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PREFACE

Since the discovery of solitons about 15 years ago, the classical theory of
completely integrable systems has undergone remarkable transformation. Among
many mathematical branches which benefited from this progress, the classical
calculus of variations is one of the most conspicuous, being at the same time the
most indispensable tool in the study of the structural problems.

For the continuous mechanical systems, the basic developments in both above
mentioned theories are by now well known under the name of (differential) Lax
equations (see, e.g., Manin's review [10]). Here I take up the case of classical
mechanics proper but for the case of an infinite number of particles. It turnms
out that the appropriate calculus, resulting from an attempt to look at classical
mechanics from the point of view of field theories, and not vice versa as is the
custom, exists and in its logical structure, resembles very much the classical one
though it does not have a geometric model.

The path of the presentation follows, as close as possible, the differential
theory of Lax equations. A superficial familiarity with the latter will un-
doubtedly help the reader to understand the strings in various constructions,
although I often supply the necessary motivation. There are no other prerequi-
sites.

A few things have not found their way into the text. Most important among
them are the matrix equations and their connections with simple Lie groups. This
theory is at present largely unknown, however strange such a state of affairs may
appear, especially in contrast with the presumably more complicated differential
case, where the beautiful theory has been developed (see [12], [2], [14]). Want
of space has led to the exclusion from the notes of the following topics which
are of interest:

--Noncommutative calculus of variations which, in its differential part, stands
in the same relation to the left invariant calculus of variations on a Lie group

*
G as the Poisson structure on the dual space %7 to the Lie algebra %}of G stands
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to the left invariant part of the usual Hamiltonian formalism on the cotangent
bundle T*G.

--The restriction of a family of commuting flows to the stationary manifold of
one of them, leading to the theory of the so-called "Finite Depth'"-type equations.
--Generalized theorems on splitting and translated invariants for Lie algebras
over function rings.

In order not to extend the size of the notes beyond the bounds of reason, I
have omitted the most voluminous chapter X with proofs of the Hamiltonian property
of a few quadratic and cubic matrices. The reader can reconstruct the proofs
using methods of Chapter VIII (see also Chapter 1 in [10]).

These notes are an expanded version of lectures delivered at the Centre de
Mathématique de 1'Ecole Normale Supérieure in the spring of 1982. I am very
grateful to J.-L. Verdier for the invitation to lecture and I am much indebted
to him for very stimulating discussions of the problem of deformations. My
thanks go to friends and colleagues who read various parts of the manuscript:

J. Gibbon, J. Gibbons, A. Greenspoon, D. Holm, S. Omohundro, and especially
M. Hazewinkel who suggested numerous improvements.

The material on t-function in the last section of Chapter IX owes much to
the talks with H. Flaschka in August 1982 during my visit to Tucson. The rest of
the notes were written in the Spring-Summer of 1982 while I was at the Los Alamos
National Laboratory. I am much indebted to the Center for Nonlinear Studies for

its hospitality, and to M. Martinez for the speedy typing.
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Chapter 0. Introduction

The subject of these notes is an infinite-particle analog of those inte-
grable systems of classical mechanics which are analogous to the Toda lattice.
Let us begin with this lattice in the form first studied by Toda [11].

Consider a classical mechanical system with the Hamiltonian
H=3 [5 pi+exp(a_,-q_)] (0.1)
n 2 *n n-1 “n ’ :

where the summation above takes place either over

neZ (0.2)

N

or
neZ . (0.3)

There are other possibilities for the range of n, coupled with alterations of
the potential energy at end-points. However, we will not discuss them here,
since they lead to different points of view of the Toda lattice.

For the Hamiltonian (0.1) the equations of motion expressed in the form

p, = exp(q _,-q.) - exp(q -q ,,) >

(0.4)
, =P,
If we introduce new variables
v, = exp(qn_l-qn) » U =D, (0.5)

then (0.4) implies, but is not equivalent to,
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P, =V, "V .1
n n n+l (0.6)

Yn T vn(pn-l-pn) :

This system looks algebraic and is open to interpretations. The most impor-
tant property of this system is the existence of a '"Lax representation", i.e., an

equation of the form
Lt = [p,L] . (0.7)

Indeed, if one takes

Vn-2 Pp-1 1 0
L= V-1 Pp 1 ,P =l Vpoo 0 , (0.8)
Yn Po+1 1-_ Yn-1 0

then (0.7) turns into (0.6). The immediate consequence of the Lax representation

is, usually, a flood of integrals; in our case, from (0.7), we get
(Tr L"‘)t = Te[P, 1] , (0.9)

and the trace of a commutator is supposed to vanish.

There is a slight problem, however. What is this trace when we have an
infinite number of particles (which makes L into an infinite matrix)? The answer
can be modelled from the theory of differential Lax equations (see, e.g. [10]).

Consider, for instance, the Korteweg-de Vries equation

u, = 6uux Uk ? (0.10)

which we write in the form

_ -9 &6 _ _ay 2]
u =9 = (uw+> u)) , 9 = > 3a = z (-9) (0.11)

n>0 3 W)
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One immediately recognizes that since we have an Euler-Lagrange operator g; in

(0.11), it must act on differential forms: in the above case, on (u3 + % ui)dx.

Thus the correct objects of the theory are densities and not integrals IT; dx(-).
In consequence, the coordinatized version of the geometric calculus at one point
(which was called by Gel'fand and Dikii the "formal calculus of variations"),
gives all the machinery necessary to study most of the problems concerning
differential Lax equatiomns.

We shall develop an analogous point of view for equations of the type (0.6).
Briefly speaking, we should work with densities instead of a global Tr as in
(0.9), and for this we need an appropriate calculus.

Here is a clue of how to proceed. First, we need to remove n from our equa-
tions. For instance, for (0.6) we consider p(n) and v(n) as functions p and v
on Z with values in some field K of characteristic zero, say ‘R or €. (1
will not comment anymore on the periodic case nEZN: all results will remain
true if we impose the periodicity condition.) The set of all such functions on
Z is a &-algebra, with pointwise multiplication. Let us introduce the shift

operators Ak acting as
k =
(A"f)(n) = f(ntk) , (0.12)

for any function f. Then we can rewrite (0.6) as

P, =V - Av ,

(0.13)

v lp-p) ,

<
n

which are equalities between functions. At this stage it becomes clear that the
base ;Z is not important and we can make sense out of (0.13) in any situation
where we have an automorphism A acting on a ring C generated by Akp and A®v.

Now we can find a densities-related version of the matrix form (0.7), (0.8)
of our system (0.6). Consider the associative ring C[C,ﬁ-ll of operators with

coefficients in C and relations
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t%f = A%(0)L° . (0.14)
Take
L=¢+p+vtt,p=vt"te cre,th . (0.15)

Then if we extend the action of g; to C[§,§-1] in the natural way,

_ -1
Lo=pe* vl

(p,L] = v 1, teptve ] = vt (t4p) - (Lp)vt!
=v vl - AW - pvt Tl = v - A + [T i) -wple Tt

and equating Co- and C-l-terms we obtain (0.13).

Thus (0.15) provides us with a Lax representation for the equations (0.13),
which strongly suggests that, in all likelihood, there exist many remarkable
features associated with Lax equations in the differential case (see, e.g.,
[2,12-14]). This is indeed the case and we will see this in the subsequent
chapters. The breakdown of the chapters is as follows.

In Chapter I we consider an abstract scheme which generates Lax derivations.
In Chapter II we develop a calculus which plays for the equations of type (0.13)
the same role as that played by the formal calculus of variations over differen-
tial rings for differential Lax equations. In Chapter III we specialize con-
structions of Chapter I to get discrete Lax equations such as (0.13). We use
Chapter II to find an infinite number of integrals of those equations and study
various Hamiltonian forms of these Lax equations; that is to say, connections
between the conservations laws (= integrals) and the equations themselves.
Chapter IV is devoted to modified equations, and their morphisms into (unmodified)
equations of Chapter III. Using the modified equations, in Chapter V we study
certain one-parameter families of discrete equations which contain discrete Lax
equations when this parameter vanishes. Considering these families as curves in
the space of equations, we use the results of Chapter IV to find contractions of

these curves into their basepoints. In Chapter VI we discuss various aspects of



INTRODUCTION

passing to a "continuous limit", from discrete to differential equations. In
Chapter VII we develop a calculus which incorporates both differential and dis-
crete degrees of freedom. We show that this calculus behaves naturally with
respect to continuous limits. In Chapter VIII we begin to study the Hamiltonian
formalism and find a one-to-one correspondence between linear Hamiltonian
operators and Lie algebras over rings with calculus. In Chapter IX we study
formal eigenfunctions of the Lax operators, together with associated construc-
tions of conservation laws. Finally, in Chapter X we provide proofs of the

Hamiltonian property of the various operators constructed in Chapters III and IV.






Chapter I. The Construction of Lax Equations

In this chapter we fix the structure of basic equations and discuss their
first properties.
1. Abstract Lax Derivations

Before embarking on the construction of Lax equations in our discrete frame-
work, let us briefly review the corresponding construction in the differential
case [12].

Consider a differential operator

L= 3 uigi , (1.1)

where £ can be thought of as "g;".
The u, are 2X2 matrices satisfying the following conditions:

(1.2) the leading coefficient u is an invertible diagonal matrix, u =
diag (cl,...,cl), where the c, are constants;

(1.3) if Cy = CB, then u 0.

n-1,ap

Let B be the differential algebra

B = ﬁ[ugf;B] ,1<0,p<8,0<i<n1,j>0, (1.4)

where ﬁ is an arbitrary field of characteristic zero to which the constants S
belong (say, & =R or (:); in accordance with (1.3) we do not introduce any

(3) if ¢ = cB. The derivation on B which makes it into a differen-

symbols un-l,uﬂ -

tial algebra is defined as usual by its action on generators:

5 : o), LG

i,of i,af 8 :&+ 0.

Let Matz(ﬁ) be the ring of £x£ matrices over B. Now consider the associative

ring of formal pseudo-differential operators with coefficients in B:

Mat, (B) (™)) = Lz v,E' v, € Mat, B}, (1.5)

1
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with commutation relations

m ;) s
g = = ('J'.‘)bJ " m>0,
=0

be Matz(ﬁ) ,

o N +- - .
£ = 3z (i ™ ;—l)b(J) £ nso,

j=0
where b(J) = BJ(b) and 9 is naturally extended from B to Matz(ﬁ).
N i = -1
IfP= 3 pi§ is any element of Matz(B)((E )), we denote
i==0
N i i
P =2 p¢ ,P_=P-P = X p & . (1.6)
* o= 1 o< 1

Now let Z(L) be the centralizer of L (1.1) in Matz(ﬁ)((g-l)):
2(L) = {PeMat,(B)((§™1))IPL = LP} . 1.7

Definition 1.8. An evolutionary derivation of B is a derivation that
commutes with 3 and &.
Obviously, an evolutionary derivation is uniquely defined by its values on

the generators u, , and it can be naturally extended to act coefficient-wise

i,of
on Matz(ﬁ)((ﬁ‘l))-

Definition 1.9. For L given by (1.1), a Lax equation is an equation of the

form
3,(1) = [Q,L] (110
with some Q€ Matz(ﬁ)((g-l)), and an evolutionary derivation g{ where
n .
3t(L): = 2z at(ui)gl, provided (1.10) makes sense: that is, [Q,L] is a
i=0

differential operator of order <n-1 with its En-l - coefficient satisfying

condition (1.3).

12
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For a given L, the full description of all possible Lax equations is not
known outside the scalar case £ = 1 [10]. In the matrix case, the current theory
proceeds as follows [12].

For any P€Z(L), consider the evolutionary derivation 8P of B defined by the

Lax equation
3P(L) = [P+,L] = [-P_,L] . (1.1

(The first of these equalities shows that BP(L) is a differential operator while
the second implies that 3P(L) has order <n-1 and satisfies (1.3). Also,
[P+,L] = [-P_,L] because 0 = [P++P_,L].)

Thus each element of Z(L) determines the corresponding Lax equation, and
hence the evolutionary derivation of B. The main property of these derivations

is that they mutually commute:

Proposition 1.12. If P,Q € Z(L), then

[ap,aQ] =0 . (1.13)

As Wilson explains, this in turn follows from the two facts: 1) that P and Q

commute:

Proposition 1.14. Z(L) is an abelian subalgebra in Matz(ﬁ)((g-l));
and 2) Z(L) can be described explicitly:

Proposition 1.15. Every element of Z(L) is a sum of elements with highest

terms of the form pgr where p is a constant matrix belonging to the center of
the centralizer of u in Matz(&).

The interested reader can consult [12] for the proofs of (1.13)-(1.15).
The message one can extract from the propositions above is this: whenever one
has a reasonably detailed description of an abelian centralizer Z(L), then,
whatever the situation, one can hope to show that all related Lax derivations

mutually commute.

13
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The path indicated above is the one which we shall follow in this chapter,
but first we need to describe a formal framework for our study (alluded to above
as "'situation").

Let &[;:] denote the associative algebra over k
kix1: = Rix .. 00 (1.16)

with generators xo,xl,... , whose number can be finite or infinite. We make

&[;(] into a graded algebra over 4 giving variables x. the weights
W(xj) =B -aj, (1.17)

with some B,uem. Thus we may consider the completion of ﬁ[}-{] with
respect to the above grading (allowing infinite sums). We denote this completion

by K[x]. Consider the following element in &[;{]:
L=x°+x1+... (1.18)

Proposition 1.19. The centralizer Z(L) of L in &[;{] is generated over & by

the elements {Ln,nel_'_}.

Proof. Obvious. Let Q€Z(L) and let q, say, be its homogeneous component
of highest weight. Then q must commute with the highest weight component of
L,viz. X . But in our set-up nothing commutes with a given element, save for

the constants from &and the powers of itself. Thus q = const'x:, then we take

Q - const°Ln, etc. a
Notation. If P =2 Py is an element of &[x], then
k
P, = z p,» P_=P-P = 2 P - (1.20)
w(p, )20 w(p,)<0

Let (B,a) denote the greatest common divisor of B and &, and let

.
VER® .21y

14
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Let us take a look at P = ka , ke Nl Writing it in long hand, with sub-

scripts standing for weights, we have

ka=p +p +p + ... +p _ tp e, (1.22)
kyp kyB-a kyp-2a kyp-ka=0 -a
where
R=k=be .
(B,)
Thus P = ka has an element of weight zero.
Consider now, for this P = ka, the following expression
p,_,L] = [-P_,L] . (1.23)
since
P_o=p g *tP oyt (1.24)
the weights of the elements in (1.23) take the values B-o, B-2d,... , and there-

fore we can afford the following definition:

Definition 1.25. For any keﬂn, the derivation 9, of &[;] is defined by

P

0 (that is, 9, is homogeneous of degree zero) ,

{ “@) P (1.26)
?,(1) = [B,,L] = [-B_,L] , P = LV .
In other words

3P(xn) = {component of weight B-na in [-P_,L]},n62+ . (1.27)
In particular,

3P(x°) =0 . (1.28)

Let us denote (xn,x ..), for a given néhﬂ, an ideal in &[§] generated

n+1’"’

by those words which contain at least one of x., with j > n, among their letters.

Proposition 1.29. For P = LXY,

15
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yeoo) € (x,x

aP(xn’xn*—l n n+1"")

Proof. Since P+ has elements of non-negative weights only, we have from

(1.27):
8P(xj) = {component of weight B-ja in [P+,L]}
kB/(B,a)
= rio [pra’xj+r] c (xj’xj+l"") . =

Remark 1.30. I hope that the importance of the proposition (1.29) is clear
to the reader: it says that allowing for an infinite number of x's, we treat
the universal case which we can specialize to our liking by putting X =X 4=

. = 0 whenever we please.
Remark 1.31. The reader may wonder what had happened to the elements of

Z(L) other than those we looked at above. The answer is clear from a glance at

(1.24): for the weights in BP(L) to form an arithmetic progression B-ja, j > O,

P = L” must have weights belonging to Zo. Thus n must be proportional to Yy
a/(B,a). This fact can be explained also from a different point of view which
is to consider another ring 2[5] with variables Vor Yyreee o and weights

w(yj) = B-j. Thus a = y = 1, and the full centralizer of L= Yo + vy + ... is

important. If we now want to specialize to the case

{yj =0, j#0 (mod a)} , (1.32)

and denote the remaining variables yaj as xj, the only derivations (of R[;])
which survive the specialization (1.32) are exactly those which correspond to
elements L" of Z(L) with n = 0 (mod Y).
2. Commutativity of Lax Derivations

In this section we prove an analog of (1.13).

Theorem 2.1. Let P = LkY, Q= Lry’ where k, reN , y = a/(B,a). Then the

derivations BP and BQ defined by (1.26), commute.

16
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Proof. Applying 8P to the equality [Q,L] = 0 and using (1.26), we obtain
0 = [3,(Q),L] + [q,[-P_,L]] = [3P(Q)+[P_,Q],L] ’

and so 3P(Q) + [P_,Q] commutes with L. I contend that it is zero:
SP(Q) = [-P_,Q] . (2.2)

-x5Y
Indeed (Q X )E,(xl,xz,...) and by (1.28) and (1.29), BP(Q)G (xl,xz,...). Also

P_€ (xl,x ..), and thus [P_,Q] €.(x1,x .). Altogether we have

20 20"
(3P(Q)+[P_,Q])€.(xl,xz,...) and it follows from (1.19) that 8P(Q)+[P-,Q] must be

a constant, which is, of course, zero, since 8P(Q)+[P_,Q] is a homogeneous poly-
nomial of degree (k+r)y in variables xj. Thus we have proved (2.2) which can be

rewritten as

aP(Q) = [P+»Q] = [-P_)Q] ’ (2.3)
thanks to the relation [P,Q] = 0. Since BP(Q+) = (BP(Q))+, we find that

2,(q,) = [-P_,Ql, = [-P_,Q,], - (2.4)

We can now deduce that [aP,aQ](L) = 0, and this will be enough since both

8P and 6Q have weight zero. We now have
252, (L) = 3,(1Q,,L1) = [[-P_,Q,1,,L] + [Q,,[R,,L1] ,
3Q3P(L) = 3Q([P+,L]) = [['Q_,P+]+,L] + [P+,[Q+,L]]

Subtracting and using the Jacobi identity, we find that [BP,SQ](L) is equal to

the bracket of L with
[P_,Q,], + [P,,Q_], + [P,,qQ,] ,
which is zero as we can see at once by taking the positive part of

0 = [P,Q] = [P,+P_,Q,*Q_] . Q

17
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Remark 2.5. The proof above, based upon Wilson's treatment of the differ-
ential case [12], shows also that a large part of the differential theory is due
to general algebraic principles and not to the specifics of differential algebras.

Finally, we prepare the grounds for appearance of conservation laws, which
will be abbreviated as c.l.'s.

Definition 2.6. For P = Zpk € é[;], where w(pk) = k,

Res P: = p, -
Taking the residue of both sides of (2.3), we obtain

Proposition 2.7. Let P,Q be as in (2.1). Then

aP(Res Q) = Res([P+,Q]) . (2.8)

18



Chapter II. Discrete Calculus of Variations

In this chapter we develop a discrete version of the calculus, which is the
foundation of the Hamiltonian interpretation of the Lax equations. This inter-
pretation will be given in subsequent chapters. Before reading on, the reader
might wish to review the differential case, e.g. from [5], [10].

Again, & is a field of characteristic zero. Let K be a commutative

algebra over ﬂ , and let A Ar: K » K be r mutually commuting auto-

1P
ag [0}
. _ r o _ 1 r
morphisms of K over K . For any 0 = (01,..., or)e Z , denote A” = A1 cee Ar .
Let C denote the ring of polynomials
(vj) r
C=Klg; 1, 3e€J, vel , (1)
v.))
with independent commuting variables qj J°. We extend the action of
A's to C defining
ag v otv
2%y = ¢ )
J J
where o+v is defined naturally by the additive structure of Zr.
We also denote
0
= qg ) . (3)

3 J
Definition 4. A derivation ; or C is called evolutionary if it commutes
with Al""’Ar and is trivial on K.
Thus an evolutionary derivation, sometimes also called on evolutionary
(vector) field, is uniquely determined by its values on qj's which are, of course,

arbitrary:

% = Oy .9
X= I 3 A(X(qj)) aqg")' (5)

jEJ:cle J

19
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Notice that evolutionary derivations form a Lie algebra.
Definition 6. QI(C), called the module of 1-forms over C, is a C-bimodule

{Zf?dq§c)|f?€ C, finite sums} . 1)

The usual universal derivation d:C » Ql(C) (over K) is defined by its values

on generators:

. @, (0)
d: qJ. dqj . (8)

We extend the A's from C to QI(C) by requiring the following diagram to be

commutative:

c — ¢

dl o Ld
1 A 1
Qlc)y —= o' ©) , YoeZ" , 9

which amounts to

A"(qujf")) = Ao(f)dq§°+\’) , Vtec . (10)

Again, as usual there is the standard pairing between Ql(C) and the C-module

Der(C) of derivations of C over K: If Zé€ Der(C), then

(quJ?"))(Z) = fZ(qJ?"’) ,

(11)
Z(H) = (dH)(z) , YHec .
Denote:
£)i=Ai-1,1=1, R (12)
r
ImP= = Ind . , (13)
i=1 *

wherever we consider C or Ql(C). Elements in Im&® will be called trivial.

20
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Denote by Qi(c) the C-bimodule of special 1-forms:
alw = (3£ dqI£.€C, finite suns} . (14)

The most important property of Qi(C) is the following analog of the classical
du Bois-Reymond lemma:

Theorem 15. If weQi(C) and weIm®d then w = 0.

We break the proof into a few lemmas.

Lemma 16. If we Ql(C) and we Ind then w(i)elmﬁB , for any evolutionary
derivation i.

Proof. We have, [(Ai-l)(qugv))](i) =

(v+1)) A (vt1))

i L (W) oy = O OO N
[Ai(f)dqj quj 1(X) Ai(f)x(qj ) fX(qJ- )

v+l . ~
[by ()] = (A “(X(g;) - £A°(X(q,)) =

o
(a;-1D[£8°(X(a))] -

a
Let us write a~b to mean: (a-b)eIm® .
Lemma- 17. If geC is such that gC~0, then g = 0.
Proof. Let us introduce operators Sg_ : C~»> C by
J
R (18)
6, . 9q(@)
oef 9
We have
—G—g—(lmfb)=o. 19)
J
. . s _ g
[Remark. In the differential case, 36— = z (-9) © in
A creZ/: 9q,
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obvious notations. Also, 6—2_ (Imai) = 0.] Indeed,

J
3] -0 3 -0 9
=— (A1) =3 A ——= A, -A ——=}
qu 1 o] 3q§0) . quc)
J J
-0 9 -0 9
=3 {A A, - A 3
i, (0-1)) (o)
[} 9q. 9q .
qJ 1 q j
-v 9 -0 9
= X A" ——=-2A =0
(v) (o) ’
v=0-1, 9q, o 3q.
i 9 95

where li stands for the element of Zr with 1 in the i-th place and zeros every-

where else, and I used the obvious commutation rule

(20)

Now choose one of the qJ.'s present in g, and call it q. Denote by V the minimal

convex hull in Zr containing all points v for which _8%"_) # 0. Notice that
9q

the assumptions on g imply that AU(g) has the same property for any Gle, since
o r . .

A (Im 2)) = Im®D . Thus we can assume that 0¢Z is one of the vertices of V.
Let us imbed Zr intoR . Let h be a hyperplane through 0 in Rr which is not
parallel to any face of V and which leaves V in one of the halfspaces in which h
divides I]Kr. Then there exists a unique vertex v, of V such that V lies between

h and \)°+h. In other words, V N {V-vo} = {0}.

Now take any f(q)eC. If fg~0 then g—q (fg) = 0. So

8 O B8 _ 4 ¥ 1o [if v # {0}]

[ ) -
0 ——— -~ (fg) =——= [ Z A
aq(-vo) 6q aq(-vo) oeV Bq(o) 3q
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=g <)

oA o 7o) (£ -

geV dq

9g - — . .
(o)) = [only 0 = vo yields something]

Yo 8 )
A ° L (g 98 .
3q aq(vo)

Thus

) ag _
= (f ) =0
9q 3q(vo)

which is a contradiction. Finally, if V = {0}, i.e. g = g(q) then
8 _ 9 - =
E(fg)-aq(fs)—0$8‘°~ o

S

Proof of theorem 15. For an evolutionary field X, let fX denote another

evolutionary field satisfying fk(qj) = fi(qj), je J. In other words, w(fk) =

fw(i), Vln€ Qi(C). Now suppose there exists wE,Q;(C) such that w~0 and w#0, then

we can find an evolutionary field i such that w(i) # 0. Denote g = m(ﬁ). By

lemma 16, g~0, and therefore gf = w(fk) ~ 0, YfeC, which is a contradiction to

the assumption g # 0. Thus w = 0. o
Corollary 21. There exists a unique projection

PN

6 : i) » Qi(c) (22)
such that
(6-1)@' @) ~ o0 . (23)

Proof. Uniqueness follows from, and is equivalent to, theorem 15. To prove

existence notice that

£4q” = a°1a™(£)dq,] ~ A7(E)dq, (24)
since Im(A°-1)€ ImD . o
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Let us define now the map

5 : ¢ Q0 (25)
by

5=5d . (26)

Proposition 27. For HeC,

8H = 2 36_ dqj , (28)
where L. : (H) is defined by (18).

6q 6q

A

Proof. We have, by (24),

9H . (o) 9H
di = 2 q ~Z(ZA ( ))edq, . o
(o) i o 2q(? j
We will call %%— the functional derivative of H with respect to qi.
J

The name comes, of course, from the formula for the first variation:

Proposition 29. For any evolutionary field X, denote by X = {Xj}

the vector {X(q.)}. ,. For any He¢C, denote by L the vector {QE—} .
i’jed 8q 895" je3

Then

X(H) gt oH , (30)

8q

where "t" stands for '"transpose".

Proof.
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~ _ o, . a__ = o o ~
X(H) = (2 A (X(qj)) aq§°))(ﬂ) A NC)
5 J
~3X. 3 A-O OH =3 X. .GL . a
j o 8q§0) il qu

Now we can describe the Kernel of the operator §.

Theorem 31.
Ker 6§ = Im®D + K .

Proof. Let HeC be such that 8H = 0. Then 6(dH) = 0 and so by corollary 21,

dH ~ 0 in Ql(C). But this is not enough since we don't know (yet) that
{(Im® N\ Ker d)in 1(C)} = d(InD in C) . (32)

To prove the theorem we choose the standard way of converting (30) into the homo-
topy formula.

Let w(t) be a real smooth monotonically decreasing function on the interval
[0,1] satisfying properties w(0) = 1; w(1l) = 0.

Let us extend our basic field ﬁ to &%‘R but leave the notations unchanged,
allowing A's to act on R as identical transformations.

(o)

Let pt : C > C be the automorphism over K which takes qj into wq(o).

3

Thus p;l : qgo) > qgo)w_l. Consider an evolutionary field
X = (o) _2 _ -1 dw
Xt =p2 qj 5 © ° where p = w it -
q.
J
Obviously we have
L p, = p )2 (33)
dt "t t 't ’
Now let HeC and 6H = 0. Then
x, (1) = 1 (A%-1Ix, (a8 1. (34)
t £ aq(0)
3
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Applying Pe from the left to (34), using (33) and commutativity of Py with AU,

we obtain

9H
(o)

aq.

9

g6 P = 20%1p lng, 702 (35)

Integrating (35) with respect to t from t = 0 to t = 1, we find that

9H
(o)

3q:;

95

Py () = p () = 2(&%-1) f] dt{u(e) pyla; 477201} - (36)

(o
]
hand side of (36) belongs to mdNc. Indeed, take any

But pl(H) = [H (all q ) = 0)] € K, and po(H) = H. On the other hand, the right-

monomial from the expression qj A-o( a?o)) and let it be
9q.
qJ
) )
oq. ... q. n y €K , n>1.
J1 In

Then Py multiplies it by w®. Therefore the integration produces a multiplier
1 n, _ (1 cpeymlny 1 1_ 1
Jo atlu(w(t)™] = [y dt[ wi(thw "w] = S wt)ly = -

Thus
H ~ H(O) . a

Having found the Kernel of the operator §, the next step is to describe its

Image. This is usually done by constructing a resolvent

?
K+ Imd +c§9‘1) ) » 37

which is exact. However, one can sidestep the problem of exactness in the term
Qi(c) if one is able to find an appropriate operator which makes (37) into a

complex. This is enough for most questions of the Hamiltonian formalism.
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Let A : C® > C™ be a linear operator over &.

Definition 38. An operator A¥* : c™ + c® is called adjoint to A, if

utAv ~ (A*u)tv , Yuec™ ,VveCn ,

where "t' stands for "transpose". If A* exists, then it is unique, which follows
from lemma 17.

The following properties of adjoint operators are standard:

(A+B)* = A* + B* , (AB)* = B¥*A* .

If A is represented by the matrix A = (Aij) then
3 = *
(A )ij (Aji)

where Aij acts on C. For such an action we record the following formula:

Proposition 39. Let A : C > C be given as A = fA0 , feC. Then

£2%* = A7% .
Proof. ufA®(v) = A°[A % (ug)v] ~ A 9(fu) v . a

The important notion is that of Fréchet derivative. Let HéC and denote

3H o
D.(H) =3 ——= A (40)
J p angc)

Let D(H), called the Fréchet derivative of H, be the row vector with components
Dj(H). By D(H)t we denote the corresponding column. Again, for any evolutionary

derivation X we denote by X the vector with components (i)j = X(qj). We can

write this fact as
X =X , (41)

where a is a vector with components qj.

Lemma 42.
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i(n) = D(H)X = D(H)ia .

Proof.

2(H) = 9H 0. _ . _ -

X(H) = Z © A (X(qj)) =2 Dj(H)X(qj) = D(H)X . |
i,o 8qj J

Definition 43. Let R be a vector. D(ﬁ), called the Fréchet derivative of
R is the matrix with matrix elements D(ﬁ)ij = Dj(Ri)’ and X(R) is a vector with
components X(Ri)'

Lemma 44.

X®) = D(R)X .

Proof.

X(R)i = X(Ri) = ; Dj(Ri)x(qj) = ; D(R)ijxj . a
J J

Lemma 45.

pa° = A% .

~

Proof. For any vector R, and any X, we have from lemma 44:

AOD(i)i) AO(X(ﬁ)) = (since X is evolutionary)

X(A%R) = D(ATR)X .
If two operators produce the same result acting on any i, they coincide. Thus

AUD(ﬁ) = DAO(R) , whatever R. a

Definition 46. If A : C* > C" is an operator, it is called symmetric if

A* = A, and skew-symmetric, or skew, if A¥ = -A.
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Theorem 47. For any HEC, the operator D(gg) is symmetric:
8q

o(#)* = p(¥) , (48)
6q 8q

where s is the vector with components . .
83 %9,

Proof. Taking matrix elements from both sides of (48), we obtain by summing

on repeated indices, the result

[ anl* [ 61-[) * SH )*
Dtg ]ji= D(E ij] " Piteq;

*
3 SH g SH
= —] < A = A =} . (49)
[ango) (éqi ] 2q(®) (5,

Now
d SH ) 9 SH
— \x—)= ° (1)
3@ (qu (aq@ éqi}
J J
:(LA“’ L)(l) =(A-\’ ;_3_“__) (1)
(o) v) (otv)  (v)
aqj 3q; 3qj 9q;
2
-v 9°H v
=A ———— A,
3q§°+v) aqg\))
and thus
[ (énl*] -0,-v 2%H v - oK v
D|—= =A A ——— AN = A" ————— A, (50)
6q ji Bq;m") aqﬁ"’ 3q§”) 3q§")

where p = o+v. For the right-hand side of (48), we similarly get
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I o, (8- 2 (2
1

92K

= (using the computation above) = aH o) () aMA® =
9q. 3q.
1 J
2
=
aqi 9q.
for v = p+g, which is the same as (50). =]

The theorem 47 shows that one can take the operator D(:)-D(+)* to form a
complex in (37). To prove exactness, one then will have to construct an analog
of "the higher Lagrangian formalism" ([5], Ch. II, §7,8) and use its homotopy
formula. Instead of doing this, I will show how the continuous calculus comes
into the picture, through an analog of '"the first complex" for the operator &
({51, ch. II, §5; [10], ch: I).

So let @ : K > K be a derivation over& , commuting with A's. Let

_ (v,5k.) _
C now be K[qJ. LI T vjézr , kj62+. A's and 3 act on C as

(vto;k)
J

(v;k+1)

o, (vik)y _
A (qj ) =4q ;5

; B(qgv;k)) =q

All definitions of evolutionary fields, QI(E), etc., are practically

the same, the operator & : c ~» Qi(é) now being defined as

5(6) =3 dq,l 3 (-F a0 2o (52)
i J ko aq.”?
J
Denote by T the homomorphic imbedding of C and QI(C) into C over K:
= v v;0
i@") = q( 0
3 3 (53)

i(dqgv)) = qgv;l) .

30
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Theorem 54. (First complex for the operator §).
816 =0 on C .

Proof. For HEC ,

- (0 n
6(H) = (= —a— dq;) = 2 T (Gq )q

i 1 i

(v)

From now on let us identify qj (v;0)

and thus drop the sign T from QE—.

with q
qu

Then

_ SH_ (0;1)q _ -or_®  &H_ (0;1)
(tGH) Gq [1 N 1= ZlA a_—q@ 5a; ag ]
J

SH -0 9 6H (-o0;1) 2] S6H (-0;1)
+(-3)z—)= 2z A L A . ¢
(6 o.i [aq§o) éqi] i o.i 3q§-0) (6qj i

= 5 q (01){-0[ (o)( )] a (gﬁ }_0'

o,i

The final expression is zero since all expressions in the curly brackets vanish

by (48), (49), (51).
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Chapter III. Hamiltonian Form of Lax Equations

In this chapter we consider various types of discrete Lax equations and
analyze different approaches for deriving their Hamiltonian forms.
1. Discrete Lax Equations

First we describe the equations with which we shall be concerned from now
on. They are specializations of those considered in Chap. I.
(nj)

Let C = K[qj

1, j(Z+ , njeZ, so that K = & and r = 1 in the

notations of Chap. II. We shall write A instead of Al'

Consider the associative algebra C((g-l)) over & with commutation relations
"o = A%m)g" , Woec ,VkeZ, 1.1

which is an analog of the ring of pseudo-differential operators of Chap. I. We

make C((E-l)) into a graded algebra by giving the following weights:
ky _
W(C) =0 ’ W(C ) =k ’ (1'2)

which is compatible with (1.1).

Denote
x, =t?, Xig = Cﬂ’a(jﬂ)qj Y/ (1.3)
L= xo + xl 4+ ecee = CB + cﬂ-aqo 4+ eoe (1'4)

By (1.2), w(xj) = B-0j, thus we can read off the results of Chap. I for the
Lax equations with the operator L given by (1.4). By (I 1.28), for every appro-

priate P,
= = B
0 aP(xo) = aP(C ),
thus we can put

BP(Q) =0 . (1.5)
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which allows us to consider 3P as coming from and equivalent to an evolutionary
derivation of C which we shall continue to denote by 3P.

Also, for RQC((Q-I)), R=3 rkck, let us denote
k

R, = 2 rka , R_= 2 rkgk , Res R=r

. , (1.6)
k>0 k<0

o

which agrees with (I 1.20) and (I 2.6), thanks to (1.2).
The properties of the Lax equations can now be summarized as follows:

Proposition 1.7. Let o, B€N, y = a/(a,B) and let L be given by

L=tPa e 3 oGy (1.8)
>0 ]

Then for every keN, the evolutionary derivations 3P: C » C, defined for P = LYk

by the formulae
aP(L) = [P+,L] = [-P_,L] , w(ap) =0, BP(C) =0, (1.9)
= kY -
all commute. Further, for Q = L , k €Pﬂ,
8P(Res Q) = Res[P+,Q] . (1.10)

Remark 1.11. The formula (1.10) can be interpreted to assert that all Lax
equations (1.9) have an infinite common set of conservation laws Res Lk Y,
k'éhﬂ . This follows from the following observation:

Lemma 1.12. If R,S€Mat,(C)(({"1)), then
Tr Res[R,S] ~ 0 .

Proof. If R = ZchJ, s = zsjcj where R,S. € Mat,(C), then

Tr Res[R,S]

ig ¢73 . “Jg ¢d
Tr Res I(Rj§ s_jc s_jc jc )

j - -3 - -3 - =3
2 Te[RAN(5_j)-5_ ;87 R~ 2 Trla R))S_;-5_aT (R)]

zrelad®),s g1 =0 . 0
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Naturally, one would like to know that the c.l.'s (= conservation laws)
Res ka are not trivial. This is indeed the case.

Lemma 1.13. For k&N, Res ka + 0.

()
3
geneous components of degree > 1 (with respect to the usual degree) with positive

Proof. H = Res ka is a nonzero polynomial in variables q having homo-

integer coefficients. Its functional derivatives %g—, preserving this property
J

of positivity, therefore do not vanish. Thus H # 0. a
Now let us show that the derivations 3P are not trivial:
Lemma 1.14. BP £ 0.

Proof. Let L be given as

L= Pt et gy g < aten) (1.15)

Since BP(L) = [P+,L], we get for ap(qr):

ghralr+l) 3,(a,) = Res P-QB'“(r+1)qr - QB’“(r+1)ques P,

SO

a(r+1)-B_

aP(qr) = qr(A 1)Res P # 0 ,

since Res P f ﬁ . Now for the '"general L" (1.8), with infinite number of q's, aP

couldn't vanish, for otherwise its specialization (1.15) f\ {q.=0} would vanish,
j>r

and we have just seen this not to be the case. n

Remark 1.16. The arguments above show a little more. Let P =

b3 ckka, ckeﬂ » Sy # 0. Then: a) Res P # 0,and b) BP # 0. Indeed,
k<N

the property b) follows from a). On the other hand, the homogeneous components
of highest degree in Res P come from Res LNY, and they are not trivial.
Remark 1.17. One could obviously take q's above being £X£ matrices over a

ring with an automorphism as lemma 1.12 suggests. Everything we do would still
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be correct, but notations become more cumbersome, and we are going to have enough
trouble with infinite matrices later on. I therefore avoid any mentioning of the
matrix versions, leaving this to the interested reader.
2. Variational Derivatives of Conservation Laws

The main goal of the Hamiltonian description of Lax equations, is to express
the derivations ap's in terms of Res P's. The method, which is standard by now
(see [10]), is to extend the calculus to the ring C((Q-l)). The details follow.

(n,) -

Again, C = &[qj 371 and we let C° denote c((g 1)) with A acting on

C” commuting with {. Denote Ql(C)((C-l)) ={z wiQilwiGQl(C)}. We
i<

make Ql(C)((g—l)) into a C’-bimodule by putting
cﬁiij = cAi(w)§i+j, w{jccl = AJ(c)wC1+J , ceC , wte(C)

We also extend A to QI(C)((C-I)) by requiring A = CA.

For we@l (C)((¢™1)), w = 3w t', we define
Res w = w
o
Finally, let us extend the map d: C » QI(C) to
da: ¢” > ' @™ , by deth) = de)-¢t .

The maps introduced above obviously commute:
Lemma 2.1. The maps Res, A and d all commute.

Lemma 2.2. If € S € C°, then

d(clcz) = dcl°c2 + cldc2 .

The proofs are obvious.

Lemma 2.3. Let uﬁQl(C)((c-l)), ceC’. Then

Res(wc-cw) ~ 0 .
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Proof. Using the usual summation convention, Res(ijJck§k -
c §kw.§j) = w.A;(c .)~-c .A-j(w.) ~ 0 , since c¢_, commutes with A-j(w.):
k> 7 7J =37 -3 J -3 J

no {'s are involved. o

Lemma 2.4. Let LeC”, neNl. Then

1

Res dL® ~ n Res(L® 1dL) ~ n Res(dL-L""1)

1 1

Proof. Res dL® = Res(dL-L™ ! + L-dL-L® 2 + ... + 1®1 q1) ~

~ Res(ndL‘Ln-l) ~ Res(nLn-ldL), by lemma 2.3. [m]
Now we give first application of lemma 2.4. Let L be as in (1.8) or (1.15).

We define

H = % Res L® , (2.5)

nf s
z ps(n)C . (2.6)

[
n

(0f course, Hu =0 for n # 0 (mod y), but this shouldn't worry us for the moment).

Theorem 2.7.

(n) = M1
Po(i+1)-g'* = 8q;

Proof. Applying lemma 2.4 to our L with n+1 substituted for n, we have
Res dLn+1 = (n+1)dHn+1 ~ (n+1) Res(LndL)

= (n+1) Res( = ps(n)ngﬁ-a(j+l)dqj) = (n+l) Z p

8,] j a(J+1)-ﬁ(n)qu ' D

3. First Hamiltonian Structure, a =1

There are four different types of operators L, depending upon whether B =1
or B > 1, and whether Yy = 1 or Yy >1 (recall that y = a/(a,B)). The difficulties
of the Hamiltonian description steadily increase in the direction (B=y=1) -

B>1,y=1)>B=1,y>1) > (B, y>1). The case (B =y = 1) is the most
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transparent and the richest. We begin our study with this case.
To have one derivation simultaneously for both cases (y =1, B = 1) and

(y=1, B> 1), let us take L as

L=tPa+ 3 Uy, (3.1)
>0 ]

This L is indeed the general one, for we can always reduce the case (B,a) > 1

for the operator L in (1.8), to one with (B,a) = 1 simply by introducing a new
= Q(B)a) ((!,B).

variable E and replacing A with A Then, the condition y = 1 is

equivalent to @ = 1, as in (3.1).

1
Now let P = L"

b3 ps(n)Cs. Then

2,10 = (2,10 = [ 2 p.a)t® , 1+ 5" Dq )

s>0

Pz aPe @ + 5283

s>0

-z p @ttt 3 g p @)
s>0 s,j>0

Picking out the Cﬂ_r_l—terms from both sides, we get

+1- -
Bpla) = I 147 Plo () a,,, - 87%(a, p )]
_ r+1-B_,-s
= sfo la A A7q , p () . (3.2)

Now consider the case B = 1. Substituting (2.7) into (3.2) we arrive at
Theorem 3.3. (First Hamiltonian structure for the o=p=1-case). The equa-

tions BP(L) = [P+,L] with P = L™ can be written as

[2);

_ r _ ,-s
aP(qr) B § Brs ﬁqs » By T 9548 A qgy, s (3.4)
. _ _ 1 n+l
with H = Hn+1 ey Res L .
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A few comments are in order. The system (3.4) is Hamiltonian since the
matrix B = (Brs) is skew and the usual axioms of the Hamiltonian formalism (see
sec. 2, Ch. VIII) are satisfied: the proofs of such satisfaction, for various
matrices appearing from now on, are all relegated to Chapter X. Let us just see

that B is skew:

* = cr - s:—
(Brs) A Qs+r qs+rA Bsr ’

as stated.
Notice also the adjective "first" referring to the Hamiltonian structure

(3.4): it means, that the derivation 3
n+l

. S -
P with P = L is expressed through Hn+1 =

(n-!-l)-l Res L If it were expressed through Hn-k = (n-k)-1 Res Ln-k, keZ,
it would be called the (k+2)nd Hamiltonian structure, etc.

Now let us see a first instance of the troubles ahead: suppose f§ > 1.

Substituting (2.7) into (3.2), we get

9p(a,) = s§0 la,, AP -8 g, ] 62:%; . (3.5)
Thus, if we write

2,(2) = B i‘;‘ (3.6)
to mean

%) = 2 By g%p , (3.7

then the matrix B which corresponds to (3.5) is not even skewsymmetric, since its
first B-1 columns are zeros, while the same is not true for the first B-1 rows.
Thus the representation (3.5) is of no use and we need another one. Before
looking for a remedy though, one can try to save as much as possible from (3.5).

s > 0; R,

Denote Qs 3 = qﬂ-Z-j » 0 < j <B-2. Then (3.5) implies

= qB_1+s)
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6Hn+1

str) 5q_ (3.8)

2,(Q) = = Io, A" - a7%q
s>0
which is the same as (3.4), up to a change in notation. Thus the Q-variables
split from the rest.
To find an appropriate form for the evolution of the R's, we use the second
representation for the derivation 8P: aP(L) = [-P_,L]. Writing in long hand, we

obtain

2,0 = [Pt gy, 2 p (e’

s<0

Pz ptss x0T g p it 2 AP (et
s<0 ° s<0,3j>0 Js <0 s

- 3 A'ﬁ(ps(n))cs-j-lqj}
§<0,3>0

iz a2 Py @t + xS (g ()
s<0 s §<0,3j>0 1s

j+1-5-
- q a1 P @)1y .
j s
Picking out the Qﬂ-r-l-terms, we get

9,(a,) = 1-a"Pyap_ ()

(3.9)
_ =B, rt2 + -;—1 [A-s - Ar+2-B] (n)
aP(qr+l) = (1-a 1A p-r-Z(n) s=-1 s4r+1 g+r+1 P .
We can combine the two formulae in (3.9) into
_ _ =B, .rt+l -5 - r+1-B
3,q) = (1-aMa™p_ @)+ = a7, mq a7 Plp (), (3.10)

~r<s<0

agreeing to drop the sum when it is empty for r = 0. Now consider r in

(3.10) running from O to B-2. Then
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- - (1-a7ByaB-173
p(R,) = dp(ag , ) = (1A p ()

+ b1 [A'SR._S-R._SA'I'J]pS(n) » 05§ < B-2.
j+2-B<s<0 J J
SH SH &H
: . + + +1
Substituting p_(n) = 7 ol o GRn L s<o; pj+1_ﬁ(n) = gﬁ—ﬁ—‘— )
qs+B-1 -s-1 B-2-j

. ©6H
aP(Rj) = (I-A-B)AB-I-J G—R—ﬁ
B-2-j ) )
3.11
6H
-1-j n+1
+ b3 [A°R,, -R., A ] =2 0 < j < B2
0<s<B-2-j j¥+s j+s GRs_l

Thus we see that the R-variables also split from the rest. Changing s into

s+1, we once again rewrite (3.11) in the form

6H
- -1-7 +1
3P(R.) = (1-A B)AB J GRL
I B-2-j
SH
1+s -1-j n+1
+ b3 [A""R_,...-R, A ] —— . (3.12)
0<s<B-2-j stj+1l T jts+1 GRS

The matrix B which corresponds to (3.12) via

6“n+1

is GRS

aP(Rj) =28B , is now clearly skew-symmetric. Its Hamiltonian property
s

will be proven in Chap. VIII (Theorem VIII 5.38).

Remark 3.13. Although an infinite number of q's in (1.8) can be painlessly
cut out to reduce (1.8) to (1.15), it might not be the case for the matrices B's
which result from the manipulation of formal identities. So far, for the matrices
in (3.4) and (3.8), everything is fine: Brs’ for all s and fixed r, involves only

those qj (or Qj) for which j > r.
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Remark 3.14. It should be clear by now that the first Hamiltonian structure
could not possibly exist for the case o >1: If, as in remark I 1.31, we try to
treat the case a >1 by putting equal to zero some of the original variables q.
(except when j = -1(mod a)), then Hn+1 will vanish since there are no weight-zero
terms in Res L for n # O(mod y). Thus, the most one could hope for in the
case Y > 1, is the second Hamiltonian structure.

4. Second Hamiltonian Structure, B =1

Let L be given as

L=¢(1+ 3 c'Y(j*l)qj) . 4.1
30

We write, in a notation analogous to that of (2.6),

Y =5 p (e, L = 3 p (-1 (4.2)
S S

Using (2.4), we have

Res dL¥® ~ yn Res(L¥" 1dL) = yn Res(LY“'lzgl‘Y(J”)dqj)

J
= ynZ.pjd_l(yn-l)dqj
J
Denoting
=L Res 1V, (4.3)
yn yn

we thus obtain (as in the case of theorem 2.7)

SH
-1) = ¢ 4.4
Py (Y0-1) 5a, s>0. (4.4)

Now let us write down the Lax equations. We have
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a,(L) = [@Y,,1] = [ = p (y)t"Y, e + 5 £y )
P + >0 k j Al

= L@ - Dp (g Y + YT gV G (yny)g,
- YT 4G p )t

and therefore

AY(HD)-1 -k

= Y
aP(qr) - kfo (qk_'_r A qk+r)Pk(Yn) . (4.5)

Now we need to express pk(yn) through Hyn' For this, we expand in the
powers of { the two identities: ¥ = Lyn-lL and LY = LLyn-l. We have then,

from (4.2):

Rk

2o, (e = 2 p (-1 g+ 2 (Vg
s s j

]

2p, (-0 + 3 p (yn-)a¥(SITg eI
s $,j

therefore

P, () = P, (ya-1) + 2 Posjug (DA (q)) (4.6)

Also,

L =2 p (qmt® = g+ 2 Y9 3 p (u-ng¥

s j s

Aps(yn-l)gYS + 3 AI-Y(j+l)qus(Yn_l)cy(s-j-l)
jss

and thus

py (1) = Ap_(ya-1) + 3 a1TYEg (-1 . .7

D, .
stj+1
j J J

At this point we are faced with two problems very typical for the subject.

Firstly, from (4.4) we can't get po(yn-l) which we need in (4.6) and (4.7).
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Secondly, which one of the two expressions for ps(yn), (4.6) of (4.7), should
we substitute into (4.5) in order to end up with at least a skew-symmetric matrix
B? We begin with the first question.

Let us subtract (4.7) from (4.6) with s = 0 in both equations. We get

@-Dp, -1y = 2 (- ATy 5 neny (4.8)
> i JTitl
and therefore
ATYGHD )

p (yn-1) = - ? v — quj+1(Yn‘l) , (4.9)
where, of course,

AlvGHD (i o1y

l"é"T?K""° R S N L€ A0 o SO T N

1-87} = A"l

A-1

We need a few words about going from (4.8) to (4.9). We effectively divided
by A-1 both sides of (4.8). The result, naturally, might have been defined

modulo Ker(A-1) = @. To see that the arbitrary constant does not appear in

(n;) -
(4.9), let us introduce another (the usual) grading 'deg" in ﬁ[qj J 1(¢ 1)) by

putting

deg(th) = i , deg(q§n)) = y(j+1) , degB) = 0 . (4.10)

Thus deg(L) = 1, deg(Lm) =m , deg(ps(yn)) = y(n-s) , deg(ps(yn-l)) = y(n-s) ,
and both sides of (4.9) are homogeneous of degree yn # 0, so that (4.9) does
follow from (4.8).

Now we substitute (4.9) into (4.6) with s = 0, resulting in
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AlYGH)
po(yn) = ? (___—K:T—___ + l)quj+1(yn-l) . (4.11)

This solves our first problem. There is no obvious answer for the second
problem. Since there are two summands in the right-hand side of (4.5), it could
very well be that we should use both (4.6) and (4.7). This is indeed what we
will do.

So, let us rewrite (4.6) and (4.7) with s+1 substituted for s. Using (4.4),

we find that

%g_ + 3 qOYG*1) s_éﬂ___ (4.12a)
9% j 4 9y +s+1
ps+1(yn) = < of
SH 1-y(j+1) oH
ASH L5 q, = (4.12b)
L% SR

where from now on I write H for Hyn' Now let us substitute (4.11) and (4.12)

into (4.5), separating the terms with k=0 from those with k > 0:

1- Y(J+1)

_ y(r+1)-1 A SH
3,(q,) = q (A ( + 1)y, 8q; (132
gn ‘s qgy(k+1)) S_QE___ (4.13b)
qk J J qJ+k+1
y(r+1)-1
+ I q A or -
kZO k+r+1
A gg_ v 3 AVGHD S_QE_a_ (4.13c)
QU 3 %441
%g_ + 3 oY1) S_QH___ (4.13d)
QY 3 9j+k+1
=y (k+1)
- Z A q
K0 k+r+1
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A

SH , 5 al7¥GHD, o0 (4.13€)

By 3 89544001

To decide which expressions in curly brackets to prefer, let us begin with

those linear in q's. It is now immediately clear that (4.13e) is not correct

- +
since its contribution to the matrix element Brk is -A Y(k+1)

AY(r+1)

k+r+1A' and its

minus adjoint, A.lqk+r+1 could be matched by no terms in (4.13b) or

(4.13c). Thus the correct choice is (4.13d). Taking the minus adjoint of its

A" Y(kt1)

+
linear in q part, namely Qeprt1’ Ve arrive at qk+r+1AY(r D which

directs us to (4.13c). There is no other choice left and the result is

-y(j+1)
aP(qr) = qr(AY(r+l)'1_l) b3 'A_Tl—__;l qj g.ﬂ_
ioAaT- 3
y(r+1) -y(k+1) SH
+ 2 [q A - A q ] =— (4.14)
K0 k+r+l k+r+l éqk
y(r-j3) -y(k+1) SH
+ 3 [q A q.-q.A q ] &7/
j,k>0 k+r+l 3 ] k+r+l 6qj+k+1
. . . _ [): .
We rewrite this formula in the form 8P(q )= 3 B 3q with
r > rs 6q
_ y(r+1) _ ,-y(s+1)
B = a0 A crstl * (4.15a)
-y(s+1)
+q (AY(r+1)-1-l) 1-A q + (4.15b)
r -1 s
1-A
(r-3) -y(k+1)
+ I (q AY Q. - q.A ) . (4.15¢)
j+k+1=s k+r+l 3j Al kt+r+l

It is not immediately clear that the matrix B in (4.15) is skew,

so let us check this out.
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Proposition 4.16. The matrix B defined by (4.15) is skew.

Proof. The part of B which is linear in the q's (4.15a), is obviously
skew. Let us ignore it. Let us rewrite the rest as

1-a"Y(s+1)

Y(r+1)-1_
=q.(a 1) T ¢

-]
1}

1-A7 s

y(r=3)_ _ -y(s-j)
*Z ol gy, 8 9 - q;A qs_j+r] ) (4.17)
i<s
and let us write down B?s + Bsr:
_ _AY(st1) - _AmY(r+1)
q ! y(r+1)_l) 1-A o +q (Ay(s+1) 1_1) 1-A q (4.18a)
s 1-A r s I-A-l r
¥(j-r) - y(s-j)
+ .Z [q, A qs-j+r qs-j+r A qj] (4.18b)
j<s
¥(s-3) _ __ A-¥(r-j)
+ jfr [qr_j+s A 9 qu qr_j+s] . (4.18c)

Simplifying the A-part between 9 and q, in (4.18a), we obtain

1 {AI-Y(r+1)_I_AI-Y(r-S)+AY(S+1)_A[AY(S+1)-1_l_A-1+Y(s-r)_A-Y(r+1)]}

1-A
= = (YT (1-pyea-13 =AYy
thus (4.18a) is equal to

q [a¥5 ) oq)q (4.19a)

Combining the first term in (4.18b) with the second one in (4.18c), and the

first term in (4.18c) with the second one in (4.18b), we get

(3-3)[qaVi g

aY(mg g (4.19b)
i<s j<r J

s-j+r-qs-j+r

which, combined with (4.19a), finally produces
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(5-3)1q.4Y077

a¥e g, (4.20)
jfs j<r

P { T
s-jtr ‘s-J+r

which vanishes. Indeed, for r=s, both (4.19a) and (4.19b) vanish. So let r<s,

say. Then (4.20) reduces to

y(j-r) - y(s-j)
; ;8 qs+t-j ; qs+r-jA qj
r<jss r<jss
and the second sum turns into the first if we change j into s+r-j. m]

The Hamiltonian property of the matrix (4.15) will be given in Chapter X.

Finally a few words about the remaining case > 1, y > 1: I couldn't find
the Hamiltonian form for this case, and it seems probable that this form doesn't
exist, - an occurrence which is so far unknown in the domain of Lax equations.
Needless to say, to prove the nonexistence is very difficult.

Remark 4.21 For y = 1, the matrix (4.15) provides the second

Hamiltonian structure for L = { + = Q-jq. . We also have the first
j20
Hamiltonian structure for the same L, given by theorem 3.3. Usually, different
Hamiltonian structures for Lax equations are connected. To see what connections
we can find here, let us denote the matrix (4.15) by Bz(qo) and that of (3.4) by
1 1

B : B" does not depend upon q,-

Lemma 4.22.
B2 (g *\) = B%(q) + AB' , YAk .

Proof. Since the linear in q terms of the matrix B2 in (4.15) do not
involve q,, We can work with (4.17). If both r,s>0, then the only qo-term occurs
P 2 _ n2 r_,-s .
as qj|j=0 inside the sum. Thus Brs(q°+A) = Brs(qo) + K[qs+rA A qs+r]’ which
agrees with (3.4). Since B2 is skew, it's enough to consider Bio, in order to
verify the lemma. Then the sum in (4.17) drops out and we have
2 r l-A-1 r r
= - _— = - + -
B  (atA) = q (a°-1) (g *A) = q (A"-1)q  + Aq (A"-1) ,

1-a7t
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which again agrees with (3.4). O
5. Third Hamiltonian Structure for the Toda Lattices
As we have seen in the preceding section, for the operator L given by

L=¢+3 g'jq. , .1)
P J

its Lax equations with P = L™ can be cast into the form (4.5):

_ r_,-k
dpla,) = kfo lq,, A -0 "qp, Ip (0) . (5.2)

Then manipulation of the p(n)'s into the p(n-1)'s gives the second Hamiltonian
form for the Lax equations. One might be able to make another step and find an
appropriate expression of (5.2) in terms of the p(n-2)'s but I could not do it
in general. Instead, I propose another derivation of the second Hamiltonian
structure which can be repeated to provide the third structure for the operator
L= §+q°+§_1q .

So, let us take a finite L,

N .
L=¢+ 3 ¢q
3=0

0 (5.3)

and let

"=z ps(m)t;s ,H = =Res L" .

m
S

8=

Then, as usual,

N
dH_ ~ Res(™ldL) = 3 p.(m-1)dq, ,
m i J J
j=0
and so
6Hm
pj(m-l)=E, 0£J§N . (5.4)
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Writing "= Ln-lL, " = LLn-1 in terms of p's, we get

P = (D) + I A LS (5.52)
N

ps(n) = Aps_l(n-l) + kZ A-qupk+s(n-1) . (5.5b)
=0

Applying A to (5.5a), subtracting from it (5.5b) and putting s=0, we get

N Ak+l -k
p,(n) = ki a1 A e (n-1) . (5.6)
Before proceeding further, we record what is left of (5.2) in our case;
that is

N-r
_ r -k
dp(a)) = kio (9e -8 gy, Jp(0) . (5.7)

Thus we find that in addition to the problem of which one of the expressions
in (5.5) we should substitute into (5.7) - a problem we have met before - we now
have to take into account the fact that only N+1 among the p's can be expressed
as functional derivatives by (5.4), and we have quite a few other p's in (5.5).

To separate these other p's, let us first rewrite (5.5) with s+1 substituted for

S
N-s-1
_ _ (s+1) _ (s+1) _
Pgyp(®) = p(a-1) + kio QY Prage (07D F z Iy-stmPame1 (21D
(5.8a)
N-s-1 -k 5 G-N-m
Pgyp(n) = Bp (n-1) + kio 8 qPyygyq (01 F mio A U g +mPrame1 1)
(5.8b)

Now let us rewrite (5.7), using (5.6):

50



HAMILTONIAN FORM OF LAX EQUATIONS

N k+l_

_ N_ AT -1 .
dplay) = qy(a l)ki0 a1 Ly qkpk(n 1), (5.9)
i N-i-1 i -s-1
dplq;) = q;(4-1)p (n) + sio (946418 - 87 Tqy 1Py ()
0<i<N. (5.10)

e first term on the right, q. =-1)p (n) presents no problems. e therefore
The fi he right, q (A*-1)p_(n) bl We theref

will concentrate on the sum, rewriting it with the help of (5.8) as

N-s-1
s+l s+l
p(n-1) + 3 qi ) Prese (07D # z q(-s+:1 PN+m+1 (271D
k=0 m=
N-i-q . (5.11a)
)3 At or -
2 Yivs+1 =
s=0
N-s-1 -k s s=N-m
dp_(n-1) + f B 7quPypp (01 # E A - s +mPN+m+1 (21D
k=0 m=0
(5.11b)
N-s-1 s
_ (s+1) (s+1)
pg(n-1) + z qk Prege (071 ¥ mz IN- s +mPNme1 (071
(5.11c)
N-i-1 ___,
“2 A7 4404 °r
s=
N-s-1 N-m
p (n-1)+ I ATqupy, . (a-1)+ z a% qN-s+mPN+m+1(n_l)
k=0 m=0
(5.114d)

Thus we again have the problem of what to choose but this time the purpose
is different since we have to eliminate pj's with j > N; that is,

all Z's in (5.11). To do this, let us examine only the highest numbered
m

pj's which occur for m=s=N-i-1:

(N-1) - (N-i) -
aQy  Pyy.i(@-1) ay Py (@-1)
qpA* or - 2t gy or
-N -N
A "q p,y_;(n-1) A Tqup,y.; (0-1)
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(0)

Since the first bracket has qN=qN , thus the second (minus) term must

contribute its first row, and hence the first term has to compensate by its
second row. Thus, the only choice is (5.11b) with (5.11c). Let us check out

that then all unwanted p's in this case disappear. Denoting Bm (n-1),

= Pyam+1

we have

N-i-1 s
i, s-N-m - -s-1 (s+1)- _
sio miolqi-fs-l'lA a IN-s+mPm 2 9 +5+19N-s+mPm! =

N-i-1
= 2 )3
m=0 m<s<N-i-1

i+s-N-m ~s-1 -

A qN-s+m_qN-s+mA qi+s+l]Pm=o ’

{qi+s+1

which can be seen at once by changing s into N-i-1+m-s in the second term. Thus

there are no dangerous terms left and we can sum up the result:

i N k1
dp(qy) = q;(A7-1) kio_Z:T_—A q,p, (n-1) +
N-s-1
i -k
+ 3 {q. A'[ap (n-1) + I A q.p (n-1)] - (5.12)
S+i<N i+s+1 s k=0 k¥ k+s+1
N-s-1
_-s-1 _ (s+1) _
A7 gy e [Pg(0m1) + kio QY Ppager (2DIY

Notice that with the identification (5.4), (5.12) is exactly the

cut out of the expression (4.14) with all qj's and g%—'s absent for
J

j>N: the easiest way to see it is to observe that derivations of (4.14) and
(5.12) can be identified step by step.

Thus (5.12) yields an explicit form of the second Hamiltonian structure for
the case of the finite number of q's. It is now clear on what lines we must
proceed. We again have to substitute p(n-2) instead of p(n-1) in (5.12) and try

to make our choice between the competing candidates (5.5a) and (5.5b) in such a
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way that all unwanted p's will cancel each other out.

Let us begin with the linear in q terms in (5.12):

N-i-1 iti _ -s-1
sio (qi+s+1A -A qi+s+1)ps(n-1) ’

which yields, for s>0, the following expression

N-i-2 itl_ -s-2
sio (445428 7B Ti454p)Ps4q (1)

We substitute the dangerous terms of (5.8) into this expression and get

s s
(s+1)=- (s+1)=
2 IN-s+mPm E N-5+mPm
m=0 m=0
N-i-2 Aitl _N';'i-s-z
9 +5+2 or 9 +s+2 or
=0 s s=0 s
s=N-m - s=N-m -
z4 qN-s+mpm 24 qN-s+mpm
m=0 m=0

(5.13)

where Em now stands for pn+m+1(n-2). It is now obvious that no balancing could

(0),

save (5.13) from nonvanishing: the first term has qj s and the second one
does not. The moral is that these sums should not be present from the very
beginning, that is, we must have N=1. Thus let us look at the operator for the
Toda lattice,

L=t+q +C g . (5-14)

Then we can simplify (5.8) and (5.12) into

p,(n) =p (n-1) + qgl)pl(n-l) + qglgz(n-l) , (5.15a)
pl(n) = Apo(n-l) + qopl(n-l) + A'lqlpz(n-l) R (5.15b)
3p(a,) = (a8 - A'qp (m-1) + q (1-a"Dayp, (a-1) , (5.16a)
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dpla;) = q,(A-1)q p (n-1) + q,(A-1)(1 + A-l)qlpl(n-l) , (5.16b)
while (5.6) is now
P, () = q.p (a-1) + (1 + A g p, (n-1) . (5.17)

We can plug (5.17) in (5.16) to get rid of po(n-l). With pl(n-l) we proceed

as follows:

(I-A'l)qlpl(n-l) = q;p,(n-1) - qg-l)A_lpl(n-l) =

[qlx(5.15b)-q§-l)A-l(5.153)] =
n=n-1

a, [8p, (n-2)+q p, (n-2)+A"'q,p, (a-2)] -

-qi-l)A-I[po(n-2)+q£1)pl(n—2)+q{1)p2(n-2)] = (underlined terms cancel

each other out) = (qlA-A-lql)po(n-2)+qo(1-A-l)q (n-2) .

171
Thus (5.16) becomes

((8p(a,) = {(a;8-87"a ) (a,8-07 a D Ip (n-2) +

+{(q,p -7 lq) (1+87 Mg *a g (1-87Da I (0-2)
(5.18a)

L dplqy) = {ql(A-l)qoqo+q1(A+1)(qlA-A_lql)}po(n-Z) +

+ {q,(a-1)q (1+4" g +a, (A+1)q (1-8"Dg, Ip, (0-2)

which provides the third Hamiltonian structure B3 for (5.14) if we rewrite

(5.18a) as

54



HAMILTONIAN FORM OF LAX EQUATIONS

—

6H

3 n-1
39.(q.) = X B>,
P j=0 ij ©6q

, 1=0,1 . (5.18b)
J
We shall prove that the matrix B3 is Hamiltonian in Chap. X.

Thus we have 3 Hamiltonian structures for (5.14). Let us write down the

first two, (5.7) and (5.16), for future reference:

-1
(1-A )q
Bl = 0 1 , (5.19)
q,(4-1) 0

-1 -1

B = -1 . (5.20)
q,(A-1)q q,(A-1) (142 )q,

Let us indicate the explicit dependence upon q, of matrices (5.18)-(5.20),
by writing Bk(qo), k=1,2,3. Comparing their respective matrix coefficients, we
arrive at

Proposition 5.21.

B3(q,) = B(a) + 2a8%(q ) + A%B(a ), VAR .

Remark 5.21°. The 3rd Hamiltonian structure (5.18) is valid, as it

SH

n-1

8q,
qJ

stands, only for n>2 since it was derived by using pj(n-Z) =

For n=1, H0= Res L°=1, and é%él = 0 . However, the Lax equations (5.2)

still exist for n=1 (being just the usual Toda equations), and the question
immediately arises whether these equations can be cast into the third Hamiltonian

form as well. The answer is yes.

L 2nq,, so o1 =0 o —l—. Substituting
2 1 6q°

To see this, let us take H = , 331 = qu

this into (5.18b), we get
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2,(a,) = (q,a-87'q)(1) = (1-a"V)qy,

(5.22)
dp(qy) = q,(A-1)q,
which are indeed the Toda equations.

The reader may notice that the Hamiltonian H = .an1 produces a zero vector
when operated upon by either one of the Hamiltonian forms (5.19) or (5.20). For
H = H1 = Res L1 = q, B1 of (5.19) still produces zero while BZ of (5.20) yields
the Toda equations (5.22).

We may ask ourselves whence this nonpolynomial Hamiltonian lnq1 come. The
answer is not clear. On the other hand, the reason why it it a c.l. for (5.22) -
and it is, since it is the Hamiltonian function of (5.22) - is clear from the
second equation of (5.22), which is of the form BP(ql) = g% (something ~ 0).

It follows at once that we can find analogous polynomial c.l. for other Lax

operators (5.3). Indeed, the Lax equations with P=L are

-N

9,(L) = [L,,L] = [Lrq , Lrq+ ... + LT gyl =

_ -1 -N

= [tra, £, * ... + £ gy
Therefore

_ i_ e | .
9pla) = q (A7 -1)q  + (1-2 gy, iN, (5.23)
9,(ay) = ay(a'-1)q
PN N o’
We see that anN is in fact a c.l. It is quite natural to expect then,

that the 2nd Hamiltonian structure (5.12) has H = lnqN in its Kernel, that is,
produces trivial equations from this H. Let us show that this is true.

Proposition 5.24. H=£nqN belongs to the Kernel of the second Hamiltonian

structure (5.12).

Proof. We have to show that the right-hand side of (5.12) vanishes
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S8H _ 1

when P, = --- TPy = 0, Py = 8&; = ay We begin with i = N. Then the

only terms present are all in the first row, which gives

N+1
_ N A" -1 -1 1 _

By the same line of reasoning the first row yields zero also for i < N. We thus

look for the remainder, which gives for i<N,

N';'l i, -N+s+1 1

{9,5410°2 IN-5-1 ay -

s=0

-s-1 (s+1) 1

-A 9i+5+19N-5-1 ay

(5.25)

Consider first the case i=N-1. Then s=0, and (5.25) becomes
0 1 -1 ()1 _
WA Iy-q ay A Tayay.) a 0.

Now let i<N-2. We rewrite (5.25) as

N';'l its+1-N 1 N

945418 IN-s-1 &; -

After substituting s=N-i-§-2, the second sum of (5.26) becomes

N-i-2

-2 YGisn
s=-1

-N+i+s+1 1

a aN-5-1 &;

’

and therefore (5.26) is left only with its boundary terms for s=N-i-1 and s=-1:

its+1-N 1 s=N-i-1

A qN-s-l a;

(94541
s=-1

_ o 1 i-N 1 _ _ -
Faydey =t yA g T 9 T 9 <0 O
N N
Remark 5.27. Proposition 5.24 remains true also for the operator

N .
L=t + 3 g YU,
=0 J
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for which the Hamiltonian structure is given by (4.14). The same proof as the
one just given goes through when one changes A to AY in (5.25).

The presence of the Kernel of the second Hamiltonian structure and the fact
that this Kernel depends upon N, makes the possible existence of the third

Hamiltonian structure even more mysterious.
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Chapter IV. The Modified Equations

In this chapter we construct modified equations together with their maps into
the (nonmodified) systems of the preceeding chapters and discuss some of their spe-
cializations and Hamiltonian forms.
1. Modifications in General

A reasonably general idea of modification of Lax equations is to factorize the
Lax operator L. Specifically, let us fix some natural number n > 2, let the index i

run over Z n and let

2. =

+ + ..
i " Yi,0 7 Y1

<N. <
. +yiJi’ 1N <o, (1.1)

where the A j are associative generators of the graded ring &[;] = E [yi j] with
b b

weights w(yi J.) = Bi-clj,BiGZ(,._ ,aeN] , and not all Bi are zeros. Denote
’

0 21 0 0o 0
) 0 0 22 . 0 0
L= (1.2)
0 0 0 2
L 0. 0 0
N, =22, - 2_,, (1.3)
so that
- _ .
L _dlag (nlynzv -")”n) . (1.4)
Let
n
B= 2 B, y=0a/(a,B) . (1.5)

i=1

For each k éhﬂ, we define a derivation Bﬁ of &[;], where P = inyk’ by
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af,(i) = [§+,i] = [-ﬁ_)f‘] » W(aﬁ) =0 > (1.6)
which can be rewritten as

_ = ky _ ky - kY \ _ [ky
ap(2) = (NH,e-2, D, = e, YD - g, (1.7

W(al-)) =0,

where the notations follow those of Chapter I.
Equations (1.7) make sense: the first expression on the right shows that

weights increase from w(yi N ) with the step a, and the second expression shows
,N.
i

that the same weights decrease from Bi-u with the step a. Hence
3 (y; o) =0 - (1.8)

Equations (1.7) are our (abstract) modified Lax equations. The name is

justified by the observation that (1.6) implies

o™ = [B,,I" = [-B_,L" 1, w(ep) = 0, (1.9)

which is equivalent to
- = ky = (%Y -y =
a5(M)) = 1N H,.M,0 = -A1 D, A0, wep) =0, (1.10)

which are the usual (nonmodified) Lax equations of Chapter I.

Thus for each iéZn, we get a '"Miura map": & [;]*&[3-’] which has weight zero
and sends L = xo+...+xN into r‘if z[;]. The correspondences between the images
of &[;] for different i's are sometimes incorrectly called "Backlund transforma-
tions" in the physical literature.

The only restriction on the possibility of having a Miura map comes when L

has only finite number of generators xj's. In this case, the lowest weight in

r]. is

J
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3(B,-0N) = B - a3IN_ = w(xy) = B - oN ,
and so our condition is
N = 2N, . (1.11)

2. 2 x 2 Case
The simplest case of the modification scheme occurs when n=2. This case we

will study below.

Let
- - =j-1
2. =(f+u, 2, =1+ 3 v. , (2.1)
1 2 . j
J

so that L in (1.2) becomes

_ 0 C+u

L= . (2.2)

1+z§'j'1vj 0

We take P = i2n = diag[(lllz)n, (2221)“] , néeN] . Denote

(22" = 2 p @), (22" = £ gt . (2.3)

J J

Then the Lax equations (1.7) become

35(2,) = dz(u) = (2122)“+21-21(2221)“+ = (taking ¢°-term) =
= po(n)u-uqo(n) , SO
dp(u) = ulp (n)-q (n)] . (2.4a)
Also,
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- n n _
95(2y) = (2,2,)7,2,-2,(2,2))", =
n i - -1 - -l i
= 3 {q. P+ v ) - 437 v )p, ()¢}, thus
i | r r’tj
j=0 r r
3 _n m+1 -j
F(vm) = jio [vm+jA qj(n) - Ay

mtjP3 (W1 (2.4b)
To cast the equations (2.4) into a Hamiltonian form, we have to re-express

pj(n) and qj(n) through variational derivatives of a c.l1. We will use the same
technique as in Chapter III.

Let
_1 n, 1 n
Hn- o Res[(lllz) ] a Resﬂzzil) ] (2.5)
Since
- -m-1 m+1
2122 = §+u+vo+ pANd [vm+1+va (w] , (2.6)
m>0
2.0, = trutd Lv )+ 2 €™ AT (v L )4y ] (2.7)
271 °" 150 m+l’ m ’ :

we can rewrite the identities

dH_~ Res[(2,2 )“'ld(zlzz)] ~ Res[(zzzl)“'ld(zzzl)l

in the following way:
m+1 m+1
dHu~ po(n—l)(du+dvo) + m};opm+1(n—1)[dvm+1+A (u)dvm+va (du)]
-1 -1
~ qo(n-l)[du+A (dvo)]+m§0qm+1(n-1)[A (dvm+1)+vmdu+udvm]
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This implies that

GHn -m-1

5 - po(n-1)+m§0A VoPor (271 (2.8a)

6Hn

32 - 9 @D+ 2vq  (0-1), (2.8b)
m>0

GHn 1

v, = Pa(n D ¥y, (DA (2.92)

GHn

5;; = Aqm(n—1)+uqm+1(n—1) . (2.9b)

We need a few identities between the p's and q's. We use the following

relations:

n _ n-1 _ n-1 n _
(2122) = (1122) (2122) = (2122)(21£2) , (2221) =

_ n-1 _ n-1 n-1 _ n-1

= (2,2)) (2221) = (2221)(2221) ’ (2122) 2, = 21(2221) ’
n-1 _ n-1

lz(llﬂz) = (2221) 2

9 - In terms of the components, we have

pj(n) = pj_l(n-l) + pj(n-l)Aj(u+vo) + i pj+m+l(n-l)Aj(vm+1+vam+1u) s

(2.10a)
Pj(n) = Apj_l(n-l) + pj(n-l)(u+vo) + i A'm'l[pm+j+1(n_1)(vm+1+vmu(m+l))] ,

(2.10b)
g;() = q;_y(a-1) + g, (-1 [wrd " (v )] + E 4jp0q @ DBV AT o v

(2.11a)

63



B. A. KUPERSHMIDT

= - - -1 -m-1 - (-1)
qj(n) qu_l(n 1) + qj(n Dluts “(v )] + i A [qj+m+l(n D0 tvwl,
(2.11b)
_l(n-l) + pj(n-l)Ag(u) = qu_l(n-l) + qu(n-l) , [no sum on j] , (2.12)
—m 1
.(n-1) + - = - - J
pJ(n ) i a1y pJ+m+1(n 1) qj(n 1) + i qj+m+1(n 1A (vm)
(2.13)
Lemma 2.14. Let us write H instead of Hn in what follows. Then
6H -r-1 SH
q.,,(n) = —+ 3 A vV, (2.14a)
j+1 6v r>0 r 6vj+r+1
i+
Py (@) = g% +3 VEJ D SG_QE“ (2.14b)
J i o jHr+l

Proof. From (2.11b) we have

9y @ = [8g;@1) + gy g (-Du] + [v{ D, 198"y gy, (1)) +
( 2) ( -1) = =
+ [v J+2 (n-1)+A" v 149 +3(n 1] + ... = [by (2.9b)] =
SH -1 SH -2 SH
=x— t+tA v + AV, 7/ + ...
GvJ o 6vj+l 1 ij+2 ’

which proves (2.14a). Analogously, from (2.10a) we get

(j+1)] + [v§j+1) (n-1)+p, +2(n-l)v(J+1)u(‘j+2)] +

pj+1(n) = [Pj(n-1)+pj+1(n-1)u P4y
+ Ip, +2(n-1)v(J D a v DG s by 29001 =
_oH (G+1) _8H _, (j+1) 8K
“av. T Y% v... "1 Gv e a
J J+1
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Lemma 2.15.
- -r-1 S6H
qo(n) = Aq_l(n-l) + uqo(n 1)+ ZA Vos
r>0 r
p (n) = p_.(n-1) + up (n-1) + £ v o
[ -1 o r év_ -~
r>0 r

Proof. The same as the proof of lemma 2.14, with j substituted

instead of j+1.

Lemma 2.16.
-r-1
_ &M 1-a"F 5H
9 = vt 2 T Ve v
r>0 r
-r-1
_  oH 1-A"F 5H
P (n) =u s +3 o Av o
r>0 r

Proof. From (2.10b) we have

u{p0<n-1)+iA'm‘1vmpm+1(n—l)} +

p,(n)

+ {Ap_l(n-1)+ZA'mvmpm(n-1)} = [by (2.8a)] =
m

N S
=u g + 0, 9.—Ap_1(n 1) +ﬁA vmpm(n 1) .

On the other hand, from (2.11a) we get

q,(n) = u {g (n-1) + iqm+1(n-1)vm} +

Hay@e1) +Eg, DAy} = [by (2.80), (213)] ;)] =

w4 ale) ,

Su
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where 6 is defined in (2.17). Applying A to (2.18) and subtracting (2.17), we

find that
Ba(a) - p (@) = (a-Du F (2.19)

Now we subtract (2.15b) from (2.15a) and use (2.12) with j=0, which results

in

= -r-1 [:48
q,(n) - p (n) = 2 (A rov,

r>0

-1)v (2.20)

Solving the system of two equations (2.19) and (2.20), we get (2.16). 0
Now we are ready to find a Hamiltonian form for the equations (2.4). Substi-

tuting (2.20) into (2.4a) we obtain

—r-l)v 6H

3§(u) =u X (1-A r Bv (2.21a)
>0 r
To transform (2.4b), we use (2.14) and (2.16):
_ m+1 m+1 -
3g(v, ) = v [A qo(n)'Po(n)]+j§o{vm+j+1A 41 ()
N =
I AT Bt
=v (@™, ¥y s 1Zé:f:1(Am+1-A)v SH 4 (2.21b)
= Y Bu A-1 r 6v :
r>0
+1  OH -r-1 SH
+ 3 v AT+ 2 ATy ] -
§>0 m+j+1 6vj >0 r 6vr+j+1
- (2.21c)
-j-1 SH (j+1) _6oH
- A v .. [/ + 2 v —]} .
mtj+1 ij >0 r 6vj+r+1

The equations (2.21) represent the Hamiltonian form of the modified Lax

equations (2.4). Notice the curious coincidence of the (v,v) part of the matrix
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in (2.21) with the matrix of the second Hamiltonian structure of Lax equations
III (4.14) with y = 1.
Recall now that we have two Miura maps L = 2122 and L = 2221, from modified

into unmodified Lax equations. Both systems of equations are Hamiltonian. The
natural question is then to ask if the Miura maps are canonical transformations.

(n,)

(n,)
Theorem 2.22. Denote C, = Klg; I, ¢ J

= K[u(n),v.

3 ] two rings with an

2

automorphism A. Let Ml and M2 be two homomorphisms of C1 into C2 over K commut-

ing with A, and given by

M3t e = @t T = ey, m@h = 0

My st e ) = (eI @ = a0, @ = 8

Let HGCI, and let BH:C1 > C1 be an evolutionary derivation defined by the

equations III (4.14) (with y = 1). Let Hi = Mi(H)ECZ, and let BHi:C2 > C2 be an

evolutionary derivation defined by the equations (2.21). Then BH and 8H are
i

compatible with respect to Mi (which is what it means to be a '"canonical trans-
formation" or 'canonical map").

Proof will be given in Chapter X. Let us check here the simplest case when

we have only one variable, v = Vs in 22: 22 =1+ §-1v. Then equations (2.21)
reduce to
95 (w) 0 u(1-a"Yyv | feu/6u
= (2.23)
aﬁ(v) v(A-1u 0 8H/6v

Let us denote by B the matrix which appears in (2.23). We have to check
that JBJ* is equal to the image under Mi of the matrix B2 in III (5.20) (the
second Hamiltonian structure of the Toda hierarchy), where J is the Fréchet
derivative of the vector Mi(a) (in (u,v)-space), see II 43. Let us begin with

Ml. From (2.6) we have
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- — o (1)

Mi(g) = utv , M (q;) = vu , (2.24)

thus
1 1 1 Al
J = . J* = ,
vA u(l) 1 u(l)
and we get
-1
v(A-1)u u(l-A “)v
JB
«Doa-1u vau(a-a"hv
v(A-l)u+u(1-A-1)v v(A—l)uA_1v+u(l-A—l)vu(l)
JBI* = (1) -1 -1, (1)
u'‘v[(A-1)udA “v+A(1-A T)vu ]
M (q)A-a"'M (q) M (q)(1-a")M (q)
N e R 1+% 1'% 1+%
-1 -
Ml(ql)[l-A +A-1]H1(q1)
-1 -1
q,4-A "q q (1-4 T)q

=, 1 1 o ; 1 =M1(32) )

where "..." in the lower left corner means: "minus adjoint of the opposite entry,

with respect to the diagonal."

Analogously, we have from (2.7)

-1
My(g) = w1 M,(q) = uv, (2.25)
thus
1 at 1 v
J = ,J*;— ,
v u A u
-1 -1
A “v(A-1)u u(1-A v
JB = E
uv(A-1)u vu(l-A v
-1 -1 -1 -1
A "v(A-1)utu(1-A “)vA A “v(A-1)uv+u(l-A “)vu
JBJ* = =

uv[(A—l)uv+(1-A-1)vu]
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v(-l)u-A-luv+uvA-uv(-1) [v(-l)(l-A-l)+u(1-A-1)]uv
. uv[A-l+1-A-1]uv
q8-071q. g (1-a"Dg
=u |1 1 Y= n,6

2 -1
coe ql (A-A )ql

If we call the equations (2.23) the modified Toda hierarchy, what we have

just checked is the property that both Miura maps Ml and MZ are canonical between
the second Hamiltonian structure B2 of the Toda hierarchy and the Hamiltonian
structure (2.23) of the modified Toda hierarchy. This strongly resembles the
property of the Miura maps between the modified and unmodified Korteweg - de
Vries equations (see, e.g., [9] p. 405): the Hamiltonian structure vy = - % 3 %%
is canonically related to the second Hamiltonian structure u, = (% 33+u8+3u)g%
with respect to the homomorphisms u » % vx-vz. However, our situation is richer:
the Toda hierarchy possesses one more Hamiltonian structure III (5.18). Since

it is an experimental observation that modified equations in general have one
Hamiltonian structure less than unmodified equations, and the Hamiltonian struc-
tures of modified and original equations are canonically related with respect to
the same Miura map(s), it is natural to assume that our modified equations (2.23)
have one more Hamiltonian structure which is canonically related through both M

1

and H2 with the third Hamiltonian structure of the Toda hierarchy. This is

indeed the case and we will study it in the next section.
3. The Modified Toda Hierarchy

We have now

2. =t+u, 2 =1+¢Y,

2

1) (-1

2.8, = §+u+v+§_1vu + C-luv . (3.1)

1*2 » B2y = Druty

Equations (2.3), (2.4), (2.8a), (2.9a) and (2.10) become

(2,2)" = Tp,t) , ()" = 2 q@t? (3.2)
J J
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dp(u) = u[po(n)-qo(n)] , (3.3a)
dp(v) = VIAqo(n)-po(n)] , (3.3b)
GHn -1

30 = Po(n-1) + A vp,(n-1) , (3.4)
SH

= = p (n-1) + u(l)pl(n-l) , (3.5)

py() = p,_ (1) + pj(n-l)Aj(u+v) + pj+1(n-])Aj[vu(1)] , (3.6a)

(1)] .

p;(m) = 8p; ) (n-1) + p;(a=D)(utv) + 87 [p,, (a-D)vu (3.6b)

Our next step is to express q(n) in terms of p(n-1), thus eliminating q's

completely. For this, we use the identity (2221)n = Ez(llﬁz)n_l 21:
j -1

b3 qj(n)CJ = (14§ v) = ps(n-l)Cs(§+U) =

j s

3 {(p, (a-1DE° + Tvp (-1 Ve ) (Gr)} =
S

2 o, (-1 + p @-1ul®e® + e (-1
)

+ IVPS(n-l)](-l)u(s_l)ﬁs_l} .

Thus,

gy = p;_ (1) + [u(j)+A-1v]pj(n-1) + u(j)A-lvpj+1(n-1) . (3.7

As we see from (3.3), we need only 9, for which (3.7) provides us with

-1,

q(0) = p_,(n-1) + (wA”'¥)p _(n-1) + A vp, (a-1) . (3.8)

Now we work out (3.3a) using (3.6a) for po(n) and (3.8) for qo(n):
85(w) = uflp_, (a-1)*p_(n-1)(utv) + p (a-DvuD] -
P -1 o 1

1 (1)

- [p_l(n-1)+(u+A'IV)p°(n-1) + A 7w vp (-]} =
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u{(l-A")vpocn-l) + (1-A'1)vu(1)p1(n-1)} =

(1)

u(-a"Yvlp (a-1) + u'Vp @11 . (3.9a)
For (3.3b), we use (3.6b) for po(n) and (3.8) for qo(n):

(1

aﬁ(v) v{[Ap_l(n-1)+(Au+v)p°(n-1) +u vpl(n-l)] -

- [8p_ (a-1) + p_(a-1)(u+v) + A (p, (a-)vu1)]} =

v{(A-l)upo(n—l) + (l-A-l)[pl(n-l)vu(l)]} =

v(1-A'1)Au[po(n-1) + A'lvpl(n-l)] . (3.9b)

Equations (3.9) are the ones with which we are going to work. Notice that
they at once provide the Hamiltonian form (2.23) if one uses (3.5) in (3.9a) and

(3.4) in (3.9b):

.. OH
aﬁ(u) = u(1-A v v
6H
35(v) = v(a-1)u 3;5 . (3.10)

Now we have to use (3.6) and re-express po(n-l) and pl(n-l) through p (n=2).
However, po(n-l) involves p_l(n-z) and pl(n-l) involves pz(n-z), which are both
absent in (3.4), (3.5). We manage as follows. For j = 0, apply A to (3.6a) and

subtract (3.6b), getting

p,(n-1) = p_(a-2)(utv) + (1+A-1)vu(1)

pl(n*Z) . (3.11)
Then, for j = 0, subtract (3.6b) from (3.6a):
(a-1p_ (@-1) = (1-a"1yp, (a-DwuD)

Therefore,

p 1) = a7 @D . (3.12)
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Now, for j = -1, apply A to (3.6a) and subtract (3.6b):
(A-Dp_y(a-1) = (@) a-Dp_; (a-2) + (Va2 D1p a-2)
substitute (3.12), and get

(l-A-l)vu(l)pl(n-l) = (u+v)(1-A-l)vu(l)pl(n-2) +

(
+ (vAu-uA'lv)po(n-z) )
Using (3.11) and (3.13) in (3.9), we find that
a5(w) = uf(1-a"Nvlp (urv)+(1+a HvaDp 1 +
+ [ -8 Dy + waw-iavip 13,
85(v) = via-Dulp, (wr)++a” HwaVp 1 +
+ 1) -2 Wy 4+ (wan-ua0p 13, (

where the index n-2 has been dropped out of pi(n-Z), i=0,1.

The only thing that now remains before we obtain the third Hamiltonian
structure for the modified Toda hierarchy is to represent the expressions in
curly brackets of (3.14) through just those combinations of P, and P, which
in the right-hand sides of (3.4), (3.5). We begin with (3.14a). Suppose we

manage to find two operators, A and B, say, such that

A %% +B %% = {(l-A_l)v[PO(u+V)+(1+A_l)V“(l)p1] *

+ [(u+v)(1-A~1)vu(1)p1 + (vAu-uA_lv)pO]} , H: = Hn-l .

Using (3.4), (3,5) we can rewrite this as a system,

3.13)

3.14a)

3.14b)

the

appear

A+B = (l-A-l)v(u+v) + vAu - uA-lv , (3.15a)

a® 4 Bl = - e Hu Wy + @ a-a Py (3.15b)
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From (3.15b), we see that A = av, B = Bu with some operators a,B. Then

(3.15) simplifies to
av + Bu = (l-Ahl)v(u+v) + vAu - uA-lv , (3.16a)
a+pat = (1-a vl + @ a-ah . (3.16b)
Multiplying (3.16b) from the right by v and subtracting (3.16a), we get
B(u-A_lv) = (vA-A-lv)(u-A-lv) ,
and so

B=vaalv, a=u-a"Y)+ a-a"Hv,

B= (vA-A v)u , A= [u@-a"hH + (-2 Hviv
d=(u) = u(vA-A-lv)u o +
P Su
+ ufu@i-a"YH + (-2 Hvlv g% ) (3.17a)

We transform (3.14b) along the same lines as (3.14a). If

gﬂ 8H _ (1)p1] .

A g, +B g = (&-Dulp (utv) + (1+a"Hvu
+ () - Pp + (vaw-ua™vp 1,
then
A+ B = (ADu(utv) + (vou-ua™lv) (3.18a)
a4 Bl = a-nuea v ¢ ) a-a D (3.18b)
By putting A = av, B = Bu, we rewrite (3.18) as
av + Bu = (A-1)u(u+v) + vAu - wA”lv |

a+ gl = @a-Duaa™h + vya-ah .
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Solving this system produces

@=4u-ur"l, B= (A-Du + v(a-1) ,
A= (Bu-ua” v , B = [(A-Du + v(a-1)]u ,
aﬁ(v) = v[(A-1)ut+v(A-1) ]Ju g% + v(Au-uA_l)v %% . (3.17b)

Equations (3.17) provide the third Hamiltonian structure for the Modified
Toda hierarchy. The proof that they are Hamiltonian will be given in Chap. X.
Recall that for the second Hamiltonian structure (2.23), both Miura maps Ml and
M2 are canonical maps into the second Hamiltonian structure of the Toda hierarchy.

Theorem 3.18. For the third Hamiltonian structure (3.17) of the Modified
Toda hierarchy, both Miura maps Ml and Mz are canonical with respect to the third
Hamiltonian structure III (5.18) of the Toda hierarchy.

Proof. Denote by ﬁa the Hamiltonian matrix which corresponds to (3.17).

We use the same computations as at the end of section 2. For Ml we have from

(2.24),

u(va-A"lv) + } {uz(l-A'1)+u(1—A'1)v Q}
u v
{+v[ (A-1utv(a-1)] +v(bu-ua~t)

{u(l)A(vA-A-lv) + ]‘ I {u(”A[uu-A'l)+(1-A'1)v1 »f} ’
v u v v
D a-Duva-1)] D (au-ua™h

3

and JB J* has the following components:

1) B [uvAu+vAu2 + vau+vAuv] +

Le]e]

2

+ [-vuz-v2u+(u2+uv)v] + [-uA-lvu-uZA-lv-uA_lv -vuA-lv] =

vu(l)(uA+Au+vA+Av) -
1

a _

- (A-lu+uA- +A-1v+vA-1)vu
-1,,-1

=M, [q,(q A*Aq ) - (g A "+A "q)q,] ;

Vu(l){(AVAU) + (Au2+vAu+Auv+Av2+Auv) +

2

2)

-]
1]

10

+ (-vu-u -vu—u(l)v-vz)-uA_lv} =

Ml(ql){Avu(l)A + [A(u+v)2+u(1)vA] - [(u+v)2+u(l)v] - A-lu(l)v} =
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2 2_,-1 -
M, {q, [Aq,A+Aq_*q,A-q,-q -A "q,]} =

M, {q, (A-1)q>+q, (4+1) (g,A-A""q )} ;

vu(l){[A(VA-A“lv)-l-(A-l)u-Q-v(A-l)]A-1

w

~
=]
i

11
+ Alu(1-A"H+a-a"Yv] + sueua v =

vu(l){(Av+Au+Av+Au) +

+ (-va leua lova"loa™ly ¢
W, (1) yyen () _

+ [ut " +v-u""=v]}vu

vu(l)Z{A(v+u)-(V+u)A-1}vu(1) =

- o A"l -
= M,{2q,(Aq -q 8 g} =

M {q,[(A-Dq (1487 + (a+D)q (1-87D]q 3 ,

]

thus we get exactly the image of III (5.18).

The same computation goes through for Mz. Using (2.25), we get

u(vA—A-lv) + uz(l-A-1)+u(1-A-1)v f}
-1 ]]I“ l -1 -1 v

+ A “v[(A-1)utv(a-1) + A “v(Au-uA )

JBT =
va-A"ly + w(1-a"H+-a"hv +
vu u uv -1 v
+ (A-1)u+v(A-1) + Au-ulA

and for J§3J* we have the following components:

(-1)

[uvAu+u2vA+uv2A+v uvA] +

+ [~uA 1vu-A vuz-A 1v2u A vuv( 1)] +

+ [v (- 1) 2, (-1),2 2 (-1)_ (v(-l))zl -

+(v u-u"v

1)

.
1]

Qo

uv[Au+uA+Av('1)+v(-l)A] - [uA~1+A-1u+v(-1)A+A v( 1)]uv =

-1, -1
M,{q,(q A%Aq ) - (q A "+A 9,09, ;

2) B fuva-a"1v) + A"l [(a-1)utv(a-1)] +

01
+ 021271 + u@a-a"Hvra v (au-ua™Hjuy =

H

{uvA-A—lvuA- + [V( l)u*( - 1)) +u +uv+v( l)u] +

+ [-uv(-l)A- -A- vu - (v(-l))zA- -uzA-l-uv(-l)A—ll}uv =

{uvA-A-luvA-l + [uv+(u+v(-1))2]-A-1uv-(u+v(-1))2A-l}uv =
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M, {1(a,a-a" g ) (148" g2 (1-a" D 1q, ) 5

3) By, = uvivA-a lv+(A-Dutv(a-1+u(1-a )+ (1-a" v +
+ Au-uA-l}uv = uv{A[Zv(-1)+2u] - [2u+2v(-1)]A-l}uv =
= MZ{ZqI(Aqo-qOA'l)ql} ,
as desired. O

4. Specialization to { + C—lq
For the general operator L in (2.2), the modified Lax equations imply Lax
equations for each of the operators L. = 2122 and L

= 2221. In both cases, the

1 2

operators Li have the y = 1-form,

L=t+ 3 tq, . 4.1)
S
As we know from Chapter I, we can put 'gaps" of arbitrary size Yy

in L, requiring
fa; =0, j # 0(mod M)}, (4.2)

in which case our Lax equations have to be constructed from P = 1® withn =0
(mod Y).

Unfortunately, if we look at the relations among {u,vj} in L (2.2) which
result from the Miura maps being applied to (4.2), these relations cannot be
resolved explicitly. Thus, for example, we would not know how to find modified

equations with respect to the operator
-1 -3
+ .
E+8 q +8{7q

The origin of this difficulty seems clear enough: it is the size n = 2 of
the matrix L of our modified equations. Apparently, one has to consider matrices
with n > 2, but from section 3 we can appreciate what a nightmare a search for a

Hamiltonian form would turn out to be.
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There exists, however, one case for which the problem of specialization can
be well understood: it is the case of the modified Toda hierarchy of the pre-
ceeding section:

0 {+u
L= -1 . (4.3)
1+ v 0
= -1y - -1 (1) ) .
Then 2122 = (E+u) (14 v) =€ + (utv) + § "u ‘v, and if we wish

this operator to be of the form
L=¢+¢lq, (4.4)
we have to specialize our L by requiring
v=-u. (4.5)
Thus our L becomes

_ 0 {+u
L= -1 , (4.6)
1- "u 0
and we are faced with two typical problems of specializations (in the differential
case these problems are discussed in considerable detail in [9], section 3.).
The first problem is this: which Lax equations survive the specialization (4.5)?
In other words, for which P will we have
Ideal in K[u(n),v(m)]
[Bi(u+v)] € (s) ? (4.7)
generated by (utv) , seZ
The second problem is: for which n do the conservation laws
Hn = %E Tr Res i2n remain nontrivial? After solving these two problems, we can
consider the third one, which is to find a Hamiltonian form of the specialized

equations.

We proceed as follows. Equations (3.3) are consistent iff
- 95(v) = (W)
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or, equivalently,
ulp (n)-q (n)] = ulAq (n)-p (n)] ,

or, equivalently again,

(a*1)q (n) = 2p (n) , (4.8)
where

2122 = Q-Q-luu(l) , 2221 = §+(1-A-1)u - C-luz , (4.9)

(12" = 2 py@td , (22" = : q; ¢ (4.10)

To solve (4.8) we first use (3.8) to get
(A+1)[p_; (a-1)+(1-2" Dup (a-1)-2""up, (a-1)] = 2p_(n) . (4.11)

Then we add (3.6a) and (3.6b) with j = 0, and substitute the result into

the right-hand side of (4.11). After cancellations, the result is
(A-A-l)upo(n—l) =0

which holds iff po(n-l) = 0. This happens iff
n =0 (mod 2) . (4.12)

Indeed, if n # 0 (mod 2), then (2122)n has only odd powers of { present; on
the other hand, if n = 0 (mod 2), po(n) # 0 by lemma III 1.13.

Thus, we get sensible specialized modified Lax equations only for P = ién’

neN]. To sum up:
Theorem 4.13. i) The modified equations for the specialized L of (4.6)

4n

are consistent if and only if P=1L1 , neN ; ii) When they are consistent, the

equations are nontrivial,
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Proof. Part i) was proved above. To prove ii), notice that if ai(u) =0,

then 8§(v) = 0, and from (3.3) it follows that this is possible only when

po(n) = qo(n) (—k , which is not true. ]
Remark 4.14, It would make no difference if ome tries to specialize 2221,
instead of £.4,: if we wish Res(lzll) = 0, it means u+v(-l) =0, i.e. v(-l) =

172°

-u, which amounts to the same situation as before if we write 21 = {+u, 22 =

1+v(-1)§—1, consider { acting on the left and read our arguments in mirror-

fashion.

Proposition 4.15. Let Hn = % Res(lllz)n. Then Hn ~0 for n # 0 (mod 2),

Hn 40 for n = 0 (mod 2).

Proof. Again, lemma III 1.13 says that HZn # 0 in K[q(m)] with q = u(l)u.

N¢Y

But the Miura map M : q u is injective (in every sense), therefore H2n 0

2o+l has no terms of {-degree zero.pg

in K[u(m)] as well. On the other hand, (2122)
Another proof of nontriviality of H2n will follow from the Hamiltonian form
(4.26) of our equations, which we shall begin to analyze at this point.

Proposition 4.16.

H
Gin - _[u(l)pl(Zn-1)+A"1up1(2n-1)] .

Proof.

2n-1

L d Ree(2,2))%" ~ Res[(2,2))%"" 4(2,2,)] = Res[z pj(2n-1)§j a-t Wy =

J
= -p, (20-1) [V duruan D ~
~ - Ip,a-1)uPa" p 20-Dw) Jau . o
Now let us look at the equation
aE(u) = u[po(Zn)-qo(Zn)] . (4.17)

From (3.8), taking into account that p28(2n-1) = 0, we get
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q°(2n) = p_l(2n-1)-A-1u(1)up1(2n-1) ,
which becomes, with the help of (3.12),
ZA-lu(l)

qo(2n) = - up1(2n—l) . (4.18)

On the other hand, (3.11) yields
p (2n) = -+ HuaV p,(20-1) ,

which together with (4.18) results in

p,(20) - g (2) = " -DuwDp (20-1) (4.19)
and, thus,
a5(w) = u@ -DuwVp (2a-1) . (4.20)
(1)

Since the expression uu

1)

p in (4.20) cannot be expressed in terms of the
combination u""’p + A-lup in (4.16) (which is obvious and easy to prove), our

equation (4.20) cannot be expressed through the Hamiltonian H Let us see if

2n°

we can use HZ(n-l) instead.

Denote w = u(l)u, so that

2.9, = -t W, (2122)2 =¢2 - s Her 2 WD | (4.21)

. . fes 2n-1 _ 2n-3 2 _ 2 2n-3
Consider the identities (2122) = (2122) (2122) = (2122) (2122) , and
pick from all sides the Ql-coefficients. We get

- 2= - _aye (1) (2)
p1(2n-1) = p_l(Zn 3) p1(2n 3)(A+1)w+p3(2n Dw w , (4.22a)
p,(20-1) = Azp_l(2n-3)-(w+w('1))p1(2n-3)+A'2w(1)p3(2n-3) . (4.22b)

(2)

Let us apply AZ to (4.22b), then multiply by w and subtract from the result

(4.22a) multiplied by w. We obtain
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wpl(2n-l)-w(2)A2p1(2n-l) = wp_l(2n-3)-w(2)A“p_1(2n-3) +
+ w(z)[w(2)+w(l)]A2p1(2n-3)-w[w(l)+w]pl(2n—3) . (4.23)
Now use (3.12) to eliminate P, in (4.23):

f-wa Tt Pa% 71y +

(1-a%)wp, (20-1)

+ A% D] - w[w(1)+w]}pl(2n-3) =

(1+A)[w(1)A2-w](1+A"1)wp1(2n-3)
Dividing from the left by A-1(1+A) and using (4.16) in the form

6H2n

"% TS

= (1+A_1)wp1(2n-1) , (4.24)
we get

6H
A-l(w-w(l)Az)u ——%ﬁlg =

(a™'-1)wp, (20-1)

6H

(ua 1u-uAu)u gz 2 .

Substituting this last expression into (4.20) we obtain the following theorem:
Theorem 4.25. The specialized equations (4.17) of the modified Toda hier-

archy can be written in the Hamiltonian form

_ 2..-1 . 2 6H _
aﬁ(u) =u (A "-A)u 50’ H= H2n-2 . (4.26)

Remark 4.26. At least now we don't have to make a forward reference to
where the proof is given about our structure being a Hamiltonian structure in-

deed: if ome introduces new "coordinate" u = %, then (4.26) can be written as

1, o

~

a=(u) = (A
P Su

-A)
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which is almost obviously Hamiltonian, having constant coefficients (the general
result is theorem VIII 2.29).

Remark 4.27. The reader might have noticed an implicit assumption made in
deriving (4.26): that n > 1; indeed, H2(1-1) = H0 ~ 0 while equations (4.17) still
make sense for n = 1. We thus have to check out whether we can cast (4.17) with

n = 1 into the form (4.26). To do that, let us just compute po(Z) and q0(2).

We have,
b (2) = Res (2,2))% = Res (-t a2 =
= '(1+A-1)uu(l) ,
qo(Z) = Res (2221)2 = Res{§+(1-A'1)u-§'1u2]2 -
= ((-a"Hu)? - s h? .
Thus,

P, (2) - q,(2) = (1+A.1)(uz--uu(l))-[u-u(-l)]2 =

= uZ_uu(l) + (u(-l))z-u(-l)u-[u2-2uu(1)+(u(-1))2] = u(u(-l)_u(l))

and, therefore,
5w = vy (4.28)

which can be written as

a5(u) = w?(a”t-a)u? gﬁ fnu . (4.29)

At this point, having found the Hamiltonian form (4.26) of the
modified equations, we could ask what happens with this structure under

the Miura map

1)

megs w00 =Tl (4.30)

The usual phenomenon is that a Hamiltonian structure of modified equations

induces, under an appropriate Miura map, a Hamiltonian structure of unmodified
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equations. Let us see what happens in our case. Taking the Fréchet derivative

of M, J = -(u(1)+uA), we have to compute

I -au?1ar = Py -mu? Pty =

uDufuran) 4710 rua™) 1Py =

uDurasnyu@a t-suaa™H My =

u(l)u(1+A)[A_lu(l)u-uu(l)A](1+A-1)u(1)u =

M{q(1+A) (aa-A" 'q) (1+a”)q} .

We thus get
Theorem 4.31. Lax equations with L = { + C-lq have the third Hamiltonian

structure

- -1 H
3p(@) = a(sa) (@81 g B L H =Ky, (4.32)

for P = LG. The Miura map (4.30) is canonical between (4.32) and (4.26).

Again, we have to check the lowest case of P = Lz. Then P_ = Q-lqt-lq, so

o

M_ Dy

2,(1) = ¢£78,() = ¢ lala

3p(a) = a@®P-V)y . (4.33)

On the other hand,

H = 1 fnq (4.33")

in (4.32) yields

a(+) (aa-87'9) (147 q 3= = a(1#) (g=a V) =

S0 1@ DD

q(q- -q) =

as in (4.33).
Remark 4.34. The existence of the third Hamiltonian structure (4.32) for
the specialized operator L = { + C_lq strongly suggests that analogous extra

Hamiltonian forms exist for at least some other nongeneral operators of the form
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N
~-v(i+
L=¢(1+ 2 ¢ ¥(@ 1)qj), Y > 1. The simplest case must be when L is monomial
j=0

§(1+§-yq) or binomial §(1+§-yqo+§-zyq1). If we hope to induce the Hamiltonian
structure from the Miura maps, the binomial case is actually simpler, and so at

this point we shall analyze it.

5. Modification of §(1+§-Yqo+§_zyq1)

We have now
2, =t ™) L, g, =148y 21, .1

so that we recover the modified Toda situation for y = 1. It would now seem
appropriate to use the path of section 3 and eliminate q's at each step. This

is indeed what we shall do. We have

2,8, = LI+ Yy + 2Py (5.2a)
8,8, = Lt V(D) 4+ Py ) (5.2b)
(2,2))" = z ), (0" = : q;mgd (5.3)

Now we take P = iZny = diag[(21£2)nY , (2221)“71 . Then the modified Lax

equations (1.7) become

25(w) = ula¥'p (@) - q (V)] , (5.4)

95(v) = v[a¥q (ay) - p (V)] . (5.4b)

Next are functional derivatives. For

_1 n
Hn =4 Res (2122) , (5.5)

we have

aH_ ~ Res[(zlzz)n'ld(zlzz)l = Res[zpj(n-l)cj e Y {dutdv+
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+ £V Pavrvan P13y = py_l(n-l)(du+dv)+pzy_1(n—l)[u(Y)dv+vdu(Y)] .

Therefore,

p;j(m) =p; (-1) +p

_ 1-y _ 1-2y
pj(n) = Apj_l(n 1) + A pj_1+y(n 1) (utv) + A‘ P

that

oH_ N
5 - Py_l(n-l) + A Vsz_l(n-l) ’
6H

o - o) .

5 - py_l(n 1) +u pZy-l(n 1) .

n _ n-1 _ n-1
Now we use (2122) = (2122) 2122 = 2122(2122) to get

(n-1)a3 (utv) + P (@-1)adu Wy |

j-14y -1+2y

12y

. o . n _ n-1
Taking { -term in (2221) = 22(2122) 21, we get

q,(n)

For j = 0, apply A to (5.7a) and subtract (5.7b) to obtain

I

1-A"Y

A A-1

Po(n)

0, subtract (5.7b) from (5.7a) and get

For j

Al-y 1_Al--Zy

P @D = Fhp (- ) + g p, @Y

Now substituting (5.9) and (5.10) in (5.8), we have

a7y ]
4@ = 120 [@uvp, @D+t Vp, 1P

1)u(){)

p_l(n-l) + (u+A’yv)py_1(n-1) + A-Yu(Y)vpzy_l(n-l) .

[py_l(n-l)(u+v) + (1+A-y)p27_l(n-1)u(y)v] .

v .

v .

(5.

(5.

(.

(5.

(.

(5.

(s.

(.

6a)

6b)

7a)

7b)

9)

10)

11)

We can now handle (5.4). Substituting (5.9) and (5.11) into (5.4) we find
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7Y )
Bp(w = u o (1@Y-0w@-Dvlp,  y-Dr @2 W, vy,

(5.12a)
25 = v 1o (@ -dur@Y-a)vle @y-1+@Y-a" W, @y-13

(5.12p) .

To represent expressions in the curly brackets through gg and g% of (5.6),

H= Hny’ we use the same device as in solving (3.14). Suppose, for (5.12a), we

have found operators A and B such that

6H SH
AsutBa =

{ -++ }in (5.12a) .
Using (5.6), we get the system

A+ B = (AY-Au + (A¥-1)v ,

AA-yv + Bu(y) = (AY-AI-Y)u(y)v .
Thus, A = au, B = Bv, and

ou + Bv = (AY-A)u + (AY-I)V s

aa™Y + g =Y - AVY |

from which we readily find

a=na¥-a, p=a¥1,

A= (AY-M)u , B = (A¥-1)v .
Therefore
-y
=y 128 0 Y Ay, OH Y_1yy OH
9p(u) = u 5o [(A¥-a)u 5 + (AY-1v 1 . (5.13a)

The same computation works for (5.12b). If
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S6H SH _ ...y .
AE‘FBG—V— } in (5.12b),

then
A+B= A1)+ @a¥-a)v ,

an Yo + gu¥ (AY_Al'Y)u(Y)v ,

and, therefore,

A=), B= @Y-a)v ,

). Y_pyy
5 + (A'-A)v 6v] . (5.13b)

¥
1A ra¥lp)u 2

3§(v) =v

Formulae (5.13) provide the Hamiltonian form of the modified Lax equations
with L defined by (5.1). The fact that equations (5.13) are indeed Hamiltonian,
and the following theorem are particular cases of the results which will be
discussed in section 7.

Theorem 5.14. The Miura maps Ml(L) =

MZ(L) =4 21, where L =

122’ 2
§(1+§_yqo+§‘2Yq1), are canonical between (5.13) and the N = l-case of III (4.14).
6. Modification of §(1+§-qu)_

In this section we specialize operators in (5.1) in such a way that

2.9, = e+t . (6.1)
That is, we consider

2, = ta+t ) 2, = 1-¢ Y . (6.2)

Let us consider, along the lines of section 4, the problems of specializa-
tion of (5.1) into (6.2).
First we look at the Lax equations (5.4). For these to survive, we must

have

ap ay) - g @y) = AYq (ay)-p,(0y)
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or
(1+aY Hp_(ay) = (1+8V)q (ay) .
By using (5.9) and (5.11), this becomes
(1+Ay-1)A[-(1+A-Y)p2y_1(ny-1)u(y)u] = (1+AY){(A-1)upy_1(ny-l) -
- (1+A1_Y)pzy_l(ny-l)u(y)u} . (6.3)
Since
+a¥" Haa+a™)y = a+aaYyanal™Y)
(6.3) reduces to
Py (yn-1) = 0 . (6.4)
Since

Res{[£(1+¢ 2¥q) ™YL ¢17Y) =

py_l(ny-l)

= C-(n-l)y~coefficients in (1+§-2Yq(1))(1+§-zyq(2)).-- (1+§-2yq(ny-1)) ,
(6.5)

and since the product in (6.5) is polynomial in §-2Y with all coefficients

(@,

present being non-zero and belonging to the semiring hﬂ[q it follows that

n-1 must be odd:
n =0 (mod 2) , (6.6)

which solves our first problem of specialization. As in section 4, it is clear
that equations (5.4) do not degenerate because p°(2ny) and qo(Zny) do not vanish.
+
Next we consider c.l.'s. Obviously 0 = Res(llzz)(2n I)Y, thus the c.l.'s

become trivial. For the same reason, remain nontrivial.

Heont1)y Hony

Finally, let us look at the problem of converting the equations
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95(w) = ula¥lp (20v)-q, (20v)] (6.7)
into a Hamiltonian form. We begin with the conservation laws

-1 2ny
H2ny = Iy Res(£122) . (6.8)

We have

dH, Res{[£(1+¢ 2V) 120Y 1q¢12Y3 (20y-1)dv =

2 = Pay-1

= pzy_l(Zny-l)[-u(Y)du-udu(y)] , (6.9)

)

where we denote w = ~-uu to conform with the notations of section 4. From

(6.9), we get

0 - pzy_l(Zny—l)u(y) + A—Yupzy_l(Zny-l) , (6.10)

which becomes, after multiplying both sides by u:

6H

w22 (18 Vv, | (20v-1) . (6.11)

Using (6.4), our equation (5.12a) becomes

=Y
“(u) = u 1A (pAYalmY -
ap(u) =u at-a )wpzy_l(Zny 1), (6.12)
and since (1-A"1)(aY-a1"Y) is not divisible by (1+A”Y), we conclude that (6.11)
cannot be used in (6.12), and, therefore, as in section 4, the second Hamiltonian
structure does not exist and we have to look for the third onme.
How are we to proceed? We need to express the right-hand side of

(6.12) through

) (n-1) -y
u === = (14 W,y 2(a-DY-1) . (6.13)

1]

. m m-1 _ m-1 ,
We write (2122) (2122) 2122 = 2122(2122) in the form
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pj(m) = pj_l(m-l) + (m-l)w(j) , (6.14a)

Pi-1+2y

- - 1-2y
pj(m) = Apj_l(m 1) + A

pj_1+zy(m-l)w . (6.14b)

Subtracting (6.14b) from (6.14a), we get

(1-8)p (m) = (a1 Gy () (6.15)

j+2y

which shows that pj(m) can be "almost expressed" through pj+2y(m)' In

particular, for j = -1, we obtain the familiar equations
o m = AL (6.16)
-1 1-A 2y-1 : :
. 2ny-1 _ 2(n-1)y-1 2y _
Now we have to write (2122) = (2122) (2122) =
= (2122)2y(21£2)2(n-1)y—1, pick up the Czy-l-terms to result in an analog of

(4.22), and devise some elimination scheme which, using (6.15), will leave us
with a desired expression of (6.12) through (6.13). We achieved this for y = 1,
in going from (4.22) to (4.24). For y > 1, I want to argue that the task is
impossible, at least along the proposed route. To simplify the arguments, notice
that we are actually talking about the scalar operator §(1+§-2Yw) in our dis-
cussion, and that the modified origin of our problem is not important. Thus, we
could begin with the scalar operator §(1+§-yq) and restrict ourselves to this

case. The first new case would be y = 3, so let us take
-3
L =80+ “q) . (6.17)

Walking along the familiar route with "=z pj(n)CJ, we get

J
p.(@) =, (n-1) +p ., (a-1)q" (6.182)
J j-1 jt+2 ’
p(n) = fp,_ (a-1) + A% (a-D)q (6.18b)
p_ () = (1+a"HA™ p (m)a , (6.19)
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p () = (1+a”+a"%)p, (n-1)q ,

S6H

n

dpla) = q(Az-l)po(m) =

Now we need a formula for pz(m-l) in terms of pz(m-4). First,

L3 = c3 + [q+q('l)+q('2)] + {[q('1)+q('2)]q('3)+q(-4)q('2)}c'3 +

RCONCONC IS
From L" = L’L

p (n) = Py _3(n-3) + p (n-3)[

+ Ps+3(ﬂ-3)AS+3{[q(-1)+q(_

p () = A% (n-3) + [q+q"

+ q(‘é)q(-z)}A-3ps+3

Ln-3L3 - 13;n-3

-1 no_n_ -
H =2 ResL , 54 - p,(n-1) ,

1

a@?-1)(1+a 8 ) gp, (m-1), m = 3n .

6
, we obtain

q®rq5 Dy (5720

IO IO NC I

¥ (1), (-2 -3)

D 1p_(@-3)+(lq

(n-3)+q(_6)q(_a)q('z)A-6p3+6(n-3) ,

which becomes, after multiplying by q and putting s = 2:

qp,(n) = gp_; + ap,lqtq

m ®), (3, @

+q(2)1 + qps{[q

. q(l)q(3)} + p8qq(Z)q(4)q(6) ,

qp, (n) = qup_l + qlqtq

('1)+q(-2)]p2 + {[q(-1)+q('2)]q(-3) +

+ q("')q(-z)}qA-ap5 + 87400 PO

where P stands for pi(n-3).
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Relations (6.15) for Py and Pg become

- = 8 _ -2
(8-1)pg = q"'pg - A "qpg (6.26)
@a-1p, = ¢Pp, - 4%, . (6.27)
Denote R = pgqq(z)q(4)q(6), then (6.26) becomes

aa® ™ a-13p, = 1-a7Hr . (6.28)

We need to get rid of Py and R, to be left with P, and P, =

-5
AI_AI ap, only. The result must be an operator, with constant coeffi-

cients, acting on qu(n), as is seen from (6.22). Thus, we need to apply
some operators A(A) to (6.25a), C(A) to (6.25b), add them and, to be rid of Ps
and Pg, use (6.27), (6.28). Since R comes into (6.25) only as R in (6.25a) and

6R in (6.25b), then, in view of (6.28), we must have C(A) = [B(l—A-z)-A]A6, with

A
some operator B = B(A).
Let us write x 2 y if (x-y) can be expressed in terms of Py

Denote p = Py Then (6.27) can be rewritten as

MNONC NI NN

ap (6.29)
We have

qq(2)q(4)p o q(5)p(2)q(2)q(4) - AZ[q(3)q(2)q(2)p(5)] ~

(6.30)
MECTROREONENE NI C SN N €)My

where

o: = pg{™ P3| (6.31)
Analogously, we have

qps{[q(4)+q(3)]q(2) + ¢y = @20, (6.32)
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psq(3)A3{[q('1)+q('2)]q('3)+ 9Dy 2 (14a2iatye . (6.33)

Therefore,
{a + [B1-a"2)-a18%qp, (n) = BAc - BA®0 + A{aP+a*+aC]o +
+ [B(1-2"2)-a1a3 (140%48%)0 (6.34)

and if we don't want O, we must have

0 = BA - BA® + AaZ+a®+a%) + [B(1-a7)-a1a3 (14a%40%)
or

B[a-28+(a2-1)a(1+4%+a%)] = A(a3-a%) (142240 |
Consequently,

B = A4 (1en%+a) . (6.35)

However, with this B we have

(B(1-8"2)-a18% = A{a™0(a%-1) (1+a%+a%)-134% =

n

o
]

A{a~%(a%-1)-134% = -2 ,

1]

which means that quz(n) + quz(n) = 0 and no equation for qu(n) results.
Notice that since we worked with (6.26) and (6.27) only, the arguments above show
that there is no way one can express D(A)qu(n) through qu(n-3) only, unless

the operator D(A) vanishes. Thus the third Hamiltonian structure does not exist

]

for L = C(1+§-3q). It probably does not exist for any y > 2, L §(1+§-Yq), but
it would be hard to imitate the arguments above which work with a concrete form

of LY.

7. Modified Form of L = ;(1+z§'Y(J+1)qj).
The results of section 5 suggest that it might be possible to analyze the

modified equations with
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g =t g, =143 §'7(1+1)vj ) (7.1)
J

This is what we are going to do now, but instead of using the methods of
section 5 which require us to solve systems of operator equations, we shall use

the route given in section 3, holding on to the qj(n)'s.

We have

9,2, = L{1+E V(utv ) + m;g YDy e JOMVy (7.2a)
8,8, = §{1+§_Y[u+v§-l)] + m§0 ;‘Y(m+2)[v;;})+uv;7‘l)1} , (7.2b)
@2 = 2 p @t , @) = 3 g mt] . (7.3)

J

Equations Bﬁ(i) = [(iz)ny+ , L] become

- = y-1 -
dp(u) = u[a” “p (ny)-q (nY)] , (7.4a)
- = y(m+1) -aTYi 4b
BP(vm) jfo [vm+jA qyj(ny) A vm+jpyj(ny)] . (7.4b)
For H = 1 Res (2.2 )n we have
n n 1727

n-1 n-1
dHn ~ Res[(llﬂz) d(£1£2)] ~ Res[(ﬂzll) d(lzll)] ,

or, using (7.2),

+ +
dHn ~ py_l(n-l)(du+dvo) + 2 p (n-l)[dvm_,_1+u(ym Y)dvmi-vmdu(Ym Y)] ~

m>0 y(m+2)-1

(n-l)[dv(-1)+v;y_1)du+udviy_l)] .

(-1
~ qy_l(n-l)[du+dvO 1+ 2 ¢q ol

m>0 y(m+2)-1

This implies that
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SH
_n_ TymTy -
A SR
&H
_n_ 1y, (Y1)
el (n 1) + Z qy(m+2) 1(n l)vm ,
SH

n _ (ym+y)
&v. - Pymrn)-1 (D) *u Py(m+2)-1(@D >
SH 1-

N (n-1) + A ¥ (n-1) .

&, " Yymrn-1 Uy (m+2)-1

n-1

(7.5a)

(7.5b)

(7.5¢)

(7.54d)

. . cys n _ _ n-1
On expanding the identities (2122) = (2122) 2.2 = 2122(2122)

172

n _ n-1 _ n-1
and (2221) = (2221) ?221 = 2221(2221) , we get

(n-l)A (u+v )+ X p.

p.(n) =p. .(n-1) +p
J j-1 m>0

J
j-1+y i-1ry(ue2) (PTDA v

_ - 1-y -
Pj(n) = Apj_l(n 1) +A (“+V0)Pj-1+y(“ 1) +

Al-Y(m+2) YY)

pj-1+y(m+2)(n_1)[vm+l m

q;(n) = ., (n-1) + 914y (n-l)Aj[u+vg-1)] +

+ 2

m>0

Cqyadr (F1), (y-1)
qj_1+y(m+2)(n DA v Huv 1,

qj(n) (n-l) + Al Y[U+v( 1)]q (n-1) +

j-1+y

1-y(m+2) -1, (y-1)
m>0 . q.i'l'*)!(m'fZ)(n 1)[v 1 "Wy 1.

95

o (YY) ]
m

(7.6a)

(7.6b)

(7.7a)

(7.7b)
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. -1 n-1 n-1
N n = -
ow let us write down (21£2) 21 21(2221) and (2221) 22

n-1 .
22(2122) , thereby getting

(@-1)u) = ba;_;@-1) + A Vug, L (ee) (7.8a)

._,(n-1) +
Py_y(n-1) +p j-1+y

j-1+y

- 1 j
pj(n-l) + 2 A ¥(m+ )v p (n-1) = qj(n-l) + I qj+y(m+1)(n_l)AJvm .

m>0 m" j+y(m+1) m>0
(7.8b)
Lemma 7.9.
SH
= 1-y -y(mt+1) n
q, (n) = Aq __.(n-1) + A" ‘uq _q(@-1) + Z A vV o (7.9a)
Yr yr-1 y(r+1)-1 m>0 m 6vm+r ’
6H
p, (n) =p_ __.(n-1) + p - (n-1)AYu + 3 v ¥r) n (7.9b)
yr yr-1 y(r+1)-1 m>0 m 6vm+r
Proof. From (7.7b) with j = yr, we obtain
- _ 1-y _
qu(n) = Aqu_l(n 1) +A uqy(r+1)_1(n 1) +p,
where
= 1-y(m+1)_(-1) - 1-y(m+2) _(y-1) L
1] mfo A v qu_1+y(m+1)(n 1) + mfo A uv qy(m+r+2)-1(n 1) =
1- +1 -1 -
20 A Y(m )V; )[qy(m+r+1)—1(n-l)+A yuqy(m+r+2)_1(n-1)] = [by (7.5d)] =
m>
6!
= s A—y(m+1)Av(-l)A—1 Hy = 3 A-y(m+1)v 6Hn
m v m v ’
m>0 mtr  m>0 mtr

which proves (7.9a). Similarly, from (7.6a) with j = yr, we find that
= _ _1yAYE .
pyr(n) pyr-l(n D+ Py(r:-t-l)-l(n DATu + ",

where
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- yr. yr_ (ym+y)
W= 2 p @AYV + 3 p _(@-1)Au v
>0 Y(m+r+1)-1 LI y(mtr+2)-1 m

= 5 L)

_qy,, (Y(mtr)+y) -
2 Vm [Py (mtr+1)-1 @D Py (pirez) - (B DU 1= [by (7.50)] =

6H
= 3 (O n
m

m>0 6vm+r

which proves (7.9b). O
Comparing (7.9a) with (7.5d), and (7.9b) with (7.5c), we obtain the

formulae

6H 8H
n -y(m+1) n
q (n) =—+ X A v (7.10a)
y(r+1) évr >0 m 6vr+m+1 ’
OH 6H
= _n (yr+y) n
P (n) =35—+ X v — . (7.10b)
¥(r+1) 6vr m>0 m 6vr+m+1
Lemma 7.11.
-y OH -y(m+1) SH
- 1-A
RO TS = A A S AT 7-112)
m>0 m
-y OH ~y(m+1) 8H
- 1-A n 1-A
po(n) = A A1 Y sn + I A 1T Vm v - (7.11b)
m>0 m

Proof. By subtracting (7.9b) from (7.9a) with r = 0 and using (7.8a) with

j =0, we get

S6H

- = ~y(m+1) _ _n
q,(n) po(n) = mEO a l)vm 5, (7.12)

=}

0, (7.7a) yields

For j

= - 1y, (Y1)
q,(n) = u[qy_l(n 1)+m§o qy(m+2)-1(n l)vm ]+
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EERICORES eV 1y A1) = [by (7.50)] =

SH
=u 3;5 +0, (7.13)
where
0 =q_ (1) + I vn(l'l)qy(mﬂ)_l(n-l) . (7.14)

m>0
For j = 0, (7.6b) gives us

D+ 3 ATYED)

= AL7Y N
p,(n) = A u[py_l(n 2

Py (mt2)-1" D1+

(m+1)

vmpy(m+1)-1(“'1)] = [by (7.5a), and

+ [8p_ (n-1)+A 3 A7Y
m>0

SH

(7.14) together with (7.8b) for j = -1] = Al™Yu Bt 08 . (7.15)

Applying A to (7.13) and subtracting (7.15) to eliminate 6, we get

1- Gﬂn
Aq (n) - p (n) = (a-a" Vyu &2 . (7.16)
Upon solving (7.12) and (7.16), we recover (7.11). a

Substituting (7.10) and (7.11) into (7.4), we obtain the second Hamiltonian

form of our modified equations:

1-a7 YD) ey

-2 & 1=V s
A-1 m va ’

Y.
A1 Y +z(a%-1)

?5(u) = u[ Y 1-1a
m>0

(7.17a)
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-y -y(r+1)
- _ y(m+1)_ 1-A S6H y(m+1) . 1-A 6H
aP(vm) - vm[(A 1a A1 %5 +2I(a 8) A-1 Ve bv I+
r>0 r
t2 {Vm+r+1AY(m+1)[g§ + 2 A-Y(SH)vs <5v61.I l-
r>0 r 5>0 r+s+1
-y(r+1) SH (yr+y) 6H
- A v [==/—+ 2 v -1}, (7.17b)
mt+r+1"6v 820 6vr+s+1
where H = H .
ny

Notice that for y = 1 equations (7.17) degenerate strongly into (2.21).
Also, the (v,v) part of the Hamiltonian form (7.17) is exactly the Hamiltonian
form III (4.14).

Theorem 7.18. i) Equations (7.17) are Hamiltonian. ii) Both Miura maps,

MI(L) = 212 MZ(L) = 2221, are canonical between (7.17) and III (4.14).

2,
The proof will be given in Chap. X.
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Chapter V. Deformations
We discuss deformations in general, find some curves for the Lax equations
with L = + 2 C-qu, and a surface for the Toda lattice.
J

1. Basic Concepts

The Korteweg-de Vries equation,

u = 6uux U (1.1)

can serve as a convenient example to discuss the general phenomenon of deforma-
tions.

Consider the following equations:

2
v, = 6v Ve " Vexx ? (1.2)
w, = 6wwx T Voexx + 682w2wx , (1.3)
sinh 2gq 2 23
9 = 6(T 5 ) a4 T Yy, T 2ETq (1.4)

_ 2 . 2.2 3
P, = 6(1+¢ C)px Pyrx + 2e”v Py »
(1.5)
C: = sinh(2gvp) + cosh(2evp)-1
: 2gv 282 :

If v satisfies the modified Korteweg-de Vries equation (or mKdV for short)

(1.2), then
u=Mwv) =v +v (1.6)

satisfies the KdV equation (1.1). The map M in (1.6) is called the Miura map.

Now one can easily check out, that if w satisfies (1.3), then
- _ 22
u=(G(e))(w) =w+ e°w + ew, 1.7)

satisfies (1.1). Since all c.l.'s of the KdV equation (1.1) come back via (1.7)
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to become c.1.'s of (1.3), we can consider (1.3) as a deformation of (1.1), that
is, a one-parameter curve of equations, which goes through our original equation
(1.1) when the parameter € = 0. In addition, we have a contraction (1.7) of our
curve into its base point (1.1).

This example indicates that integrable systems occur in families, which are
sometimes contractible. There is enough evidence already accumulated in differ-
ential Lax equations [6,7], to believe that Lax equations themselves and the
basic morphisms in the theory of Lax equations, can be viewed as base points in
the curves which deform them. Let us look again at the KdV equation. One can

check that if q satisfies (1.4) then

v = (g(e))(q) = 28280 4 o (1.8)

satisfies (1.2), and

-
= (M(e))(q) = B (ea) 4 o (1.9)
£

satisfies (1.3). Thus (1.4) is a mKdV-curve, (1.8) is its contraction,

and (1.9) is a deformation of the Miura map (1.6), since lim (M(g))(q) =
£>0
q2 tq = M(q). In addition, we have the commutative diagram

G(g) - M(g) = M-g(e) . (1.10)

I remark in passing, that the origin of the map M(g) in (1.9), is not known
even in the simplest case of the KdV equation (1.1).
Finally, let me mention that there exists a deformation of the diagram

(1.10), from which the simplest part is as follows: if p satisfies (1.5) then
w = (G(e,v))(p) = C + vp_ (1.11)

where C is given in (1.5), satisfies (1.3). Thus we have at least a surface over

the KdV memorabilia.
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Incidentally, deformed equations usually acquire discrete symmetries which
depend singularly upon the deformation parameter and are thus absent from the
original equations. Probably, the simplest case provides (1.3): if w satisfies
(1.3), then w = s(w): = -w - 8-2 satisfies (1.3) also. Naturally, this symmetry
can be lifted up through (1.9) into (1.4), and also can be deformed through (1.11)
into (1.5).

What is a general origin of these deformation phenomenon? The answer is not
known, and apparently there is no common origin. From the computational point of
view, let us notice that the usual idea of considering first the infinitesimal
deformations doesn't work. 1Indeed, if one has any regular map near the identity,

say
a = (£(g))(b) = b + 0(¢) , (1.12)

then one can formally invert the map (1.12) in the appropriate ring of

formal power series in &£, say,
b= (£1(e))(a) = a + 0(e) . (1.13)
Then, whatever the original equation for a is, say,

a, = F(a) , (1.14)

we find from (1.13) that

by = 55 LET @@ |,z n) = FOB) + 0@ - (1.15)

Consequently, 82 =0 or sN = 0 won't help, since the essential condition that
(1.15) is a "finite" equation (e.g., in the sense that it involves only a finite
number of derivatives), is automatically satisfied when one cuts off higher terms
in €.

Let us now review the known methods of finding deformations so we can see
which ones are applicable for discrete equations which are the ones with which

we are working in these lectures.
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The first method heavily depends on the fact that the equation under con-
sideration is of the Lax type Lt = [P+,L], where we now write Lt instead of
aP(L) in order to make the reasoning more informal. The importance of this
representation comes from its interpretation as a compatibility condition for

the following system

"

Ly = M, (1.16a)
Y = Py, (1.16b)

where A is a formal parameter which commutes with everything. If we could find
a representation for (1.16a) which gives a resolution of the coefficients of L
in terms of {, then (1.16b) becomes an autonomous equation and we could hope to
interprete it as a deformation and use the resolution just mentioned as a con-

truction of this deformation. Let us see how this works. We take
-1 2 2 -1
L=t+t, b, = @, =%+ eV,

q, = qWq - 9V, (1.17)

as in IV (4.33). An auxilliary problem for (1.17) would be
(CENERE (1.18a)
Y, = [e2+qra D1y (1.18b)
From (1.18a) we have
v = M gy, (1.19)
q=Av - Wy, (1.20)
which is the desired "resolution" of the coefficient of L in terms of Y. Here

v: = ¢(1) 1 , (1.21)
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and we treat all letters (except A) as noncommuting so as to cover the matrix

case at no extra cost. Using (1.19), we have from (1.18b)
1 -1
q’t = MI’( ) + q( )‘b ’

D = @ 4 gy @

I

and thus

(1) -1 (1) -1 -1 _
NI A I X A

v, = My, =y
= I Prqu W1y - vi PPyt =
=awBy 4 qv - v[Av+q(-1)] = [by (1.20)] =

Av(l)v + [Av-v(l)v]v - sz - v[Av(-l)-vv(-l)] =

= Ay Dyape D] 4 G2, D L (D2 (1.22)
Now put
e=A"2,p=w

Then (1.20) and (1.22) become

(1)p

qQq=p - £€p , (1.23)

Py = pMp - ppt™1) 4+ gp%p "V p (12 (1.24)

Thus (1.24) deforms (1.17) while (1.23) contracts (1.24) into (1.17).
Although we used crude computational force to derive a deformation of (1,17),
a little bit of reasoning will show that the same device produces deformations
for all Lax equations associated with the operator L = { + §-1q. We leave this
to the reader as an exercise.
Next we describe some Hamiltonian machinery which is useful in deformational

analysis.
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Theorem 1.25. Suppose we have a bi-Hamiltonian system of evolution equa-

tions, which we can symbolically write as

SH S6H
- +
q =8 P=p 20, (1.26)
8q 8q
1 2 . Wi = " 1 2
where B° and B” are matrices of operators "in q-space. Suppose that B° and B

are compatible; that is, O(B1 + ﬂBz is a Hamiltonian matrix for any constants o

1 6Ho
and B. Assume also that B® — = 0.
8q
Now consider another space with variables v. Let ¢: v > q be a map of the

form ¢(v) = v + 0(¢). Let B be a Hamiltonian structure in v-space such that ¢

o

is canonical between B Q: and (B1+5B2) —.
v
Then any equation (1.26) has the following deformation

n
v, =B 9: o[z (-nFeFly
v k=0

n-k] (1.27)

and ¢ is its contraction.
Proof. First we check that our original equation (1.26) can also be written

as

~

6H n
2 = B4eB?) 2 H:= 3 (DFe®ly . (1.28)
t - n n-k
6q k=0
Indeed,
off n SH n SH
- - - -k+
eBz _:5 = 3 (-l)k e k BZ ? k _ s (-l)k c k Bl n_k 1_
5q k=0 8q k=0 6q
6H n-1 6H SH
=gl 2L, 5 (el gl Bk gince B! —2=0) =
8q k=0 8q 6q
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6H n 8H SH 8H
- B1 n+1l + 3 (-l)k+1 e k-1 B1 n-k - B2 _n _ B1 _n

5q k=0 5q 8q 5q
Now we show that equations (1.27) are indeed regular in €; that is, no
negative powers of € are involved in the equation itself, regardless of the fact
that ¢*(§n) is heavily singular. But this is obvious: since ¢ is near identity,

we can invert it and get

v=gq+0(),

thus we can have ;t expressed regularity through a and at’ i.e. ;t = at + 0(e),
and again, since ¢ is regular, and at is given by (1.26), we see that ;t is
regular in € as well. m|

The simplest case of the theorem provides the map (1.7), in which B = 3,

B1 =9, B2 = -33 + 2ud + 23u, ¢: w > u = w2 + szwz + ew and ¢ is canonical
o] 2 3 o]
between 9 pom and [0 + £7(-97+2ud+23u)] 50" Then
u, = 6uu_ - = [8+82(-33+2u8+28u)] 5 (8-2 EE - 8-4 E)
t x  Uxxx Su 2 2

The third method is very similar to the Hamiltonian one of theorem 1.25 and
involves the renormalization of modified variables. For the case of the KdV
equation (1.1) for instance, one can proceed as follows. If u is a solution of

any linear combination of KdV fields in the KdV hierarchy {ut = Xr(u)lr =

0, 1,...}, say u, = p3 aiXi(u), then u = utc, (c = const) is also a solution, of
i

another linear combination u, = 3 &.X.(ﬁ), where o, = o, + X f..(c)a, for some
t i i i j<i i j
polynomials fij(c)' Now let v be a solution of a linear combination of mKdV
fields, say, v, = X aiYi(v). Then
i

t

— -
u=v + v, = M(v)

is a solution of u = 2z aiXi(u). Now put
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Then
u = v2 +v = Loy (w+£2w2+8w ),
X 2 X
2e
1
take c = - 3 and we are done.
2e

We apply this method in the next section.
2. The Operator § + = C_qu and its Specializations

Let a = (a,,...,0_) be a vector, u.e&. Consider a Lax equation
1 n i

i
9,(L) = [Xo,L,,L], (2.10)

1

with L=§ + 2 Q_qu. Let us concentrate on the dependence of our constructions
A]

upon the variable q, only, and for this reason we will write L = L(qo). Since
i i i i-k k
L(q +c) = L(q ) + ¢, then [L(q +c)]” = Z (;) L(q)) ¢, and thus if (q _,q,,...)
0 o () k=0 k o . 0’71

satisfy (2.1a), then (ao = qo+c,q1,...) satisfy (2.1a) where o = Qca, Q¢ being
nXn lower triangular matrix with ones on the diagonal and polynomially dependent
upon c.

Now consider the modified Lax equations of section 2, Chapter IV:

- =21 -
3, (D) = [ 8,17, 11, (2.28)

1

where

i= B =t 2 =143 gl . (2.3)
2. 0 j J

As we know, (2.2B) implies (2.1B) for L = 2122 or L = 2221; these two maps

are denoted MI,MZ:
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- q, = “+Vo ’
Ml : (u,v) » -y .y u(m+l) (2.4)
A+l mtl ’
- g =u+v,
M2 : (u,v) > { -1) (2.5)
Y+l = Vw1 TV
Now let us change variables in the (u,;)-space by:
-1
u=U+¢ > vy = eVm , (2.6)
so that Ml and M2 become
_ q, =U+ev ,
Ml (u,v) » (m+1) (2.7)
Y1 = Vm(1+eU ) + 8Vm+l ,
. _ Eo =U + svg-l) ,
M, : (U,0) » -1 (2.8)
Qe = Vm(1+£U) + st+l ,
where q_ = - 5-1
e q, = 4, .

-1

Thus, a B-combination in (U,V)-space produces a B =q¢ B -combination in

-1
gq-space. Since the matrix Q € s invertible, we can find B such that B =

(0,0,...,1). Using the same arguments as in the proof of theorem 1.25, we deduce
that the resulting deformed equations in (U,V)-space depend regularly upon €.
Thus we have proved

Theorem 2.9. For any Lax equation Lt = [Ln+,L] with L=§ + 2 C-qu, there
i

exists a curve of equations in (U,V)-space, polynomially dependent upon €, such
that both maps (2.7) and (2.8) are contractions of this curve.

Due to the extreme simplicity of the contraction maps (2.7) and (2.8), we
can easily handle the problem of specialization. Consider the operator

L(y) = §(1+2 Q-Y(J+l)§j). As we know, every flow L = [Ln+,L] of our original
J

operator L leaves the submanifold IY s = {qj = 0|j # O(mod y)} invariant for all
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1162;7; the corresponding deformed flows in (U,V)-space leave invariant the pre-

image under either ﬁl or M, of IY. Let us take ﬁl’ for definiteness. From (2.7)

2
. L ~=ly
we easily find Ml (I®):

2 +1).-1
U= eV, Vo= -ev  (1-e vim Ml h+1#£0 (mody) , (2.10)

which provides a deformation of the flows for the operator {(1+Z Q-Y(j+1)ﬁj).
J

For example, for y = 2 and L = §(l+§-1§), from (2.7), (2.10) we get

§g=va-e&vy v = v, (2.11)

which is, of course, (1.23) in its commutative version.

Remark 2.12. Once the contraction maps (2.7) and (2.8) have been found,
one can apply theorem 1.25 to construct deformed equations. Indeed, the original
Miura maps (2.4) and (2.5) are canonical between the Hamiltonian structures IV
(2.21) and III (4.14) with y = 1, in (u,v)- and q-spaces respectively. After
the change of variables (2.6), we get the structure 8-1 B(U,V) in the (U,V)-

space, where the matrix elements of the matrix B = B(U,V) are given by

= - _ar-1
Boo =0, Bo,r+1 = (1+eU) (1-A )Vr ,
k+1
+1 k-1 (a’-1)(1-a"")
B =V Ar - A v + efvy *——r———=V +
r+1,k+1 r+k+1 r+k+1 r (l-A)Ak
r- -s-1
+ z (vr+s+1A mvm—va vr+s+1) : (2.13)
m+s=k-1

Simultaneously, the change of variables

qo=q°'5 ’qi"'l:qi'.'l’

makes in new q = (Eo,ql,...)-space the matrix B2 + s-lBl out of B2 (lemma III

- - -1,1
4.22). Multiplying both new matrices (& 1B(U,V) and B2 + & 1B ) by &, we see

1 2
that both contractions (2.7) and (2.8) are canonical between (2.13) and B™ + €B".
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Hence we can apply theorem 1.15 for the explicit construction of deformed equa-
tions.
Remark 2.14. Looking at the matrix (2.13), we observe from its first row,

that equations for U are

U, = (1+eU) = (1-a"T"lyy S

’
>0 r 6Vr
therefore, whatever H is, we have

)
5t 2n(1+€l) 0

that is, 2n(1+eU) is an universal c.l. Thus we can, following the historical
development of the deformations-related observations, invert either (2.7) or
(2.8) and get

-]
tn(1+eU) = 3 g

n=0 n

(

o.
where Gn‘42 [qj 371 will be c.1.'s for Lax equations in the g-variables.

In conclusion, I'd like to point out that we don't have any analog of (1.8)
for the deformation of the Miura maps (2.4), (2.5). The reason, I think, reflects
the absence of a convenient form of modified-modified equations. There is one
exception, though, where a deformation of the Miura map can be found: it is the
Toda lattice case. Since it is a three-Hamiltonian system, we can take advan-
tage of the Hamiltonian formalism. Without going into details, I simply write

down what the deformations look like.

. -1
qo = (I'A )ql ’
. Toda equations (2.15)
q; = q,(A-1)gq_ .
. -1
u = u(l-A v,
. Modified Toda equations. (2.16)
v = v(A-1)u .
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M
9

(1+e0) (1-a"Hyv

Qe e Qe e
" n 1 n

(]

ut+v,

),

u

v(a-1)u .

p(1+ep) (1-a" g ,

q(1+eq) (A-1)p .

U+ ¢ev,

H
vV + SU(I)V

q(1+ep

p(1+eq) ,

(1))

=pWq .

=p +

q(-1)

=prq -

Commutative diagrams:

~

1

~

Mi+1

[ Mi(a) = Mi [ Di

M. o Mi(e) = Mi ) Di , 1

qo =u + v(-l) ’
H MZ :

B. A. KUPERSHMIDT

Miura maps.
q; =uv .

Deformed Toda equations .

Deformed modified Toda equations .

5 q, U + €V
2 ¢

q, = U + evVU .
Contractions on Toda equations

(-1)

D

u = p(+eqVy
; D,

v = q(1+ep)

Contractions on modified Toda equations .

pt+taq+tepq,

Deformations of Miura maps .
+ epgD
Pq ’

=1,2

+1° Y 2-

Second parameter in the Toda equations:

——
Oe oo
[l 1]

Contractions of

|

U

\

(2.25)

P + vQ(1+eP) , i}
3 By :

Q + vP

Q(1+evQ) (A-1)P .

(1), .

(1+vP) (1+eP) (1-A"1)q

P+ vQ(-l)(1+eP)

V=Q+vPQ .
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Singular symmetries:

Us-U-2815V>-v;t>-t, (2.27)

where t is time-coordinate, and t > -t means that the "flow changes direction,”

or the derivation or the corresponding vector field changes direction.

1 -1

P>P;Q>»-Q-€ v ;t>-t. (2.28)
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Chapter VI. Continuous Limit

In this chapter we discuss some features of a passage from discrete to
continuous points of view.
1. Examples

Let us begin with the first nontrivial equation associated with the

simplest possible operator

L=¢+ ', (1.1)

for P = L. It is 2,(L) = [P,,L], i.e.

3,(a,) = a (a-a"1q, . (1.2)

Let us imagine that q, = qo(x) is a function on Rl and A is the automorphism

of Cm(m}) generated by the diffeomorphism S ﬂRl +(R1, x »> x+tA. Now extend

A
everything in the formal power series in A, which commutes with everything, so

we can take A = exp(Ad), with 9 = d/dx.

If we now put
2
q, = 1+A%, (1.3)
then (1.2) becomes

233

2. oAy (1+A%v) =

Ao, (v) = (1PW)2[A8 +

A283

2+ oI =

2A(1+AZ)A% [ +

2
3102 A by, _
207 (1+A v)[vx + A vxxx+0(A )] =

3 2 1 4
2A {vx+h (vvx + 3 vxxx)+O(A )} .
Thus if we put
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_ 2
8P = zx(at+a) , t = TAT, (1.4)

we obtain

v, =vv_ +

1 2
t x T 6 Vxxx + oY), (1.5)

which reduces to the Korteweg-de Vries equation at the zero-order in A.
The heuristic derivation above has two main ingredients: we treat A as
exp(A g;); and we renormalize q (1.3) and SP (1.4). Since this renormalization

appears as a somewhat less natural operation, we postpone our discussion of it
until the next section.

Consider the following Lax operator
-1 -
L=¢+¢ g +8 % . (1.6)

For P = Lz, the Lax equations ap(L) = [P+,L] become

-1 -2
q,(8-8 T)q  + (1-4 T)q, ,

35(q.)
{ P 5 1 (1.7
3p(gqy) = q(A7-1)(1+A “q  ,

which are Hamiltonian equations with the matrix B given by III(4.15) for y = 2:

_ ALy 2 _ =2 . _ _A-3 .
B, = q,(8-8 g, + q,A" - A Tq, 5 By, = q (A+1)(1-A T)q, ;
(1.8)
3 -1 3 1-a7%
and the Hamiltonian
=q (~ L 2
H= qo( 2 Res L ) . (1.9)

Now let A = exp(Ad), 3 = Then (1.7) becomes, in the first order of A,

d
dx °
dplq) = 2Ma,9.%t9)) 5, 5

ZA(3QIQ;) ’

(1.10)

dpla,)
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and to avoid the definition of precise relations between BP and g;, we change

9, into 2A g{’ so (1.10) turns into

p
&2
* - (¢]
qo = 8(2 + ql) ’ . 5
. MH=50. (1.11)
= 3q,q°
94 1%

The system (1.11) certainly seems unfamiliar, and it obviously has nothing
to do with the differential scalar Lax equations (although its prelimited parent
(1.7) is derived from the discrete scalar Lax equations). It surely has an in-
finity of c.l.'s, as any continuum limit system should, namely the limits of the
original c.l.'s.

Let us analyze (1.11) a bit closer. First let us introduce the conservation

coordinates
u=gq , h = q, + % qz , (1.12)
so (1.11) becomes
4 = a(h-u?) ,
{ﬁ = 3(3uh-Lu’) (113
Let us cast (1.13) into a Hamiltonian form, with the Hamiltonian H = q, = u.

If we look for evolution systems of the form

&/6u
#) , (1.14)

e

ad+da fo+og

B

6/6h

9f+gd bA+3b

with some a,b,f,g ecm(u,h), then a necessary and sufficient condition for (1.14)

to be Hamiltonian is the following system of equations
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o o8 _ ,, 2 2b
2 ogp * (Ere) 5y = 2a 5y * (Fre) 5
ot o _ ,, 02 2
2a It (erg) =2y B2y (sug) 22,
dg 2a _f, _2a 2z _2b
dh “3du 3h) ~ dh (au dhn’ ? (1.15)
8b 9a _ 9f _af g _ db,
3u u " 3n) " 5u (5u " n) °

2a 2b _ g of
dh du 9h du

This statement follows from the methods of Hamiltonian formalism (see, e.g.
chapter VIII, sect. 2) applied to (1.14). We do not need the proof right now.
Since we would like (1.13) to be generated by (1.14) with H = u, we

immediately find that a = h-uz, f = 3uh - % u3. Solving (1.15) we finally obtain

3

a= h-u2 s f = 3uh - % u”

L]

(1.16)

3h2 + 9(u2h -1 6uh - 7u3 .

o
i
&~
=1

~
(]
i

Now let us return to our original variables 9,5 9;- To do this, we must
multiply the matrix in the right-hand side of (1.14): from the left by J, and

from the right by Jt, where

1 0
J =
-3u 1
qo =u
is the Fréchet derivative of the vector ( 3 2 .
@ =h-3u
The result is
2 2
: ~o o 8/6
q (G7+q.)9 + 3(37+q,)  3q.3q, /6q,
°) = ) , (1.17)
X 3q.9q 3(q%0+94%) 6/8q
9 1°% 1°7°% 1
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and it is obvious that (1.17) produces (1.11) for H = q,-
To interprete (1.17), let us take the continuous limit of the matrix (1.8).
Keeping lowest order terms only and using tilde for the resulting matrix elements,

we get

~

2M(q,9q9,*q,3+3q,) ; By, = 2A(3q3q,) ;

o
[}

00
(1.18)

B10 = 2A(3q18qo) 5 B11 = 2A(6q18q1) .

Thus we get 2A times the matrix of (1.17)! This fact may be explained as
follows. As we prove in the next chapter, under continuous limit functional

derivatives go into functional derivatives (Theorem VII 3.4). Therefore, equa-

cd

tions a =B Qg go into equations a =B — (Hc) , where "c" stands for continuous
6q 6q

limit. It is clear that the matrix B® is also Hamiltonian (assuming, that B is),
as follows, for example, from the characteristic equation (lemma VIII 2.20) for B
in order for it to be Hamiltonian. Now, B is a formal power series in A, there-
fore its lowest term in A is also Hamiltonian, since to be Hamiltonian is a
quadratic property. Therefore, the lowest order equations of the continuous

limit, like (1.10), have the Hamiltonian form

é = (lowest part of BC) Q: (lowest part of Hc) . (1.19)
8q

In particular, all Hamiltonian structures of Chapters III-V provide new
Hamiltonian structures for the limiting equations (1.19). Notice, that the
matrix elements of these new structures do not have the operator d in powers more
than first, since Ak =1+ KA + O(AZ). Thus these new matrices are of order < 1
in 3.

The importance of these new systems follows from the fact that until now
there were no known 1st order integrable systems with more than 2 components,

so they provide a set of convenient first examples.
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Let us write down these new matrices, the lowest order of the various Bc's,
for the following Hamiltonian matrices of Chapter III:

1) Brs from III (3.4) becomes

Brs = A(rqs+r3+8sqs+r) . (1.20)

This matrix is important in two-dimensional hydrodynamics.

2) Brs from III (3.12) becomes

s+j+2

+f36B

B, = AR, 343(145)R, 9] , 0 < j,s <B-2. (1.21)

js +s+1

3) Brs from III (4.15) becomes
Brs = YA{(r+1)qs+r+13+8(s+l)qr+s+1+qr[y(r+1)-l]a(s+1)qs +

+ z [q (r-3j)3q . +q, (k+1)3q 1} . (1.22)
j+kt+1=s k+r+l 3 3 k+r+1

4) The third Hamiltonian structure for the Toda hierarchy, III (5.18), becomes

~ 5 2
B = A[2(q;3+3q,)q +2q_(q,3+3q;)] , B, = Al(q;3+3q,)2q,+q 3q,] ,
(1.23)
~ _ 2 ~ _
B, = Alq,dq +2q,(3q,+q,3)] , B, = Al2q,(q 3+3q )q,] ,
while the first III (5.19) and the second III (5.20) become respectively
0 9q
1oa 1, (1.24)
qla 0
o q,9 + 3q q_9q
=2 ! 1 o1 (1.25)
9,29, 24,39,

From what has been said above, it follows, for example, that the lowest

limit of the Toda equations III (5.22):
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3,(q) = Aq’ ,
p'% 1 (1.26)

Bp(ql) = Aqq0 »

is a three-Hamiltonian system with respect to three structures (1.23)-(1.25).
The same is also true, of course, for the higher equations of the Toda hierarchy,

which don't look so silly as (1.26); the next equation is

3p(a,) = 4r(a )"

2
~ ~ q
=P 2 ) =L 2] (1.27)
6q 8q

3,(a;) = Al(a]) “q,(a2) "]

2. Approximating Differential Lax Operators

In this section we prove a generalization of the renormalization formula
(1.3) which provides correctly defined frameworks appropriate in considering
continuous limits. In contrast to the preceeding section, we no longer look at
equations such as (1.2), but only at their Lax operators, such as (1.1).

Let F be a differential algebra over £ with a derivation @ : F » F. Let

G Gy G) Gy
Cp = F[po s+ e Py 1, Cu = F[uo yee ey ] be two differential rings with
pgn) > p§n+1) , 9 ugn) -> u€n+1).

J J J J
Kp = Cp((A)) , Ku = Cu((A)), where A is a formal parameter commuting with every-

the derivation @ acting on them by 9 : Denote

thing. We make Kp and Ku rings with automorphisms by defining A = exp(-Ad). Let

Ku[§,§-1] be the set of finite polynomials in C,c_l over K with the usual commu-

tation relations st = As(b)cs. We denote by
0, ¢ K 16,8711 > ¢ [21((A))

the monomorphism of associative rings which sends {k into exp(-kA3d) and is

identical on Cu,A.
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Denote by @ : Ku > KP an isomorphism of differential rings over F which
commutes with 9, is identical on A and is given on generators by
i N#1 j . N-s
-1 - +
b %53%13 C o+ 3 (DI opatt?, 2.1
j+1 s=0 j-s
Denote by the same letter Y the natural extension of Y from Ku = Cu((A)) to
Cu[al((A)) by allowing Y to act identically on 3.

Theorem 2.2. Let L € Ku[C,Q_I] be given by

N .
L=¢t+ 3 ug 21, (2.3)
N 1
i=0
Then
+2 =
w0, () = oy + A2 L4 oM (2.4)
where
N i N+1
(-1)
0, =1+ 3 -~ « ), (2.5)
N i=0 21 in
N+2 N
= _ (-29) _ s
L=+ sio Py (-20)° . (2.6)

Remark 2.7. Apart from an unessential constant GN, the lowest order image
i of the discrete Lax operator (2.3) is a typical differential scalar Lax
operator (2.6). However, it does not immediately follow that the discrete Lax
equations collapse into differential Lax equations because we do not yet know
the precise structure of the A-series for the operators {P = Ln}. Another
problem we must consider with care is that we can no longer use weights in
which w(A) = 1 since A = exp(-A3), and we clearly have to use weights of differ-
ential Lax equations where 3 has weight 1. The way round this obstacle is to

notice that one can use another grading, let us call it rk, in constructing
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abstract Lax equations of Chapter I. Namely, by putting tk(xj) = aj,

deg(xi ceexy ) = k, we find that rk = Bedeg - w and so the condition w(ap) =0 in
1 k

1(1.26) is equivalent to rk(ap) =B deg(ap), which is Bn for P = . However,
we seem to meet a new problem in (2.1) which insists on uj having weight zero.
Let us turn to the proof.

Proof of theorem 2.2. We write

s+2

d’(ui)=a+-z-op’s )OiiiN’ﬂi’i_:l’
where ai’Bi g can be read off (2.1). We have
)

N+2 i s+2 Afof +3

Yo (L) = = {(-1F + z (a, + = B, )(2i+1) } (mod AN3) , (2.8)
u i,s s
r=0 i=0 s=0
2j+1 _ r A 8

Z (-1)F(25+1)
r=0

where we have used A

Let us firstly consider the terms with Py present:

N+2 N i N r,r N

s 5 3 B, p AT A a = 3 As+zp 5;?— 2 B, (2417 (mod ANt3y
r=0 i=0 s=0 1’5 s s= s r=0 i=s
(2.9)
Lemma 2.10.
0, r <N-s ,
z B, (2i+1)r =
i=s (-Z)rr! , r=N-s
Proof.
N r N i-s -8 r
B, D= I (DTPC )i =
i=s ’ i=s i-s
M=N-s . M r
= 3 (-1 ()(j+2s+1)T . (2.11)
§=0 j
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y M oM Mei M .M . M
Now, (x-1)" = X xJ( )(-1) J , hence 2 xJ( )(-1)J = (1-x)  ,
=0 =0

M .M . M. M )
so = ¥ = )Y, thus 3 2Oy Cd = -BHM K25
=0 j =0 i

r

Applying (x %;) to both sides of the last equation we get the statement of
x=1

the lemma.

a
Substituting (2.10) into (2.9) we get
N N-s ,r.r N
s AS+2p 5 A ? (-2)rr! sT = 3 AS+2p AN-SBN_S(—Z)N_S -
= s __ r! N-s - s
s=0 r=0 s=0
N N+2 N-s
= 2 A T[p(-29)" "1, (2.12)
s=0
. . N+2 . = . . .
which gives us A times (L without its highest term).
Consider now the rest in (2.8):
N+2 r N r. AFoT
2 {(-1)" + Z a.(2i+1)"} —/— . (2.13)
. i r!
r=0 i=0
For r=0 we get
N N (-l)i N+1
1+ X o, =1+ X o= C J)=6.,
i=0 . i=0 2it1 i+l N

which takes care of (2.5). For the rest of r's, we get from (2.13):

N+1 N r+l1 r+1
: (- s ai(21+1)r+1} A 5 .
r=0 i=0 (r+1)!
N+1 N , N+1 r+l_ r+1
= 3 (D4 3 pDieient( A2 (2.14)
. . (x+1)!
r=0 i=0 i+l
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Lemma 2.15.

N ;M . {(-1)r , r < N+1

2 (-1)°( )(2iv1)” =

i=0 i+1 GO - M I, e = N1

Given the lemma, (2.14) reduces to

N+2 _N+2 N+2
_(_oyN*1 A9 _ ,N+2 (-23) . . .
(-2) (N+1)! T - A 2N which is the last piece of (2.6).
Proof of the lemma. We have
2, N+1 N+1 N+1
1-(1- -1 2.k
Ay) -yt -z vd%C 1=
y k=0 k
N N+1 N N+1
-1 2 2. k+1 he k 2k+1
=y -Gy - 2 (v D= 2 (DY ).
=0 k+1 k=0 k+1
a.P
Applying (y d—) to this equality, we get
y
y=1
N N+1 p 2 N+1
k d 1-(1-
:eofeePC )= o Ea (2.16)
k=0 k+1 Y v y=1
Define pre Zly] by
r 2.N+1  p
d 1-(1-y7) r
oy = — 2.1
bvE T =y (2.17)
P y2 fEE = yp P
Since y g—y (y_r) = dy 2 L= ;+1 , we obtain
y
dpt
Prv1 © ¥ ay " Pp- (2.18)

Set
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2 N+1-r _
(l'Y ) nl’ ’ nO =

Substituting (2.18) into (2.19) we find

r+l1 2. N-r — (_1y¥l _ _ 2 N+1-r
D"+ Ay r = D n (1-y%) +
dn
N+1- N-
+yla-y VT 2E v arleon G a-yh' Ty

thus

r+
and therefore,
n (1) =

r+1

and since no =

T (1 =

By (2.16), (2.17), the sum we are interested in equals pr(l).

since nr(y) is

-1, it follows

dr

_ 2_ _ 2, _r ~ 2 _
My = -Dn +y(-y?) dy 2y" (N+1-1)m

-2(N+l-r)nr(l) ,

that

--2)§ a1y

obviously regular at y = 1, we get

(2.19)

(2.20)

(2.21)

By (2.19),

P (1) = (-1)" for r < N+1, and by (2.21), py,, (1) = DM s o EM i,

as stated.

Remark 2.22.

Remark 2.23.

differential Lax

example, another

a

For N = 0, (2.1) becomes ¥ : L 1+A2p0, which is (1.3).

The map ¥ in (2.1) is not the only map which produces a

operator in the image of its lowest order.

map Y, given as

N-j
V:u >a, + 3 A2+spsyi .
J s=0 ’
where dj are the same as before, and
N-s j
y. .= )17 .
J,s j
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Then
b o (L) =0+ A2 4 oMYy (2.26)

where GN is as in (2.5), and L is as in (2.6).
Indeed, since the aj are the same as in (2.1), we get the same eN and the

same constant term in L. Consider then, only those terms where P, appear, such

as in (2.9):
N+2 N N-i r,r N N-s ,r_r N-s
3 3 3y, pAS2isn® 5;?— =3 A% 3 A3 sy it
r=0 i=0 s=0 7% % s=0 Sye=0 T =0 %
(2.27)
We have,
N-s N-s N-s i . 4.r M=N-s 2i+1 M .
oy, J@iaDT= 3 (DRI = () I TOEDT =
- , .- . P .
i= i=0 i x=1 1i=0 i
0, r<M
r
d 2.M
= (x a;) x(1-x7)" =

x=1
oMM, r=m .

Substituting this into (2.27) we get

N N-s_N-s N
s+2_ A o9 N-s _ N2 oo N-s
A Py M=) (-2) (N=-s)! = A b3 ps( 29) ,

s=0 s=0

as stated in (2.26).
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Chapter VII. Differential-Difference Calculus

We study a model of calculus which incorporates derivations into discrete
calculus of Chapter II. This universal calculus behaves naturally with respect
to the "continuous limit" - maps.
1. Calculus

We will use a route in this section which is parallel to that of Chapter II
in order to make the presentation more clear.

Let &, as usual, be a field of characteristic zero. Let K be a commutative

algebra over g, and let A A : K » K be mutually commuting automorphisms of

10008,

K over'g. Let 3 am : K > K be mutually commuting derivations of K over é,

TERRRE

and assume the A's commute with the 3's too.

Let C denote the ring of polynomials

(ojlvj) . n
€ = Klq; 1, jeJ , 062", veZ, 1.1)
g g
with independent commuting variables q?olv). Denote A% = A ... AT (ta)“ =
J 1 r’

v v
(tal) l... (iam) ™ for err, velﬂ. We extend the action of the A's and the 3's

from K to C by the formulae

Ao’(qgolv)) - q§o+0’|v) , av’(q§0|v)) - q§0|v+v')

Thus all the actions continue to commute. We denote

_ (0]0)
i - Y

and let Der(C) be the C-module of derivations of C over K.

Definition 1.2. A derivation X€éDer(C) is called evolutionary if it commutes

with A's and A's. Thus

v = OV o . 3
X=2 [A 9 (X(QJ))] 3 (Ul") ’
4
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and any evolutionary derivation is uniquely defined by an arbitrary vector
X={X.},X :=X(,) . .
{ J} » X (a;) (1.3)

Let QI(C) be the universal C-module of 1-forms

Ql(C) = {Zf§o|v)dqgolv)|f(olv)€ C, finite sums} ,

J J
together with the universal derivation

d:c-al , d: q§clv) > qugUI\’)

over K.
For w = 2 fgolv) dq§0|V)€ Ql(C), and Z € Der(C), we denote

w(z) = = faf“"’) z(qu""’))

The action of Der(C) is uniquely lifted to Ql(C) such that it commutes with

z(qu§0|v)) = Z(f)dq§ol") + fd(Z(q§0|v)))

Denote by p®V = DY(C) the Lie algebra of evolution derivations of C. The
properties of d, A's, 3's and Dev(C) can be summarized as follows:
Proposition 1.4. The actions of d, A's, 3's and Dev(C) all commute.

Denote Im®P= 3 Im(Ai-l) + 2 Imai. Elements of Im® are called trivial. We
i i

write a ~ b if (a-b) e ImD. Finally, denote Q;(C) = {Z fjdqjlfjtc, finite sums}
and let us introduce the operators

= 3 A %-9)Y 2 >cC. (1.5)

[
———: C

q. (olv)
3q;

95

6 J o,v

We define the map 6 : Ql(C) > ch,(C) by

S(qu?""’)f) = 487" (1.6)
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and let
5=6d:C > oi(C) . (1.7)

For HeC, we can compute 8H:

= A = s(aq(0lv) __3H - =0, _o\V oH

6H = 6dH 6(dqj ;—TETGT) dqu (-3) (;—?ETGT) ,
q. q.
J J

thus
8H = 3 gg— dq; - (1.8)
i 73
From (1.6) we have
¢6-1e')c m®d. (1.9)

Proposition 1.10.

S(ImS) =0 .

(o+1, |v)

Proof. a) SAi(qu§0'v)) = 3[Ai(f)dqj 1 ] =

-0o-1, -~ N
= dqj(-a)“ s Ao = o(qu§°'“)), thus 6(a,-1) = 0;

(0|v+1i)

A (olv), _ & (olv) -
b) 83, (£dq;71"") = 8[3, (£)dq;" " +fdq ] =

J
v+1

= dq;(87°¢-0) 0, (D77 1D} = dg 8700 1o+ (-1 12 1(H) = 0

thus aai = 0. O
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Corollary 1.11.

) -
gj (Im$) =0 .

Proof. 2 g%T dqj = 6§ dH, and if He Imd, then dHé¢ ImP, and hence 8(dH) = 0
J

by Proposition 1.10. [
To make sure that we indeed factor out Imjs using the map(s - 1), we need some
analog of theorem II 15.
Lemma 1.12. If gé€¢ C and gC ~ 0, then g = 0.

Proof. For m = 0, the statement reduces to lemma II 17. So, suppose m > 0.

Assume g # 0. Let MeN be such that —~%§T67 =0 for v > M. We have
aq.; "
J
(o1 )
:) 2 .
0= —==—v 5 [y )% = (-1)"2g [no sum on j] ,
(011, ) 6q, 3
m J
aqj

thus g = 0, which is a contradiction.

Corollary 1.13. If we€ Q;(C) and w(Der(C)) ~ 0, then w = 0.

Proof. If w # 0, then there exists Z € Der(C) such that g = w(Z) # 0. Then
for any f € C, w(fZ) = fg ~ 0, which implies that g = 0 by the lemma 1.12, which
is a contradiction. O

Theorem 1.14. a) If w € Q(l)(c) and w ~ 0, then w = 0; b) If we QL(C),
then w ¢ ImP if and only if w(Dev)G In®d; c) The map 8 : QI(C) > Qé(C) can be

uniquely defined by
(6w) (X) ~w(X) , Yxe D .

Proof. <¢): Uniqueness follows from the corollary 1.13, and existence
follows from (1.9) and the "if" part of b); a): follows from the "if'" part of

b) and corollary 1.13; b): We have,
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(o+1, |v)

_ @IV 1%y = i (Olv)y oy
[(4;-1) (£dq; )1(X) [Ai(f)dqj fdq, 1(x)

o+l, ~ ~
= 8,08 19%-1%"1(xX(q))) = (8;-18%"(X(q))) ,

and also

(olv+l,) .

@1V ] gy = (olv) i _
[3; (£dq; ") 1 () = [3; (£)dq;” " +£dq 1) =

J
ov, ot 2 oV,
= [9,(£)A73 +£A73 ](X(qj)) =9, [fA"d (X(qj))] )
which proves the "if" part of b. To prove the "only if" part, notice that Ql(C) =

Q;(C) ® Ker 6 = Im 6 ® Ker 6, and Q(l)(C)n Im@ = {0} by a). Therefore

Ker 6§ = ImJD . (1.15)

Now let w € Ql(C) be such that w(Dev) ~ 0. Since (6-1)(w) ~ 0 by (1.9), then
[(6—1)(w)](Dev) ~ 0 by the "if" part of b). Therefore, [G(w)](Dev) ~ 0 and so

6(w) = 0 by a). Hence w ~ 0 by (1.15). =]

Denote by Q]:_[ the vector with the components -g% Let us agree to write all
8q J

vectors as columns and to use the letter "t" for transpose. For instance, we

write Gl_{—t instead of (§¥)t. We shall often use theorem 1.14 in the form
8q &q
> _ > sy _ st OH = _
X(H) = dH(X) ~ 8H(X) =X — , X = {XJ.} , (1.16)
8q

for any H € C and any X ¢ p®.
Remark 1.17. The same proof as that used for theorem II 31 provides the

result

Ker 6 = ImD +K .
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We leave this as an exercise to the reader.
2. The First Complex for the Operator §.

We are going to construct an operator 61 : Qi(c) »> ? which makes

¢ ) 31 ?

o

into a complex. The name "first" comes from an analogous geometric situation
[5], Ch. II, §6, where there exists also a second complex; the reader can ignore
the word "first" in what follows.

Perhaps a few words would be helpful about the idea behind the construction
below. As we have seen in Chapter II, the operator 61 (in theorem II 54) was
essentially the same operator & but in a situation extended by the presence of a
new derivation even though there were no derivations present initially. Thus
the derivations seem to be forced into the play by the logic of the calculus.
This is one of the primary reasons for studying them jointly with automorphisms
in this chapter. Our plan, then, will be to make exactly the same extensions of

the basic variables.

(o,1v,)

= - +
LetC=K[qJ,J 1, je J,ojle,vjeZ'nl

+ b

and let 8m+1 : C» C be a new derivation which acts trivially on K and takes

- (olv+1 ) - .
qgolv) into qj m+1 . We shall write qgﬁlvlp) instead of qgolv) ifv=v8®p,
véZT, pé Z+, and preserve the notation q§0|v) for ngoIvIO). All other 3's and

A's are extended on C as before. This allows us to consider C as sitting inside C,
the actions of A's and 31,...,8m being compatible with this imbedding.

Let T be the homomorphism of C-modules

t:oc)»C, T qug""’)-—» fq}""’“) , (2.1)
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which covers the above imbedding C - €. Since T commutes with A's and 81,...,3m,
we have
(ImP)c IndD. (2.2)

Proposition 2.3.
o, () = W@ , YHe c.

(olv) OH - qgolvll) 9H ) o

Proof. Td(H) = Tldq, ;q(?,‘,\,_)] j 2q @1V
3 3

Denote by 61 the operator 61 : C» Qi(é), which was denoted by 6§ for C.

The same meaning let be given to 61, so 61 = Gld.

Theorem 2.4.

Proof. &(H) = 8d(}l) ~ d(H), thus T8(H) ~ Td(H) = 3,41 () by

1- 1 21 1
(2.2), (2.3). Hence § T8(H) = 69, (H) = 8 dd . (H) = 68 , (dH) =0 by (1.10).0

Theorem 2.4 provides us with the first complex for the operator 6. As we

may expect from Chapter II, the coordinate version of this complex must assert

the symmetry property of the operator D(ég). This is indeed the case.
6q

First recall that D(R) is the matrix with the matrix elements D(ﬁ)ij =
Dj(Ri)’ where

of O,V

Dj(f)=z$.lv)'A3

The adjoint operator A* : C - c® with respect to an operator A : C > C ,

is defined in the usual manner by

utav ~ (A*u)tv , uec™ , vec"
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If the matrix elements of A are given by

olv,o.v alv

Aij =2 fij A9 , fij eC ,
then
" - % = sSA"T(_5\ V01V
(A )ji (Aij) 3A T (-9) fij .
Let D(QE) be the matrix with elements D(QE).. = D.(gﬂ—).
- -7ij j 6q.
6q 8q i

Theorem 2.5. The operator D(ég) is symmetric, \YHeC.
6q

Proof. We simply rewrite theorem 2.4 in components. We have

1- 1= SH 1,6H (ojoj1)
= =& LX)y = L LI =
0 6 t6(H) t(qu qu) [ (qu qJ )

- 6 SH  (01011)) _ 4 A-O( oV P __ D SH_ (0]0]1), _
d ) = dq;8 "(-3) (-3, 1) aqgolvlp) (qu 9 )

% g, 5a; 9 m+1

- 6H
= dq {a70-0)"[q0101) 2 (S, 5 By,
i j aqgolv) qu m+1 qu
thus
- S6H d S6H (olvl1)
) . SN CLLLE DS RSP SC: ) RS (). =
aqioIV) qu j m+1 qu aqgol\)) qu i

__ 9 8H ,.,0.v, (0]0]1), _ SH ... (0]0]1)
J

Since ngIOII) are free independent variables, we drop them to arrive at the

operator identity
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SH 6H -0 v ) SH
[D()],. =D.(z-) =48 (-3) ——= () =
6q 1 3 6q aqiow) qu
9 6H g, v, * 6H | .* [); * 6H,*
= [—m= (z):A@] =[D, ()] =1[D)..1 =) 1,. . m
8q§alv) qu i qu 6a ji 64 ij

3. Continuous Limit

Relations between continuous and discrete events can be viewed from differ-
ent perspectives: equations and Lax operators (as in Chapter VI), solutions etc.
Here we look at the calculus. Our aim is to show that the calculus we are
dealing with in this chapter, behaves naturally with respect to continuous
limit.

.]v.) (0.1v.)

= J ] = J ] : pud
Let Cl_Klqj ],CZ-K[qJ. ],JGJ,UjEZ

r+l m r
» Vel 052,

= m+1 . . .
vjEZi_ » with A,,...,A, 3 -»9  acting on K, A A d.,..., am acting

1°°° ) R r+1’ 1’

on Cl’ and Al,...,A , O , 9 acting on C2 in the usual way. Let A be a

r 1’ m+1

formal parameter, commuting with everything. We denote

~ S - ol PR
€ = c ) , 8 =l , i =12,

~

and extend the differential d in the obvious way, di : Ei > Qi' We also denote

~ 1
8; : € > 2(C(A).

Consider the homomorphism £ : El +> C, over K((A)), given on generators as

2

£ q§°|p|v)H [exp(pAd

w1 @71 pe2, 062", vez} . (3.1)

We denote by £ the unique extension of (3.1) into the map £ : 51 > 52 such that

d22 = le.
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Proposition 3.2.

2Ar+1 = exp(ABm+1)2 .

Proof. It is enough to check this equality on generators. We have,

£Ar+1(q§0|P|\’)) = 2(q§0|p+1|\))) - [exp((p+1)>\3m+1)](q§°|"'°)) -

= [exp(Aam+1)exp(pAB )](q§o|v’0)) = exp(A3m+1)£(q§°]p|v)) . o

m+1

Let ImSi refer to the situation with index i, where i = 1,2.

Lemma 3.3.
z(m%l) C Im$2 .

Proof. Since £ commutes with A_,...,A ,d ..,9 , we have to take care
_ 1 r >“m

1’

only of Ar+ We have,

1
2(1-Ar+1) =2 - 2Ar+1 = [by (3.2)] = & - exp(ABm+1)2 =

= [1-exp(ABm+1)]2 C.Imam+1 . ]
Theorem 3.4.

261 = 622 .

Remark. If H € Cl’ then the theorem says that

S

3q,
qJ

z(g%) =5 () ,

not only to first order of A, but to all orders. Thus, functional derivatives go

under £ into functional derivatives.
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Proof. For any H e [+ , we have 61(1-[) ~ d(H). Therefore, by lemma 3.3,

1
261(}[) ~ 2d(H) = de(H) ~ 622(}1). Since both 251(1-[) and 622(}{) belong to
Q:,(Cz)((k)), they are equal by theorem 1.14a, which remains obviously true in

the presence of A. a
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Chapter VIII. Dual Spaces of Lie Algebras Over Rings with Calculus

We begin to develop the machinery of the Hamiltonian formalism and prove a
one-to-one correspondence between Lie algebras and linear Hamiltonian operators.
1. Classical Case: Finite-Dimensional Lie Algebras over Fields

In this section we briefly review the construction of Poisson brackets for
functions on dual spaces of finite-dimensional Lie algebras (for more details,
see, e.g. [4]).

Let lg, be a finite-dimensional Lie algebra over a field é of characteristic
zero. Denote by (g,* the dual space to the vector space of ? , and let S(%) be
the algebra of symmetric tensors on ? understood as polynomials on%*.

If f e S((}), then dflye T"y‘(%*) Elf, for any point ye%*. Therefore, if

f,g € S(%), then we can form the commutator [dfly, dgly] of the covectors dfly

and dgly understood as vectors in 7 . Thus we can form the following (Kirillov's)
bracket
{f,8}(y) = <Y,[dfly ) dgly]> ) (1.1)

which makes S(g) into a Lie algebra (indeed: the bracket is skew-symmetric and a
derivation with respect to each argument; on 76 S((?) it coincides with the Lie
bracket on (; and S((y) is generated bylg, ).
The Poisson bracket on g* is natural: If 71 is another Lie algebra and ¢:
. . . % . * *
? > ?1 is a homomorphism of Lie algebras, then the dual to ¢ map ¢*: ?1 > ?

induces dual to it map on the functions (¢*)*: S(?) > S(?l)' Then

(¢*)*({f,8%7*) = {(¢%)*(£), (¢%)*(8) ], Vi, Sgy) . (1.2)
1

Let us write down the bracket (1.1) in coordinates. Let (el,...,en) be a
basis in ? and (e*,...,e*) be the dual basis in (0),7*. Let cl.(. be the structure
1 n ij
constants of ? in the basis (el,...,en): if X = Xiei, Y= Yjej (we sum through-

out over repeated indices) then

_ k
[x,Y]k = cijxin . (1.3)
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Let Upseeny U be coordinate functions on 27*: ui(y) = <y,ei>. Expanding (1.1)

we get

= i % =
{f,8}(y) = <y, [3“1 du,, Bu, duJ.]l > =
y

_of g k _ k., 9f 2
= 3w, ou.| <V Sij%%ly> T €ii% B, au.| '
i % i %Y
y v
thus
{f,g8} = of c# u % . (1.4)

Bui ij k Buj

If we denote by B = (BlJ) the matrix which defines the bracket in (1.4):

ij _ k
B = cijuk , (1.5)

then we can rewrite (1.1) into the following definition of B: for any two

(column-) vectors X and Y,
t - -
X BY = <u, [X,Y]>, (1.6)

where u is the row-vector u = (ul,...,un). The right-hand side of (1.6) means
ui[X’Y]i'

In the forthcoming sections we consider an infinite-dimensional analog of
the Kirillov bracket. This generalization is based on two observations. First,
given any algebra, not necessarily a Lie algebra, the matrix B defined by (1.6)
still makes sense. Secondly, the thus defined matrix is Hamiltonian (that is,
the bracket (1.4) satisfies a condition very near to the Jacobi identity), if and
only if the original algebra is actually a Lie algebra. (The "only if" part
follows from the fact that the algebra gz itself is isomorphic to the algebra

of linear functions on 7* under the Poisson bracket.)

142



DUAL SPACES OF LIE ALGEBRAS OVER RINGS WITH CALCULUS

Perhaps I should stress that we are working in fixed bases and local
coordinates for brevity only; the reader with geometrical inclinations will
have no trouble in translating our calculations into notionms.

2. Hamiltonian Formalism

In this section we discuss the Hamiltonian formalism and derive a few
formulae for future use.

The idea of the Hamiltonian formalism is very simple in its purest form.
Let S be an abelian group and End S = Hom(S,S). If l: S > End S is an additive

map, it makes S into a ring through the multiplication
{s;,s,} =T(s(s,) (2.1)
where {sl,sz} can be called the Poisson bracket. We call I' Hamiltonian if
T({s),8,}) = [T(s}) , T(s)] , Vs ,s,¢€ S, (2.2)

where the bracket on the right-hand side is the commutator. In other words, we
want ' to be a homomorphism into the Lie ring.

Denote

Ker T = {s € S|I'(s) = 0} . (2.3)
Then from (2.2) we have

{S, Kerl'} € Ker I', {Kerl',S} C Ker T , (2.4)

({sl,sz} + {sz,sl}) € Ker T ,Vsl,sze s, (2.5)

which means that Ker I' is stable under multiplication and multiplication in S is
skew-symmetric modulo Ker I'. Finally, to get the Jacobi identity we remark that

(2.2) yields
F(ffs),8,},8,]) = [F({s),5,]), T(sy)] =

= [[T(sy), T(sy)1 F(sa)] ,
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and therefore

({{sl,sz},ss} + c.p.) € Ker T , V%l,sz,sse s, (2.6)

” "

where "c.p." stands for '"cyclic permutation".

If desired, one can pass to the center-free Lie algebra S/Ker I', but we will
not do this.

Remark 2.7. Let So be a subgroup in S generated by ({sl,sz} + {sz,sl}),

5178, € S. Suppose that So is stable under multiplication:

2

{s,8} c s , {5,851 C s . (2.8)
Then

({{31,52},53} + c.p.) € SO ,V51,52,536 S . (2.9)

Proof. Let us write a ~ b if (a-b) ¢ So' Then by (2.8),

{{52’53},51}’: -{51){52’53}} ’

{{saysl}’sz}: _{32){53751}}= {52,{31’53}} ’ (2-10)
and thus

ti{s ,s,dys5) + {s,,s5},8,1 + {{sg,s,},s,} = [by (2.2) and (2.10)] =

[({s,,5,1)(s5) - T(s)) T(s,)(s5) + [(s,)T(s,)(s,) = [by (2.2)] =

(IT(s;),T(s,)] = [F(s;),M(s,))(s5) = 0 . O
In practice, S is a vector space and I' is a linear map. In calculus, S is

CALRY ev ev
of the type VII (1.1): C = K[qj 33 ], and we require that Imf D =D (C).

In addition, we want

r(m®) = o, (2.11)
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thus the map I' must be of the form

r =Bé , (2.12)
where

B : Q(l)(C) > p%V(C) . (2.13)

For this map two further requirements are made: 1) If we identify Q;(C) and
Dev(C) (a) with CN, where N = |[J|, then B is given as a matrix with matrix ele-

ments Bij € DC(C), where
D(C) = {z £91%2%° £V e ¢} ; (2.14)
2) We want the subspace So from remark 2.7 to lie inside Im® which amounts to
B* = -B (2.15)

by lemma VII 1.12.
We speak of B being Hamiltonian too (when I' is Hamiltonian). From now on,
we work with the Hamiltonian formalism in calculus; that is, over the ring C of

VII (1.1). If He C, we denote

S

XH =TI , (2.16)
X, =Xy(q) =B 6—}_l , (2.17)
6q

where :i is a (column-) vector with components qj, and 6—? is a vector with
6q

components g];— We also denote
A

t

L C

68"  6q
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where "t" denotes "transpose". The basic definition (2.2) now becomes
Xeppy = DypoXg) ,Vu, rec, (2.18)
where
> &F SH
{H,F} = X, (F) ~ — B —/, (2.19)
6¢" 6q

by VII (1.16) and (2.17).

Lemma 2.20. Equation (2.18) is equivalent to

B o p¥ -pe s ¥ pe s,

8q 6q  &q 8q  &q 8q  &q
- /
where D(R) is the Frechet derivative of Sect. 2, Chap. VII:
DR) (X(D)) = X®) ,Vxe . (2.21)

Proof. Two evolution fields coincide if theyyield the same result acting on
vector q. Therefore let us apply both sides of (2.18) to q. For the left-hand

side we obtain

X (@ =B S{H,F} _ [by (2.19) and VII 1.11] =
{H)F} 6'
q
=32 & 8,
6q 6q &q

For the right-hand side we get

X X 1@ = X, (R - X&) =

x,8 %) - x. 8 &) = by 2.21) and @2.17)] =
6q 8q

SF) p S _ pp My p & o

8¢ &q 8q 6q

D(B
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Denote C = Klq. ]JEJ

+
Lemma 2.22. Let B =b - b* where b € MatN(Co)[A_l,

object Q% as a matrix whose (ij)-entry is a vector

9q
ap1v o

3 —2L %Y,

o,v 3q
where (b) . = I b“'“ a%"Y .

R

Then

& & s s @&,

6a 63" &g 5q 8q 6q 8q

GF 3b 6H SH 3b 6F

6q 93 83 8a" 9q 6q '

Proof. We use theorem VII.1.14c). For any X € )

0 n % e x  -
6q ©6q 8q 6q 6q
=x @ &, OF xm) %+ L g x|
8q 6q 6q 6q 6q 8q
where, for B = b-b* = 5[b°1%a%" - A7%-2)" 7"t

X(8) = 21x(°1")a%" - a"%-3)" x°!V)t] =
alv olv t

_ 3b O,V _ =0, oV a(b

= 3lX, B3, 2%" - 247%¢-0)" x, __55;___ ,

therefore the second term in (2.25) can be rewritten as
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alv abo‘lv
SF ij =0, _o\V ji
8q, (& 3q, 4° "8 (3" X, 3q, ]
alv olv
3b. 3b,
{6F ij AOpv OH _ 8H _ ji 2%V & oF 5
8q; 9qy Gq 6q dqy 8q;

%t {GF db 6H 6H 3b 6F

6q 3q 8q 6q 3q 6q
which yields the last two terms in the right-hand side of (2.24).

The remaining first and third terms in (2.25) we transform as

x(Zoyp &84 8 g%y o by (2.21) and (2.15)] ~

8q 8¢ &q 8q

~@ oz - 3 Etp @)% ~ [by theorem VII 2.5] ~
8q 8q 8q 8q
~ & & - E)tx,
6q &q 8¢  &q
which provides the first two terms in the right-hand side of (2.24). O

Applying the operator B to (2.24), we find

Corollary 2.26. Let B be as in lemma 2.22. Then

S (8L p Oy - gy p B _ppSly p &,

6a 63" &g 8a  6q 6a &g

+ pCE_ 2 B8 _ oM 3b or,

69" 93 6 83" 33 &g

Comparing lemma 2.20 with corollary 2.26, we get
Lemma 2.27. Let B be as in lemma 2.22. Then B is Hamiltonian if for any

F, HE C,

148



DUAL SPACES OF LIE ALGEBRAS OVER RINGS WITH CALCULUS

Sy S _ p,51)p &F -
6q ©6q 8q

[D,B](

=BC T T - (2.28)
8q 3q 8q 6q 3q &q

We can now describe the first large class of Hamiltonian operators.

Theorem 2.29. Let B e Mat(K)[Atl,a] and B*¥* = -B. Then B is Hamiltonian.

Proof. Let us show that [D,B] = 0; then (2.28) will become 0 = 0. Since
B e Mat(K)[Atl,B], iB = B% for any % € Dev(C). Therefore ;B(ﬁ) = Bi(ﬁ) for any
vector R € CN which we rewrite, using (2.21), as (DB(ﬁ))(i) = BD(ﬁ)(i). Since
X and R are arbitrary, we find that DB = BD, Q.E.D.
3. Linear Hamiltonian Operators and Lie Algebras

In this section we study relations between Lie algebras and linear Hamil-
tonian operators.

Let K be as in Sect. 1, Chap. VII, and let L = KN have a structure of an
algebra in the following sense: if X = (xl""’XN)’ Y= (Yl,...,YN) € L, then

multiplication a in L is given by

k al vl 02 \)2
(XaYy) = 3c AT 9 (X,)-A" 9 (Y)) , (3.1)
k .o 1,1 2, 2 i j
ij,o v ,07|v
where cgj € K. We require the sum in (3.1) to be finite even if N = o,
yeoe —
We construct "functions on L*" as follows. Let LPERRRPL be free inde-

(o.lv.)
pendent variables and let C = K[qj 37371 be as in Sect. 1, Chap. VII. We can

think of q,,...,q, as providing "coordinates on L*".
1 N

Let us denote
<q,X> = Z q.X, 3.2
a4, 9%, (3.2)

for X = (Xl,...,XN) € L.
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An analog of (1.5), (1.6) is provided by

+
Definition 3.3. Matrix Be MatN(C)[A'l,al is defined by the equation
X'BY ~ <¢,X Y> , VX, Ye L, (3.4)

where ~ means "equal modulo Im® in C."

Let us compute B. We have

<q,XaY> = qk(X°Y)k = [by (3.1)] =

k

01 v1 02 vz
= qk (o] 1 1 2 A” 3 (Xi).A 9 (Y) ~
ij,o |v ,0%|v J

2

1 2 2

1
~x 187 )Y & L. a9 Ay,
ij,o v ,0%|v J
thus
1 1 2 2
R T G A M (3.5)
ij,o v ,07|v

This is an analog of the innocent-looking (1.5).
Our goal is now to find out when the matrix B is Hamiltonian. First,
Proposition 3.6. Matrix B is skew-symmetric iff the multiplication in L is
skew-commutative.

Proof. By definition of the adjoint operator (Sect. 2, Chap. VII), we have
YBx ~ (B*Y)%x = xtBHy |

thus
<q,XeY+YaX> ~ XUBY + Y'BX ~ XU (B+BY)Y .

If B+ B¥ = 0, then XaY + YaX = 0 by theorem VII 1.14a applied to
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d< g, XaY + YaX>. If XaY + YaX = 0, then (B+B*)Y = 0, Y YeL by lemma VII 1.12.
To conclude that B + B*¥ = 0 we require the following "relations-free" property of
K: if an operator in K[Atl’a] annihilates K, this operator is zero.

Thereafter we assume B and L to be skew, and K to have the above mentioned

relations-free property.

Lemma 3.7. For any F, HE€ C,

& % = n® B X - p 5 Ly

6q 6q 6q 8q 6q 6q 8q

+,6_f°§_1_1. (3.8)
6q &8q

Remark. For any free K-module E on which operators A's and d's are acting
in accord with the K-module structure, where K is a K-module and a ring where A's
and 9's act K-compatibly, the structure constants cgj,... make E into a differen-

tial-difference algebra by the same formula (3.1). In this sense the expression

Qg a §¥ is understood in (3.8).
6q 6q

Proof. From the proof of lemma 2.22 we see that we have to check out that

Qg L

G—fz x@) & . gt ) ¥xe %) . (3.9)

6q 6q 6q &q

Let us write B_ instead of B in (3.9) to indicate explicite dependence of B.
q

Lemma 3.10. X(B) = B_, ¥Yxe D°V(C).
q X

Granted the lemma, (3.9) follows at once from definition 3.3. o

Proof of the lemma 3.10. Since X commutes with A's, d's and K, we get from

(3.5):

1 22 ij
L 2 2 XA @ =Bl . o

q ij,ollv ,0 v X
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Now we can derive a property which discriminates in favor of Lie algebras.

Theorem 3.11. For any F_, F_, F_ € C, ({Fl’{FZ’F3}} + c.p.) ~0 iff L is a

1’ 72 73

Lie algebra.

Remark. As usual, the Poisson bracket {F,G} equals XF(G)’ where iF =

5 OF
8q
Proof. If F ~ G, then {F,H} ~ {G,H} ~ -{H,G}, for any F, G, H € C. Hence
~ 6F 6F S8F
66
{F,G} = XF(G) ~ XF = 9%- B 6—? Denote X = —_‘1, Y = TZ, Z = TS Using
8q 8q 8q 6q 6q 6q

(3.8), we obtain

S6F 6{F _,F,}

1 2°73° _

{Fl’{FZ’F:‘}}} G-t B -
q

8q
= X“B[D(Y)BZ-D(Z)BY+Y Z] . (3.12a)
Analogously,
{F,,{F|,F,}} ~ 2°B[DCOBY-D(Y)BX+X Y] , (3.12b)
{F,,{F,,F,}} ~ Y"B[D(2)BX-D(X)BZ+Z X] . (3.12¢)

Let us take the first term in (3.12a) and transform it into minus the second
term of (3.12b). We have X'BD(Y)BZ ~ (B is skew)~ -(BX)*D(Y)BZ ~ [D(Y) is symme-
tric by theorem VII 2.5] ~ -(BZ)*D(Y)BX = -z'B'D(Y)BX = (B is skew) = Z'BD(Y)B(X).

Thus, on adding (3.12a) through (3.12c) we are left, modulo Im®, with
t t t

X B(YsZ) + Z B(XaY) + Y B(ZaX) ~ [by definition of B] ~

~ <q,Xa(YaZ)+c.p.> .

Thus if L is a Lie algebra, then Xe(YaZ) + c.p. vanishes, and {Fl,{FZ,F3}} +

c.p. ~ 0.
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Conversely, if {Fl,{Fz,F3}} + c.p. ~ 0,\/F1,F2,F € C, and if we are given

3
i 6Fi i
€ L, we take F, = <q,X'>. Then — = X and {F_,{F_,F_}} + c.p. ~
i 5& 1 2’73

1

x!,x2,x3

<q,X%s (x%%>) + c.p.> ~ 0. Therefore X's (X%aX>) + c.p. = 0 by theorem VII.1.1l4a)
; 1 2 .3

applied to d<q,X a(XaX") + c.p.>. a
Corollary 3.13. If B is Hamiltonian then L is a Lie algebra.
Proof. If B is Hamiltonian then {Fl’{FZ’FB}} + c.p. ~ 0 and we can apply

theorem 3.11. a
Suppose now that L is a Lie algebra. Can we be sure that B is Hamiltonian?

From theorem 3.11 we find that {Fl’{FZ’F3}} + c.p. ~ 0, VE&,FZ,F € C, but we

3

want the much stronger equation (2.18) instead. Let us see where the problem

lies. We have

{F, {H,6}} = XX.(6) ,
{G;{F)H}} ~ ‘{{F,H},G} = -)}{F,H}(G) ’
(H,{6,F}} ~ ~{H, {F,6}} = XX (G) ,

and theorem 3.11 yields
(X{F,H}-[xF’xH])(G) ~0,YF,H,GEC . (3.14)

We can't, however, deduce (2.18) from (3.14) without additional analysis,
because there could conceivably exist evolution derivations sending C into Im®.

The simplest example provides an evolution field X = q(l)

in the differential
ring &[q(n)] with the derivation 9, 3: q(n) > q(n+1), 3: ﬁ +> 0. It is clear

why the trouble occurs: because our base field K consists only of constants.

The remedy, then, is obvious: we have to throw in some "independent variable(s)."

Lemma 3.15. Let X € Dev(C) be such that X(C) ~ 0 for any differential-

difference extension K of K over E. Then X = 0.
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Granted the lemma, which we shall prove below, we can deduce the main
result of this section.

Theorem 3.16. If L is a Lie algebra, then B is Hamiltonian.

Proof. Since K is assumed to be relations-free, the property of L to be a
Lie algebra is the property of the structure constants C?j,... in (3.1). There-
fore, upon extending K to K, I= iN still remains a Lie algebra. This implies
(3.14), which implies (2.18) by lemma (3.15) applied to % = i{F,H} - [iF’iH]' [m

Remark 3.17. If the structure constants ctj’... are such that they produce
a Lie algebra, we don't need to bother whether K is relations-free or not (for
example K could be K). The proof of theorem 3.16 will still be valid. These

are the circumstances in which one applies theorem 3.16 in practice.

Proof of lemma 3.15. We let K = K[x,;] where new variables x

1"”xr,
X ye o X are introduced subject to following relations:
1 > “m
9.x. =0 A (x.) = x. + Gic (no sum on j), c eg
i%j | J i ' i
AX, =%, ,9% =6, (3.18)
1] J 1] J

where 6; is the usual Kronecker symbol. Obviously, A's and 3's still commute.

Let X € Dev(C) and X(C) ~ 0. We want to show that X = 0. Suppose X # 0,

then X(qj) # 0 for some j. Let j = 1, say, and denote Z = X(ql).

. O —r O —om
Let us fix some © €Z+, v €Z+ and denote
o o o o
o g g o v v
o r ~1 ~m o o o o _ o o
X =X ttex T, X =X eee X , for o = (01, ,Ur) , V= (vl,. ,vm)
We have
N o o o _o
g~ g~
X(qlx Xx )=x x Z~0

by the condition of the lemma. Therefore
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o o o o

0= 35— @R =: 8% % ?gm =
93 o,v qu
o o
= (Z,(xl-clul) cee (xr-cror) fcr , (3.19)
where 0 = (01,. .. ,or) and
-o v ~° 9z

f :=A 3 (-9) x —_— . (3.20)
o (olv)

v aqj

Since Z and fo do not depend upon x, and (3.19) is an identity, we put x = 0,

< = ... = <. = -1 and get
o o
01 Ur:
cz,ol oL f0 =0 . (3.21)

Since ¢° is arbitrary element of Zi, easy arguments of analysis show that

fo =0, Voé Z/: Therefore, AofU = 0 (no sum on 0) and we have

9z

o
13- ¥ i =
2T

v

0. (3.22)

Remark. If we had only derivations 3's present in K, then we would have
begun with (3.22). On the other hand, if only automorphisms A's are present, our

job would have been almost finished and reduced to (3.23) below.

Claim: %;—) = 0, for all v (j and o are fixed). Indeed, suppose dv=v°
9q.
J
such that 2z # 0 but 2z . 0 for all |v| > Ivol where |[(v ,...,v )] =
o (alv) 1 m
(olv) 3q,
qu 3

vy + ...+ vm. Since Z does not depend upon ;, we put X =0 in (3.22) and obtain
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[+
= a—zo ( v ;{” = i;- (-l)l\’ ! \)‘1)!...\):;!
aq§°'° ) 3q§0l" )

which proves our claim that

9Z _ .
m—v—)— =0 ,VJ,O‘,\) . (3.23)
93

Thus Z € K. Therefore
2
Aql
X(37) = q2~0

which implies that Z = 0 by theorem VII 1.14a) applied to qul' [

As in the finite-dimensional case, L is imbedded in Dev(C):

Proposition 3.24. Let L be a Lie algebra and let 6: L > C be the map

defined by

0(X) = -<q,X> , X€ L . (3.25)

Then © induces a Lie algebra homomorphism 6: L » Dev(C) given by

-~

oY) = X501) ,Vre L. (3.26)
Proof. Let.Y, Z € L. Then
6<q,2> 6<q,Y>
{0(Y),6(2)} = {<q,¥> , <q,2>} ~ =0== p =t <
6q 8q
= 2 BY ~ <q,ZeY> ~ -<q,YeZ> = O(YaZ) . (3.27)

Hence

~

[8(Y),8(2)] = [ie(v)’xe(z)] = (B is Hamiltonian) =

~

= x{e(Y),e(Z)} = [by (3.27)] = XB(YAZ) = 0(YaZ) . [m|
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As the first example of the application of theorem 3.16, consider the Lie
algebra L generated by the associative algebra K[A] of polynomials in A over the
ring K, with r = 1, m=0. If X= I xiA‘, Y= 3 v.,A, then

i>0 j>0 J

XsY = I [X.Y
i

(1)_y x(1)pi%]
L. i
i,

J

Therefore, writing X and Y as vectors, we have
t (i) (i)
~ < > = - ~
XBY ~ <q,Xe¥> = q; (X, Y77 X 0)
~ 1573
X;lag, 0 -0 q,, 0¥,
and thus
13 2 g b . a7
B qi+jA A qi+j , (3.28)
which is exactly the matrix III (3.4) of the first Hamiltonian structure of Lax

equations.
For our second example, let K be a differential ring with a derivation
9: K> K; sor =0, m=1. Let L be one-dimensional Lie algebra with the

multiplication
XaY = X3Y - Y3X

(If K = c“((Rl), then L & T)(lkl) = {vector fields on R 1}.) Let us compute B:
XtBY ~ <q,XaY> = <q,X3Y-Y3X> ~ X(gd+3q)Y ,

thus
B=gqgd + 3q . (3.29)

Evolution equations with this B are
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SH
q, = (gd+3q) 3q ° (3.30)

which becomes

SH

u =3 & (3.31)

after the change of variables

u = 42q . (3.32)

Thus we attach the Hamiltonian structure (3.31) of the Korteweg-de Vries
equation (0.11) to the Lie algebra of vector fields on the line. It would be
interesting to find an interpretation of c.l.'s of the Korteweg-de Vries
equation from the point of view of this Lie algebra.

We end this section with a discussion of the natural properties of the
matrix B associated with the Lie algebra L. First some preliminaries.

Suppose we have two differential-difference rings over K: C, =

1
(o.1v.) (o, 1v.))
K[qj J° 31 and Cz = K[pi ], and suppose we have Hamiltonian structures Fl
1 ] . ev . -
and F2 in C1 and C2 respectively, Fi. Ci > D (Ci). Let ¢: C1 > C2 be a homo

morphism of rings over K, which commutes with the actions of A's and 3's. We call

the map ¢ canonical, or Fl and F2 ¢-compatible, if the evolution fields Fl(ﬂ) and

r,(H) are ¢-compatible,V HEC . That is,

¢-T (H) = T,(¢H) ¢ ,VHeC, , (3.32)
or

[T () (G)] = (T, (¢H))(46) , VH,GeC, , (3.33)
or in other words

S(H,G1 ) = {040} , VH,Gec . (3.34)
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Let us transform (3.32) into more transparent form.

Lemma 3.35. For any HECl

560 - 1pegy*1 oy (3.36)
ép 5q

where § = 0(2) = (0;,..-,00)" , &, = 0(a,) -

Proof. We have

_ - - 6H = SH -

d(gH) = ¢(dH) ~ O(8H) = ¢(dq, ga;) ¢(553) de(q,)
SH a¢j (aglv) -0 v

= ¢(5a—) dp. ~ dpi A T(-9)

j 6H
oGz,
apiolv) qu

and so

SO _ -0 gyv U G
Gpi apEolv) qu
(3.37)
= (—3fi———— 2%« o2y = @1, o O
- ap,(o'“) 6qj ij ﬁqj )
1

+
Let Bie Mat(Ci)[A—l,al be the Hamiltonian matrix corresponding to ri, i=

+
1,2. Denote by ¢(B1) the matrix-elements-wise image of B_ in Mat(Cz)[A_l,al.

1
Since Fl(H) and FZ(H) are evolutionary derivations, (3.32) is satisfied if (3.33)

is satisfied when G runs over Q759y5 -+ » Gy Thus it is enough to apply (3.32) to

the vector a. We get
o8, & = (r(om)% = p(prs, 2
8q ép

which can be rewritten with the help of (3.36) as
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08 o = (@8, pH* o9& . (3.38)
8q 8q
This implies, since H is arbitrary and K is relations-free, that
¢(B,) = D($)B, D(§)* . (3.39)

Equation (3.39) gives us a convenient tool to analyze maps suspected of being
canonical.

We consider now an analog of (1.2). Let f} = KM be another differential-
difference Lie algebra and let ¢: L - g; be a linear map over g. If (el,...,eN)
1”"’EM) are natural bases in L and g; respectively, we assume that ¢ has

and (e

the form

t t +1
Y = ¢X, Y= (Y, , L3k = (X,...,X) , deMat(K)[A7,d] . (3.39)
We shall write
= K At1 9 40
Yi = ¢1j(x_]) 1 ¢1J € [ 1} ] ’ (3- )
for Y=Y.e., X=X.e,.
ii i
(o.]v.)

1

Denote by C2 = K[pi . ] the ring which plays for %& the same role which

C1 = K[q§0j|“j)] plays for L. Since we are avoiding such objects as "L*'" and are
working with C1 = "functions on L*", we proceed to define the homomorphism ¢:
€126

0(q;) = ¢%;(p;) (3.42)

which we denote by the same letter ¢ as the map ¢: L %'3; (and which was denoted
(¢*)* in section 1); we also require ¢ to be identical on K and to commute with

A's, 3d's.
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The origin of the formula (3.42) can be explained by the following

Proposition 3.43. For any X€L, denote HX = -<q,X>, so that Lie algebra

L is isomorphically imbedded into the Lie algebra of '"functions on L*". Then

¢(Hx) ~ H¢(X) , YXeL . (3.44)

Proof. We have,
Oy) = 0(-<q,X>) = ~4(q;X,) = X, 0% (p;) ~

~ Py (X)) = <P, 000> = Hy .y o
Remark. Formula (3.44) can be rewritten as
<p,0(X)> ~ <,X> , § = ¢(q) - (3.45)

Denote by B(—1 and BI-’ the Hamiltonian matrices generated by L and g respec-

tively; (we used the notations B, and B2 before). To check (3.39), we need

1
D(@) and ¢(Ba). Notice that evidently we have

Proposition 3.46. ¢(B‘-l) = 136.

Lemma 3.47. D() = o*,

Proof. We have,

(D@1, =D, (8,) =D (0(a)) = by (3.42)] =

=D, (85, (py)) = 0, = (), . o

Now we can formulate the main relation between properties of the maps
o: L-’?andtb: CI*CZ.

Theorem 3.48. The map ¢: C1 > C2 is canonical iff ¢: L ~» 7 is a Lie algebra
homomorphism.

Proof. For any X,ieL, we have
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<p,0(XsX)> ~[by (3.45)]~ <P, Xa%> ~ xtn$§ , (3.49a)
p,0(X)e 6(X)> ~ ()" B2 0() = [by (3.40)] =
= (ox)t Bl-;(di) . x"q:*Bl-;cm’Z ) (3.49b)

Now, if ¢ is a Lie algebra homomorphism, i.e. ¢(Xof(') = ¢(X)A¢(i), then
(3.49a) ~ (3.49b), therefore Ba = ¢* Bi-;¢, since K is relations-free; hence

B4-> = D(¢) Bl-;D(q->)* by lemma 3.47. Conversely, if ¢ is canonical, then
<p,d(XaX) - ¢(X)a¢(X)> ~ 0, which implies ¢(X2X) = ¢(X)2¢(¥) by theorem VII 1.1l4a;
that is, ¢ is a Lie algebra homomorphism.

4. Canonical Quadratic Maps Associated with Representations of Lie Algebras

(Generalized Clebsch Representations)

Let G be a finite-dimensional Lie group with the Lie algebra g . Then the
cotangent bundle T*(G) of G is a symplectic manifold and taking the left in-
variant part of the Hamiltonian formalism on T*(G) results in the Hamiltonian
structure in the ring Cm(g*) which we discussed in section 1. In general, to
trace a symplectic origin of a given Hamiltonian structure, is important
aesthetically, conceptually, and technically. In this section we discuss this
problem for the Hamiltonian structures associated with Lie algebras.

To begin with, it is clear that the classical mechanical route Cw('l*(G)) >
Cw(g *) mentioned above is of no use since we have no infinite-dimensional groups
(and we don't want to have them). We thus have to look for other ways.

Let us begin with the elementary finite-dimensional situation first. Let

7, be a Lie algebra over &, let V be a vector space over &, and let
p: g »> End V (4.1)

be a representation of ? . Denote by gOV the semidirect product of 7 and V; it

is a Lie algebra with the multiplication
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[(28v)), (2,8v))] = [2,,8,] & (P(2)v,P(2,)v)), 2,6 v, € V . (4.2)

Consider the map

R: VOV¥ > (gev)* (4.3)
given by the formula

[R(a®a*) ] (L26v) = <a*,v-p(2)a>,a,veV,u*eV*,zegy. (4.4)

Theorem 4.5. The map R*: S(gGV) »> S(VeV*) is canonical.
Proof. Recall that both the rings of functions: S(V®V*) on V®V* and S(%VGN)
on (378V)* possess natural Poisson brackets: V®V¥* = T*(V) which is a symplectic

space, and (QVGV)* has the bracket (1.1). We have to check that

R({f’g}(gGV)*) = {R*f’R*g}VOV* ’ f,géS(?@V) . (4.6)

Since we are dealing with the finite-dimensional case, the Poisson brackets
are derivations with respect to each entry. Thus it is enough to check (4.6)
for elements £68v only. We have, for f = Rlev

1> 8 = .8,

{(2,6v)),(2,0v,)} = [(2,6v)),(2,6v,)] = [2,,2,] 8 (2,(v))-2,(v;)) , (4.7

where we suppress p from the notations.

Remark 4.8. The reader may have noticed that the Poisson bracket (4.7) has
the opposite sign than the one we used in the infinite-dimensional case (cf.
(3.27)). The difference is unimportant and is due to historical reasons.

Since, by (4.4),
[R*(26v) ] (ada*) = <a*,v-2(a)> , (4.8)
we can compute the value of the left-hand side of (4.6) at the point (0®o*)eVOV¥*:

<ak,2,(v,)-2,(v )-12,,2,1(a)> . (4.9)
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Let us compute the right-hand side of (4.6).

Let A: V > V be any polynomial (or "smooth") map. We associate to it a

vector field A€¢PH(V) by the formula

A = S| olwreaw)], Voes v Vuev (4.10)
t=0

Denote be fA€ S(VeV*) the following function:
fA(aOa*) = <a*,A(a)>.

Lemma 4.12. For any maps A,B: V > V,

{0 fplyeyr = fla,p] ° (4.13)
where

ey A A

[A,B] = [A,B] . (4.14)

Proof. This is the standard fact from classical mechanics: if X,Ye¢® (M) and
peAl(T*M) is the universal form, then {p(X),p(¥)} = p([X,Y]). In our situation,
we have M = V, X = A, Y = B, p(X)(a®a*) = <a*,A(a)>, etc. o

From (4.8) we have R*f = fA’ R*g = fB, where
A= v, - ll(a) , B = vy - 22(01) (4.15)

To compute [A,B], we need [A,B]. For this we have

ABHIW = | B) [weacn] =
t=0

= EI _ —l } d[wrtA(w)+eB(w+tA(w))] =

-4 d - 2, _
T ac de|e=t=o o[wttA(w)+eB(w)+et (A(B)) (w)+0(et™)]
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PoS

= ABO @) , (4.16)
where
@B = S| Bereaw) . 4.17)
t=0
Thus
T

[A,B] = AB) - B(A) ,
and therefore
[A,B] = ;(B) - g(A) . (4.18)

For A and B given by (4.15) we obtain

(A(B)) (o) = %EI B(at+tA(a)) =

£=0
_d i i e i
- dt|t=o [v,=2, (@4t (v -2, (0))] = =2, (v,-2, ()

= -lz(vl) + 2,2 (),
therefore
[A,B](0) = -2,(v,) + 2,2, (a) - [-2,(v,)+2,2,(0)] =
= Rl(vz) - Qz(vl) - [21,22](0) . (4.19)
Substituting (4.19) into (4.13), we obtain for the right-hand side of (4.6),
* * = = =
R, R¥8lyguu = 0, Tgdygye = f1a B)

= <o, [A,B](0)> = <ok, 2 (v,)-2,(v)) - [2,2,]()> ,

which is exactly the left-hand side of (4.6) given by (4.9). m

165



B. A. KUPERSHMIDT

Corollary 4.20. The map
r: Vevs > fj«*, [r(o®a*)] (L) = <o*,-2(a)> , (4.21)

is canonical.

Proof. Let y: 9*(? 8 V be the Lie algebra homomorphism defined by Y(£) =
2 8 0. Then the dual map Y*: (79V)* *? * is canonical by the finite-dimensional
degeneration of theorem 3.48. Since the map R: V@V* > (79V)* is canonical by
theorem 4.5, the composition Y*R is canonical too. Let us show that Y*R = r.

We have
[ (Y*R) (c®a*) ] (2) = [R(a®a*)]($(2)) = [R(a®a*)](£80) =
= <a*,0-2(a)> = [r(a®a*)] (L) . a

Remark 4.22. Taking V = 7« and p = ad in the corollary 4.20, we obtain a
symplectic representation for the usual Poisson structure on the dual space %*
of the Lie algebra (?,

Remark 4.23. Let 41:71 ->72 be a Lie algebra homomorphism, and let Pyt
7i -+ End V be two representations compatible with y; that is, Py = pzdj. Denote
by R((?i) the map R: VOV* > (7i9V)* in (4.3), and let Y¥*: (729")* > (719V)* be

the dual map to the Lie algebra homomorphism dBl:(?lGV ->728V. Then
R(Y,) = ¥ R(Y,) - (4.24)

In other words, the map R is natural.

Proof of (4.24). For any (a®o*)eVev*, (29v)€7,19V, we have

([PR(G,)] (0804)) (260v) = ([R( )] (00%)) (b(26v)) =
=([R((7,) ] (a80%)) (Y(R)6V) = <at¥,v-p, (Y(2)) (e)> =

= <ax,v-p, (£)(a)> = ([R(yl)](uw*))(w\') . a
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We now turn to the general case. Let L = KN be a Lie algebra of the type

considered in section 3, and let
+1
p: L » MatM(K)[A ,9]

be a representation of L such that for any XéL, the matrix elements of p(X) are

given by the formula

_ k,o,v o,V
p(X)ij = Py3 (xa73" , (4.25)
where
"
p'i‘Jt""’ e x[a*l,9] . (4.25%)

~ +
We make L: = KN M = KN (] KM into a semidirect product Lie algebra letting

(X;u)a(Y;v) = (XAY;p(X)v-p(Y)n),VX,YGKN,VU,VEKM . (4.26)

which is an analog of (4.2). Let q = (ql,...,qN), c = (cl,...,cM) be free vari-

(cjlvj) C(oilvi)

; i ] which is an analog of

ables which generate the ring C1 = Klq

"functions on L*" which we had in section 3. We denote

<(q;c) , (X;u)> = quJ. + cu,, (4.27)
(o,1v))
as in (3.2). Now we need an analog of "functions on VOV*". Let C2 = I([ai ,
(o/1v])
bi ] be a differential-difference ring generated by letters ai’bi’ i=

1,...,M. We make C2 into a Hamiltonian ring by imposing on it the Hamiltonian

matrix

B, = (4.28)
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-

In other words, for any HQCZ, the evolutionary derivation XH acts as follows:

Now we can construct an analog of the map R* from (4.3).

Let us introduce multiplication V on KM with values in KN by the formula

koo

(qu)k = )* (v A 3 u ), (4.30)

g,V are taken from (4.26). This multiplication comes from

where operators p?é
the following property:

Proposition 4.31.

v X)u ~ XE(uv) , ¥XeL , Vu,vek! . (4.32)

Proof. We have from (4.25),

k,o,v
Vo (X)u = vip() jug = vy 130 (%)% EXe ug ~

k,o0,v

~ XK(P

* OgV =
) (viA d uj) Xk(qu)k . O

Theorem 4.33. Let ¢: C1 > C2 be the homomorphism of differential-difference

rings given on generators by the formulae

¢(q) = -(avb) , ¢(c) =Db , (4.34a)
that is,
¢(q) = -(avb), , ¢(c)) = b, . (4.34b)

Then ¢ is a canonical map.

Remark 4.35. This is the desired generalization of theorem 4.5, since
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<¢(q;c) , (X;u)> = [by (4.27) and (4.34a)] =

<-aVb,X> + <b,u> ~ [by (4.32)] ~ <b,-p(X)a> + <b,u> =

<b,u-p(X)a> ,

which is an analog of (4.87).

Proof of the theorem. We have to check out the equality (3.39) with B1 =

Bq~c being the matrix associated with the Lie algebra f, B2 being given by (4.28)
’

and ¢ provided by (4.34). To do this, we take arbitrary elements (Y;v) and (X;u)
from L = KN+M, apply each side in (3.39) to (Y;v), then multiply the result from
the left by (X;u)t and show that the resulting expressions are equal modulo

Im®. Since K is relations-free and (X;u) and (Y;v) are arbitrary, this equality
modulo Im®P implies equality (3.39).

Now for the details. We begin with the left-hand side of (3.39). We have,

x;uwt (B, ) (¥;v) = (X;u)*B gy (T5¥) ~ [by the definition (3.4) of B] ~

o(
~ <¢(q;c) , (Xju)a(¥;v)> = [by (4.26)] =

= <¢p(q;c) , (XeY;p(XIv-p(Y)u)> = [by (4.27)] =

= <¢(q),XsY> + <¢(c),p(X)v-p(Y)u> = [by (4.34)] =

= <-aVb,XaY> + <b,p(X)v-p(Y)u> ~ [by (4.32)] ~

~ <b,-p(XeY)a> + <b,p(X)v-p(Y)u> =

= <b,p(V)p(X)a-p(X)p(Y)atp(X)v-p(Y)u> =

= <b,p(X) (v-p(Y)a)> + <b,p(Y)(p(X)a-u)> ~ [by (4.32)] ~

~ Xt[(v-p(Y)a)Vb] + <p(Y)*b,p(X)a-u> ~ [by (4.32)] ~

~ X[ (v-p(1)a)¥b] + XT(aVp(¥)*b)-utp(T)*b =
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¢ (v-p(Y)a)Vb + aVp(Y)*b
= (X;u) (
-p(¥)*b

Therefore,

(v-p(Y)a)Vb+aVp(Y)*b (4.36a)
Y

B =

CTCIR) U
-p(Y)*b (4.36b)

Now let us turn to the right-hand side of (3.39). Denote ¢k = ¢(qk). Then

the Fréchet derivative D(a) is the following matrix

a b

S S

D¢k D¢k
o) | 5 b

S S
e | 0 & |

therefore the matrix D($)B2D($)* is equal to

¢(qs) ¢(Cs)
Do, Doy k DO * Doy
*la) |55, Gz " pa G “Da_
n n n n
(4.37)
D¢S *
¢(Ck) (ﬁ;;) 0
From this we obtain
_ - Y
D(¢)BZD(¢)* ( =
v
K Do * Do Doy * Do,
component # k: [ﬁb— (ﬁa_) " Da (ﬁ)_) ]Ys “ D2 Vs (4.38a)
n n n n s
Do *
component # k: (ﬁ;i) Ys (4.38b)
k
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Doy Doy .
We need formulae for D5 Da From (4.30) we have, using (4.257):
n n

D D[-(aVb) )
Dbk - . k -k k /03V)4 (p0Y (a ) = - zJo,v)*a(olv) (4.39b)

n n
D¢

k k,o,v
e X
pa_ = ~Pin ™ I (4.39b)

Now we can compare (4.36b) and (4.38b). We have, for the component #k in

(4.36b):

(-p(D)*b), = ~[p(D*] ;b = -[p(¥), J¥b, = [by (4.25)] =

[pjk°’“(y )a%"1#b, = -a79(-8)"05; "(Ys)bi ) (4.40)

On the other hand, substituting (4.39b) into (4.38b) we find that

*

D¢s
(5;;) Y =[- (G

s,0, v)*b‘Aoav]*Y -
S 1 S

SSU\)

= -A" ( 3) b (Y ),

as in (4.40).

Thus the lower halves in the matrix ¢(Bq;c) and in the matrix D(@)BZD(a)*
are the same. Since both of the matrices are skew-symmetric, it remains only to
check that they have the same upper-left corner. Using (4.36a) and (4.38a),

this amounts to the identity
[-p(Y)aVb+aVp(Y)*b], =

D¢k Do, Do, Do,
=I5 G2 " 92 G 1Y - (4.41)
n n n n

This identity, in turn, follows from the following two formulae:
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D¢, Doy *

5;;(5;;) Y, = [aV%(D)*], , (4.42)

D¢k D¢s *

PSR Y, = [p(Y)aVb]k . (4.43)
n n

We begin with (4.42). Analyzing (4.36b) and (4.38b), we have proved above

that

D *
(B;;) Y = -[p(Y)*b]n . (4.44)

On the other hand, for any féKM, we find from (4.39a) that

D¢

_k = (k105 * (clv) - _(-k,0,v %* o,V _

Dbn fn = (pnj ) aj fn = -(p? ) an ] aj =

= [by (4.30)] = -(an)k . (4.45)

Combining (4.44) and (4.45) for £ = -p(Y)*b, we obtain (4.42). It remains to
prove (4.43), which can be deduced from (4.42). Let G be the matrix operator

with the matrix elements

D¢k D¢s *

Gks ~ Da (Db )
n n
We can transform (4.42) as follows

X6, .Y, = X% [aVp(Y)*b] ~ [by (4.32)] ~

~ [p(M*b] p(X)a ~ bSp(V)p(X)a . (4.627)
Therefore, for (4.43) we find that

X (G )*_ ~ Y6 X ~ [by (4.427)] ~ bp(X)p(¥)a ~

~ [by (4.32)] ~ X (p(Y)aWb) ,
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which is equivalent to (4.43). Q.E.D.

Remark 4.46. The theorem provides us with the symplectic representation
(4.28), (4.34) for the Hamiltonian structure associated with arbitrary semi-
direct product (4.26). It also provides us with a symplectic representation
for the Hamiltonian structure of Lie algebras themselves as in corollary 4.20.
Such representations are important in physical theories connected with com-
pressible hydrodynamics, where they are called Clebsch representations in
honor of Euler who was the first to use them.

5. Affine Hamiltonian Operators and Generalized 2-cocycles

In this section we develop a simple machinery which reduces the Hamiltonian
analysis of affine operators - such as III (3.12) - to the problem of whether a
given skew-symmetric bilinear form on a Lie algebra represents a generalized
2-cocycle.

We begin with a simple case which often occurs in practice (see, e.g.,[10]).
Suppose B = Ba is a Hamiltonian matrix which depends linearly upon variables
q., jéJ, and suppose the variables qj are divided into three different groups

J
jeJl, jer, jeJ, such that:

3
3,3
B depends only upon qj, jeJ3 , (5.1a)
J.,J
B depends only upon qj, jeJ3 . (5.1b)
This implies that each '"submanifold" S(B):
S(B): = {q; = 0, jeJg; q; = By€K, jeJ,} , (5.2)

is invariant with respect to the Hamiltonian "flow"

(o.1v.)
q, =B §§, for every He C, = K[q, 7 7]
t Ga 1 J

jed It is tempting then, to consider

only the remaining variables uj: = qj, jEJl, with the new matrix
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3.3
l=l=pl =311 ) (5.3)
u u 9y = 0, jeJg; 9y = Bj, j€J,

It is by no means obvious that the new matrix B1 is Hamiltonian, since the
operation of specialization of a part of variables, like (5.2), destroys (= does
not commute with the reasoning of) the calculus.
Theorem 5.4. The matrix Bi defines a Hamiltonian structure in the ring
(o.lv.)
J ]

y 1

C, = K[u
2 1

jeJ

N1 N2 N3
Proof. Let L=K  ® K~ ® K ~ be the Lie algebra which corresponds to the

matrix Ba by corollary 3.13, where Ni = lJi|, i = 1,2,3. Then conditions (5.1)

mean, by (3.5), that

N N
K2s Lek 3, (5.5a)
N N
K3s Lek 3. (5.5b)
N3 N1 N2 N3
Thus K is an ideal in L. Let L, =K ® K be the factoralgebra L/K and let

1

B2 be the Hamiltonian matrix which corresponds to Ll' Then obviously

J: = . .6
a = 0, jeJ, ’ J: = J\3, (5.6)

N
2| , and we can consider the case when K 3 is absent.
9 = By» J€J,

Therefore Bl =B

Then (5.5a) becomes

N
K2%a L= {0}, (5.7)

N
which means that K 2 belongs to the center of a central extension of the Lie
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N, N, Proj N,
algebra (K "0{0})a(X "®{0}) - K @{0}. This is equivalent to having a set of

N

N2 2-cocycles on K 10{0} but we will not pursue this analogy here since the

notion of a 2-cocycle must be generalized, as we shall see below. Instead let

_ (o.1v.)
us write down the formulae for XH for any HeC, = K|[q, 3 :
3 J jeJ
x (@) = (b_+B ¥, (5.82)
u v Su
u = {qj}j€J1 y V= {qj}jEJz ’
X =0, (5.8b)

where we explicitly separated u- and ;-dependence in the matrix B2 using (5.7)

into E_, then
v

and (3.5). We want to show that if we substitute vj = Bj’ j€J2

the resulting map I': H > XH’ HeC,_, given by the equations

2’
o = ~ (6H
(u) = (b_+b_)— , (5.9)
Xy N

u u

is Hamiltonian.

Let us take H,FeC_, and consider them as belonging to C We know that

2

equations (5.9) do define a Hamiltonian system; that is

3"

IQH,QF] = i{H,F} . (5.10)

Let us apply both sides of (5.10) to the vector u. For the left-hand side we

obtain

Xy X 1 () = X, (K (D) - X (X, (8) = [by (5.8a)] =

= %, 00_+5)%] - X (o_$ %) = by (5.80)] =
u v bu u v é

u
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= % NE + 6 H %, - Fen (5.11a)
u 6u u v Su

where "-(Fe» H)" means: "minus the same expression with F and H interchanged."

For the right-hand side of (5.10) we have

{1,F} = X, (®) ~ [by (5.80)] ~ Z (b _+5 )%
Gut u v 6u

and so

;({H p@ = m_+5_ )L o 45 )0 (8 b 45 )% (5.11b)
? u v Su u véudbu u véu

Notice now that there are no functional derivatives with respect to v

present in either (5.11a) or (5.11b). It is thus an identity with respect to
variables v. Substituting vj = Bj we still will have an identity, which this
time means that the Hamiltonian property (5.10) is satisfied for the system
(5.9). Q.E.D.

Remark 5.12. The same reasoning as above shows also that if we have a

Hamiltonian structure of the form

o
~
e
N

i
-]
2

(-]
<

of
~
N
]
o

(5.13)

where Bﬁ b depends arbitrarily upon ﬁ,; (not necessarily linearly), then its
b

reduction
X, =B _ = (5.14)
u

is again a Hamiltonian structure in ﬁ-variables, for any choice of BjeK for which

the matrix Bﬁ = exists.

»B

Suppose now that we are given two Hamiltonian matrices B = B- and b€

+ -
MatN(K)[A'l,al, where B is linear in q. We want to know when B1 = B+b is
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Hamiltonian too. If we could find a central extemsion of the Lie algebra L which
correponds to the matrix B, such that b = gﬁ’ we could apply theorem 5.4, but

there is no reason why we could succeed in doing it. Instead, let us analyze

the problem directly.

(g.1v.)
Using (2.24) and (3.8) for a pair H,FeC = K[qj 33 ], we get

S TR L TCORSL (5.15)
6q Gq Gq 8q 8q 8q 6q

8 (SE g8y - pdFy M - p(Sy % . O, M (5.16)
8q 6q° 6q 8¢ 8q 6q 6q 6q 6q

where Ao denotes the multiplication in the Lie algebra L which corresponds to the

matrix B = Ba. Adding (5.15) and (5.16) we obtain

e e TR L TCL S
8q Gq 8q 6q 6q 6q 6q
+6__36_l_l' (5.17)
6q 6

Let us define a bilinear form w on L by setting
wX,Y) = X%y . (5.18)

Definition 5.19. A bilinear (over £) form 6 on L is called a generalized

2-cocycle if
0(X,Y) ~ -0(Y,X), VX,veL , (5.20)

[0(X,,X, X;) + c.p.] ~ o,Vxl,xz,x3eL . (5.21)

We shall always assume that all bilinear forms we deal with are differential-
difference operators over K with respect to each variable. This allows us to
identify skew-symmetric 2-forms satisfying (5.20) with skew- symmetric operators

(or matrices) by the formula
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t~
0(X,Y) ~ X6y (5.22)

~ +
with some. 0 € MatN(K)[A'l,al.

Theorem 5.23. For any Fl’ F2, F3 € C, ({Fl,{Fz,F3}} + c.p.) ~ 0 iff w is a
generalized 2-cocycle on L.

6F1 6F2 oF
Proof. Denote X = —, Y = —=, Z = —. Comparing the proof of theorem

8q 8q 8q

3.11 with the formulae (3.8) and (5.17), we immediately obtain

t, 1
{Fl’{FZ’F3}} + c.p. ~ X B (YeZ) + c.p. =

X B(YaZ) + c.p. + XTb(YsZ) + c.p. ~

?

<q,Xa(YaZ) + c.p.> + w(X,YaZ) + c.p. ~

?

w(X,YaZ) + c.p.

Thus w is a generalized 2-cocycle iff ({Fl,{Fz,Fa}} + c.p.) ~ 0. O
Analogous to the derivation of theorem 3.16 from theorem 3.11, we find

Theorem 5.24. The matrix B1 =B + b is Hamiltonian iff w is a generalized
2-cocycle on L.

Our next goal is to find a definition of the generalized 2-cocycle such that
it is an equation, as opposite to the equality modulo ImB in (5.21). There are
two possible routes, both instructive.

First method. We transform (5.21). Let 5 be a skew-symmetric operator

from (5.22). For any elements X,Y,ZéL, we have

8(Y,ZsX) = Y'8(zeX) ~ -(BY) (z6x) = (BYV)*(xa2) ~
~ xt@vey) , (5.25)

where the new multiplication V in L is taken from (4.32) for the adjoint repre-

sentation p = ad. Analogously,

6(2,XaY) = 2 8(xay) ~ -(82) (xay) ~ -x®(¥v82) (5.26)
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Using (5.25) and (5.26), we transform (5.21):

0(X,YaZ) + 6(Y,2aX) + 6(Z,XaY) ~

~ XU [8(vaz)+zvoY-YvBz]
Thus © is a generalized 2-cocycle iff

8(Yaz) = YVOZ - ZVOY , (5.27)
which is the desired definition. Notice that

YVZ = B Y . (5.28)
Indeed, from (4.32) we have

Xt (Yvz) ~ zt(xay) ~ XtBZY ,

and X is arbitrary. Using (5.28) we can rewrite (5.27) in equivalent form

8(yez) =B_Y - B_2Z . (5.29)
8z oY

Remark. In a finite dimensional situation (K=&), (4.32) becomes <v,[X,u]> =

<-adﬁv,X> = <uVv,X>.
Therefore

uVv = -adﬁv , (5.30)
and (5.27) turns into

8([Y,2]) = adBY - ad}bz . (5.31)

Second method. We analyze directly the equation of the Hamiltonian property

given by lemma 2.20. Applying B1 =B+ b to (5.17) and subtracting from the
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result b applied to (5.15) and B applied to (5.16), we obtain

6 (GF GH) + bG (6F GH)

Gq 6q" 8q 6a 83"

SEyp & bpXEyE - Feom) + b o )y | (5.32)

6q 6q 8q &q 6q 6q

= BD(—

On the other hand, since B and b are both Hamiltonian matrices, the Hamil-

tonian condition of lemma 2.20 results in

-2y 4 p8 g%, -
6q 6q &q 8q 6q 8q
= 0B + ¥ - (Feom) . (5.33)
8q 6q 8q 6q

Subtracting (5.32) and (5.33) and using the formula [D,b] = 0 established

in the course of the proof of theorem 2.29, we get

b(XaY) = [D,B](X)bY - [D,B](Y)bX , (5.34)

where X = QE, Y = Qﬂ. Thus our operator B1 =B + b is Hamiltonian iff (5.34) is

8q 8q
satisfied for any two vectors X = g:, Y = gg.
6 6q
Lemma 5.35. For any X,Y€L,
[D,B](X)Y = XVY . (5.36)

Proof. [D,B](X)Y = D(BX)Y - BD(X)Y =

;(BX) - B;(X) = [;(B)](X) = [by lemma 3.10] =

BYX = [by (5.28)] = XVY . 0

Using (5.36) we can rewrite (5.34) as

b(XaY) = XVbY - YVbX , (5.37)
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and this time (5.37) must be an identity in L; that is, it must be true for all
X,Y not necessarily vectors of functional derivatives. (Indeed, there are only
differential-difference operators involved in (5.37), and we can take F = <q,X>,
H = <q,Y>, for any X,Y¢L).

Equation (5.37) is the same as (5.27) if we remember that our generalized
2-cocycle w defined in (5.18), involves 8 =hb. This, incidentally, provides
another proof of theorem 5.24.

We now apply theorem 5.24 to the matrix III (3.12) involved in the first

Hamiltonian structure for the Lax operator L = CB(I + 2 Q-J_lqj).
j20

Theorem 5.38. The matrix III (3.12) is Hamiltonian.
Proof. Let L be the Lie algebra generated by the associative algebra
X= 2 XiC_l-l}. We have

i>0

o - = _ (-1-j) _y (-1-5)
x Y)O =0, X Y)k+1 = j+§=k XY, stj ) . (5.39)

For the matrix elements of the corresponding Hamiltonian matrix B, we have

tov - (-1-3)_ (-1-s), _
X"BY = XijsYs qj+s+1(Xij stj )
-1-j ,1+s
X;(a5,5418 LR FPORTOL S
Therefore,
_ =1-j _ ,1l+s
Bjs = qj+s+1A A qj+s+1 . (5.40)

Now let us fix a natural number B > 2 and consider the following bilinear

form on L:
w(X,Y) = Res[x(1-aP)vePy . (5.41)

We have
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w(X,Y) = Res[X(l-AB)YCB] ~ Res[(l-A-B)X°Y§B] ~
~ Res[YQB(l-A-B)X] = Res[Y(AB-l)XCB] = -w(Y,X) ,

thus w is skew-symmetric. Let us show that w is in fact a generalized 2-cocycle.

Let X,Y,ZeL. Then
w(XaY,Z) = Res[(xY-vx)(1-aP)zePy ~
~ Res{x[¥(1-aP)z - (1-aPyz-aPyv1cPy | (5.42a)
w(YaZ,X) ~ -w(X,Y 2) = -Res{X[(1-8P) (vz-z1)1¢P} , (5.42b)
w(ZeX,Y) = Res[(zx-xz) (1-aP)yveP) ~
~ Res{X[ (1-8P)v-aPz-z(1-aPyv1ePy . (5.42¢)
Adding expressions in (5.42) we find that
w(XsY,2Z) + c.p. ~ Res{X[...1¢P} ,
where

[...1 = Y(1-8Pyz-(1-aP) 2 APy- (1-8P) (vz-2v) +

+

(I-AB)Y°ABZ-Z(1-AB)Y =

YZ - YAﬂz-ZABY+ABZY-YZ+ZY+AB(YZ-ZY) +

v8Pz-aPyz-zv+24Py = o,

+

Thus w is indeed a generalized 2-cocycle. Its corresponding matrix b from (5.18)

can be computed as follows:

XY = Res[x(1-aP)veP) = Res{xjg'l'j(1-AB)Y5§'1's§ﬁ} =
. B2 o gl
= 2 X. A 1 J(I'AB)Y = X X.(A B'I)AB 1 JYa_z_- ’
j+s=p-2 I * j=0 J J
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thus

b,

ik = 0 k # B-2-5;

_ aBiyAB-1-] L
by p-z-j = (& 7-DA LO<j<B-2. (5.43)

Hence for the Hamiltonian matrix B1 =B + b, the evolution equations corres-

ponding to a Hamiltonian H are

éj = (A'B-l)AB'l'j gagﬂ——— + (5.44a)
B-2-j
-1-j_,1+s SH_
+ s>>:0 CH A qj+s+1)6qs , (5.44b)

where we agree to drop the term (5.44a) for j > B - 2.

Equations (5.44) are almost the same as equations III (3.12), when we
restrict j to run between 0O and B-2. To get the form III (3.12) exactly we
make a few remarks.

Define
I= {XéLIXj =0, 0<j<B-2}. (5.45)

Then (5.39) shows that I is an ideal in L. In addition, w(I,L) = 0 as follows
from (5.43). Therefore w can be correctly restricted on the Lie algebra L1 =
L/1 to yield a new generalized 2-cocycle given by the same formula (5.43). The

matrix B corresponding to the Lie algebra L. will be given also by (5.40) with

1
the understanding that 0 < j, s < B - 2 and q = 0 for k > B - 2. This way we
arrive exactly at equations III (3.12), with an unessential minus sign and R's

renamed by q's. o

Corollary 5.46. [The first Hamiltonian structure for the Lax operator

L= C5(1+ b3 C-J-lqj).] The system {III (3.8) plus III (3.12)} is Hamiltonian.
j20

Proof. We proved by (3.28) that III (3.8) is Hamiltonian, and theorem 5.38
asserts that III (3.12) is Hamiltonian too. Thus we have two Hamiltonian struc-

tures in two different subspaces, with variables Q and R respectively. They
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both belong to the type described in lemma 2.22. Therefore the criterion (2.28)
of lemma 2.27 is satisfied since both sides of (2.28) have block-diagonal form,
with variables Q and R separated in their respective blocks. In

We conclude this section with a discussion of the natural properties of
generalized 2-cocycles. We use the notation of the end of section 3, after
formula (3.39).

Let ¢: L > (? be a homomorphism of Lie algebras and ¢: C. > C2 be the corres-

1

ponding canonical map from theorem 3.48. Suppose we have two generalized 2-

cocycles w, and w, on L and ? respectively. Let b1 and l:b2 be associated skew-

symmetric operators:

w, (X,Y) ~ thiY ,i=1,2 . (5.47)
We want to know when the map ¢ is canonical between the operators B1 + b1
+ .
and B2 b2
Theorem 5.48. The map ¢ is canonical iff generalized 2-cocycles w, and w,
are ¢-compatible, that is,
w, ~ ¢*w2 . (5.49)

Proof. By theorem 3.48, ¢ is canonical between B1 and BZ' Therefore, by

(3.39), ¢ is canonical between B1 + b1 and B2 + b2 iff ¢ is canonical between

bl and b2’ which happens, in view of (3.39), when
= o o)*
b, = D(¢)b, D()* ,
which is equivalent, by lemma 3.47, to
b1 = ¢*b2¢ . (5.50)
If X,Y € L are arbitrary, then (5.50) is equivalent to
X"b,¥ = X"ekb 0¥ |

which can be transformed to
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w, (X,Y) Xt¢*b2¢Y ~ (¢X)t'b2¢Y = w, (8X,9Y) =

(@) (X,Y)

which is (5.49). o

185






Chapter IX. Formal Eigenfunctions and Associated Constructions

In this chapter we treat the variable L in the Lax equations as an operator.
We construct formal eigenfunctions of L which enable us to find new constructions
of conservation laws for Lax equatioms.

1. Formal Eigenfunctions

The Lax equations
9,(L) = [P,,L] (1.1)

can often be interpreted as the integrability conditions for the system

L = A, (1.2a)
) =Py, (1.2b)
3,(A) =0 . (1.2¢)

Thus we can think of ¥ as being an "eigenfunction" of the operator L and one may
use it for various purposes in the study of the Lax equations (1.1) and their
solutions.

Some instances of the above use will be seen in the subsequent sections.
In this section we construct & itself. The reason why such a construction is
required is that & does not belong to the difference ring CL generated by the
coefficients of L, but to some nontrivial extension of CL (analogously to the
differential case [12], [13]).

First, let us see informally what the nature of ¥ is. In this chapter

we restrict ourselves to the operator L of the form

L=¢+ 3 tiq. . (1.3)
20
Let
- -1 -2 - -j -
K=1+x8 +x0 7+ 0= 3 x.07,x =1, (1.4)
j>0 J
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be such that
-1
L = KK . (1.5)

In other words, K is the "dressing operator" for L. Let ¢ be such that

A(d) = Ad (1.6)
which is an analog of g; (eAx) = AeAx in the differential case, and of A(eAn) =
AeAn in the discrete Z-case. Then

¥ = K@) = GxAHe (1.7
satisfies

Ly = K¢ = KLo = KA = AJ (1.8)

that is, § is a (formal) eigenfunction of L. It differs from § because (1.2b)
fails for &, as we shall see shortly.
Thus $ and K carry the same informational value. On the other hand, re-

writing (1.5) in the form
K = et epmtTh = ex UTHE = K, (1.9)

we obtain

qo = ‘(A-l))(l ’
q, = -(A-l)x;Ti *R (Xys--aXy)y m2 1, (1.10)

where Rm's are some difference polynomials.

(n,)
Let CK be the difference ring K[xi 1 ], i>1, nie'Z , over the field 2 of

characteristic zero, with the automorphism A acting identically on & and in the
(n,)
J

(n)'s. .
J

usual way on the X4 Let CL be the analogous difference ring g[q ], and

let h: CL > CK be the difference embedding over'z, given by (1.10). We suppress
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h from notations and consider C. as the difference subring in C As we know

L K’
from Chap. III, sec. 1, for each P &€ Z(L) = {Ln|n€;z+}, the equations (1.1) define
an evolutionary derivation BP of CL' Our goal is to extend BP to CK in a manner
compatible with the embedding h. The procedure required for such extension is a
bit tedious even in the differential case [12]. To avoid it, we take a circuitous
route considering, in the spirit of Chapt. I, an algebraic scheme which afterwards

can be specialized to produce derivations 8P of C, compatible with those of CL'

K

(This scheme is important for the theory of matrix equations as well). Here
are the details.

Let ﬁ[;] be the associative graded algebra overA,
Rzl =Rz 2,01 (1.11)

with generators z,,2 and weights

.
w(z)) = B , wiz,) = -ai, a,B,ieN] wk) =0 . (1.12)

Let &[2] be the completion of &[E] with respect to the above grading, and let

Ke &[5] be given as

K = 1+zl+zz+... (1.13)

Obviously, K-le Biz1:
-1 _ 2 _ 2
K = = 1+(1-K)+(1-K)"+... = 1-z1+(zl-z2) + ... (1.14)

For Pe &[;], P = Ips, with w(ps) = s, we define

P,= Z Py P_=P-P,, Res P = P, - (1.15)

Now let us define
L=KzK =2 + [z,,2 ] +...€ 3[5] (1.16)
o R 2] *e- . .

Thus, if we write
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L= X + X, + ..., (1.17)

we will have
w(xi) = B-ai , (1.18)

in accordance with I (1.17).

Let y = ZE%ET’ as in I (1.21). For each keN we define the derivation 8P of

&[E] with P = ka, by the properties

8,(K) = -P.X , (1.19a)

w(@y) =0, 8,(z) =0, ap(ﬁ) =0 . (1.19b)

Obviously, 8P is well-defined (see I(1.22)).

Proposition 1.20. For L given by (1.16), we have

3p(L) = [-P_,L] = [P,,L] . (1.21)

Proof. Since [P,L] = 0, the second equality in (1.21) follows from the

first. Now, the equality
-1, _ -1 -1
BP(K ) = =K BP(K)K

together with (1.16) and (1.19) implies

-1y _ L -1 _ -1, -1 _
3p(L) = 3,(Kz K ) = -P_Kz K Kz K (-P_K)K

1

[-P_,Kz X '] = [-P_,L] . o

Now let k€Nl and Q= Lk Ye ﬁ[i]c k[E]. Proposition 1.20 tells us how to

restrict aP to &[;]. In particular, by I(2.2) we have
3p(@) = [-P_,Q] . (1.22)

Theorem 1.23. 9_ and d_ commute in B[z].

P Q

Proof. It is enough to show that
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95,941 (K) = 0 . (1.24)
From (1.19a) and (1.22) we get

95(3(K)) = 3,(-QK) = -[-P_,Q] X - Q_(-PK) ,
and analogously for 3,(2,(K)). Thus

(35,81 (K) = {[P_,Ql_+ [P,Q]_ - [P,Q1}K .

But the expression in the curly brackets is identically zero, as can be seen at

once by expanding the relation
[P,*+P_,Q,+q_1 = 0 ,

and taking the negative part of it. a
Now, as in Chapt. III, sec. 1, we can specialize the foregoing scheme for

the case

z°=€,zi+1=xi§_i.W(C)=1,w(CK)=0,a=B=1. (1.25)

Then the derivations 8P of CK((C-I)) given by (1.19), define the evolutionary
derivations 8P of CK which commute and extend the corresponding evolutionary
derivations of CL'

2. The Second Construction of Conservation Laws

Consider the variable ¢ of the preceeding section as a new formal variable,

and let us define the difference rings
Cp of = Cl®0711CA™) , ¢ 4 = ¢ 10,071 1(A™Y) (2.1)
K’q) K ’ ’ L’¢ L ’ ’ .

where A is a formal parameter commuting with everything and A is acting on ¢ by
59" = A¥Sek (2.2)

Let KECK((C-I)) be given by (1.4) and EGC be given by (1.7). Then (1.8)

K,¢
shows that m is a formal eigenfunction of L, sometimes also called a formal
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Baker-Akhiezer function (in the differential case).

We are now going to use $ to derive conservation laws for the Lax equations
(1.1). This construction is called the second to distinguish it from the con-
servation laws given by the formulae ResLn; the latter formulae are called the
first construction. This terminology and the main steps in the proof of the
equivalence of two constructions are adopted from Wilson's treatment of the
differential case [13]. For the reader's convenience I keep the notations and
the line of reasoning as close to his notations and arguments as possible.

Fix nefﬂ, let P = L (remember that a = B = y = 1). Let us represent P_

and { as elements of CL((L_I)):

P = 3 diL-l , dcC (2.3)
i>1

t=L- 3 bLd, bsec (2.4)

320 L

Obviously, both decompositions (2.3) and (2.4) exist and are unique; (2.4) can

be arrived at by inverting the equation L = { + 2 t™Jq. step by step.

0
Lemma 2.5. Let us extend the derivation aP to CK o by BP(¢k) =0, BP(A) = 0.
Then
M F = -3 ant, (2.6)
. i
i>1
~ ~=] -j-1
Ay * = A(1- Z b.A ) . 2.7
j20

Proof. Notice that by (1.7) m = [1+0(A‘1)]¢, hence $-1 makes sense in

CK o Now L = l(csl(-1 by (1.5), therefore Ls$ = As$ by (1.7) and (2.2), hence
’

by (2.3) we obtain

2, = 2,(Ke) = 8,(K)$ = ~P Ko = -P_§ =
=-3 auiy=-3 anr’iy, (2.6a)
i1t i1t

192



FORMAL EIGENFUNCTIONS AND ASSOCIATED CONSTRUCTIONS

which proves (2.6). Analogously, we get (2.7) after applying (2.4) to ¥. O

Theorem 2.8. With di’bj as above, we have

2,[20(1- 3 bA I ) = 1-a) 3z a7t (2.9)
j>0 J i1t

Hence, denoting

-ga(1- 3 bA I = 3 p AT, pgC (2.10)
j>0 J i>1
we obtain
3P(pi) ~0, (2.11)

and thus the pi's provide us with the new set of conservation laws.

Proof of the theorem. We have

3P(2n(1-2bjk-j—l)] = [by (2.7) and since 3,(A) = 0]

3,(2n %*) = 3 [(a-1)nd] =

@D [2,(h)] = B-D[,@ F 11 = [by (2.6)]

(A-l)(-ZdiA-i-l) ) a

Let us see the first few new c.l.'s explicitly. For L given by (1.3) we have

T N A BT ke T

(-3)

I N T O I O N N e

) 1 0 1 o () (2.12)

and equating corresponding {-powers in

- -1 -2
L=¢ + bo + blL + b2L + ...,

we get
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-1 -2 -1) (-1
b, =q, ;b = q§ ), b, = qg ) 4 qg )q§ ), (2.13)
Now
-1 -2 -3 _
=#n(1-b A" "-b A T-b, A -l ) =
= A"l +(b +E;)A_l+(b +b b +E;)A-2 + }
- o 12 2 013 el
hence
Py =b,=q,
2 2
b q
- o _ (-1) , 2o
Pp=by v =9 T, (2.14a)
3 3
b = b +bb 40D DD ) S
37 P27 %173 T W% 4 9,9 3
On the other hand, we have
Hl = ResL = q, »
2
=1 2 _1 (-1) o
HZ—ZResL —2((11'0-q1 )+2 ,
(2.14b)
=1 3_1 (-1), (-2) ( 1) ( 1)
Hy = 3 ResL” = 3{q,*q, +q2 ]+ [2q 03119 ]+
3
1 (-1, (1) _g
+ 3l2q 9, q,] + R

Comparing (2.14a) with (2.14b) we are led to conjecture that c.l.'s Hi and p; are
equivalent: Hi ~ Py This is indeed the case and the rest of this section is
devoted to the proof of the conjecture.

It will be convenient to use the following notations for the polynomial

(n) .

difference ring generated over a difference ring K by variables Py
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_ (n)) (n)
&A[p]: =£[p1 ! »Py 2 S I (2.15a)

as opposed to the usual polynomial ring
Riz1: = Riopopys- -0 (2.15b)
Also, for any reNl we denote

- (n,) (n)
k251 = ki, Vseop, U1, (2.15¢)

B tp1: =fip;,.--sp,) - (2.154)

If the numbering of the p-variables starts with zero instead of ome, i.e., if we

(n)

have P, ° , etc., then the same notational conventions hold.

-i A - .
From (2.4) we get (bi-A qi)e& _1[q] and from (2.10) we obtain (pi.’_1 bi)é

i

e&i_llfa]. Thus

Riar =446 = 8% (2.162)
foar =R5er L RS, 181 =R561 (2.16b)

Let us introduce a few objects to make the reasoning clearer. First we

define

R L N NP (o S DT (e N D (2.17)
so that

¥ = o

by (1.7). Introduce variables Bj by

oy = 2n(1+x1)\-1+...) = 3 sjA'j , (2.18)
j21

so that
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(xg-BIERUB,, - ,B, ] = RIxys-- 5%, ] (2.19)

(for s = 1, (2.19) should naturally read as X; = Bl). Finally, introduce vari-

ables n; by the formula

1

K' =1+ 3 ¢ =3 th_ ,n =1. (2.20)
r>1 Y r’ o
Obviously,
A -
(x )€ gr_llx] . (2.21)

Lemma 2.22. With the foregoing notations, for any qé&Nl ,

q-1 s q-1 a-1 s
ResLy = (1-A)[ = A°x + 3 3 A XoNg-g] (2.23)
s=0 % a=1 s=0 q
Proof. By (1.5), LI = k¢!, therefore
ResLd = ResktIK ™! = Res[K,t% '] = [by (1.4), (2.20)]
= Res[x, g +...+x t79, ¢3¢ q + . atln 1 =
. gt eereing
q a1 a
= (-ahx + I -8
a=1
from which (2.23) follows. o
Theorem 2.24.
q-1 q-1 a-1 _
[z 8% + 3 1 8% _,-a81¢R0p) . (2.25)
s=0 o=1 s=0 1 q

Corollary 2.26.
(Requ-qpq) € Im(A-1) in &A[a]

Proof of the corollary. Applying the operator 1-A to (2.25) and using (2.23)

and (2.16a) we obtain
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[Rest3-(1-8)a8 ] € m(a-1) in R%ra) ,

from which the corollary follows if we notice that
1-A)B. = p. . 2.27
( )BJ P; ( )

This last equality can be seen as follows:

(a-1) = ij‘j = (A-1)2a¢ [by (2.18)]

j21
(¢)) ~ (1) ~(1)
= &n Y = 2n (¢£¢) = fn Y — = [by (2.7)]
Y/ ¢ A
= ga(1- 3 bAH = by (2.10)] (2.27a)
j>0
=-2 p.A-j . [m]
1)

The corollary establishes the equivalence of the two constructions of con-
servation laws. It remains to prove theorem 2.24, and we break the proof into a

few lemmas.

Lemma 2.28.

EArx1 = dixn®ia = dtanix

R

In other words, the difference ring &A[i] is the ring of polynomials in variables

XqsXps- .- OVer the difference ring &Alal.

Proof. Since £A[i] =|~)&A[a;x1,...,xr] =LJ (&A[q])gli] , and, obviously,
r r

R85 RIXDAME], it is enough to show that (K _[X1)*1a12 (R*ADA(X], which is

equivalent, by (2.16a), to
b x%p1 > RPEntix (2.29)
We prove (2.29) by induction on r.
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For r = 1, (2.18) yields X; = Bl’ thus by (2.27)
pl = (I-A)Bl = (I-A)Xl = XI'AXI ’

hence

-1

-1
By =% =Py A Xy =X, AP,

This implies

%, € (Z%1p, (%)) ,VkeZ,

which proves (2.29) for r = 1. Assume now that (2.29) is true for all r < (s-1)

To prove it for r = s, write (2.19) in the form
Xg = By + R(XpheenX ) s (2.30)

where Rs is some polynomial. Applying the operator (1-A) to (2.30) and using

(2.27) and the induction assumption, we get
[ax,-(x-p ) led__ RDA5]
s s 's s-1 ?
which can be rewritten as
x,-x el __ X111
This, as above, implies
K s34z
@ x -x ek x5 Ve Z,

which proves (2.29) for r = s. Thus, the induction step is completed. m}

Lemma 2.31. (i) The variables qj are A-independent, that is, the variables

(n)

qj are algebraically independent ovez'&. (ii) The variables xi are alge-
braically independent ove:-&A[a].
Proof. (i) By (2.16b), the statement is equivalent to the fact that the

variables pi are A-independent. Suppose that this is not so, and that there

(n)

exists some polynomial f in the variables pi y i < N, which vanishes:
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f=2f (pa,(<N) =0,

with some fi(pN)egA[pN] and ai(<N)e£§_l[5]. We choose the maximal s€Z such that

plgs) can be still met in f, and then we pick the maximal power £ of p}gs) in f:

f= (p}(‘s))2 g[pﬁs'l),pés'z),...]a(<N) + ...

, we see that the maximal power of B}§S+1) in f is £

is multiplied by the coefficient {g[pés-l) yeo-Ja(<N) }*,

which thus must vanish, since Bi's are A-independent (by * we denote the result

() _ g(k+1) (),

i i i

- Bil)
L

Substituting p; = ﬂi

(s+1)

and the term (-BN )

of the substitution B instead of p Continuing further, we get

rid of all the variables PyrPy-17- - €tCe, concluding that £ = 0. (ii) We
prove the equivalent statement that the variables Bi are algebraically inde-
pendent over &A[f)]. For each i, and for each NeNl, we have a linear invertible
(W WD) 00y g gD

B§N+1)), generated by the relations pgs

transformation between variables (ﬁi,p
Y= pl®) - gDy <5 <N, This
transformation induces the isomorphism of the rings

(a,)
Rio, V.81l -N<a, <N, i<N}=

(a;)
= {ﬁlﬁi P1o-N g a, SN+1,i<N}.

But this last ring is the subring of &A[B] where the variables Bi are A-inde-

pendent. a

@1anx] = &A1) 1B], and by lemma 2.31 (ii) the

variables Bi are algebraically independent over KA[B]. Thus we can introduce

By lemma 2.28, &A[)-(]

R
IR

derivations % of the ring (ﬂA[B])[E] by the relations

1

2 A - 2 i
56;" B2 510 , ;" By 6] (2.32)
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Lemma 2.33.
2 (1-8) = (1-8) a—g— . (2.34)
i i

Proof. We check out that

56 A=A T (2.35)

from which (2.34) follows.

Denote (R'IPDIB;] = reRB1IBIIGE = 01. Then RO[5DIF] =
i

((&A[B])[ﬁi])[ai]. Let us take an arbitrary element fB;, fG(AA[r-)])[ﬁi]. Then

_ 9 r, _ r-1 _
B A(fB ) = t [A(f)(Bi'Pi) 1= A(f)t(Bi‘pi)
= ACExB] ) = 8 5o (8B])
1
. 2] - - -
since SE: (Af) = 0 and ﬁi Aﬁi =p;- a

Lemma 2.36. Let R € (RA[IJ])[él, (1-A)R € QA[B] and R not contain terms of

the form ciBi, 0 # cieﬁ . Then RE &A[a].

Proof. Since (1-A)R € B2[p], then (1-8)R = 0. By (2.34) we have 0 =

2
3B,

1

(1-4) 35 , and lemma 2.37 below implies that = c, 6& a

Lemma 2.37. Let A be a difference ring with commuting automorphisms Al" cey
Ar: A > A. Let AA[:;] be the polynomial difference ring A[qgo)] with free gener-
ators q§°), j€J, 0€Z". Let R€ A[q] be such that (A-DR=0,i=1,...,r

Then R€ [ ) Ker @D,
i
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Proof. Since AA[ql,...,qr] = (AA[ql,...,qr_I])A [qr], it is enough to prove

the lemma for r = 1. Let us denote q = 9 and assume that R f A. Then there

exists s €Z such that 81(!5) £ 0, ?2,) = O,Vs' >s. But 0 = % (A-1)R =
3q 3q 3q
3R . R . . 3R
A ——, in contradiction with the assumption that —— # 0. a
g™ 2q(>)

Proof of theorem 2.24. We have to prove that the expression in the square

brackets in (2.25), let us call it w, belongs to EA[B]. From (2.23) and (2.27)
we know that (1-A)w € QA[B]. To apply lemma 2.36 it is enough to show that w,
as an element of (&A[B])[ﬁl does not contain any nonzero terms of the form
ciBi, ci€£ .

For elements in zAlﬁl let us write 0(p2) to denote elements of degree at
least 2 in the p-variables with the usual degree defined by deg(pij)) = 1. Then:

n.=-x.+ 06 in RAIX) by (2.20); Xg = Bg t o8® in  RAIRI by (2.18).
Therefore Asnaxq-a = 0(82) in KA[B]. Since the isomorphism (gA[E])[B] = £A[E] is

induced by the linear transformation in the variables involved (see proof of
lemma 2.31 (ii)), the notion of O(BZ) is the same in both rings. Thus it only

remains to look at the element w”: =

U s i Agai = + 0(p%) ‘= qgl A® +0(p%) =
s:o A Xq " qu in w. Again, X = Bq B°), sow” = 2 Bq QBq B™) =
q-1 q-2 -
=B, + 3 B- % M%) -qp +0D1ekAp1 + 0sd. o
1 s=1 1 ko ¢ 4

3. The Third Construction of Conservation Laws
For the differential Lax equations, the equivalence of the two construc-
tions of conservation laws can be established, at least in the scalar case, by a
procedure which differs significantly from the original method of Wilson [13].
This procedure was devised by Flaschka [3] who used Cherednik's arguments [1].
In this section we apply the analogous procedure to the discrete Lax equa-
tions. As we shall see below, instead of collapsing into a relation formula

between the first two constructions of conservation laws, our procedure yields a
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seemingly new construction of conservation laws together with a formula which
relates this third construction to the second one. By a separate argument we
then show that the third construction in fact provides the same formulae as the
first one, thus enabling us to find a simpler proof of the equivalence of the
first and second constructions than the one presented in the preceeding section.
As in the differential case, the formulae met during the derivation of the third
construction, also yield the so-called "t-function" type of relation.

First some notations. For any né€ Z+, write
-1 -2
= @h, +e T +0D, (3.1)

where 0(§-2) denotes all terms of the form pgk, k < -2, with p €.&A[a] or

p € KA[i]. Obviously, the en’s are uniquely defined and sne &A[a]. Set

E=1+ 3 A™LM (3.2)
m>0 o
A=z A lah, (3.3)
m>0
b=bA) =A- = bAL, (3.4)
i>o *
with bi's defined by (2.4).
Lemma 3.5.
(E-b)A = -E . (3.6)

Proof. Using (2.4) we obtain

Rl § S (ORI bl =t vz b,

j20 j20
which yields, upon substituting (3.1),

n+l

a™ly s ea®, + e+ 3 bt
+ + j + °

n §=0
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Therefore, by (3.2)-(3.4),

Ateatga e @+ oz ae, 2o a™, A =

i>0 J m>o

ATLEA + E + (A-D)A} =

A+ A7 hE-p)A + E} . o

For P = Ln, neZ denote

+’
- - (3!
D, =D () = 3, , (3.7

D=DA) = 3 A %D . (3.8)

Theorem 3.9. With the foregoing notations,

2 _E
3 2nb + (A-1)D = NE (3.10)

Corollary 3.11. The series (% - A_l) yields the third construction of con-

servation laws. Since gx Lnb = A-l + 2z ipi}x-l by (2.10), the third con-
i>1

struction is equivalent to the second one.

Proof of the theorem. Let k be a formal parameter which commutes with

everything, ¢(k) be analogous to ¢ in (2.2), with A¢(k) = k¢(k). Denote ﬁ(k) =

K¢(k), so that Ln'li;(k) = knﬁ;(k). Also, we have
0 F0 ™ = b, 250G =0 0, @ =1 (3.12)

as in (2.6), (2.7), (3.7).
Now apply (3.6) to (k) and multiply the result by t];(k)-l. On the right

hand side we obtain -E. On the left hand side we have
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A -F00 ! = T e @™ o 0! =

™ hara™, @) a0 - 183§ "} =
[by (2.7)]

A™ (o L™ @™ 1 Ga)) S DY =

"

A o () {alK™-e Kk +o(kH)]} =

b(k) A IA[km-smk-l + 0%y,

(3.13)

BAF) - F) T = b A™ G0 F0) 7 =

o™ a™ 1@ a0l =

-b(A)ZA

-b(A):A'm‘l[km-emk'1+0(k'2)] . (3.14)

Adding (3.13) and (3.14) we get

bk)-b(A)] = AT HM 4 (3.15a)

m>0
+ ZA‘m'l{b(k)A[-emk'1+0(k'2)]-b(A)[-emk'1+o(k'2)]} ) (3.15b)

Since 3 ATl =zl 1L

m>0 1-k" 1

= X%E’ (3.15a) becomes

b(k)-b(k)

Aok (3.16a)

% and (3.15b) becomes

Now let k > A. Then (3.16) turns into - ET

A™ by a-n-a™ §h = [by (3.7)]

= b(A) (A-1)3A™™

Yo = by (1-00D . (3.16b)
Altogether, we get

-o b(1-A)D = -E , (3.17)

9
2.8

which yields (3.10) after dividing both parts by -b. a
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Lemma 3.18.

= Res A . (3.19)

]

-n-1

Corollary 3.20. Since Res A = 2A Res L" by (3.3), we see that (3.10)

provides us with the new proof of the formula np ~ nﬂn.

Proof of lemma 3.18. Take Res of both parts of (3.6). =

We now turn to the derivation of the t-function formula. For this we

n

change our point of view on the derivation 9, and write instead 52~ for P =1L,

P

thus considering all our objects as functions of infinitely many "time'-vari-

ables Xp9Xys-e

Lemma 3.21.
ab -m-18b _ _
-ﬁ"'f_}\ *a—;—-E. (3.22)
m>1 m

Proof. Formulae (3.17) and (3.22) differ only in the second term which can

be transformed with the help of (3.16b) as

bA) = A™la-D-a™ 5P = by (2.62)]
mZO

by = Ay 2 - §h -
m>1 m

-m-1 2} ~
b(A) Z A (a-1) % ny =

m>1 m
=b) 2 AT 2 By 2]
m>1 xm Y

-m-1 3b

bA) 2 A™D 2 by = 3 A o
m

m>1 m m>1

Corollary 3.23. For s eN ,
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ab
a _ 3 _s-m
et =sb_+ z 5B (3.24)

m=1 m
Proof. Substituting (3.2) and (3.4) into (3.22), and taking into account
that € = 0, we obtain (3.24). o

o

Lemma 3.25. For m,j QN] ,

3x.  9x_ - (3.26)

Corollary 3.27. Thus there exists a function, call it -0(x1,x2,...), such
that
(1) _ 3(-09)
Em T Tox_ - (3.28)
m
Then, (3.24) becomes
elod s abs-m
g = Sbs - E % (3.29)
m=1 m

Proof of the lemma. By (2.6a),

%‘f; = -a™ G = -1 L@ = ~le Ao DIT
hence
~ 9e
2 8% __ -1, 020
axj axm - lax. AT O DY,

and the left hand side is symmetric with respect to the order of indices j and m. O
Remark 3.30. Formula (3.26) is a particular instance of a general algebraic
fact. Let K, L, P and Q be as in section 1. Then from (1.19a) we obtain, as in

the proof of theorem 1.23,
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aQaP(K) = aQ(-P_K) = -[aQP_+P_Q_]K ,
hence
0 = [35,9)1(K) = {8,0_-3,P_+[Q_,P_1}K ,

and the expression in the curly brackets vanishes as we have seen in the proof

of theorem 1.23:

2,0 - 3P+ [Q,p ] =0 . (3.31)

For any R = X RSE ﬁ[;], with weights w(Rs) = s, define
s

e(R): = R_l (3.32)
Applying this operator € to (3.31) we obtain
3p £(Q) = 3, &(P) , (3.33)

which reduces to (3.26) when one specializes to the set-up of the discrete Lax
equations.

The operator € in (3.32) resembles the residue in the ring of pseudo-
differential operators. For the operator Res which is relevant in the discrete
theory, one has the following result. Let L € E[;] be as in section 1 Chap. I.
Let &[;]o be the subring of E[;] consisting of those elements whose Res equals

zero. Let Tr: ﬁ[;]o > k[;] be a "character", i.e. a linear map which vanishes

on commutators and commutes with all derivations BP, P é Z(L).
Lemma 3.34. For P = L%, Q = L™ € Z(L), we have
3p Tr ResL” = 3, Tr ResL” . (3.35)
Proof. We have
aQResLn = Res aQL“ = Res[L},L"] = Res[L”,L7] = Res[L},L]] , (3.36a)
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BPResLm = Res[L},L"] = Res[L},L7] + [ResL”,ResL"] . (3.36b)

Taking Tr of both parts in (3.36) yields (3.35). [w|
Our next step is to invert the infinite system (3.29).
Lemma 3.37. For any set of smooth functions A(x) and {Bz(x),l =1,2,...}

of variables x = (xl,x ..), the relations

2’

2-1 3B

aA 9-

5 = BBy - I = m o og=1,2,... (3.38)
2 m=1 m

can be inverted by a single formal identity

3 Bzh-ﬁ = Alx - %, x, - —15,...) -AX) , (3.39)
21 2\
where the expression on the right hand side of (3.39) must be understood in the
sense of the corresponding Taylor series.
Remark. The lemma is apparently well known. The following proof was found
jointly with H. Flaschka.
9A

axl

Proof. For £ =1, (3.38) yields = -Bl, and taking A-l-coefficients in

(3.39) yields the same result. For £ = 2, we obtain from (3.38)

po=-12a P 1 192
2 2 3x2 Bxl 2 X, 2 9x

>

- N

which can be gotten from (3.39) by taking A-Z-coefficients of both parts. At
this point it becomes clear that the nature of the functions A and {Bl} is not
important, since the inversion of (3.38) can be performed at each step in finite
terms, and our lemma is in fact the statement about linear differential operators
of finite order. Thus it is enough to check (3.39) for a sufficiently large

class of functions A, and for this purpose A(x) = exp<c,x>: = exp( 2 cixi),
i>1

208



FORMAL EIGENFUNCTIONS AND ASSOCIATED CONSTRUCTIONS

cieda , will do.

Set 32 = f2 exp<c,x>. Then (3.38) becomes

2-1
cy = -lf2 - 2 fz_mc2 ,
m=1

which is equivalent to

-2 A7 = clA-n-l + 3 featIT
i+j=2 J

which is equivalent to

-i-l)

gi a+ 3 A =a+ 3 £AH(E e
21 21 >t

which can be rewritten as

) -2, _ -i-1
ax (I+ZEA7T) = 2 c A ,

which implies

fn(1+ 3 sz'l) =-3 ¢, A |

21 i>1

which is equivalent to

1+ 3 fzk—z = exp(- X c, /),
21 S

or

2 £, exp<c,x>A-2= exp[ Z c.(x.-~lf)]-exp<c,x> ,
21 i>1 1t aat

and this is exactly (3.39).

Now we can invert (3.29), if we notice that it can be rewritten as
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3 - (3.41)

Applying lemma (3.37) to (3.41) we get

s b2A'2 = (@) (oyx, - =) - (o))
1 iA
or
T(...,x, - —lv,...
-i Al b ( 1 ) (3.42)
2 b,A" =£n + ceayX.m T, ll) 3.42
i>0 i T(x) o i i

where we introduced the function t by the relation

o = 2ntT . (3.43)

With (2.17) and (2.27a), (3.42) becomes

t(...,x. - -—.,...)

(A-1)2n% = 2n{1 - A" ![2n
(3.44)

which is the desired analog of the t-function formula in the differential case

(see (5) in [3]).

B.A.KUPERSHMIDT

University of Tennessee Space
Institute

Tullahoma, Tennessee 37388
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RESUME

Ce texte est la premiére introduction détaillée &
la théorie des systémes intégrables discrets infinis et aux idées

mathématiques associées.

I1 décrit la construction des principales classes
d'équations, leurs lois de conservation et leurs structures Hamil-
toniennes, les applications canoniques entre elles, les limites
continues, les valeurs propres formelles des opérateurs de Lax et
une représentation en T-fonctions.

Le langage de base de la théorie est le calcul des
variations discret, qui se comporte naturellement sous limite con-
tinue.

L'auteur donne un exposé complet du formalisme Hamilto-
nien abstrait et du formalisme des espaces duaux d'algébres de Lie

sur les anneaux de fonction.

Ce volume sera utile aux mathématiciens et aux physiciens
intéressés dans les solitons et dans le formalisme Hamiltonien ; il

est accessible aux étudiants de 3&me cycle.
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