Numerical solution of partial differential equation problems in nonlinear mechanics by quadratic minimization methods
Colloque en l'honneur de Laurent Schwartz (Volume 2), Astérisque, no. 132 (1985), pp. 129-165.
@incollection{AST_1985__132__129_0,
     author = {Glowinski, R. and Le Tallec, P.},
     title = {Numerical solution of partial differential equation problems in nonlinear mechanics by quadratic minimization methods},
     booktitle = {Colloque en l'honneur de Laurent Schwartz (Volume 2)},
     series = {Ast\'erisque},
     pages = {129--165},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {132},
     year = {1985},
     mrnumber = {816764},
     zbl = {0589.65076},
     language = {en},
     url = {http://www.numdam.org/item/AST_1985__132__129_0/}
}
TY  - CHAP
AU  - Glowinski, R.
AU  - Le Tallec, P.
TI  - Numerical solution of partial differential equation problems in nonlinear mechanics by quadratic minimization methods
BT  - Colloque en l'honneur de Laurent Schwartz (Volume 2)
AU  - Collectif
T3  - Astérisque
PY  - 1985
SP  - 129
EP  - 165
IS  - 132
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_1985__132__129_0/
LA  - en
ID  - AST_1985__132__129_0
ER  - 
%0 Book Section
%A Glowinski, R.
%A Le Tallec, P.
%T Numerical solution of partial differential equation problems in nonlinear mechanics by quadratic minimization methods
%B Colloque en l'honneur de Laurent Schwartz (Volume 2)
%A Collectif
%S Astérisque
%D 1985
%P 129-165
%N 132
%I Société mathématique de France
%U http://www.numdam.org/item/AST_1985__132__129_0/
%G en
%F AST_1985__132__129_0
Glowinski, R.; Le Tallec, P. Numerical solution of partial differential equation problems in nonlinear mechanics by quadratic minimization methods, dans Colloque en l'honneur de Laurent Schwartz (Volume 2), Astérisque, no. 132 (1985), pp. 129-165. http://www.numdam.org/item/AST_1985__132__129_0/

[1] Beale B. T., Majda A., Rates of convergence for viscous splitting of the Navier-Stokes equations, Math. Comp., 37, (1981), pp. 243-260. | DOI | MR | Zbl

[2] Bristeau M. O., Glowinski R., Periaux J., Perrier P., Pironneau O., Poirier G., Transonic Flow Simulations by Finite Elements and Least Squares Methods, in Finite Elements in Fluids, Vol. 4, R.H. Gallagher, D.H, Norrie, J.T. Oden, O.C. Zienkiewicz eds ; Wiley, Chichester, 1982, pp. 453-482. | MR

[3] Ciarlet P. G., Topics in Mathematical Elasticity, North-Holland(to appear). | MR | Zbl

[4] Ciarlet P. G., Geymonat G., Sur les lois de comportement en élasticité nonlinéaire compressible, C.R.A.S. Paris, 1982. | Zbl

[5] Dinh Q. V., Glowinski R., Periaux J., Domain decomposition methods for nonlinear problems in Fluid Dynamics, Comp. Meth. Appl. Mech. Eng. (to apppear). | MR | Zbl

[6] Fortin M., Glowinski R., (eds.), Méthodes de Lagrangien Augmenté. Application à la Résolution Numérique de Problèmes aux Limites, Dunod-Bordas, Paris, 1982 (English translation published by North-Holland, Amsterdam, in 1983). | MR | Zbl

[7] Glowinski R., Numerical Methods for Nonlinear Variational Problems, Springer-Verlag, New-York, 1983. | MR | Zbl

[8] Glowinski R., Keller H. B., Reinhart L., Continuation-conjugate gradient methods for the least squares solution of nonlinear boundary value problems. Rapport INRIA 141, Juin 1982. | Zbl

[9] Glowinski R., Le Tallec P., Numerical solution of problems in incompressible finite elasticity by augmented lagrangian methods. (I) Two-dimensional and axisummetric problems, SIAMJ. Appi. Math., 42, (1982), pp. 400-429. | DOI | MR | Zbl

[10] Glowinski R. , Le Tallec P., Numerical solutions of problems in incompressible finite elasticity by augmented lagrangian methods. (II) Three-dimensional problems, SIAM J. Appl. Math, (to appear). | MR | Zbl

[11] Glowinski R., Le Tallec P., Elasticité non linéaire : Formulation mixte et méthode numérique associée, in Computing Methods in Applied Sciences and Engineering V, R. Glowinski and J.L. Lions eds., North-Holland, Amsterdam, 1982, pp. 281-297. | MR | Zbl

[12] Glowinski R., Le Tallec P., Augmented Lagrangians in Nonlinear Elasticity and in Plasticity (book in preparation).

[13] Glowinski R., Mantel B., Periaux J., Numerical solution of the time dependant Navier-Stokes equations for incompressible viscous fluids, in Numerical Methods in Aeronautical Fluid Dynamics, P.L. Roc ed., Academic Press, London, 1982, pp. 309-336. | Zbl

[14] Glowinski R., Marrocco A., Sur l'approximation par éléments finis d'ordre un et la résolution par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires. Revue Française Automat. Informat. Rech. Opérationnelle, Analyse Numérique, R-2, (1975), pp. 41.76. | EuDML | Numdam | MR | Zbl

[15] Hackbush W., Trottenberg U. (eds), Multigrid Methods, Lecture Notes in Math. Vol. 960, Springer-Verlag, Berlin, 1982. | MR

[16] Hecht F., On weakly divergence free finite element bases (to appear).

[17] Hughes T. J. R., Marsden J., Mathematical Foundations of Elasticity, Prentice Hall, Englewood Cliffs, N.J., 1983. | Zbl

[18] Le Tallec P., Vidrascu M., Une étude numérique pour les problèmes d'équilibre de corps hyper élastiques compressibles en grandes déformations. Rapport Sectoriel MA 1 du Laboratoire Central des Ponts et Chaussées, 1983. | MR | Zbl

[19] Lions J. L., Problèmes aux Limites dans les Equations aux Dérivées Partielles, Presses de l'Univers, de Montréal, Montréal, P.Q., 1962. | MR | Zbl

[20] Lions J. L., Controle Optimal des Systèmes Gouvernés par des Equations aux Dérivées Partielles, Dunod, Paris, 1968. | MR | Zbl

[21] Meijerink J. A., Van Der Vorst H. A., An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix, Math. Comp., 31, (1977), pp. 148-162. | MR | Zbl

[22] Polak E., Computational Methods in Optimization, Academic Press, New-York, 1971. | Zbl

[23] Powell M. J. D., Restart procedure for the conjugate gradient method. Math. Programming, 12, (1977), pp. 148-162. | MR | Zbl

[24] Reinhart L., On the numerical analysis of the Von Karman equations : Mixed Finite Element Approximation and Continuation Techniques, Numerish Math., 39, (1982), pp. 371-404. | EuDML | MR | Zbl

[25] Ruas V., Méthodes d'éléments finis en élasticité incompressible non linéaire. Thèse d'Etat, Université Pierre et Marie Curie, Paris, 1982.