of the dual Z-module Ngz* such that

(K-C) < 0 for some Ce <NE>. Assume that there exists
a>0 such that, for all He Ng* with H > 0 on <NE>- {0},
r = max{t € R: H+tK > 0 on <NE>}

is a rational number of the form u/v such that 0<v<a.
Then

<NE> = (<NE(X)>NK>g) + Z(Rq) [§;]
for a collection of §; € Nz with (§;'K) < 0 such that the

(Rzo)[ii] don't accumulate in K¢p (see 2) of (9.6)).
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Proof of Theorem (11.2) and the Cone Theorem:

We may assume that Ky is not nef.

(11.3) Step 1: Let L be any non-ample, nef divisor class such that
1l does not meet (KNE (X) >N (Kx) >0) except at 0. Define

F;, = Ltn<nE(x)>.
Then, by Kleiman's criterion, Fy # {0}. Let H be an arbitrary
ample Cartier divisor. For VeN, let e = ((indexX) (dimX+1))! and
ri,(V,H) = max{te€R: VL + H + (t/e)Kx is nef}.

By the Rationality Theorem, rrp(V,H) is a (non-negative) integer,
and, since L is nef, rp(V,H) is a non-decreasing function of v.

Now rp (V,H) stabilizes to a fixed ry (H) for V2V since, if &e Fi,,
then

rp(V,H) < e(HE)/ (-Ky'b) .
Also L and

VoeL + eH + rL(H)Kx

are both non-ample nef divisors, so, putting
D(VL,H) = Vel + eH + rL(H)Kx,
we have

0 # Fp(vi,H) € FL for v>vg.

(11.4) Step 2: We claim that, if dimFy; > 1, then we can find an
ample H with

dim FD (VL, H) < dim Fr,.

To see this, choose ample divisors H;i which give a basis for

N(X)*. If dimFy > 1, the equations

VL + Hy + (rp(Hy)/e)Kx = 0
cannot all be identically satisfied on Fp since they give
independent conditions. Repeating the argument over successively

smaller faces, we obtain that for every L there is an L' such that

F;, D F,r and dimFp» = 1.
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(11.5) Step 3: We claim that

<NE (X)> = (<NE(X)>N (Kx)>0) + <X F1>,
where, as above, we sum over L such that dimFp = 1.
(Recall that "< >" means "closure".)

To prove this, assume that the right-hand-side of the claimed
equality is smaller. Then there is a divisor so that the
hyperplane

M=0

misses the right-hand-side but not the left-hand-side:

: /

H=M+aK 4 H+rKX //
M

There's
an F
here!

The straightforward application of the Rationality Theorem to
r in the above picture, followed by Step 2, gives a
contradiction.

(11.6) Step 4: Next we show that the one-dimensional Fp, "don't
accumulate" in (Kyx)<g. To see this, let

{H(1))

be a set of ample Cartier divisors which, together with Ky, form a
basis of N(X)*. For each one-dimensional Fp and 1, take V(i) such
that

Fp(v(i)L,H(1i)) = FL-
Then, for & generating Fy and for all i,
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(*) (&H(1))/(EKx) = (integer)/e.
If the Fi accumulated somewhere in (Kyx)<g, then the points of
the projectivization

(N(X)-{0}) /R*

of N(X) to which they correspond would have to accumulate
somewhere in the affine subset U of (N(X)-{0})/R* given by

Ky # 0.

But the equation (*) just above rules out that possibility,
because
EeU—> ((§-H(1))/ (§Kyx)) 3

is an affine coordinate system.

(11.7) Step 5: Finally, for each one-dimensional F1, the Rationality
and Basepoint-free Theorems show that there exists a morphism
contracting only Fy, and so

F1, = (Ryp) [C]
for some curve C. So we now have

<NE (X)> = (<NE(X)>N (Kx)>0) + Z (Rx0) [C4],

and the Cone Theorem is proved.

(11.8) References: This proof of the cone theorem is new. It grew out of
conversations among J. Kolldr, T. Luo, K. Matsuki and S. Mori.
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(12.1) Proof of the Rationality Theorem:

Step 1: Suppose Y is a smooth projective variety, and suppose {Dj}
is a finite collection of Cartier divisors and A is a fractional
simple-normal-crossing divisor with [A] effective. Consider the
Poincaré polynomial

P(uy,...,ux) = X(ZuiDi-i-rA-l) .

Suppose that, for some values of the uj, XuiD;j is nef and

YuiDy + A - Ky 1is ample.

Then, for all integers m>>0,
YmuiDj + A - Ky
is still ample so that
Hi (Zmuypy + [a]) =0
for 1>0 by the Vanishing Theorem, and
C(ZmuiDy + [al)

must have a section by the Non-vanishing Theorem. Therefore
x(ZmuiD; + [a]) # 0.

Thus P (uj,...,ux) is not identically zero and its degree is less

than or equal to dimyY.

(12.2) Step 2:

Claim: Let r € R.
a) Let P(x,y) be a non-trivial polynomial of degree < n,
and assume that P vanishes for all sufficiently large

integral solutions of

0 <ay-rx < g

for some fixed positive integer a and positive €.
Then r 1is rational.

b) Let r be as in Part a). Then, in reduced form,
r has denominator

< a(n+l) /€.
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Proof: a) First assume r irrational. Then an infinite number of

integral points in the (x,y)-plane on each side of the line
ay-rx = 0

are closer than &/ (n+2) to that line. So there is a large integral

solution (x',y') with
0 < ay' -rx' < &/ (n+2).
But then
(2x',2y")y ..., ((n+l)x', (n+l)y")
are also solutions by hypothesis. So

(y'x=-x'y)

divides P, since P and (y'x-x'y) have (n+l) common zeroes. Choose

a smaller € and repeat the argument. Do this n+l times to get a
contradiction.

b) Now suppose r = u/v (in lowest terms). For given Jj, let
(x',y') be a solution of

ay-rx = aj/v.
(Note that an integral solution exists for any 3j.) Then

a(y'+ku) —r(x'+akv) = aj/v

for all k. So, as above, if
aj/v < g,

(ay - rx)-(aj/v) must divide P. So we can have at most n such
values of Jj. Thus

a(n+l) /v > E.

(12.3) Step 3: Let € be a positive number. Let H be an ample
Cartier divisor. Let a€ 2 Dbe such that aKx is also Cartier.
Assume that Ky is not nef and let

r = max{t € R: H + tKx nef}.

For each (p,q), let

A(p,q) = base locus (with reduced scheme structure)
of the linear system |pH+gaKy| on X.

By definition, A(p,q) = X if |pH+qaKyx| = &.

(12.4) Claim: For (p,q) sufficiently large and 0 < ag-rp < g,
A(p,q) is the same subset of X. We call this subset Ag.
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Proof: Consider the following diagram of divisors on X:

! W4 (®',a")

Since angle bounded
0 away from edge of

ample cone, this

arrow becomes

very ample once

its length reaches

some fixed size.

The above diagram shows that
A',qa") € Alp, @),

which proves the claim by the Noetherian condition on
subvarieties.

(12.5) For (p,q) as in (12.4), the linear system |pH+gaKyx| cannot be
basepoint-free on X since pH+gaKy is not nef. We let dczx2 be

the set of (p,q) for which
0 < ag-rp < 1

and A(p,q) = Ag. Let us emphasize that { contains all
sufficiently large (p,q) with 0 < ag-rp < 1.

(12.6) Step 4: Suppose X has only canonical singularities. Let

g: Y—>X
be a resolution which is a composite of blow-ups of closed
subvarieties such that the exceptional set is a divisor UE; with

simple normal crossings. We can choose €; >0 such that
-E = -Xg{E;
is g-ample. Let A = XajE; be an effective Q-divisor such that

A = Ky - g*Ky. Let D7 = g*H and Dy = g*(aKy) .

Then we put
P(x,y) = x(xDp+yDp+[al).

Since D7 is nef and big, P is not identically zero by
Riemann-Roch. Since A' is effective and g-exceptional,

HO(v; pDy+gDy+[a]) = HO(X; pH+qaKy) .
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(12.7) Step 5: Suppose now that the assertion of the Rationality
Theorem that r 1is rational is false. If

0 < ay-rx < 1,

then
xD1+yDo+A-Ky

is numerically equivalent to the pull-back of the ample Q-divisor

xH + (ay-1)Kyx.
Thus, for some 1>>6>0,
xDq + yDp + A - Ky - OE
is ample and ﬁ\—5E1 = rA]. Thus, by the Vanishing Theorem,

Hi(Y; xD1+yD2+rA1) = 0 for 1>0.

By Step 2, there must exist arbitrarily large (p,q) with
0<ag-rp<1l for which
P(p,q) = hO(Y; ppi+qpy+[al) = 0,

since otherwise P(x,y) would vanish "too often" implying that r
is rational for X and H. Thus

IpH+qaKyx | # &
for all (p,q) € . See (12.5).

(12.8) Step 6: For (p,q) € !, choose a resolution
f: Y—X

such that there exists a simple-normal-crossing divisor EFj with
the following properties:

a) Ky = £*Kx + Xa4F4y for aj non-negative and rational.

b) f£*(pH+(ga-1)Kyg) - ijFj is ample for some sufficiently
small, positive Py

(This is possible since pH+(ga-1)Kyx is ample.)
c) |f*(pH+qaKyg) | = |L| (basepoint-free part)-erij(fixed part)

for some non-negative integers ry.
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(12.9) Step 7: Let (p,q) € < be as chosen in (12.8). As before, we

can choose rational c¢>0 and pj:>0 so that

z (—er+aj—pj)]:"j = A' - F

with [a'] effective, A' not involving F. By examining
coefficients, we notice that F maps into some component B of the
base locus A(p,q) of |pH+gaKyx|. Define

N(p',q') = f*(p'H+g'aKyx) + A' - F - Ky

i

f*((p'-(l+c)p)H+ (g'-(1l+c)qg)aKyx) + £*((l+c)pH + (1l+c)gaKyk)
+ Z(-cry+ay-py)F§ - Ky

cL bp-free

+ £x((p'-(l+c)p)H+ (g'-(1+c)q)aKy) nef if p',q' big enough
and (g'-(l+c)g)a<r(p'-(l+c)p)
+ £*(pH+(ga-1)Ky) - ijFj ample

Notice that if p' and gq' are big enough and

aq'-rp' < ag-rp,

then

(q'-(l+c)g)a < r(p'-(l+c)p),

so N(p',q') is ample. Thus, by the Vanishing Theorem, the map

is

HO(Y; £* (p'H+q'akyg) +[Aa']) —> HO(F; (£* (p'H+q'aky) +[2a']) 1)

surjective.

(12.10) Step 8: By the adjunction formula, the restriction of the
divisor

to

As

is

f*(p'H+gq'aKy) + A' - F - Ky
F is the divisor

(f*(p'H+gq'aKy) + A') |[p - Kp.
in Step 1, the Poincaré polynomial

X(F; (£*(p'B+q'aky)+[a']) 1)

not identically zero.
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But, for 0 < aq'-rp' < ag-rp,
(f*(p'H+gq'aKyg) + A') |p - Kp
is ample, so, in this strip,
X(F; (£x(p'H+q'aky)+[A']) Ip) = nO(F; (£*(prH+q'aky)+[a']) 1p).

So, by Part a) in Step 2 applied to the Poincaré polynomial on F
with € = ag-rp, there must be arbitrarily large (p',q') such that

0 < ag'-rp' < ag-rp
and

hO(F; (f*(p'H+q'aky)+[A' D) Ip) # 0.

(12.11) Step 9: We are now ready to derive a contradiction. By
assumption A(p,q) = Ap. For (p',q') as in Step 8

HO(Y; £*(p'H+q'aKy) Hal) — HO(F; (£*(p'H+q'akx) HA' D) Ip) # 0

is surjective. Thus F is not a component of the base locus of
| £* (p'H+q'aKy) + rA1|. Since FA] is f-exceptional and effective,

O (Y; £*(p'H+q'aky)+[al) = HO(X; p'H+q'aKy),

and so, as in (9.8), this implies that f(F) is not contained in
A(p',q"'). Thus A(p',q') is a proper subset of A(p,q) =Ay, giving
the desired contradiction.

(12.12) Step 10: So now we know that r 1is rational. We next
suppose that the assertion of the Rationality Theorem concerning
the denominator of r 1is false. We proceed to a contradiction in
much the same way.

Using part b) of Step 2 with € = 1, conclude as in Step 5 that
there exist arbitrarily large (p,q) with 0 < ag-rp < 1 such that

P(p,q) = hO(y; pDi+ady+[al) # o,
since otherwise P (x,y) would vanish "too often". Thus

|pH+gaKyx| # @

for all (p,q) e by (12.5).
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Choose (p,q) € 4 such that ag-rp is the maximum; say it is
equal to d/v. Choose a resolution f as in Step 6. In the strip

0 < agq'-rp' < d/v,

we have as before that
X(F; (£*(p'H+q'aky)+[Aa']) |p) = hO(F; (£*(p'H+q aky)+[Aa"]) 1) .
By part b) of Step 2, there exists (p',q') in the strip

0 < ag'-rp' < 1 with g€=1
for which
nO(F; (£*(p'H+q'aKyx)+[A']) Ip) # 0.
But then
aq'-rp' < d/v = ag-rp

automatically. The desired contradiction is then derived as in
Steps 7-9. This completes the proof of the Rationality Theorem.

(12.13) The use of the Poincaré polynomial in the proof of the
Rationality Theorem is analogous to its use in proving a classical
result about the divisibility of Kyg:

Suppose a smooth projective variety X has dimension n and
-Kx is ample. Suppose mH = Ky, thus -H is ample. The Poincaré

polynomial % (VH) for H has at most n zeros, so it is non-zero for
some 1 <V < n+l. However, in this range,

X (VH) = #hD(VH) = 2hO (Ky-VH) .
So m < n+l.

(12.14) References: The proof is from [Ka4] with simplifications and additions
of [Ko3]. See also [KMM, 4.1].
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Lecture #13: Non-vanishing Theorem

(13.1) Proof of the Non-vanishing Theorem:

First notice that we can assume that D is not numerically trivial,
since otherwise

n0(x; mo+[Gl) = xmp+lcl = xdeh = n0(x; [l = o,

so the assertion of the theorem is trivially satisfied.

(13.2) Now pick some simple point x € X which does not lie in the

support of G. (We will blow up this point first in the
construction of f below.) We claim that we can pick positive

integers gp>a and e(q) for each g>qgp so that
i) (e(gD+G-Kyx) - Kyx) is ample for all e>e(q),

and
ii) for any k>0 there is e(q,k) such that for all e>e(q, k)

such that e-(gD+G-Kyx) is Cartier, there is a divisor
M(q,e) € |e (gD+G-Kx) |
with multiplicity > ek-dimX at x.

To see that this is possible, let d = dimX and write

(qD+G-Kx) d = ((g-a)D+aD+G-Kyx)d.
Since D is nef, D+g(ample) is ample. Letting € —>0, we see that
pd’ -(any d'-dimensional subvariety) > O.
Thus
(gD+G-Kx)d = ((g-a)D+aD+G-Kyx)d > (g-a)D-(aD+G-Kyx)d-1,

There is some curve C so that D:C > 0 and some p such that
(p(aD+G—KX))d‘1 is represented by C plus an effective one-cycle.

So D-(aD+G—KX)d‘1 > 0. Thus the right-hand quantity goes to
infinity with gq. Then, by the Riemann-Roch formula and the
Vanishing Theorems (cf. i) above and (9.2)),

hO0 (e (gD+G-Ky)) > (1/d!) (qD+G—KX)d~ed + (lower powers of e).

On the other hand, the number of conditions on M(g,e) that x
be a point of multiplicity > dek on M(g,e) is at most

(1/d!) (dk)d-ed + (lower powers of e).

Since (qD+G—KX)d — o as g — oo, we have more sections than
conditions. This proves the claim.
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(13.3) Lemma: Let X and G = XgjGi be as in (9.4). Let

f: Y—>X
be any proper birational morphism with Y smooth and let

Ky + £*G = f*Ky + ZDb4F5,

where the Fy are distinct. Let & be a positive number.
If gy > -1+8 for every i, then also by > -1+3 for
every J.

Proof: This is essentially the same as the second part of (6.5).
It is sufficient to check this for one blow-up with smooth center.
In this case it is an easy explicit calculation.

(13.4) With d as above, let

f = f(gq,e): Y—>X
be some resolution of the singularities of M(g,e) with a

simple-normal-crossing divisor ZFj (not necessarily exceptional)
in Y such that f dominates the blow up ByX of x € X and
a) Ky + £*G = f*Kyx + LbyFy,

where we note that bj > -1 by (13.3),

b) for suitable 0<py<<1,

(1/2) £* (aD+G-Ky) - Zp4Fy
is ample,

c) £*M(gq,e) = erFj with j=0 corresponding to the
exceptional divisor of the blow-up of x.

(13.5) We define
N(b,c) = bf*D + Z(—er+bj—pj)Fj - Ky.

As before, we want to make N(b,c) ample. We calculate

N(b,c) = bf*D + Z(—crj+bj—pj)Fj - Ky
= bf*D - cef* (gD+G-Kyx) - ijFj + £*%G - £*Ky
= (b-a)f*D + (l-ce)f*(aD+G-Kyx) - Eijj
= (b-a)£*D + (1/2-ce)f*(aD+G-Ky) + {(1/2)f*(aD+G-Kyx) - IpyF4}.
nef nef

ample
Now as long as ce < 1/2 and b > a, N(b,c) will be ample.
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(13.6) Now choose k = 2 in (13.2) and pick
¢ = min{(l+by-py) /r4},

where minimum is taken over those j such that ry > 0. Then c > 0.
As before, we wiggle the p4 so that this minimum is achieved for
only one value j' of Jj and set F = Fyr. By the choice of Fy,
bg = d-1, and rg > dek,
and therefore
c £ (1+(d-1)-pg)/2de < 1/2e
Thus, ce < 1/2 , and so, for b 2 a, N(b,c) will be ample.

(13.7) The rest of the story is as in the proofs of the
Basepoint-free and Rationality Theorems. Write
N(b,c) = bf*D + A - F - Ky.

Note that the coefficient of F4 in A is (-cry+by-p4) < by and
therefore rG] - f*(rA]) is effective. Thus we have

HO(y; bf*p + [Al) < HO(x; bD + [G]) .

Since N(b,c) is ample,
Bl (Y; bf*D + [a]l - F) = Bl(Y; bf*D + [A-F]) = O,
so HO(X; bD + [Gl) # 0 if we show that

HO(F; (bf*D + [Al)|p) # 0.

This last inequality can be achieved by making an induction on
dimX. We can assume that we have already proved the Non-vanishing

Theorem for varieties of dimension < dimX. Applying the induction
assumption to F, we complete the proof of the theorem.

(13.8) This completes the proof of the first step in Mori's program.
If X is a projective variety with canonical singularities and if
Kx is not nef, then one can find an extremal ray and the
corresponding contraction morphism. The next step is to prove the
existence of flips. So far this is known only in dimension three.
The proof is too long and complicated to present in detail, but we
will try to discuss some of the main points, frequently ignoring
technical difficulties.

(13.9) References: The proof is from [Sh].
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(14.1) Today we return to the minimal model program in dimension
three which we discussed in Lecture #5. The one part of the
program that we have not yet examined was the step called flip,
defined in (5.11). Two things must be shown:

1) Existence of flips.
2) Termination of flips.

We begin with a discussion of the latter.

(14.2) Recall that in the definition a threefold X with terminal
singularities, we took a resolution

f: Y—X
and had
Ky = £*Ky + ZajEi, aj >0.

We define the difficulty of X, d(X), to be the number of the ajy's
such that ajy < 1. The difficulty is independent of the resolution

Y. The point is that, under flips, the difficulty goes down, so
that any sequence of flips must terminate:

(14.3) Theorem: If

----------- » x’
+
K
X

X
£ £ o
-Ky 1is f-ample , is f -ample
Z

is a flip, then d(x%) < d(X).

‘(E/// Y g+
X \\\H‘><+

be a common resolution of X and Xt. Then

Proof: Let

Ky = g*Kx + ZajE; and Ky = (g¥)*Ky- + LbjEj.

We take an integer r large and divisible enough so that rKy+ is

Cartier and f'-very-ample. Choose generic DT e |rKy+|. Then, for
the lift D' = (g*)*D*,
D'+ ZrbiE; € |rKyl.
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If D denotes the image of D' in X, D€ |rKx| and Kx is f-negative,
so D must contain the union C of curves contracted by £f. So g*D
contains all the E; as components, and

D'+XrbyEy = rKy = g*D+ZrajEy = D' +ECiEi+ZraiEi,
where c; > 0 for every i.

So aj < bj for each i. We can choose Y in such a way that it
dominates the blow-up of Ct in X' whose associated exceptional
divisors will all have bj = 1. So the difficulty decreases by at

least one.

For the existence of flips, we have:

(14.4) Flip Theorem:
Let f: X——>Z Dbe a proper birational morphism of

normal threefolds such that X has only terminal
singularities, f contracts no divisors, and such that
-Kx is f-ample. Then there exists a proper birational

morphism f*: Xt——> 2 such that X' has only terminal
singularities, £t does not contract any divisors, and
Kyx+ is ft-ample:

-Ky 1is f-ample K 4 is f*-ample

(14.5) An outline of the strategy of the proof is roughly as
follows:

14.5.1) By working in the analytic category, we can contract the
components of the curves contracted by f one at a time. We are
thereby reduced to proving a "local" version of the Flip Theorem,
that is, a version in which X is replaced by the germ of X along
an irreducible curve C with C:-Ky < 0. This germ is also called an
extremal neighborhood. (Any flip is a composition of these
analytic flips, done one at a time.)

14.5.2) In the above situation, le*mx = 0 and le*&x =0. IfX

is smooth, then these are consequences of (8.8). Here we have
singularities, and so (8.8) does not apply, but essentially the
same proof goes through.
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14.5.3) We claim that C must be smooth and rational. By 2),
R1£40, = 0. So, applying fx to the exact sequence

0 > <& > Oy Oy /< >0,
we obtain that Hl(&X/J) = 0 and C = cpl.

14.5.4) We claim that X must necessarily be singular along C:

Suppose X is non-singular. Since C-Kyx < 0,

(h0(c; f£*7y) -hl(c; £x1y)) > 3
by the formula in (1.2), and C deforms, contradicting the fact
that C is the whole exceptional set.

14.5.5) We next show that X can have no more than two singular
points along C where the index is > 1 (see(6.8). We will present
a purely topological argument to see this:

If a terminal singularity (U,p) of dimension three has index
m, then
T (U-{p}) = Zp,
because (U,p) is the quotient of a hypersurface singularity by Zp.
(Here U can be thought of as a suitable small neighborhood of p.)

We will analyze the local topology near the cel. Suppose that

we had three singular points of index > 1:
P,Q,R.
Denote the three indices by i, j, and k. Assume for simplicity
that X has quotient singularities at P,Q,R and is smooth
elsewhere. Then
(X—{PIQIR))
has the homotopy type of S? with three little open discs removed,
and then with three lens spaces
Ly, Ly, and Ly

sewn in at the respective holes. The essential case is the one in
which the boundary of the hole is identified with a generator of

m, of the corresponding lens space. Then

nq (X-{P,Q,R}) = <oB,y>/{aPfy=1, alt=1, pi=1, vk=1;.

Algebra fact: This group has a finite quotient G in which
o has order i, B has order j, and Yy has order k.

The kernel of the homomorphism from 7, to G defines a finite

Galois covering X® of (X-{P,Q,R}). By filling in finitely many
points over P, Q, and R, one completes X" to a connected covering
space X" of X. But then X* is smooth, and

C**Kyx~ < 0,
gives a contradiction as in 4) above.
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(Note that, if we have only two singular points, the fundamental
group in the above argument is usually trivial. The proof in the
case of four or more singular points is very similar.)

14.5.6) Now we have the contraction
f: (X,C) —> (Z,p) .

Let 8 be a sheaf of ideals whose radical is the ideal sheaf <! of
C. Applying fx to the sequence

0 > § Oy
and to that sequence tensored with Oy, and using 14.5.2), we
conclude that
(*) H1(0./§) = 0 and Hl(0yg/§0y) = O.

&X/&———> 0,

We already saw an important consequence of this vanishing
result in 3). We will see that these vanishings impose very
strong restrictions on the possible singularities and on the
global structure of the extremal neighborhood. Here we derive two

such results that will be needed in the sequel. Let again < be
the ideal sheaf of the curve C.

14.5.7) wy/dwy = &(-1) + (torsion sheaf):

From 6) we know that the Hl of this sheaf is zero, thus the
degree of the torsion free part is at least -1. On the other hand
we have a natural map

B: (0y/day) ®M— O (mKy)

which is generically injective. The line bundle on the right has
negative degree thus deg(wy/dwy) < 0.

As a corollary of this argument we also obtain that

-1 < C'Kx < 0.

14.5.8) J/Jz = Q@ (a) +O (b) + (torsion sheaf) with a,b > -1:
In the long cohomology sequence associlated to

00— /82 —50/4%2 —50/4—0,
note that HO (/&%) - HO(G/dQ) is onto and HL(®/<Q?) = 0. Thus
al (/4% = o.
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14.5.9) The main part of the proof of the existence of flips
consists of an intricate and technical analysis in which we are
able to construct a Weil divisor E in |-2Kyx| such that the double
cover

p: W—X

induced by E has only canonical singularities. This W has only
canonical singularities and

Kw = p*KX + (1/2)p*E

is trivial.

On W, we are in a situation in which we can do a flop, which
is described by the following diagram:

D', the proper transform

some -D is f-ample
£ £ of D, is f'-ample

Ky 1s f-trivial ) R o
7 Ko+ is f -trivial

where D is some divisor. Again there is an existence theorem for
flops and a termination theorem for sequences of flops.

We obtain the desired flip of the irreducible curve C by
taking as XT the quotient of W' under the involution induced by
the involution on W.

(14.6) In most cases, we will be able to find a divisor De |-Kx|

such that D has only DuVal singularities. Following Reid, such a
D is called a DuVal elephant. It is conjectured that a DuVal
elephant always exists. Using the explicit description of
terminal singularities, it is easy to see that the existence of a
DuVal elephant implies the existence of the above double cover

W— X.

To get an idea why generic Weil divisors in |-Kyx| should have

only DuVal singularities, we look at the case in which the
singularities of X are all ordinary, that is, they are all cyclic
quotient terminal singularities. These are all of the form

c3/u,

where the generator £ of the group Hy of r-th roots of unity acts
by the rule
(x,y,2) — <§XI §_1y1 E)az)

with a prime to r.
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on €3 above a cyclic quotient singularity,

-Ke3 = & (dxAadyadz) 1.
If we let ® = dxAdyAdz , then the action of & on ® is given by
o— E20.

So the section z/® descends to give (locally) a Weil divisor D for
-Kx.

The divisor D is given as a quotient singularity by the
action

(x,y) — (Ex,E71y)

on €2, and hence is a DuVal singularity, embedding into c3 via the
map (xy, xf, y¥).

(14.7) References: (14.3) is due to Shokurov[Sh], (14.4) to Mori[M3], (14.5.5)
to [M3] and also to Benveniste[B2]. The idea of taking double covers appears
in Kawamata [KaS5].
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Lecture #15: Singularities on an extremal neighborhood

(15.1) The aim of today's lecture is to elaborate on the part
(14.5.9) of the proof of the Flip Theorem (14.4), namely we try to
outline the local classification of the points occurring on
extremal neighborhoods. We cover all the important techniques
that are contained in sections 2-7 of Mori's paper. Thus by
reviewing some definitions and theorems in those sections, the
reader should be able to proceed to the last two sections, which
are the real core of the article.

(15.2) Let X be the extremal neighborhood containing a single
extremal rational curve C and let p be a point of C. We intend
to give a classification of the triplets (X,C,p). For
illustration, assume that X has a quotient singularity at p. As
we saw, C is a smooth curve and therefore one might think that
knowing (X,p) uniquely determines the triplet up to isomorphism.
This is however far from being true. Before we give some
examples, we set up the notation that will be used to describe
the situation.

(15.3) Notation: Let Z, be the cyclic group of order m.

Fix a primitive m-th root of unity {. Assume that Zy acts on CR
linearly, and that the coordinate functions are eigenfunctions of
this action, that is
1€ Zy acts on xy as 1(xy) = @1k,
In this case we say that 2, acts on CR with weights
(a(l),...,a(n)).

Similarly, if £ 1is a polynomial function on CR which is an
eigenfunction of this action, then we say that the group acts with
a certain weight on f. We denote the weight of f by wt(f).

(15.4) Example: Let Z, act on C3 with weights (1,a,m-a) on the
coordinates (x71,xp,x3). Let

vce3
be the monomial curve given as the image of the map
t— (tkm+1, ta, tm-ay |

Then C3/Zm is a terminal singularity, and V/Z, is a smooth curve
germ inside this singularity.
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If we go back to the problem of finding a good member D of -Ky,
we see that {x7=0} descends to such a good member at least

locally. Assume now that the above singularity is the only one on
an extremal neighborhood X. One way to find a good member of -Kyx
is to use D which is transversal to the curve C, so that, in a
small enough neighborhood of C, it will be a global divisor. D is
a member of |-Kx| if it has the correct intersection with the
curve C. In our case, one can easily obtain that the intersection
number is

D-C

k+(1/m),
whereas we know that
-1 S C‘KX < O.

Thus we must have k=0 to have any chance at all.

This shows that we have to analyse the location of C near the
singularities of X very carefully.

(15.5) Proposition: Assume that Z, acts on CP with weights (ay).
Let VCCR be an irreducible curve germ which
is Zyp-invariant. Assume that V/2, is smooth.
Then, after a suitable Zpy-invariant coordinate

change, V becomes monomial; namely, it will be
the image of

t — (tb (1))
for some (b(i)).

Proof: We can assume that 2, acts faithfully on V. 2 acts on

the normalization V" of V. We let t be a local parameter on V'
which is an eigenfunction. Then the ring of Zp-invariant

functions on V" is generated by t™. Since V/Z, is smooth,
VA — V/ 2

is an isomorphism. Therefore every Zp-invariant regular function

on V© is also regular on V. For every 1, we can write

xi = tPgy ()

where gi is Zp-invariant with non-zero constant term. Since gi is
Zy-invariant, it is the restriction of an invertible Zp-invariant
function hiy on CR. Now we can introduce new coordinates by the
rule

yi = xi'thi.

In this new coordinate system, V is obviously monomial.
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(15.6) Notation: Let
(X,C,p)

be the neighborhood of a point in an extremal neighborhood. The
index-one cover (constructed in (6.8)) will be denoted by

(x#,c#, pt) .

Thus the group 2y acts on this cover and the quotient is (X,C,p).

In general it is not true that ct is irreducible, but for the
purpose of this lecture we will always assume this. No new ideas
are needed to handle the more general case.

As we saw, every three-dimensional terminal singularity is the
quotient of a smooth point or of a h;persurface double point.
Thus we can always assume that (X#,C ,p#) is embedded in ¢4 in
which it is defined by an equation

o =0,
where @ defines either a smooth point or a double point at the
origin.

By the above considerations, we can choose a coordinate system
on ¢4 x# such that Cc* becomes a monomial curve. If f is any
regular function on x#: then by

ord f
we denote the order of vanishing of £ on the normalization of
c*. The values ordf form a semigroup, which is denoted by

ord c¥.
If ordxjy = ai, then this semigroup is generated by the ay's.
If (aj-m) is in ordc#, then we can write down a monomial M in the
x3's which has the order (aj-m) and introduce the new coordinate

x4-M. Thus we may always assume that (aj-m) is not in ordc#.

Note that ord x;j depends only on c*, whereas the choice of the
weight of a function depends on the choice of a generator of Zp.
We can clearly choose the generator in such a way that

ordx{ = wt x{ (mod m)

holds for every 1i. We shall always assume in the sequel that
such a choice was made

(15.7) Definition: A coordinate system which satisfies the above
conditions will be called a normalized £-coordinate
system.
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(15.8) Threefold terminal singularities are very special quotients
of smooth or double points, and a complete list is known. We

ignore finitely many exceptions, and look only at the main series
where we can choose the order of the coordinates xj in such a way

that the following conditions are satisfied:

ap +a3z = 0(mod m), (ajaza3z, m) =1, ag = O(mod m),
wt (®) = 0(mod m) .

Note that since C is smooth and C¥——C has degree m, we have
ord C#am; thus, as we noted above, ag = m.
Next we define two of the simplest local invariants invented

by Mori to measure the effect of the singularity (X,C,p) on the
extremal neighborhood.

(15.9) Definition: i) Given a triplet (X,C,p), let m Dbe the index
of X at p. As we saw, there is a natural map

B: (O)X/JOJX) ®m___, O’C (mKy)

and we define wp = m~1. (length coker B).
(In Mori's original notation, this is wp(O) .)

ii) We can define natural maps

B/82 X /D82 X 0 — 0y ® O — 0y /Ry —> gr0 (oy)
given as
x Xy Xzdu — zdxAdyAdu

where gro(u)x) is the locally free part of (ox/v.ﬁ(ox.
This in turn defines a homomorphism

a: A2 (L/48%) ® 0r — gr0 (wy) .
c X

Now let
ip = length coker o .

(This is ip(l) of Mori.)
The results of Lecture #14 now imply:
(15.10) Proposition: i) pr < 1;

ii) Zip < 3.
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Proof: The first statement follows from (14.5.7) since
m -pr = -m-deg gro(mx) + deg&c(me).

The second part follows from the definition using (14.5.8).

This result shows that the local invariants of the
singularities combine to give a global invariant, and that we have
some restrictions on the possible singularities of an extremal
neighborhood. Therefore we set out to compute or at least
estimate the above invariants for the triplets (X,C,p).

Computation of wp:

(1s.11y x¥ is a hypersurface singularity given by equation ®, thus
o= (a@/axl)—ldszdx3/\dX4 = Res (I)_ldxlAdszdX3AdX4
is a local generator of the dualizing sheaf of x#, where Res is
the Poincaré residue map. Clearly O is a Zp-eigenvector with
wt(0) = Yay (mod m).
Thus o™ is invariant, and it descends to give a local generator of
@C(me). In order to get a local generator of gro(w), we have to

look for a section of the dualizing sheaf of x# which is
invariant. We can look for one of the form MG, where M is a
monomial. Then MM6™ is a local generator of grQ(w)™; so
= m1 4i m,
wp = m” 1 dim (@ (mKy) /MT6"O . (mKy) )
Therefore we get that
= m1
Wp m~+ord M.

If we denote by & the remainder of the integer a (mod m),

then for the series of singularities we are considering,
wt (0) = &q.
Thus, for the above monomial M, we have
ordM + 41 = 0 (mod m) .
If we take into account that wp < 1, then we get an equation of
the form
YXbia; + &1 = m.
Therefore by = 0, and one of by and b3 is also zero, say the
latter one. Thus we have
bjag + bpay + 47 = m.

This already shows that aj; or ap is less than m, thus the curve
c#¥ is not arbitrarily complicated.
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Computation of ip:

(15.12) We already have a local generator of gro(m), namely Mo. If
t 1is a local parameter on the normalization of C# which is a
Zp-eigenvector, then dtM=dx4 is a local generator of ®s. Let $#

denote the ideal of C# in C% and 8#{0} the set of Zp-invariant
functions in 8#. (For any sheaf ¥ with Zp-action, F{O} denotes
the subsheaf of Zp-invariant sections of ¥.) Local generators of
the locally free part of 4/42 1ift back to elements £ and g of
8#{0}, thus fAgAdtM is a local generator of AZ2 (Q/42) ® wc.

We can see the relationship between MO and the image of fAgAdt™ in

gro(m) as follows:

dfAdgAadxy = Res ®~ 1 dDAdfadgadxy
= Res Q_la(Q,f,g)/a(xl,xz,X3)dxlAdszdx3AdX4
= M 19(®d, £,qg)/9(x1,x2,%x3) MO,
where d(, , )/9( , , ) is the Jacobian determinant. Thus

ip = m~l(-ordM + ordd(®, £,9) /9 (xq,xp,x%3)) .

In the case we are considering, ® is also an element of 8#{0},
thus we can further simplify to obtain

m-ip > -ordM + ordd(h, f,g)/d(x1,%x2,x3)

where f,g,h generate the locally free part of 8#{0}/8#2{0}.

It is an easy exercise to see that this does not depend on the
choice of f,g and h.

Now we are ready to derive the main result of this section:

(15.13) Theorem: Given (X,C,p) where (X,p) i1s a three-dimensional
terminal singularity and C is the germ of a

smooth curve through p with wp<:1 and ip5;3, then
either
i) ordct is generated by two elements,
i.e. ct is planar;
or

ii) 3 € ord c# , SO multp#C# < 3.
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(15.14) Remark: i) This theorem says in particular that, if (X,C,p)

appears on an extremal neighborhood, then the singularity of ct is
not too complicated. We will prove this only for the main series,
of singularities, although the statement is true in general. The

proof in the additional cases is very easy.

ii) In fact, ordct is always generated by two elements
if (X,C,p) appears on an extremal neighborhood, but the proof of
this would require the consideration of a new invariant.

(15.15) Proof: We already noted that Wp < 1 implies
bjag + bpap + 41 = m.
If a; < m, then this reduces to

(bp+1l)a; + bpay = m.

We claim that in this case ordcC¥ is generated by aj and ajp.
Indeed, since a4 = m, a4 is a linear combination of a; and aj.

Since ap + a3z = O(mod m), for some c>0 we can write
a3 = (bj+l)a; + (bp-1l)ay + cm.

Thus a3 is also a linear combination of aj; and aj, provided
bp > 0. If bp =0, then aj; divides m. Since (m,aj;) = 1, this

implies a; = 1, and in this case ordct# is generated by 1.

Therefore we are left with the case when aj; > m. Note that,
in this case, the identity

bjag + bpay + &1 = m

reduces to
bay + 417 = m.

We can also write

a; = cm + 37 (for some c>0)
and

a3z = km-ap (for some k>0).

Note also that ap < m and ag = m. We want to prove that these
conditions, together with ip < 3, imply that ap or a3 is at most
3. We consider the formula for ip:

m-ip > -ordM + ordd(h, f,g)/d(x1,xp,x3)

where f,g,h generate the locally free part of &#(0}/&#2{0}.
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Since 8# is the set of invariant elements in the ideal of a

monomial curve and

ag = m,
a moments reflection shows that it has a linear basis consisting
of elements of the form

X4e(N — X4(ordN)/m)

where N is a monomial in the variables x7,x),x3 such that m

divides ordN. We can pick monomials in the variables xi,X2,Xx3,
which we call F, G, and H, such that

f=F - X4(ordF)/m, g =G - X4(ordG)/m, h =H - X4(ordH)/m

generate the locally free part of 8#{0}/8#2{0).
It is clear that
ordd(h,f,qg)/d(x1,%x2,%x3)= ordF + ordG + ordH -aj -ap-a3.

Now the formula for ip becomes

m(c+k+4) > min {ordF + ordG + ordH: F,G, and H are monomials in
the variables xj,x5,x3 whose order is divisible by

m and such that none of them divides the other}.

Thus we have to search for such monomials of low order. Since
the order of xpx3 is divisible by m, we only have to consider

monomials of the following forms:
xpx3, which has order k-'m;
x1®x,d, where the smallest order is ord x1x5P = (c+l)m;
xleX3d, which all have fairly large order;
xoM (resp x3™M), which has order majp (resp. magy).

If one spends fifteen minutes computing the orders of the
various terms one will see that if min{aj{} > 3, then the only way

to satisfy the above inequality is to pick
xpx3, x1%x2° and x,™ (resp. x3M)

for F,G H. We also must necessarily have that aj; or a3z is at most

three. If ordcC% 32, then ordc# is generated by 2 and the
smallest odd element in it. Thus again we end up in case 1).

Otherwise ord c¥ 33. This was what we had to prove.
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(15.16) Mori has to consider infinitely many local invariants. They
are used partly to get more restrictions on the individual
singularities on an extremal neighborhood, partly to detect the
interrelation of different singularities on the same neighborhood.

The inequalities Xwp < 1 and Zip < 3 are the simplest examples of
the latter. The first inequality shows, for example, that there
can be at most one index-two point on an extremal neighborhood;
the second can be used to give a proof that there can be at most
three singular points on an extremal neighborhood.

(15.17) References: The classification of three dimensional terminal
singularities is due to Reid[R3], Danilov[D], Morrison-Stevens[MS] and
Mori[M2]. See [R5] for a good overview. All the rest is taken from [M3] with

minor simplifications.
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Lecture #16: Small resolutions of terminal singularities

Today we will discuss in greater detail the characterization
of terminal Gorenstein singularities of threefolds, their small
resolutions, and their relation to flops. Flops are much easier
to understand than flips; still the emerging picture is very
similar. First we complete the proof of (6.23).

(16.1) Theorem: A threefold Gorenstein singularity is terminal if
and only if it is an isolated cDV point.

Outline of proof: One direction was discussed in (6.23).
Suppose now that (X,x) is an isolated cDV point which is not
smooth. Let

f: B—X
denote the blow-up of X at x and let

E = exceptional locus = projectivized tangent cone of X.
Then, since x is a double point, the adjunction formula gives

Kg = f*Ky + E.

We claim that B has only rational singularities. If we show
this, we will be done. 1Indeed, rationality implies that, if

g: Y—B
is a resolution, then gx®y = ®Wg. Therefore, since some section of

Ky pushes forward to a section of KB vanishing on E,
Ky = g*f*Ky + E' + F

where E' means proper transform, and F involves every exceptional
divisor of g since they all lie over E.

To see that B has only rational singularities, we reason as
follows. Since (X,x) 1s cDV, there are local analytic coordinates
such that X is given by the equation

(*) p(x,y,2) + ta(x,y,z,t) = 0,

where p(x,y,2) =0 is a rational double point and the (generic) H is
given by t=0. One then forms a flat family over the €-line by
replacing t with €t in (*). By equi-multiplicity, the blow-up
of the line {(0,€)} is flat. At €=0, an explicit analysis of
possible equations shows that all singularities of the blow-up are
rational. All fibres for €#0 are isomorphic, and rationality is

an open condition, so nearby singularities must be rational as
well.
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Small resolutions of terminal singularities

(16.2) Proposition: Let X be a normal threefold singularity, and
let £: ¥Y3— %3 be a proper morphism which
contracts only finitely many curves. Assume
that Y has only canonical singularities and
that Ky is f-trivial. Then

1) Y terminal implies X terminal;
2) Y Gorenstein implies X Gorenstein.

Proof: Choose H on X so that mKy + f*H is a nef Cartier divisor,
and (m-1)Ky + f*H is nef and big. The Basepoint-free Theorem
(9.3) holds under these hypotheses, so that

n(mKy + f£*H)

is basepoint-free for n>>0. Using this for some large n and
n+l, we conclude that mKy must be the pull-back of a line bundle

on X. Since there are no exceptional divisors, this line bundle
must be mKx. Both conclusions now follow immediately.

(16.3) Corollary: Let f: y3—— x3

be a morphism of compact threefolds which
contracts only an irreducible curve C. Suppose
that Y is smooth and C'Ky = 0. Then C = CP* and

Nc/y = G(-1) ®O(-1) or O®T(-2) or O(1) ®T(-3).

Proof: By (16.2) X has only terminal, hence only rational
singularities, so R1f«@, = 0. As we have seen in (14.5.6), this

implies that Hl(ac) = 0 so that ¢ = ¢cPl. 1In the same way
Hl(&/dz) = 0, where & is the ideal sheaf of C. Thus

ul(d/4%) = o,
from which the second conclusion follows since Ng,y = O(a) @0 (b)

with a+b = -=C-Ky - 2.

(16.4) Proposition: Let f: ¥Y3——> X3 be a small contraction where
Y is smooth and X has only cDV singularities.
Then
1) Ky = f*Ky;
2) if H is generic through the singular points
of X, then f*H is normal and
f*H——>H
is a partial resolution.
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Proof: The first assertion is immediate since Ky and f*Ky are both
line bundles and they agree in codimension one. Now

Kfexg = Ky + £*H|gxyg = £%(Kx + Hlyg) = f*KH

If g: H' —> f*H is the normalization, then
Wy = (conductor ideal)g*mf*H.

On the other hand, Oy 2 (fg) *We*y , since H is a Duval
singularity. Therefore f*H is normal. Let h: H"—— f*H be the
minimal resolution. Then h*(of*H 2 Oyn (a property of the minimal
resolution of any normal Gorenstein surface singularity). On the
other hand, ®yn 2 h*@g*y = h*f* @y, since H is a Duval

singularity. Hence they are equal and £*H has only DuVal
singularities.

(16.5) Partial resolutions of DV singularities and their
deformations give a way to construct examples of small
contractions. We begin with a partial resolution of a DV
singularity

f: H'——H
which contracts a single (smooth rational) curve C to a point
x€ H. We smooth H' via a deformation with smooth total space Y.
It turns out that f extends to a map (also denoted by f)

f: Y—> X,
where X is a deformation of H. Now X may be singular along a

curve, but, by "openness of versality," there is always a
deformation of H' so that the deformation of H in X is smooth.

(16.6) Theorem: Suppose C contracts to an isolated singular point
x€ X. Then the following are equivalent:
1) C has normal bundle Q (1) @O (-3);
2) f‘lﬁnxlx does not generate the ideal of C in X
at a generic point of C;
3) f‘lﬁnx'H, does not generate the ideal of C in H'
at a generic point of C.

Proof: Let < denote the ideal of C in Y. If Ngyy is
O (-1) O (-1) or G @O (-2),
then
/82 = @& (1) @0(1) or O®O(2),
so that
ul(c,47/4"*) = wl(c,sn/4%)) = o,
and therefore
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HO (©/4™*L) —5 HO (@/4™)
is surjective for all n.

So we obtain two formal functions defining C. By the theorem
on formal functions, this means that there are two functions

defined in a neighborhood of C in Y which generate < at a generic
point of C. But, since X is by definition normal, these functions
are pull-backs of elements of ”nx,X‘ So 2) implies 1).

2) and 3) are equivalent since H' itself is defined by the
pull-back of an element on ”nx,X‘ Finally, if C has normal bundle

(1) &0 (-3),
the ideal of C in O/d? is not even generated by f‘LnxX X"

(16.7) Notice that the above proof gives an invariant of (1,-3)
curves, namely the length of &Y/f‘1¢nx X* Some examples:
4

16.7.1) Dg-singularity on H with the partially shaded curves
contracted on H':

length = 2

16.7.2) Eg-singularity on H with the partially shaded curves
contracted on H':

length = 6

Another look at flops:

(16.8) Suppose we have a small contraction f: Y—> X of threefolds
resulting in a Gorenstein terminal singularity (X,x) with £~1(x)
irreducible. Then the singularity is cDV and so can be written in
terms of appropriate coordinates as

x2 + q(y,z,t) = 0.

Then C:Ky = 0. Suppose we have a Weil divisor D with C:D < 0.

Form the involution 1 over a ball in C3 given by

(X, ¥,2,8) —> (-%x,y,2,t)
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and the fibred product

Y — — P Y Define 1
p* = (1) (D).
£t £
£Y(*" = -£(D)

since

X » X £(D) + 1£(D) = 0 .

The rational map (f+)‘1°f: Y—=>Yt (not (1')‘1) over X is the
D-flop. The flop

Y se--- > v*
f\ »A+
X
is an isomorphism outside C (resp. ay~l@).

(16.9) If f: Y——> X is a small contraction and X has threefold
terminal singularities (not necessarily Gorenstein), then we can
take the index one cover of X , apply the above construction to
the covering and take the quotient again. This will give the flop

of f: Y—X.

(16.10) References: (16.1) is due to Reid[R2], this proof is from [KS]. (16.3
is due to Laufer[L2]. (16.4) is again in [R2]. The existence of flops for
threefolds with terminal singularities is due to Reid[R3]. (16.6-7) are due to

Kolldr. The proof given in (16.8-9) is due to Mori.

[Autumn '88: Recently J. Stevens ("On canonical singularities as total spaces
of deformations," preprint, Hamburg) proved that if a hyperplane section of an
isolated Gorenstein singularity is rational then the singularity is terminal.
He also proved that, if mKy is Cartier and the general member of |-Kyx| is

rational, then X is canonical.]
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Lecture #17: Kiahler structures on locally symmetric spaces

Today we will look at an entirely different aspect of the
Hodge theory of Kdhler manifolds, namely, a relation between Hodge
theory and harmonic maps. A possible relation between this and
other things we have studied in the seminar will come from the
study of period mappings of families of subvarieties of an
algebraic manifold. The set-up is as follows:

(17.1) Definitions: Let G be a semi-simple Lie group with no
compact factor, and let K be a maximal compact subgroup of G.
Examples are

SL(n,R) and K = SO(n),

17.1.1) G

17.1.2) G SO(p,q) and K = SO(p) XSO(q) .

The Cartan involution on the Lie algebra 8 of G gives a
decomposition into +1 and -1 eigenspaces

g = &,&)9“

Since the involution normalizes K, it induces an involution on
Y = G/K which acts as -1 on the tangent space p to Y at {K}. Via

conjugation, one obtains, for each ye€ Y, an involution fixing vy
and acting as -1 on the tangent space at y. The Killing form on

8

decomposes into the sum of a negative-definite form on & and a

positive-definite form on p, giving Y an invariant metric so that

the involutions mentioned above are all isometries. Thus Y is
called a symmetric space. For the Lie bracket we have

(p,plck and (R, plcp.

The curvature tensor at {K} is given by

R(X,Y)Z = -[[X,Y],2].

In example 1) above, the Cartan involution is simply minus
transpose, so that p is the collection of symmetric nXn matrices

of trace zero, and Y is the set of positive definite matrices of
determinant one. (This is just the fact that every invertible
matrix has a unique "polar" decomposition into a product of a
positive-definite matrix and an orthogonal matrix.)

97



H. CLEMENS, J. KOLLAR, S. MORI

In example 2), the Cartan decomposition is given by

skew A skew 0 0 A

= +
tA skew 0 skew tA 0

For the theorem which follows, we need to assume that Y = G/K
is "of non-compact type", that is, G and K are as described above.
In this situation, all sectional curvatures on G/K are
non-positive. Finally we must assume that Y is not Hermitian
symmetric.

(17.2) Theorem: Suppose that Y is as above, that ' is a discrete
subgroup of G which acts freely (on the left) on Y

such that I'\Y is compact, and that
f: M—— Iy

is a continuous mapping from a Kéhler manifold M.
Then £f 1is homotopic to a non-surjective map, or,

what is equivalent in case dimM = dimY, the

fundamental cycle of I'\Y is not in the image of
Hx (M) .

(17.3) In what follows, we want to give some idea of how this
theorem is proved. First notice that an immediate corollary of

the theorem is that I'\Y itself cannot have a Kihler structure. 1In
fact we make the stronger conjecture:

(17.4) Conjecture: If G/K and I' are as above, then I' cannot be the
fundamental group of any compact Kdhler manifold.

(The conjecture is true if G = SO(n,1), n>2. Seel[CT].)

(17.5) Note that (17.1.2) above is closely related to another
example in which I'\Y is the period space arising from the

polarized Hodge structure on the primitive second cohomology of
algebraic surfaces:

17.5.1) G
r

SO0(2p,q) and K = U(p)XSO(q),
SO(2p,q) NGL(2p+tq,2Z) .

I

Here G/K is a complex manifold since it can be realized as a
locally closed subvariety of the variety of (p,pt+q)-flags (F2, rl)
in V€, where V is a R-vector space with a non-degenerate symmetric

bilinear form of signature (2p,q). However I'\Y is not compact.
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(17.6) An example in which I' is co-compact is given by replacing G
in (17.5.1) by the orthogonal group of the quadratic form

0= 1x12 - V21y12
on R2P*4, and replacing I by

SO(Q) NGL(2p+q, (ring of integers of Q(VZ))).

If ¢ denotes conjugation in Q(VZ), then I' has discrete image in
SO (Q)X SO (Q) under the map
¥—> 0. Y°).

It can be shown that the image of I' is co-compact and so we get
the desired co-compactness by the map induced by projecting onto
the first factor. 1If it is not true that

p=2o0rq=2,
we conclude that the complex manifold I'\Y does not admit a K&hler
structure, even though it is "pseudo-Kdhler" (that is, it has a
natural indefinite metric whose K&hler form is closed).

(17.7) Outline of a proof of Theorem(7.2):

17.7.1) The first ingredient is a theorem of Eells and Sampson
which says that every continuous map from a compact Riemannian
manifold to a compact Riemannian manifold with non-positive
sectional curvature is homotopic to a harmonic map. (A map

¢: M—N
is harmonic if it is a local minimum of the energy function

J'ldqﬂ2 dv, = E(¢)
M

where the norm is induced from the metric on N.) So from now on
we can assume that f in the statement of the theorem is harmonic

(and then we no longer need assume ['\Y compact).

17.7.2) The second ingredient is another theorem of Sampson for
f: M(compact Kahler) —T\Y.

Namely, the differential df of £ takes the holomorphic tangent
space T3 (M) |x at a point x into the complexified tangent space

to I'\Y at f£(x). This latter vector space can be identified with

pc via the left G-action on Y. Sampson's result is that the image

of T1,0(M) |y must lie in an abelian subspace of pc, that is,

[df, df] = 0.
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(In this result, it is allowed that I'\Y have Euclidean factors.)

Sampson's theorem is proved using Bochner-type identities--we will
give the proof in a later seminar.)

17.7.3) The final ingredient comes by measuring the size of
abelian subspaces of pc:

Theorem: Assume that 8 has no factor isomorphic to &&(2,R).

If @ is an abelian subalgebra of pc, then
di -dime p€
imga < (1/2) dlmcfx .

Furthermore, equality holds only in the case in which
Y=G/K is Hermitian symmetric, and 4 corresponds to the
(1,0)-tangent space of one of the standard Hermitian
symmetric structures on I'\Y.

(17.8) References: For a general introduction to symmetric spaces see [H].
(17.2) is due to Carlson-Toledo[CT]. (17.7.1) is in [ES], (17.7.2) in [Sa]
and (17.7.3) in [CT].
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Lecture #18: Proof of Sampson's theorem

Today we will prove the theorem of Sampson that is used in
(17.7.2).

(18.1) Notation: Given

f: M— N = I'\G/K,
let "T( )" denote the "tangent bundle”". We consider the bundle
£*T(N)C on M, with metric induced from the Riemannian metric on N.
This metric induces a connection

V: T(£*xT(N)C) ——— T (T* (M)®F*T (N)C) .

Let V = V' +V" be the decomposition of V given by the
decomposition

M) = T, 0 + 70, 1qm).
The curvature tensor R is given by

“R(X,Y)s = VyoVy(s) - VyoVy(s) - Vix yj(s).

(18.2) Theorem: If M and N are as above, then f 1is harmonic
if and only if
i) for X,Ye€ Tl,O(M)r then R(X,Y) = 0, (so also for
X, Ye To,l(M), R(X,Y) = 0);
ii) df: Tllo(M)-ﬁ—éf*T(N)c is a holomorphic mapping
of holomorphic vector bundles where the holomorphic
structure on f*T(N)C is one such that V" becomes

the d -operator. (Such a holomorphic structure
exists by 1i).)

Proof: The Euler-Lagrange equation for the above-defined energy
function E of a harmonic map f 1is gotten as follows:

[df |12 = tr(t(af) -df)

so the variational formula for a local minimum is

T(f)x = tr(Vdf) x = ZVy (§)dE(X(1)) Ix = 0

for x€ X and an orthogonal basis {X(i)} of T(M)y. (Recall that df

is a section of the bundle T* (M) ® £*T(N) with connection induced
by the Riemannian connections on T*(M) and f*T(N). Intuitively,

the energy function E(¢) is measuring how far a mapping ¢ is from
being an isometry.)
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(18.3) We will get the result we want by covariant differentiations
of f£*(gy), where gy denotes the metric on N. Since M is Kéhler,

these covariant differentiations will respect the decomposition of
f* (gy) into types and, more precisely, we will get the desired

result by following the summand of f*(gy) of type (2,0) through a
commutative diagram of covariant differentiations:

I'(s 2px M ) " | " denotes the contraction )

induced by the metric on T* (M)
\ A4 p—
C(r*M®s?txM) Vg T(T*M® T*M ®S2T*M)
— SN~

V g
rer*M) YV T@m®T*M) _L g TI(R)

I ax 4

Here V means the covariant differentiation induced from the Kahler
metric on M.

We apply the composition of maps in the diagram to f*(gy), for
f harmonic. We will obtain an expression of the form

VAt |2 + Riccim(...) = Ry(...)

where the "(...)" means an expression in the Ricci curvature of M
and an expression in the curvature of f*T(N) respectively. Since
this expression is in the image of d*, it will have to integrate
to zero over M. But, since there are terms with opposite signs,
we don't get much information from this fact.

(18.4) However, if we apply the composition of the maps in the
diagram to the (0,2)-component of f*(gy), the term involving the

Ricci curvature of M drops out and we obtain an expression
||V"d'f|[2 — ZE<R(Z(1)",Z2(3)y™df(Z2(i)"), dAE(Z(F)")>

where " denotes the (0,n)-component and d'f is the restriction of
df to Ty, ,0(M). Again this expression must vanish for harmonic f£
when we integrate over M. The vanishing of the first term
corresponds to the second assertion of Sampson's theorem and the
vanishing of the second term corresponds to the first assertion.
We now compute, first for the entire tensor £*(gy):
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SAMPSON’S THEOREM

V% (gn) (X, Y) = dz (£*(gn) (X, ¥)) - £*(gn) (VgX,¥) - £*(gn) (X, VzY)

= <V, (df (X)), df(Y)> + <df(X), Vz(df(y))>
- £x(gy) (VX,¥) - £x(gy) (X, V,Y)

= <(Vzdf)(X), df (Y)> + <df (X), (Vde)(Y)>

(Warning: VZ sometimes means the connection on SzT*(M), sometimes
the connection on f£*T(N), sometimes the connection on
T* (M)® £*T (N) . Decide by looking at the vector VZ operates on!)

Therefore

VWVZf*(gN)(X,Y) = <VWVzdf(X), df (Y)> + <def(X), Vde(Y)> +
<Vydf (X)), Vydf(y)> + <df (X), VyVzdf(y)>.
Using normal coordinates at a point p and an orthonormal basis

{X(i)} for T(m) such that [X(1),X(J)] = 0 at p, we use the above
formula and the Euler-Lagrange formula

EVX(i)df(X(i)) =0
for harmonic maps to compute the image at p of f*(gy) under the
composition of maps in the diagram given in (18.3):

IXVy (3) ‘7)(( 1y £X(gn) (X (1), X(3))

= LL<Vy (4)df (X(1)), Vy(q)df(x(3))>
+ ZX<Af (X (1)), Vy(4)Vy(1)af (x(3))>

= Va2 + TT<af (x(1)), Vy 5y Vy(1)df(x(3))>
- ZZ<Af (X(1)), Vy(3)Vx(5)df(x(3))>

= I Vat |2 - SE<df (x(1)), R®(X(3),X(1))dE(X(3))>

where R® here is the curvature of the connection on the bundle

T* (M) ® £*T (N) .
But the curvature of a tensor product of two bundles with the
tensor-product connection satisfies a Leibniz rule so that we
finally get:

X Vy 4y V(1) £* (on) (X (1), X(3)) =

I VAf |2 + EX<df(X(1)), Af (RM(X(3),X(1))X(§))>
- X <dfX (i), Ry(dfX(3),dfX(i)) (dfX(3))>.

(The change in sign on the second term comes in the passage from cotangent to tangent
bundle.)
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(18.5) Now since M is a Kdhler manifold, covariant differentiation
VZ respects types in S2T* (M) . We replace the orthonormal basis
{X(i)} with a standard Hermitian basis {z(i)',2(i)"} for

T(1,00 M+T 0,1y -

Applying the composition in (18.3) to the (0,2)-component of
f*gy, we get

X <Vy (5yndf (2 (1) "), Vg (4yndf(2(3)")>
+ ZX<df(zZ (1) "), Af(RM(Z(3)",2(1)™)Z(3)™)>
- ZX<dfz(i)", RyN(AfZ(3)",dfz(i)") (dfz(3)")>.

The Ké&hler identities for Ry imply that the term involving Ry
vanishes. Applying the definition of Ry, the above expression
becomes

ZE<Vy (5yndf(2(1) "), Vg (1yndf(2(3)")>
+ EX<dfz (1) ", [[dfz(3)",dfz(1)"]),dEZ () "])>.

Now using the identity for the Killing form
<[X,Y],2> + <Y, [X,2]> = 0,

the above expression becomes

ZZ(VZ(]) ..df(Z(i) '), VZ(l) ..df(Z(j) ')>
+ ZX<[dfz (J)",dfz (1) "], [[dfZ (F)",dfZ(1)"]])>

as desired.

(18.6) References: This proof is a reformulation of the original one in [Sa].
Finding a Bochner formula not involving the Ricci tensor of M was first
accomplished by Siu[Si].
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Lecture #19: Abelian subalgebras of Lie algebras

Finally, we want to discuss the proof of the last step in the
program presented in Lecture #17:

(19.1) Theorem: Assume that 8 is a semi-simple real Lie algebra.
Let p be the -1 eigenspace of the Cartan
involution (see (17.1)). If W is an abelian
subalgebra of 9C, then
dimg W < (1/2)dime,.
Furthermore, if 8 has no sl(2,R) factor, then
equality holds only in the case in which 8 is the

Lie algebra of infinitesimal isometries of an
Hermitian symmetric space and W is the (1,0)-
tangent space to a natural symmetric complex
structure.

Notice that for the sake of simplicity, we will only treat the
case in which 8 is simple. (The general proof is essentially the
same.)

The steps in the proof are:

(19.2) Suppose that W is a maximal abelian subspace of pc. We first

reduce to proving the case WNW~™ = 0. Suppose that
a=WNW" %0,
where "~" denotes "conjugate". Then
actcp,

where 1 is the tangent space to a maximal flat subspace of G/K.

(19.3) From the theory of roots for a real semi-simple Lie group,
the action of & on

g - kop

is as follows:

There is a finite set of roots (@} and Xg e R, Yge p such that
[X,Xg] = O(X)Yq, (X, Yol = &(X)Xg

for all Xet®.
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(19.4) Let &a denote the one-dimensional space generated by Xy and

let Po denote the one-dimensional space generated by Yg . Then

p=1t+Zp,
Also, if we let {P} c {a} be the collection of roots which vanish

on 4. Since the roots generate the dual space of a,

#{B} + dima < #{o}.

(19.5) Using that W was chosen to be maximal, one shows that the
subspace p' orthogonal to @ in (t + ZPB) with respect to the

Killing form is again a symmetric space of the same (non-compact)
type because it is closed under [[ , ), ]. Since (t + ZPB) is the

centralizer of @ in P

WC (t+ZpB)C
so that W = a @W', where W' = (p' NW). Notice that
W' N(W')™ = 0.

Suppose we know that
dimg W' < (1/2)dime'.
Then, since the codimension of ' in P is at least twice dimga,
we conclude
dich < (1/2)dimRP"

Notice also that equality is only possible if @ = 0 in the first
place.

(19.6) Since we may now assume that WNW™ = 0, the inequality

dimgW < (l/2)dime

is automatic. We need only show that equality implies that G/K is

Hermitian symmetric with W = P(1,0) ©OF W = Po,1)" The conditions
’ 14

WAW =0 and wo®w = pC

mean that W induces a complex structure J on -
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(19.7) Equivalent conditions which imply that G/K is Hermitian
symmetric are:
i) J€ K, that is, J is induced by and element of K under

the adjoint representation,

ii) J is an isometry for the Killing form,

iii) W is K-invariant under the adjoint representation,
iv) W is isotropic for the Killing form.

(19.8) We will complete the proof by showing that, if rank(G/K) > 1,
then J is an isometry, and, if rank(G/K) = 1, W is isotropic for
the Killing form.

19.8.1) rank(G/K) > 1: Let t be a maximal abelian subalgebra of P

Then one sees easily that J(t) must also be abelian. But K
operates transitively on the set of maximal abelian subalgebras of
P so there must be an element k€ K so that Ad(k)J takes % to
itself. Again one shows that Ad(k)J must permute the "singular"
hyperplanes of t given by the roots. Since, by irreducibility,
there are

dimt + 1
of these in general position, Ad(k)J must be a multiple of the
identity on t. One then shows that this implies that Ad(k)J is a

multiple of the identity on all of p. So
<JX,JY> = m<X,Y>
for all X and Y in . But J2 = -1. Som=1.

19.8.2) rank(G/K) = 1: We will prove that W is isotropic for
< , >. Recall that G/K has rank one if and only if K operates
transitively on

S(?.) = {XEP: <X,X> = 1}.

One then shows that this implies that KC operates transitively on
xepC: <x,x> = 1},

So, if <X,X> # 0, then the KC-orbit of X has codimension one in
(o]

f~ . Suppose now that Xe€ W. Let ¢ denote the centralizer of X in
pc. Then Yec if and only if YLl (AC, X] since
<[XIY]IZ> = _<Y/ [X/z]>-

Since we are in the case in which dimW > 2, the codimension of

(€, W) in pc must be > 2, so that the codimension of the KC-orbit

> 2, so that <X,X> = 0.

of X in PC must be
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Notice that the above result implies the following:

(19.9) Rigidity Theorem of Siu:
If G/K is hermitian symmetric, irreducible, and not the
hyperbolic plane, and if M is compact, K&hler, and if

f: M—> N=I\G/K

is harmonic, and if, at some x€ M, rankyf = dimN, then
f 1is either holomorphic or anti-holomorphic.

Outline of proof: By Sampson's result, df 1is a holomorphic
bundle map and so is of maximal rank off a proper complex analytic

subvariety M'. Above we showed that P(l 0) and 9(1 0) are the
r ’

only maximal rank abelian subspaces of 9c, so d"f must map to one
of these. Extend the map over M' by analytic continuation.

(19.10) References: (19.1) is proved in [CT] and (19.9) in ([Si].
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Lecture #20: Maximal variations of Hodge structures

Today we will discuss a result on "variation of Hodge
structures" which is closely related to the results on harmonic
maps described in Lectures 17-19.

(20.1) The geometric model for a variation of Hodge structure comes
from an analytic family {Xg: s€ S} of K&hler manifolds. After

framing H* (Xg; Z) locally, the Hodge decomposition

H (%) = 3, g
ptq = k
gives a continuously varying direct-sum-decomposition of a fixed
complex vector space H==Hk(xs). Alternatively, the decreasing
filtration
FP = z HP',k—P'
p'2 p

gives a holomorphically varying family of subspaces of H. As we
shall see below, this realizes {FP(Xg)} locally as a holomorphic

map of S into a product of Grassmann varieties. The image will
lie in a locally closed complex analytic subvariety D of the
product of Grassmannians. D is a complex manifold and a
homogeneous space.

(20.2) Rather than define things in generality, we illustrate this
construction for polarized Hodge structures of weight two. Given
a complex vector space H of dimension 2p+g with an integral
structure which has an integral-valued symmetric bilinear form
< , > of signature (2p,q), we define D to be the space of all
filtrations

(rFO0=H, Fl, F2, F3=0)

with dimFl = ptq, dim F2 = p, such that with respect to < , > we
have:

20.2.1) (FP)dL = F3-p,
20.2.2) the subspaces
HP/2-P = FP N (F2-P)~

give a direct-sum-decomposition of H (where "~" means
"conjugate"),

20.2.3) -<iP™9( ), ( )~ > is a positive definite Hermitian form on
HP/49 whenever p+q = 2.
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(20.3) Picking a reference Hodge structure He D, D becomes the
homogeneous space

SO (2p,q) /U(p)XSO(q) = G/V.

The complexified Lie algebra 8C of G has a direct sum
decomposition

8c = &)8—plp

where 8-p,p is the subspace of elements of the Lie algebra which
takes each HP'sd' to HP'-P,Q'*P,

If we take the sum Q)g—p’p only over positive p, we obtain

the holomorphic tangent space to D, which we will denote as 8_'

If we frame H by taking a unitary basis for H2ro, the conjugate
basis for HO0/2, and an orthonormal basis for Hl/1l, we can write:

P a p
0 0 I P
<, > = 0-I10 )a
I 0O P
P a p
_ 0 0 Pe Z =°%X
8 - 0 )«
Y 0 p® Y skew
(-2,2) -1,1
8 gy

(20.4) Griffiths showed that a family of surfaces {Xg}geg induces

locally an analytic map
f: S—— D,

called the period mapping, and that this mapping is horizontal,
that 1is,
dFP/ds ¢ FP-1,

Calculating at any reference point H, we see that f is
horizontal at H if and only if df takes values in the subspace

-1,1

8
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(20.5) Definition: A (local) variation of (polarized, weight two)
Hodge structures is a horizontal analytic map

f: S——D

where S is any complex manifold (not
necessarily the parameter space of a family of
surfaces) .

From the above matrix presentation of 8_ we see that

horizontality of f is automatic if and only if p = 1 (in which
case D is Hermitian symmetric) .

We wish to address the following question:

How arge can tbg rank Qf df be')

To answer this, we begin with the following observation:

(20.6) Lemma: The image df (T,1,0S) in the holomorphic tangent
space of D can be identified with a subspace

04;8—1,1

-1,1

which satisfies [a,a] C 8

One would like to say "this follows from the integrability
condition on vector fields tangent to an integral submanifold".
However, one must distinguish between Lie bracket of vectorfields
on D and Lie bracket of left-invariant vector fields on the
group, and one must also choose the identification to be used. We
must therefore give an argument:

Proof: Let

be an element of 8_ , and consider the map which sends & to

e&Fo* where F,* 1is a reference filtration. This map defines
a local coordinate system on a neighborhood W of the reference
filtration, and the map n which sends eéFo* to e& defines a
lifting of W into the group. Let ® = n~ldn be the associated
Maurer-Cartan form, and set

a = f*w(T,1,08).
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By construction, ® is a form with values in 8_1’1, i.e., in the

space of matrices

0 0 0
X 0 0
0 *x o0

Now pull the integrability condition dw—-wA® = 0 Dback via f
and evaluate on a pair of tangent vector fields U and V to get

U(£*0 (V) - V(£*0 (0)) - £*0 ([U,V]) - [ff0 (), ffo (V)] =0
Since the first three terms lie in 8_1’1, so must the last. But
this is the assertion to be proved.

With this result in hand we can establish a fundamental
property of the subspaces a :

(20,77 Lemma: If a 1is the tangent space to a variation of Hodge

structure, identified with a subspace of 8—1’1

then

as above,

[a,a] = 0.

In other words, the tangent spaces to variations of Hodge
structure are abelian.

Proof: For formal reasons one has

la,a] ;8'2'2

By the previous lemma,

[a,a] ;3‘1' L
-1,1 -2,2 _ :
But 8 and 8 are complementary, so [a,a] = 0, as required.
Remark: The condition [a,a] = 0 is inspired by, but slightly

stronger than, the analogous condition for infinitesimal
variations of Hodge structure.



MAXIMAL VARIATIONS

Let us now draw the consequences of this last result. If one
writes a horizontal tangent vector as

P 9 p
(O 0 0)p
veo = \§g 9/

then the condition that a be abelian becomes
(*) tyx.x' - txr.x = 0,

whenever N(X),N(X') € a. We therefore consider the following:

(20.8) Lemma: Let 4 be a space of gXp matrices satisfying (*).
If p > 1, then
dima < (1/2)pqg.

Proof: Let {ej} be the standard basis of CP, let {fj} be the
standard basis of €49, let ( , ) be the complex bilinear form given
by the rule fj-f4 = aij' Define

oy = {Xea: X(ej) = 0 for all i< 3j}

with og={all gXp matrices}. Then {aj: 0<j<p} is a decreasing

filtration of a. We also define the subspaces
Sy = CLj/O.j+1 = aj(ey41) ccqa.
Then we have
a=0a,/0,,, =®s;.
To conclude, we obsefve the following:
20.9.1) s LSy for i<j, since
tX(eit1) *Y(eg41) = BY(ejy1) ‘X(eq41) = 0

for Xe a., Ye aj.
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20.9.2) If Sq, ..., Sk is a collection of mutually perpendicular
subspaces of C9 and k > 1, then ZSj < (1/2)kg, where sq = dimSj.

To see 20.9.2), notice that if i < j, then
si+ts4 < q
since Sig;Sjl and dim Sy + dimSj—L = q. Consequently

(s; + s.) < (1/2)k(k-1)qg

and also

2 (sp +s) = (k-1 sy,

i<j

from which the lemma follows.
We have therefore established the following:

(20.10) Theorem: Let D be a period domain for polarized weight-two
Hodge structures. Let

f: S——D

be a local variation of Hodge structures. Then

rank £ < (1/2)h2,0pl,1,

1f hl/1 is even and h2,0 > 2, the above bound is sharp, as we
will show below. However, not all variations are contained in
variations of rank

(1/2)h2,0nl, 1,

For example:

(20.11) Theorem: With three exceptions, variations of Hodge
structures coming from hypersurfaces of dimension

n > 2
are maximal.

(For surfaces of degree d in CP3,
(1/2)n2,0n1,1

grows like d%® whereas the variation dimension grows like a3.
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MAXIMAL VARIATIONS

(20.12) To see sharpness, let g = 2q'. Let V be a maximal totally
isotropic subspace of C9 with respect to ( , ). Then dim V = g'.
For example, V might have basis

{(111,0,--.,0),(O,O,l,i,O,...,O),etc.}.
Then
cd =v + VT,
and {N(X): Xe€ Hom(CP, V)} defines an abelian subspace of 8_1'

In fact, the corresponding variation of Hodge structure is easily
seen to be induced from the group homomorphism

1

SU(p,q') —> SO(2p,2q9"') .

Moreover, all maximal-dimensional variations are of this form in
the case hls/1 even and h2:0 > 2.

(20.13) The dimension bound for variations of Hodge structures can
be seen as an analogue to the bounds on the dimension of harmonic
maps from a Kdhler manifold to a symmetric space of non-compact
type given in Lectures #17-19, and the sharpness result can be
seen as an analogue of Siu's Rigidity Theorem. In fact, we can
give more substance to this analogy as follows:

(20.14) Let D = G/V where V is compact. Find a maximal compact
subgroup K containing V. Let

Dg = G/K.
The group
I'<a

of integral-valued < , >-isometries is a discrete subgroup, and we
have

n: N\D— F\DO
with fibre K/V.
(20.15) Theorem: If M is a complex manifold and
f: M—TI'\D
is a variation of polarized weight-two Hodge

structures, then Tof is harmonic.

Sometimes the converse holds. For example, if Dg is quaternionic

hyperbolic space, then all harmonic maps to I'\Dy of rank greater
than two 1ift to variations of Hodge structures.
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(20.16) Remark: Sharp bounds on the rank of a variation of Hodge
structure in arbitrary weight have recently been obtained in joint
work of Carlson, Kasparian and Toledo. For weight two, these
results give an improved (and sharp) bound for the case of hl/s1

odd:

rank £ € (1/2)h2,0(n1,1 - 1) + 1,

where h2:0 > 1,

(20.17) References: (20.10) is due to Carlson ([Ca]l. (20.11) is in ([CD]. (20.15)

is in ([CT].



Lecture #21: Subvarieties of generic hypersurfaces

(21.1) We work over an arbitrary algebraically-closed base field.
We consider generically finite morphisms

f: X —_—s V c Y

of a projective manifold X into a subvariety V of an

ambient projective variety Y. We require that V and Y be smooth
at points of f(X). The normal sheaf, whose sections

measure first-order deformations of f which leave the target
space V fixed, is given by the formula

NfN = f*Tv/Tx

Typical of the estimates we obtain is the case in which X is a
rational curve and V is a generic hypersurface of degree m in

PR, If T denotes the length of the torsion subsheaf of Ng¢ vy,
and let
¢ = rank of Nf y/(image of HO(Nf,V®0,x)) .
Then
c > (m - (n+l)) + ((2+1)/(deg f)).

So, the more positive the canonical bundle of V is, the harder it
is to find rational curves on V.

(21.2) We begin by developing these ideas in a general setting.
We assume that we are in a situation in which the normal sheaf
Nfg,y to £ in the ambient space ¥ has enough sections to generate

f*Ny,y. In this situation, we have a surjective morphism of
locally free sheaves

. 0 -— > *
VEHT(N G ) ® Oy PNy, v
induced by the natural map of normal sheaves. Let ¥X denote the

kernel of this map. Then X is a locally free sheaf on X.

Furthermore, we have the natural morphism of exact sequences of
sheaves:

0O —» ¥ — 1’0, )e 0, —» N, —0

v v v

0 —» Nf,v > Nf,Y > f*Nv —p0
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Intuitively, ¥ cuts out the directions in Ng,y taken by points
"left behind” in V as f moves in Y.

Let us denote
L = det £*Ny,y.

(21.3) Lemma: X®%, is generated by global sections.

Proof: Given a vector O(x) in the geometric fibre of X at a point
x € X, O(x) determines a unique section Ty of HO(Nf,y)Qﬂix which

has the value O(x) at x. Choose sections T; such that y(1y),
i=1,...,r, generate the geometric fibre of f*Ny,y at  x. The
section required by the lemma is

2,”0 (1) det (W), W(T;_) W), W )T,

i=

(21.4) Lemma: Let & be the image of ¥ in Nf,yv. The sequence

o —» Nf,v/;%, — Nf’Y/)&, —» 5Ny, y —¥» 0
is split.

Proof: The map ¥ is surjective. The result now follows
immediately from the commutative diagram in (21.2).

(21.5) More generally, suppose we have a transverse intersection
V=V, Vs ... Vg

for s varieties in a projective variety W, and

f: X ——¥» V < W

with V, the Vi, and W all smooth along f(X). We let
v = v
1 jil J

and require that, for each i, the mapping

.0 _ =
ViH N ¢ y) © O Ny, v, PNy

1 1

W

be surjective. Then as above there is a sheaf ‘Ki for each

i=1,...,r, and a diagram:
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0 —P> oK — OHN, ) @ Oy ———» D Ny y—0
=1 1

b i i

0 —» Nf,V » Nf,w — f*Nv, - »0

We let

&, = det £*N det £*N

v,Y, ;oW
and suppose that £. is a line bundle on X such that, for each i
and each x € X, we have morphisms

L——> 2

which are surjective at x. Then, as in Lemma(21.3) above, we
conclude. that Ki®i:is generated by global sections. Furthermore,

letting X = @Epi, we again have that the sequence in Lemma (21.4)
splits.

(21.6) Let 2»0 be the subsheaf of Nf y generated by its global

sections. Clearly nggﬁyo. By the adjunction formula

f*Cl (W) = cp(X) + cl(Nf,W)

c1(X) + frcp (Ny,w) + c1(Ng, v/R) + c1(R/R24) + c1(Xg)
so that
frcp (V) = c1(X) + c1(Ng y/R) + c1(A/A5) + c1(R() .

But &, is generated by global sections, as is (ip/ﬁyo)éﬁl, and

Nf¢ v/ is a quotient of Ng w. In what follows, we will apply the
above equality in case Ng y is "semi-positive” to conclude a lower

bound on the rank of 2»/2»0 and therefore an upper bound on the
rank of 2”0'

(21.7) As an example of the use of the formula in (21.6), suppose
that X is a curve, and that

T = length of torsion subsheaf of Ngf y.

As in [C2], we define a sheaf on X to be semi-positive if it has
no quotients of negative degree.
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(21.8) Theorem: If X is a curve and
f: X —_— P V < W

is as in (21.5), if Nf w is semi-positive, and if 2.
is a "basepoint-free multiple" of each iﬁj then

rank (&/2) (deg $) > (deg f*Ky) + (2-29) + T,
where Ky denotes the canonical bundle of V.

Proof: The theorem results from writing down the formula in

(21.6) . 1In this case cj(X) = 2-2g where g = genus X. Also
Cl ()&/O) > T,

and, by Lemma(21.4), c1(N¢ y/&) > 0.

(21.9) To give an example of the use of this theorem, we restrict
further to the case in which X is a rational curve, W is a
generic hypersurface of degree m in PRHM  and Vv is cut out in W

by a generic linear space of dimension n. (The semi-positivity
of Nf,w is shown in [C2].) Since X is rational, we have the
formula

Be,v = Q(a) ®...®0(ap-7)

for the "locally free part" Bf y of Nf y, where
Yay = -(deg f*Ky) - 2.
The semi-positivity of Ng y/& implies that the injection
(loc. free part A/R,) ——» 2 {0 (ay): a;<0}

cannot project to zero on any factor. So, for example, we have
aj 2 -(deg L, j=1,...,r.

(21.10) Suppose now that we are studying rational curves on generic
hypersurfaces of degree m in PR, Theorem(21.8) tells us that

rank (/23) 2 (m - (n+l)) + ((2+7)/(deg f)).

So, in particular, to have any rational curves at all, m must be
less than or equal to 2n-2.

(21.11) Finally, we give a lemma which indicates how the existence
of a rational curve of degree d on a generic hypersurface of
degree m in PR influences the distribution of rational curves of
degree d on generic hypersurfaces of degree m in higher
dimensional projective spaces.
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Lemma: Suppose V is a generic hypersurface in PD of
degree m > (n+l):

a)If m > (2n-1), then V contains no rational curves.

b)If m = (2n-2) and V contains a rational curve of
degree d, then the generic hypersurface 2 in P® of
degree m 1is covered by deformations of that rational
curve, each of which span (at most) a PR,

c)If m = (2n-2)-k and V admits a family of rational
curves of degree d, covering a subvariety of dimension
(k+1), then the generic hypersurface of degree m in PM
is covered by deformations of that family of rational
curves, each of which span (at most) a P..

Proof: Suppose V admits a rational curve:
f: X —_ Vv

Let W be a generic hypersurface of degree m in P®™¥D_ Ag in
[C2], Nf w is semi-positive. The fact that £ deforms with every

deformation of the linear section V in W, says that, in all the
above consideration, we can replace
0
HO(Ng y)

with a subspace Ry of sections arising from deformations of the
pair V in ¥4, that is, by a vector space obtained by picking a

deformation of f compatible with each geometric deformation of V
in ¥;. The formula in (21.6) says in this case that

rank(,&,/,&,o) > (m—-(n+l)) + (2+1)/(deg f).
Since rank(ﬁ»/ﬁ»o) < n-2, we know that m < 2n-2, and, if
m = 2n-2, we must have
(deg f) > (2+1) and rank(,&,/,&,o) = n-2.

To finish b), we express V as the intersection of hyperplane
sections Vi of W, and write f*Ny w as a direct sum as in (21.5).

By general position and the genericity of V and W, for every (n-2)
values of the index i, the corresponding subsheaves ﬁyi of N¢,y

must generate a subsheaf &' of rank n-2. This says that, for the

generic hypersurface Z of degree 2n-2 in P2n—2’

Nf, z
is generically generated by global sections coming from the
geometric deformations of the pair (f,V) in W. But these
deformations comes from deformations of n-dimensional linear
subspaces of PAHM yhich lie in P2n-2 to first order. Since (£,V)
and the deformations are generic, they can be taken to lie in
p20-2 5 311 orders, and so come from geometric deformations of
(£,V) in Z.
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The proof of c¢) is the same--by hypothesis
rank(;&,/;&zo) < (n-2-k),

so, by the above formula, equality must hold. Again, every choice
of (n-2-k) values of the index 1 must give ,&,i’s which together

generate a subsheaf of X/, of maximal rank.

(21.12) Reference: Most of these results in the case of embedded submanifolds
appear in [C2]. The generalization to the singular case is due to Clemens.
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Lecture #22: Conjectures about curves on generic quintic
threefolds

Today, we will outline a series of conjectures about
threefolds V with Ky trivial. The prototype will be the quintic

hypersurface in cp4. Our starting point will be:

(22.1) Conjecture: The generic quintic hypersurface in cp4 admits
only a finite number of rational curves of
every positive degree.

Remark: S. Katz has shown that there exist isolated rational
curves of each degree on a generic quintic threefold. He has also
shown that the Conjecture is true for low degrees, and has counted
the conics (609,250). It was known classically that there are
2875 lines on a generic quintic.

We wish to discuss a (conjectural) corollary of the above
Conjecture. In what follows, let V denote a non-singular quintic
threefold:

(22.2) Conjecture: If V is generic, then V cannot be covered by
elliptic curves.

(22.3) As a warm-up to a discussion of these conjectures, let us
recall that no complex projective threefold V with Ky trivial can
be covered by rational curves. This is clear from the adjunction
formula, but we present another method of proof which will be
useful later:

Proof: Suppose that V can indeed be covered by rational curves.
Then we have the following diagram:

(proper flat -& q_’ v
morphism whose (dominant
fibers are o) morphism)

unions of

rational curves) (smooth

¥ projective
surface)

If we let H be a generic hyperplane section of V, then by taking
fibred product over p with q“l(H) and resolving any
singularities of the resulting parameter surface q‘l(H), we can
assume in the above diagram that the fibration p has a section
s such that

q(s(¥)) = H.
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Now, the cup-product pairing is non-degenerate on H3(V;Q) and
q 1s a generically finite morphism, so the natural map

g*: H3(V; Q) —>H3(; Q)

is injective since cup product is non-degenerate on its image. We
analyze H3(E; Q) using the Leray spectral sequence for p. Since
all fibres are unions of rational curves, Rlp*Q = 0. Also the

image of H3(7; Rop*Q) in H3(ﬁ4 Q) intersects q*H3(V;Q) only in

{0}, since the image of H3(F; Rop*Q) restricts isomorphically onto
B3 (s(F); Q)

whereas q*H3(V;Q) restricts to O Dbecause H3(H;Q) = 0. Thus all

of g*H3(V; Q) is generated by H1(F; R2pxQ). But this implies by
duality that the mapping

gxp*: H1(¥; Q) —> H3(V; Q)

is surjective. This contradicts the fact that the image of this
last map is annihilated by H3'O(V)¢O.

Next we check:

(22.4) Proposition: The generic quintic hypersurface can be
covered by curves of genus 2.

Proof: The Grassmann variety of plane sections of

v ¢ cp4
has dimension 6. For each fixed plane P and a generic set of 4
points Py € P, the set of quintics tangent to P at each P is a

linear space codimension 12 in the set of all quintics. So the
set of pairs (P,V) with P four-times tangent to V has codimension
12 - (4-2) = 4.
If we can show that the is some four-tangent pair (P,V) has the
property that P only moves in a two-dimensional family when V is
fixed, then we have shown that the generic V admits a
two-parameter family of plane quintic curves with four nodes,
i.e., a two-parameter family of curves of genus 2. For example,
let V be given by the equation

F(Xp,...rXg4) = £(Xg,X1,X2) + X3:°9(Xg,X1,X2) + Xg4-h(Xg,X1,X2) =0

where f gives a plane quintic with 4 nodes pi,...,p4, and g and
h are generically chosen plane quartics which vanish at the Py.
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Deformations of the plane

X3 = X4 =0
are given by

X3 = 0(Xg,X1,X2)  Xg4 = B(Xp,X1,X2)

and it is immediate to check that the condition on tangency of the
deformations reduces to the statement that the the plane curves

£ (X0, X1,X2) + (X0, X1,X2) "9 (X0, X1,X2) + P (X0, X1,X2) "h(Xg,X1,X2) = 0
which have four nodes is of (local) codimension 4. So generic
quintics V admit a two-parameter family of (plane) curves of genus
2. 1If the generic family were to lie in a divisor D on V, then

the dual mapping from D to pencils of hyperplanes in P4 would be
4-1, which is impossible since, if the dual mapping is finite,
double dual is the original variety. Thus the family covers V.

(22.5) Finally, we turn to Conjecture(22.2). The derivation from
Conjecture(22.1) proceeds as follows:

Step 1) Assume that V can be covered by elliptic curves. Then, as
above, there exists a diagram:

d v
(proper flat (dominant
morphism with pl morphism) Again, by base extension,
generic fibre we can assume that p has
elliptic) (smooth a section s whose image
projective maps to a generic hyperplane
surface) section H of V.

We can assume that ¥ has been blown up sufficiently that the
modular map to the compactification of the moduli space ﬂLl of
curves of genus one

j: F—— M, ") ~cpl

is a morphism.

Step 2) Using Conjecture(22.1), we can assume that we have chosen
H so that it intersects each of the countable collection of

rational curves on V transversally. This means that (gos) maps

the divisor j'l(w) to a zero-dimensional set in V, so that, if 3

is not constant, just as in Lecture #1, we would have a
"disappearing curve"

(qos) (371(t))

as t goes to infinity. Thus Jj must be constant.
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Now there are two ways to continue further. One is global and
the other is local. We start with the global one.

Step 3) Let UcPN be the subset parametrizing quintic
hypersurfaces with at worst ordinary nodes as singularities. The
complement of U has codimension at least 2. Now if the general
quintic is covered by elliptic curves then there is a family
covering the universal quintic over U. As we saw, the generic
quintic is covered by copies of the same elliptic curve and this
elliptic curve can vary with the quintic. If it indeed varies
then on a codimension one subset of U, it degenerates to a
rational curve. Hence a (possibly nodal) quintic hypersurface
would be covered by rational curves. This however contradicts
(22.3), since ordinary nodes do not effect the adjunction-theoretic
argument. So all quintic threefolds are covered be the same
elliptic curve.

Step 4) Let U/U be the universal quintic and let

q: (F/U)yxE —> V/U
be the covering family of elliptic curves where ¥/U is generically
a family of surfaces. We can blow up (¥/U)XE suitably to get

7z —(F/U)XE,
where Z admits a regular map onto U/U. Let
Uu' cu

be the open set above which the maps

g:Z2——U and h: U—>vU

are smooth. Thus we have two variations of Hodge structures over
U' and a natural injection:

R3h*CfU‘—) R3g*CZ

The variation of Hodge structures R3g*cz splits as a direct sum
of variations of Hodge structures as follows.

We get one component coming from (¥ /U)XE.

This is a weight two variation, namely

RZ2pxCF (coming from HZ of the surfaces in ¥/U)

tensored with the constant variation of H1(E; C).

The other components come from the blowing up process
that created Z.

In each fiber we blow up a point or a smooth curve one at a time.
The first one leaves H3 unchanged and the second one changes it
with the Jacobian of the blown-up curve. Thus these give weight
three variations in which there are only two non-trivial Hodge
subbundles.
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Step 5) The monodromy representation on R3h*CU'is irreducible;

thus R3h*OU maps into one of the above summands of R3g*CZ. By the

above considerations, the only possibility is that we have an
injection

R3h«Cyr — R2p«Cy ®HI(E; C).

This is impossible, since the left-hand-side has a degeneration
with W6 of the weight filtration non-zero, but obviously the
right-hand-side can not have such a degeneration. This completes
the proof.

The more local approach is the following:

Step 3') By further base extension, we can achieve a dominant
rational map

q: ¥XE — V.
If g is in fact a morphism, then, as before, H3(V;Q) injects
into
H2(F)y®ul(E) + Bl (F)®HZ(E).
(Again use H3(H) =0 to eliminate H3(F)®HO(E).)

Step 4') It cannot be that q*H3(V;Q) lies entirely in

H2(F) ®Hl(E), since, as before, the latter has type (2,1)+(1,2).
In fact, these two subspaces can only intersect in {0} since the
cup-product pairing is non-degenerate on q*H3(V;Q). (In case g
is not everywhere defined, this statement must be modified, but

the argument proceeds in essentially the same way, so we will
continue to assume g 1s a morphism.)

Step 5') We let V vary over the projective space ¥. of all quintics
in CP4. Then for each V we have an elliptic curve Ey. Let O be

a divisor on ¥ along which the modulus of the elliptic curve Ey is
constant. Therefore first and second derivatives of the period
mapping along 1 send H3:,0(v) into el ()L, rLet SNd denote the set

of homogeneous forms of degree d in n wvariables. Via
Griffiths' theory of residues for hypersurfaces, this fact about

first and second derivatives along ¥ gives rise to a hyperplane

HZ S50
such that

1) H contains aF/an, 3=0,...,4, for a generic quintic form F,
2) H-H lies in a hyperplane of 5510_
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But this is impossible because of the following lemmas:

(22.6) Lemma: Suppose a proper subspace WQ;SNd has no common
zeroes. Suppose k = codim(W,Syd) < d+1. Then
SNk‘W = SNk+d.

(22.7) Lemma: Let d = N, and let H be a hyperplane in SNN such that
the conductor W = [H:Syl] < SNN‘l has no common zeroes.
Then

H-H = §y2N.

Proof: W = [H:Syl] = M{[H:P]: Pe Syl } < syN-1.
So codimW < N. Thus, by Lemma(22.6), SNN-W = SNZN‘l. Therefore,

again using Lemma(22.6),
H-H D W-Syl-H = w-syNtl = 52N,

(22.8) References: S. Katz's results appear in [Kat]. The conjecture (22.1)
appeared first in [Cl]. The (conjectural) Corollary(22.2) of (22.1) evolved in
discussions involving H. Clemens, J. Kolldr and S. Mori. The alternative

local approach to the end of the proof was pointed out to us by C. Voisin.
Lemma (22 .6) appears as a special case of Theorem 2.16 in [G] and Lemma (22.7)
is due to Voisin. We are grateful to her for allowing us to use her
unpublished results. Griffiths' theory of residues for hypersurfaces appears
in [CGGH] .
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Lecture #23: Submanifolds of generic complete
intersections in Grassmannians

(23.1) Today we will give a generalization of the results for curves
on hypersurfaces given in Lecture #21. The situation is as
follows:

\Y (n+1l)-dimensional complex vector space
G = Grassmann variety of r—-dimensional quotient spaces of V

XCG a generic complete intersection of type (mqp,...,mg)

We will let

Hy = irreducible open subset of the Hilbert scheme of X
parametrizing smooth irreducible subvarieties of X
of some given type.

{(z,x): Z€Hy, x€ Z}.

Zx

F
2 € 2, ——PXCG

parameter space of
complete intersections
of the given type

(23.2) Theorem: Let m = Znﬁ. Let mp be the least integer s
such that
n0 (kz ®0O, (s)) # 0.
Then
a) NZ/X®0'Z(1) is generated by global

sections;

b) codimgyF(Zy) > m + mg - n - 1.

(23.3) Corollary: a) If m > dimX + n + 1, then every such Z is of
general type.

b) If m > dimX + n, then every such Z has
non-zero geometric genus.

(The Corollary follows since, for example, if Z is not of general
type, hO(KZ®0,Z(—1)) =0.)
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For example, we might have G = CP®, and X a generic
hypersurface of degree m>2n-1. Then X contains no rational curve.

(23.4) Proof of theorem: The proof will begin with the

construction of the Koszul resolution which resolves the ideal of
the graph of a morphism

f: Z—G
into the Grassmann variety G:

Given f: z —®» G

= c
(graph f) ZXG s > UxG >0

T P
universal universal
sub-bundle quotient
G

Z G

R4

then, putting
€ = n*Sq ®p*Q*
we obtain the resolution
» A28 » & >0, —— O — 0.
o8 ——— (o)
o®E A 'R —— E(0) 6'RE’
-&(c") o®g

We will apply this construction in the case of
f: Z—— P (V) =P.
Here the exact sequence

(#) 0—>Qpl—0,(-1)®n+l — 0, —0
gives that
S =Qpl(1) and Q= 0,(1).
We take the above Koszul resolution above and tensor it with
G'P (m) . We then apply T« to pass from a complex of sheaves on ZXP

to a complex of sheaves on Z. Since the higher direct-image
sheaves are given by

Rime = 81 (@p (m-k) ®AR (£2Qp1 (1)),

which are zero for i>0, exactness is preserved. We obtain:

o HO (@ (m-1)) ® £5Qp1 (1) —(*) 5 HO@p () ® G, —> O, (m) —> 0.
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Let ¥ be the sheaf which is the image of the arrow to the left
of (*) and the kernel to the arrow to the right of (*).
Now QP1(2) is generated by the global sections

XjdX4 - X4dXj,

SO:

1) ?@&Z(l) is generated by global sections.

Suppose that f: Z——P factors through XcP and that
HO (@p (m) ) — HO (T (m))
is surjective. Let X denote the kernel of

HOOy () ® G, —> T, (m) .
Then the Snake Lemma implies

2) M@, (1) is generated by global sections.

In fact, using a lemma of Lazarsfeld which we will prove next
time, we can do a little better in the case in which 2 is a curve.

We achieve this by examining f*QPl(l) a little more closely in

case f: Z—— P is generically injective. Let ¥ be as above, and

let
d = degree f

ng = dimension of linear subspace of P spanned by f(Z).

(23.5) Lemma: There is a line bundle & of degree (d-ng+1)
such that
FeL

is semi-positive.

Proof: By (#) one has
£xQp1 (1) = (n-np)Q, M.
Lazarsfeld's lemma then says that, for (ng-1) general points P4 on
Z, there is an exact sequence
o—>0,Z(ij)®&Z(—l)—)TTL——)EB&Z(—pj)—>0.
Let & = 0, (-Zpj)®0,(1). Since the sections of & have no base

points, &@&(—pj) has a section for each j. So M®$. sits in an
exact sequence whose extremes are semi-positive.

131



H. CLEMENS, J. KOLLAR, S. MORI

(23.6) Lemma: Kg = @;(-n-1).

Proof: Tensor the sequence
0—)S—>V®0.G——~)Q————)O
with Q*. Since Qgl = S®Q* and Q®Q* is self-dual and so has
trivial determinant, Kg = AT (0+1l) (y® 0*) . Now use that
ATQ* = O (-1).
(23.7) We now finish the proof of Theorem(23.2) announced at the
beginning of this lecture. Our situation is:

F
z & zy ——P»XCG

parameter space of
complete intersections
of the given type

We begin with the diagram:
o —» T, —b Tg(|Z —»h*TMZ —» 0

V- ¥ aF Vo

0O —» T, —» T —P N — 0

2/G

v

N X/G lz

ol

Notice that the composition Y¢ is exactly a direct sum of maps

0 . .

H (&X(m])) ®G,Z—>0,Z(mj)
considered above, if we denote the kernel of this composition by
X, we obtain the diagram:

v v-

0O — N, —® N, —P NX/GIZ—bo

where, by 2) above, E@&Z(l) is generated by global sections.

Thus, as in the two Lemmas from Lecture #21, NZ/X®&Z(1) is also
generated by global sections, giving a) of the theorem.
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(23.8) Next we consider the map
h*THX z ’ Nz/x

and let Eq and Ep respectively denote its image and coimage modulo

torsion. If ey = rankEj, then ey = codimyF(Zy), the integer we

need to estimate for b) of the theorem. Outside a subset of
codimension two we have

AiteaN, . =~ AE, ® A°2E,
with
e
Artern, . = A'E;®A’E, = O((D)®OMD')(-e,)
where D and D' are effective divisors. On the other hand .
e te ~ -1 ~ -
AN1TE2N, e = Kyt ®K, O (-mtn+l) ® K,

so, if mp is the least integer such that hO(KZ ®0,(m0)) #0, then
mp < ep - m + n + 1.
So the proof is complete.

(23.9) Since the earlier Lemma showed that a somewhat "less
positive” bundle ¥ ® £, is generated by global sections in the case

Z = C, an imbedded curve of degree d, we get a correspondingly
sharper estimate in this case:

(23.10) Theorem: Let C be a smooth curve on a generic X. Then
codimyg F(Cx) > (1/(d-np+1)) [(2-2g)+(m-n+1)d],
where, as before, ngp = dimension of linear span of C.

(23.11) Lastly, for curves of "small" degree d < min{m;}<+no-—1, we
show that the Hilbert scheme Hc is smooth at C when H (Nec/g) = O.
(Note: This condition is always satisfied for rational curves.)

Proof: We must show that Hl(NC/X) = 0. But this will follow

immediately from the normal bundle sequence if we can show that
the map

HO (N¢/g) — HO (g /g 1 ¢)
is surjective. Since C lies on generic X, HO(NC/G) maps onto the
image of HO(Nyx/g) = ®HO(@y(my)) in HO(Ny,glc). But, by a theorem

of Gruson-Lazarsfeld-Peskine which we will prove tomorrow, the
maps

HO (O (m3)) — HO (@ (n4))

are surjective whenever my > d-ng+1.

(23.12) Reference: These results appear in [E].
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Lecture #24: A theorem of Gruson-Lazarsfeld-Peskine and a
lemma of Lazarsfeld

Today, we want to look at the proof of:

(24.1) Theorem: Let CCP® be a smooth curve of degree d which
does not lie in a hyperplane. Then

1O (PR; @ (a)) —> HO(C; G(a))

is surjective if a > d-n+l.

Proof: Let L0"3 be a generically chosen linear subspace of
dimension n-3 in PB., Let P”» be the blow-up of PP along L. Then
P~ is a projective space bundle over P2, in fact,

P~ = P(&Pz(l) ® (n—z)apz) .

We have
~ f 2
c < P —b P
h
c ¢ p*
We define the bundles
G,Ph(a,b) = h*@.Pn(a) ®f*ap2(b) .

Then, for example, &PA(l,O) is the tautological line bundle, so
that f*&PA(l,O) = &P2(1)® UrQ)&Pz. Consider the sequence
0—> L. (1,0) —>Cpa(1,0) —> T (1,0) —> 0.

Notice that &C(l,O) = &C(O,l) since C does not meet L. We apply
fx. By the projection formula, we obtain

(*) 0—>a(1)—+®,1,2(1)®(n-2)&P2—>f*&c®&P2(1)——+o

since R1€(1) = 0 because no fibre of f contains more than two

points of C. Also, by writing down a local basis for f*&c(l,O)

explicitly, one sees that that sheaf is locally free. By tracing
through the definition, one sees that the surjection in (*) 1is
given by

(a, (a3,...,ap)) —> (a + azX3 + ... + apXp),
so that, to prove the theorem, it suffices to show that
Hl (€ (b)) =0

for b above the given bound.
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(24.2) We begin with
o—>a——>0,1,263 (n~2)O,P2(—1) — f*G,C—>0

from (*) above. We have
rank® = (n-1) and det & = lp2 (n-2) ®&P2(—d).

Next we resolve
M = ©_HO (£40(a))
as a module over S = k[Xg,X1,X2]:

S+ S(-1)F" 24T —>5M—0

where r+l is the dimension of HO(&C(l)). (The first factor S goes
onto the constants and the linear span of Xp,X3,X2.) Putting
Ty = Tq' +S(-1)¥™N, we get a diagram of coherent sheaves on p2,

0

v

o —» ‘&—P&P2®O,

v

0 —> I —> 0,200

<4 o

-2
2 (-1 —— 0, — 0

v-

» -1 %@ g, —» 1,0, —»0

L]

<—

o

v ) v
61 - al
v v
0 0

So, in particular, 32 is locally free and, by construction,
Hl(az(a)) = 0 for all a.

This means that 32 must be a sum of line bundles, since,
restricted to a line, the bundle splits, and the induced
isomophism from a sum of @ (nj)'s to 32|line must come from a

morphism on all of P2 which is an isomorphism off a set of
codimension > 2.

(2¢.3) We are reduced to analyzing the kernel of the epimorphism
32 331
of sums of line bundles in the diagram above. There is a standard
tool for analyzing the kernel of an epimorphism
¢: A— R
of vector bundles (of ranks a and b respectively) over a

variety X. It is the Eagon-Northcott complex, another form of
Koszul resolution:
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- APT3a®s2R* — AP+20®s1R* — AP+10 — A®detR — R®detB — 0
O A Ay, = Z(-1) JaD

where D4 is the determinant of the ¢(0y) for k#j. To see

exactness, we reason as follows:

Let @ (1) be the hyperplane bundle for f: P(R)——>X. The

canonical morphism f*Q—— f*R —— @ (1) induces a Koszul resolution

*) ... —A3F*A® G (-2) —> A2F*A ® S (1) — £*x 0 —— O (1) —> 0.

Apply fx and notice that the Rifx« vanish except for i=0 (for £xQ

and 9. (1)) and for i=b (for Aj+1f*a®&(—j) when j>b). Also, by
the projection formula and Serre duality,

ROf, (AJTLExQ @O (-9)) = ATTIA ® RPEL & (-9)
= AITIA® (£4 O (N ® wp (1) /x) *

= AJ*1Q® (5 O (§-b) ® detB) *

So by looking at the spectral sequence associated to the double
complex given by an injective resolution of (*), we obtain the
Eagon-Northcott complex

(24.4) Using the Eagon-Northcott complex to resolve €&, we obtain:
L ATP29, @ T ®AI ) (I AP T, @A ) F—— 8 — 0.

Let X denote the kernel of the map (#). Then, since the Ji are
sums of line bundles, we have injections

Bl (& (b)) —> HZ (A (b))
for all b. Also, by dimension, we have surjections
HZ (At'*29,® 9 * ® (AT'd ) * (b)) —> HZ (A (b)
for all b. So, we will be finished if we can show that

H2 (A28, 039, % ® (At'd) " (b)) = 0
for b > d-n+1.
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(24.5) To do this, write

I, = @0(ay), i=1,...,t',
d, = ®0(by), 3=1,...,t",

and notice that, by construction,

-1, for each i,
-2, for each

ai

<
bj <

Notice that
A9, ® (AF'd)* = A®E = O(-n+2-d).
Also t"-t' = rank® = n-1. The rest is elementary arithmetic--if
b > d-n+1,
one computes that the degree of every summand of
A2, 09, * ®(A'T,) * (b)

is greater than or equal to -2, so HZ = 0.

We should remark that the bound in the theorem is sharp. A
rational curve of degree d in P9-1l gives the required example.
Also the theorem still holds if one only assumes that the curve C
is reduced and irreducible, but the proof is more complicated.

(24.6) We also need to prove the lemma of Lazarsfeld used last time:

Lemma : Suppose an irreducible curve Cp spans a projective space
P = pn, Let
m = £xQpl(1).
Then, for (n-1) general points p4 on Cp, there is an
exact sequence

0——0(Zp§)®U,(-1) —>M—> & (-py) —> 0.

Proof: Let C be the normalization of Cp, and let D = ij. Let &
denote the pull-back of &P(l) to C. We have the exact sequence

0—M—0. % — & —0.
Choose a linear subspace L of P of dimension (n-2) meeting Cp in

exactly the points Py Project Cp to Pl with center L.
The lemma follows from the resulting diagram:
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0 0 0
v v v
o —» D) —» 092 —p L (-D) —b 0

v v v

0o —» m—>v®er,c——> S, —» o
v v v
0 —>@0,(—pj)—>0,®(n_l) —»LID—b 0

v \ v

0 0 0

(24.7) We end today with another example of the usefulness of the
above lemma. Suppose that £ is some line bundle on a smooth curve

C such that d = degf, > g(C). Assume
h0(£) = r+1 and n1 (L) =8 > 0.

Suppose we want an upper bound on the local dimension of WTg,
the set of line bundles of degree d on C with index of
speciality at least 8. Let V = HO(£,). Tensor the sequence

0 >T » VRO, > £, > 0

. -1
with KC®£~' and take global sections to obtain
0— HO (M® Kc®E. 1) —H0 (£) ® HO (K ® £.71) — HO (X() .
The last map above is called the Petri map, and its image is the

annihilator of the tangent space of Wry at £.. So we can get the

desired result by estimating the dimension of HO ('ITL®KC®&_1). To
do this, we tensor the sequence
0——)0.C(ij)®0.c(—l)—)m——)@@c(—pj)——)O

with Kc®& 1 and take global sections to obtain

00— HO (KR ® &2 (D)) — HOM @K ® &™) —> @O (ke ® &1 (-py)).

Since d > g, we get
ROMOK®L™) < (r-1) (8-1) .

So the annihilator of the tangent space to Wry at . has

dimension > (r+1)8 - (r-1) (8+1).
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(24.8) There is a variant of Lazarsfeld's lemma for vector bundles &
with
o——>’n1—->v®o,c—>ﬁ——>o
for which
f: P(&) — P (V)

is generically injective. Let m = rankT. By a similar argument
to the above, one obtains

0— 0 (Zp3) ®det &1 —M— @G (-pj) — 0.

Applying this to the "first-order jet bundle" associated to the
line bundle & considered above, one achieves an upper bound on the

local dimension of WTy4, the space of pairs (C, &), L.e wry.

(24.9) References: The theorem of Gruson-Lazarsfeld-Peskine appears in [GLP].
Lazarsfeld's lemma appears in [GL].
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RESUME

Ce travail comprend vingt-quatre conférences qui ont
fait partie d'un séminaire d'été sur la géométrie complexe des
variétés de dimension plus élevée qu'un. Le séminaire a eu lieu
4 1'Université d'Utah pendant les mois de juillet et aolit 1987.
Les seize premiéres conférences fournissent une introduction au
programme de Mori sur la recherche des modéles minimaux pour des
variétés projectives complexes de dimension au moins trois. Le
théme central est 1'étude de variétés sur lesquelles la classe
canonique n'est pas numériquement effective. Les conférences dix-
sept a8 vingt étudient la géométrie de 1'application des périodes,
et, plus généralement, des applications harmoniques des variétés
de Kdhler compactes dans certaines variétés localement symétriques.
Les quatre derniéres conférences étudient 1'existence et les pro-
priétés des courbes de genre petit sur des variétés projectives

avec classe canonique suffisamment ample.
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