Hodge algebras : a survey
Tableaux de Young et foncteurs de Schur en algèbre et géométrie - TORUN, Pologne, 1980, Astérisque, no. 87-88 (1981), pp. 79-83.
@incollection{AST_1981__87-88__79_0,
     author = {De Concini, Corrado and Procesi, Claudio},
     title = {Hodge algebras : a survey},
     booktitle = {Tableaux de Young et foncteurs de Schur en alg\`ebre et g\'eom\'etrie - TORUN, Pologne, 1980},
     series = {Ast\'erisque},
     pages = {79--83},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {87-88},
     year = {1981},
     zbl = {0514.13008},
     language = {en},
     url = {http://www.numdam.org/item/AST_1981__87-88__79_0/}
}
TY  - CHAP
AU  - De Concini, Corrado
AU  - Procesi, Claudio
TI  - Hodge algebras : a survey
BT  - Tableaux de Young et foncteurs de Schur en algèbre et géométrie - TORUN, Pologne, 1980
AU  - Collectif
T3  - Astérisque
PY  - 1981
SP  - 79
EP  - 83
IS  - 87-88
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_1981__87-88__79_0/
LA  - en
ID  - AST_1981__87-88__79_0
ER  - 
%0 Book Section
%A De Concini, Corrado
%A Procesi, Claudio
%T Hodge algebras : a survey
%B Tableaux de Young et foncteurs de Schur en algèbre et géométrie - TORUN, Pologne, 1980
%A Collectif
%S Astérisque
%D 1981
%P 79-83
%N 87-88
%I Société mathématique de France
%U http://www.numdam.org/item/AST_1981__87-88__79_0/
%G en
%F AST_1981__87-88__79_0
De Concini, Corrado; Procesi, Claudio. Hodge algebras : a survey, dans Tableaux de Young et foncteurs de Schur en algèbre et géométrie - TORUN, Pologne, 1980, Astérisque, no. 87-88 (1981), pp. 79-83. http://www.numdam.org/item/AST_1981__87-88__79_0/

[1] Björner A. and Wachs M. , Bruhat order of Coxeter groups and shellability (to appear in the Adv. in Math.). | MR | Zbl

[2] De Concini C. , Eisenbud D. and Procesi C. , Hodge algebras (to appear) | Numdam | MR | Zbl

[3] De Concini C. and Lakshmibai V. , Arithmetic Cohen-Macaulayness and arithmetic normality for Schubert varieties (to appear in Amer. J. Math.). | MR | Zbl

[4] De Concini C. and Procesi C. , A characteristic free approach to invariant theory, Adv. in Math. 21 (1976) 330-354. | DOI | MR | Zbl

[5] De Concini C. and Strickland E. , On the variety of complexes, Adv. in Math. 41 (1981) 57-77. | DOI | MR | Zbl

[6] Hochster M., Grassmannians and their Schubert subvarieties are arithmetically Cohen-Macaulay, J. of Alg. 25. (1973) 40-57. | DOI | MR | Zbl

[7] Hodge W. , Some enumerative results in the theory of forms, Proc. Camb. Phil. Soc. 39. (1943) 22-30. | DOI | MR | Zbl

[8] Lakshmibai, Musili and Seshadri , Geometry of G/P II, III, IV Proc. Ind. Acad. Sc. 1978/1979. | MR | Zbl

[9] Laksov D. , The arithmetic Cohen-Macaulay character of Schubert schemes, Acta Math. 129 (1972) 1-9 | DOI | MR | Zbl

[10] Musili C. , Postulation formulas for Schubert varieties, J. Ind. Math. Soc. 36 (1972) 143-171. | MR | Zbl

[11] Reisner G. , Cohen-Macaulay quotients of polynomials rings , Adv. in Math. 21 (1976) 30-49. | DOI | MR | Zbl

[12] Seshadri C. S. , Geometry of G/P I , in Ramanujan vol. ed. Tata Ins. (1978) 207-239. | Zbl