Function theory on complete Riemannian manifolds
Colloque en l'honneur de Laurent Schwartz (Volume 2), Astérisque, no. 132 (1985), pp. 277-284.
@incollection{AST_1985__132__277_0,
     author = {Li, Peter},
     title = {Function theory on complete {Riemannian} manifolds},
     booktitle = {Colloque en l'honneur de Laurent Schwartz (Volume 2)},
     series = {Ast\'erisque},
     pages = {277--284},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {132},
     year = {1985},
     mrnumber = {816772},
     zbl = {0575.53023},
     language = {en},
     url = {http://www.numdam.org/item/AST_1985__132__277_0/}
}
TY  - CHAP
AU  - Li, Peter
TI  - Function theory on complete Riemannian manifolds
BT  - Colloque en l'honneur de Laurent Schwartz (Volume 2)
AU  - Collectif
T3  - Astérisque
PY  - 1985
SP  - 277
EP  - 284
IS  - 132
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_1985__132__277_0/
LA  - en
ID  - AST_1985__132__277_0
ER  - 
%0 Book Section
%A Li, Peter
%T Function theory on complete Riemannian manifolds
%B Colloque en l'honneur de Laurent Schwartz (Volume 2)
%A Collectif
%S Astérisque
%D 1985
%P 277-284
%N 132
%I Société mathématique de France
%U http://www.numdam.org/item/AST_1985__132__277_0/
%G en
%F AST_1985__132__277_0
Li, Peter. Function theory on complete Riemannian manifolds, dans Colloque en l'honneur de Laurent Schwartz (Volume 2), Astérisque, no. 132 (1985), pp. 277-284. http://www.numdam.org/item/AST_1985__132__277_0/

[1] Azencott, R; Behavior of diffusion semi-group at infinity, Bull. Soc. Math France 102 (1974), 193-240. | EuDML | Numdam | MR | Zbl

[2] Chung, L. O.; Existence of harmonic L1 functions in complete Riemannian manifolds, unpublished. | Zbl

[3] Dodziuk, J.; Maximum principle for parabolic inequalities and the heat flow on open manifolds, preprint. | MR | Zbl

[4] Garnett, L.; Foliations, the ergodic theorem and brownian motion, preprint. | DOI | MR | Zbl

[5] Greene, R. E. and Wu, H.; Integrals of subharmonic functions on manifolds of nonnegative curvature. Invent. Math. 27 (1974), 265-298. | DOI | EuDML | MR | Zbl

[6] Ikeda, N. and Watanabe, S.; "Diffusion processes and applications", North-Holland, Amsterdam (1981). | MR

[7] Karp, L. and Li, P.; The heat equation on complete Riemannian manifolds, preprint.

[8] Li, P. and Schoen, R.; Lp and mean value properties of subharmonic functions on Riemannian manifolds, preprint. | MR | Zbl

[9] Seeley, R.; Contraction semi-groups for diffusion with drift, preprint. | MR | Zbl

[10] Strichartz, R.; Analysis of the Laplacian on a complete Riemannian manifold, preprint. | DOI | Zbl

[11] Yau, S. T.; Harmonic functions on complete Riemannian manifolds, Comm. Pure Appl. Math. 28 (1975), 201-228. | DOI | MR | Zbl

[12] Yau, S. T.; Some function-theoretic properties of complete Riemannian manifolds and their application to geometry, Indiana Univ. Math. J. 25 (1976), 659-670. | DOI | MR | Zbl

[13] Yau, S. T.; On the heat kernel of a complete Riemannian manifold, J. Math. Pure et Appl. 57 (1978), 191-201. | MR | Zbl