@incollection{AST_1987__154-155__73_0, author = {Allard, William K.}, title = {Notes on the theory of varifolds}, booktitle = {Th\'eorie des vari\'et\'es minimales et applications}, series = {Ast\'erisque}, pages = {73--93}, publisher = {Soci\'et\'e math\'ematique de France}, number = {154-155}, year = {1987}, mrnumber = {955060}, zbl = {0635.53035}, language = {en}, url = {http://www.numdam.org/item/AST_1987__154-155__73_0/} }
TY - CHAP AU - Allard, William K. TI - Notes on the theory of varifolds BT - Théorie des variétés minimales et applications AU - Collectif T3 - Astérisque PY - 1987 SP - 73 EP - 93 IS - 154-155 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_1987__154-155__73_0/ LA - en ID - AST_1987__154-155__73_0 ER -
%0 Book Section %A Allard, William K. %T Notes on the theory of varifolds %B Théorie des variétés minimales et applications %A Collectif %S Astérisque %D 1987 %P 73-93 %N 154-155 %I Société mathématique de France %U http://www.numdam.org/item/AST_1987__154-155__73_0/ %G en %F AST_1987__154-155__73_0
Allard, William K. Notes on the theory of varifolds, dans Théorie des variétés minimales et applications, Astérisque, no. 154-155 (1987), pp. 73-93. http://www.numdam.org/item/AST_1987__154-155__73_0/
[1] On the first variation of a varifold, Ann. Math. 95 (1972), 417-491. | DOI | MR | Zbl
,[2] On the first variation of area and generalized mean curvature, C.I.M.E. notes, Edizioni Cremonese, Roma, 1973. | MR | Zbl
,[3] An a priori estimate for the oscillation of the normal to a hypersurface whose first and second variation with respect to a parametric elliptic integrand is controlled, Inventiones Math. 73 (1983), 287-321. | DOI | EuDML | MR | Zbl
,[4] An integrality theorem and a regularity theorem for surfaces whose first variation with respect to a parametric elliptic integrand is controlled, Proc. Symp. Pure Mathematics, Volume 44, Amer. Math. Soc. Providence (1986) 1-28. | DOI | MR | Zbl
,[5] On the structure of one-dimensional varifolds with positive density, Inventiones Math. 34 (1976), 83-97. | DOI | EuDML | MR | Zbl
and ,[6] Geometric measure theory, Springer-Verlag, New-York, 1969. | MR | Zbl
,[7] Solution of the Plateau problem for -dimensional surfaces of varying topological type, Acta Math. 104 (1960), 1-92. | DOI | MR | Zbl
,