@incollection{AST_1984__113-114__198_0, author = {Halperin, Stephen}, title = {Spaces whose rational homology and de {Rham} homotopy are both finite dimensional}, booktitle = {Homotopie alg\'ebrique et alg\`ebre locale}, series = {Ast\'erisque}, pages = {198--205}, publisher = {Soci\'et\'e math\'ematique de France}, number = {113-114}, year = {1984}, zbl = {0546.55015}, mrnumber = {749058}, language = {en}, url = {http://www.numdam.org/item/AST_1984__113-114__198_0/} }
TY - CHAP AU - Halperin, Stephen TI - Spaces whose rational homology and de Rham homotopy are both finite dimensional BT - Homotopie algébrique et algèbre locale AU - Collectif T3 - Astérisque PY - 1984 SP - 198 EP - 205 IS - 113-114 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_1984__113-114__198_0/ LA - en ID - AST_1984__113-114__198_0 ER -
%0 Book Section %A Halperin, Stephen %T Spaces whose rational homology and de Rham homotopy are both finite dimensional %B Homotopie algébrique et algèbre locale %A Collectif %S Astérisque %D 1984 %P 198-205 %N 113-114 %I Société mathématique de France %U http://www.numdam.org/item/AST_1984__113-114__198_0/ %G en %F AST_1984__113-114__198_0
Halperin, Stephen. Spaces whose rational homology and de Rham homotopy are both finite dimensional, dans Homotopie algébrique et algèbre locale, Astérisque, no. 113-114 (1984), pp. 198-205. http://www.numdam.org/item/AST_1984__113-114__198_0/
[1] Rational homotopy groups of certain spaces, Invent. Math. 53 (1979) p. 117-133. | DOI | EuDML | MR | Zbl
and[2] Finiteness in the minimal models of Sullivan. Trans. Amer. Math. Soc. 230 (1977) p. 173-199. | DOI | MR | Zbl
.[3] Rational fibrations, minimal models and the fibring of homogeneous spaces. Trans. Amer. Math. Soc. 244 (1978) p. 199-223. | DOI | MR | Zbl
.[4] Infinitesimal Computations in Topology. Inst. Hautes Etudes Sci. Publ. Math. 47 (1978) p. 269-331). | DOI | EuDML | Numdam | MR | Zbl
,