@incollection{AST_1985__132__259_0, author = {Colin de Verdi\`ere, Yves}, title = {Th\'eorie spectrale des surfaces de {Riemann} d'aire infinie}, booktitle = {Colloque en l'honneur de Laurent Schwartz (Volume 2)}, series = {Ast\'erisque}, pages = {259--275}, publisher = {Soci\'et\'e math\'ematique de France}, number = {132}, year = {1985}, mrnumber = {816771}, zbl = {0582.58030}, language = {fr}, url = {http://www.numdam.org/item/AST_1985__132__259_0/} }
TY - CHAP AU - Colin de Verdière, Yves TI - Théorie spectrale des surfaces de Riemann d'aire infinie BT - Colloque en l'honneur de Laurent Schwartz (Volume 2) AU - Collectif T3 - Astérisque PY - 1985 SP - 259 EP - 275 IS - 132 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_1985__132__259_0/ LA - fr ID - AST_1985__132__259_0 ER -
%0 Book Section %A Colin de Verdière, Yves %T Théorie spectrale des surfaces de Riemann d'aire infinie %B Colloque en l'honneur de Laurent Schwartz (Volume 2) %A Collectif %S Astérisque %D 1985 %P 259-275 %N 132 %I Société mathématique de France %U http://www.numdam.org/item/AST_1985__132__259_0/ %G fr %F AST_1985__132__259_0
Colin de Verdière, Yves. Théorie spectrale des surfaces de Riemann d'aire infinie, dans Colloque en l'honneur de Laurent Schwartz (Volume 2), Astérisque, no. 132 (1985), pp. 259-275. http://www.numdam.org/item/AST_1985__132__259_0/
[BN] The exponent of convergence of Poincaré series. Proc. London Math. Soc. 18, 461-483 (1968). | DOI | MR | Zbl
: 1.Inequalities for certain Fuchsian groups, Acta Math. 127, 221-258 (1971). | DOI | MR | Zbl
2.[B] On Cheeger's inequality . Proc. Symp. in Pure Math., 36, 29-77 (1980). | MR | Zbl
:[CV] Pseudo-laplaciens, II. Ann. Inst. Fourier, 33 (1983) p. 87-113. | DOI | EuDML | Numdam | MR | Zbl
:[C-L-Y] On the upper estimate of the heat kernel of a complete Riemannian manifold. American J. of Math., 103, p. 1021-1063 (1981). | DOI | MR | Zbl
, et :[D] Spectral geometry for certain non compact Riemannian manifolds. Math. Z. 169, p. 63-76 (1979). | DOI | EuDML | MR | Zbl
:[DG] Discrete groups and Automorphic Functions, Proc. Conf. London Math., Soc, edited by W. Harvey. Academic Press (1977). | MR
[E] Die Resolvente zum Eigunwertproblem der automorphen Formen in der hyperbolischen Ebene I, II, et III. Math. Annalen 203, 295-330 (1973) , | DOI | EuDML | MR | Zbl
:Die Resolvente zum Eigunwertproblem der automorphen Formen in der hyperbolischen Ebene I, II, et III. Math. Z. 132, 99-134 (1973), | DOI | EuDML | MR | Zbl
:Die Resolvente zum Eigunwertproblem der automorphen Formen in der hyperbolischen Ebene I, II, et III. Math. Annalen 208, 99-132 (1974). | DOI | EuDML | MR | Zbl
:[F] Expansion in eigenfunctions of the Laplace operator. A.M.S. Transl.Trudy (1967), 357-386.
:[G] Une formule de traces pour l'Operateur de Schrödinger dans . Thèse de 3ème cycle, Grenoble (1981).
:[GG] Finitness theorems for Fuchsian and Kleinian groups [DG], 199-255. | MR
:[H] Zur analytischen Theorie hyperbolischen Raumformen und Bewegungsgruppen. Math. Ann. 138, 1-26 (1956). | DOI | EuDML | MR | Zbl
:[L] 1. Algebraic numbers, Addison-Wesley (1964). | MR | Zbl
:2. , Addison-Wesley (1975). | MR
[L-P] Scattering theory - Academic Press (1967). | MR | Zbl
, :[LV] Special functions and their applications, Dover Publ. (1972). | MR | Zbl
:[LR] Discontinuous groups and automorphic functions. A.M.S. (1964). | MR | Zbl
: 1.Automorphic Forms, 73-119. | MR
2. Dans [DG] p.,[P] 1. The Laplacian operator on a Riemann surface. Compositio Math. 31, 83-107, (1975) ; | EuDML | MR | Zbl
:1. The Laplacian operator on a Riemann surface. Compositio Math. 32, 71-112 (1976) | EuDML | Numdam | MR | Zbl
:1. The Laplacian operator on a Riemann surface. Compositio Math. 33, 227-259 (1976). | EuDML | Numdam | MR | Zbl
:2.The limit set of a Fuchsian group. Acta Math. 136, 241-273 (1976). | DOI | MR | Zbl
3. Spectral theory and Fuchsian groups. Math. Proc. Cambridge Phil. Soc. 81, 59-75 (1977). | DOI | MR | Zbl
4. The exponent of convergence of Poincaré series, Monatsh. Math. 82 (1976), 297-315. | DOI | EuDML | MR | Zbl
5. Some example of Fuchsian groups. Proc. of the London Math. Soc. 39, 276-298 (1979). | DOI | MR | Zbl
[R-S] Methods of Modern Mathematical Physics, I, II, III et IV. Academic Press. | MR
- :[S] 1. The density at infinity of a discrete group of hyperbolic motions. Publ. Math. I.H.E.S. 50, 419-450 (1979). | DOI | EuDML | Numdam | MR | Zbl
:2. On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions. Ann. of Math. Studies, 97, Princeton (1981), p. 465-496. | MR | Zbl
3. Discrete conformal groups and mesurable dynamics. Bull. AM.S. 6, 57-73 (1982). | DOI | MR | Zbl
-potential theory, hyperbolic geometry and general Riemannian manifolds. Preprint I.H.E.S.
4.