Espaces formels et Π-formels
Homotopie algébrique et algèbre locale, Astérisque, no. 113-114 (1984), pp. 96-108.
@incollection{AST_1984__113-114__96_0,
     author = {F\'elix, Yves},
     title = {Espaces formels et $\Pi$-formels},
     booktitle = {Homotopie alg\'ebrique et alg\`ebre locale},
     series = {Ast\'erisque},
     pages = {96--108},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {113-114},
     year = {1984},
     mrnumber = {749045},
     zbl = {0546.55013},
     language = {fr},
     url = {http://www.numdam.org/item/AST_1984__113-114__96_0/}
}
TY  - CHAP
AU  - Félix, Yves
TI  - Espaces formels et $\Pi$-formels
BT  - Homotopie algébrique et algèbre locale
AU  - Collectif
T3  - Astérisque
PY  - 1984
SP  - 96
EP  - 108
IS  - 113-114
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_1984__113-114__96_0/
LA  - fr
ID  - AST_1984__113-114__96_0
ER  - 
%0 Book Section
%A Félix, Yves
%T Espaces formels et $\Pi$-formels
%B Homotopie algébrique et algèbre locale
%A Collectif
%S Astérisque
%D 1984
%P 96-108
%N 113-114
%I Société mathématique de France
%U http://www.numdam.org/item/AST_1984__113-114__96_0/
%G fr
%F AST_1984__113-114__96_0
Félix, Yves. Espaces formels et $\Pi$-formels, dans Homotopie algébrique et algèbre locale, Astérisque, no. 113-114 (1984), pp. 96-108. http://www.numdam.org/item/AST_1984__113-114__96_0/

[An] Anick D. Non commutative graded algebras and their Hilbert series. J. of algebra 78 (1982), 120-140. | DOI | MR | Zbl

[Av] Avranov L. et Levin G. Factoring out the socle of a gorenstein ring. Preprint Stoklhom n° 14(1977) | MR | Zbl

[Ba] Babenko I. K. On real homotopy properties of complete intersections (Math. U.S.S.R. Izvestija - vol 15 (1980) n° 2). | Zbl

[Bar] Barr M. Harrison homology, Hochschild homology and triples. J. of Algebra 8, 314-323(1968). | DOI | MR | Zbl

[B-L] Baues H. et Lemaire J. M. Minimal models in homotopy theory. Math. Ann. 225, 219-242(1977). | DOI | EuDML | MR | Zbl

[D] Deligne P, Griffitts P., Morgan J. et Sullivan D. Real homotopy theory of Kälher manifolds. Inventiones Math. 29, 245-274(1975). | DOI | EuDML | MR | Zbl

[F1] Felix Y. Dénombrement des types de k-homotopie. Théorie de la déformation. Mémoire n° 3 de la Société Math. de France (1981). | EuDML | Numdam | MR | Zbl

[F2] Felix Y. Modèles bifiltrés : une plaque tournante en homotopie rationnelle. Can J of Math (1982). | MR | Zbl

[F-H] Felix Y et Halperin S. Formal spaces with finite dimensional rational homotopy. Trans. A.M.S. 270 (1982), 575-588. | DOI | MR | Zbl

[F-T] Felix Y et Thomas J. C. The radius of convergence of Poincaré series of loop spaces. Invent. Math. 68 (1982), 257-274. | DOI | EuDML | MR | Zbl

[Ge] Gerstenhaler M. The cohomology structure of an associative ring. Annals of Math. Vol 78, n° 2(1963) 267-288. | DOI | MR | Zbl

[Ha] Halperin S. Lectures on minimal models. Publication interne - Lille n° 111 (1977). | Zbl

[H-S] Halperin S. et Stasheff J. Obstructions to homotopy equivalences. Advances in Math 32 (1979), 233-279. | DOI | MR | Zbl

[Ha] Harrison D. Commutative algebras and cohomology. Trans. Amer. Math. Soc 104 (1962) 191-204. | MR | Zbl

[J] Jacobson C. On local flat homomorphisms and the Yoneda Ext-algebra of the fibre (publication interne Stockholm n° 8 (1982)).

[Jo] Jozefiak T. Tate resolutions for commutative graded algebras over a local ring. Fund Math 74 (1972) 209-231. | DOI | EuDML | MR | Zbl

[La] Labute J. Algèbres de Lie et pro-p-groupes définis par une seule relation. Inventiones math. 4 - 142-158(1967). | DOI | EuDML | MR | Zbl

[Le] Lemaire J. M. « Autopie d'un meurtre » dans l'homologie d'une aglèbre de chaînes. Ann. scient. Ec. norm. sup. 11 (1978) 93-100. | DOI | EuDML | Numdam | MR | Zbl

[L-S] Lemaire J. M. et Sirgrist F. Dénombrement de types d'homotopie rationnelle. C.R. Acad. Sc. Paris 287 (1978) Série A - 109-112. | MR | Zbl

[Lo] Lofwall C. On the subalgebra generated by the one-dimensional elements in the Yoneda Ext-algebra. Publication interne n° 5 (1976) Stockholm. | Zbl

[M] Miller T. On the formality of (k-1) connected compact manifolds of dimensional less than or equal to 4k-2. III. J. of Math. 23 (1979) 253-258. | MR | Zbl

[M-N] Miller T. et Neisendorfer J. Formal and coformal spaces . III. J. of Math 22 (1978) 565-580. | MR | Zbl

[N] Neisendorfer J. The rational homotopy groups of complete intersections. III. J. of Math. 23 (1979) 175-182. | MR | Zbl

[Ou]Outili A. Thèse de 3ème cycle Nice 1978).

[Pa] Papadima S. A A rational classification for spaces satisfying Poincaré duality Preprint series n° 73 (1981) Bucarest.

[Pr] Priddy S. Koszul resolutions. Trans. Amer. Math Soc. 152 (1970) 39-60. | DOI | MR | Zbl

[Q] Quillen D. Rational homotopy theory. Ann. of Math. 90 (1969) 205-295. | DOI | MR | Zbl

[R] Roos J. E. Relations between the Poincaré-Betti series of loop spaces and of local rings Preprint n° 8 (1978) Stockholm. | MR | Zbl

[S-S] Schlessinger M. et Stasheff J. Deformation theory and rational homotopy type. A paraître Publ. Sci. I.H.E.S.

[Sh] Shiga M. Rational homotopy type and self maps. J. Math. Soc. Japan - Vol 31 n° 3 (1979), 427-434. | DOI | MR | Zbl

[St] Stasheff J. Rational Poincaré duality spaces (preprint 1979). | MR | Zbl

[Su] Sullivan D. Infinitesimal computations in topology. Publ. I.H.E.S. 47 (1977) 269-331. | EuDML | Numdam | MR | Zbl

[Ta] Tanré D. Modèles de Chen, Quillen, Sullivan et applications aux fibrations de Serre. Thèse Lille (1982). | MR