@incollection{AST_1985__132__277_0, author = {Li, Peter}, title = {Function theory on complete {Riemannian} manifolds}, booktitle = {Colloque en l'honneur de Laurent Schwartz (Volume 2)}, series = {Ast\'erisque}, pages = {277--284}, publisher = {Soci\'et\'e math\'ematique de France}, number = {132}, year = {1985}, mrnumber = {816772}, zbl = {0575.53023}, language = {en}, url = {http://www.numdam.org/item/AST_1985__132__277_0/} }
TY - CHAP AU - Li, Peter TI - Function theory on complete Riemannian manifolds BT - Colloque en l'honneur de Laurent Schwartz (Volume 2) AU - Collectif T3 - Astérisque PY - 1985 SP - 277 EP - 284 IS - 132 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_1985__132__277_0/ LA - en ID - AST_1985__132__277_0 ER -
%0 Book Section %A Li, Peter %T Function theory on complete Riemannian manifolds %B Colloque en l'honneur de Laurent Schwartz (Volume 2) %A Collectif %S Astérisque %D 1985 %P 277-284 %N 132 %I Société mathématique de France %U http://www.numdam.org/item/AST_1985__132__277_0/ %G en %F AST_1985__132__277_0
Li, Peter. Function theory on complete Riemannian manifolds, dans Colloque en l'honneur de Laurent Schwartz (Volume 2), Astérisque, no. 132 (1985), pp. 277-284. http://www.numdam.org/item/AST_1985__132__277_0/
[1] Behavior of diffusion semi-group at infinity, Bull. Soc. Math France 102 (1974), 193-240. | EuDML | Numdam | MR | Zbl
;
[2] Existence of harmonic
[3] Maximum principle for parabolic inequalities and the heat flow on open manifolds, preprint. | MR | Zbl
;[4] Foliations, the ergodic theorem and brownian motion, preprint. | DOI | MR | Zbl
;[5] Integrals of subharmonic functions on manifolds of nonnegative curvature. Invent. Math. 27 (1974), 265-298. | DOI | EuDML | MR | Zbl
and ;[6] Diffusion processes and applications", North-Holland, Amsterdam (1981). | MR
and ; "[7] The heat equation on complete Riemannian manifolds, preprint.
and ;
[8]
[9] Contraction semi-groups for diffusion with drift, preprint. | MR | Zbl
;[10] Analysis of the Laplacian on a complete Riemannian manifold, preprint. | DOI | Zbl
;[11] Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228. | DOI | MR | Zbl
;[12] Some function-theoretic properties of complete Riemannian manifolds and their application to geometry, Indiana Univ. Math. J. 25 (1976), 659-670. | DOI | MR | Zbl
;[13] On the heat kernel of a complete Riemannian manifold, J. Math. Pure et Appl. 57 (1978), 191-201. | MR | Zbl
;