Analytic and arithmetic theory of Poincaré series
Journées Arithmétiques de Luminy, Astérisque, no. 61 (1979), pp. 95-107.
@incollection{AST_1979__61__95_0,
     author = {Goldfeld, Dorian},
     title = {Analytic and arithmetic theory of {Poincar\'e} series},
     booktitle = {Journ\'ees Arithm\'etiques de Luminy},
     series = {Ast\'erisque},
     pages = {95--107},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {61},
     year = {1979},
     zbl = {0401.10034},
     language = {en},
     url = {http://www.numdam.org/item/AST_1979__61__95_0/}
}
TY  - CHAP
AU  - Goldfeld, Dorian
TI  - Analytic and arithmetic theory of Poincaré series
BT  - Journées Arithmétiques de Luminy
AU  - Collectif
T3  - Astérisque
PY  - 1979
SP  - 95
EP  - 107
IS  - 61
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_1979__61__95_0/
LA  - en
ID  - AST_1979__61__95_0
ER  - 
%0 Book Section
%A Goldfeld, Dorian
%T Analytic and arithmetic theory of Poincaré series
%B Journées Arithmétiques de Luminy
%A Collectif
%S Astérisque
%D 1979
%P 95-107
%N 61
%I Société mathématique de France
%U http://www.numdam.org/item/AST_1979__61__95_0/
%G en
%F AST_1979__61__95_0
Goldfeld, Dorian. Analytic and arithmetic theory of Poincaré series, dans Journées Arithmétiques de Luminy, Astérisque, no. 61 (1979), pp. 95-107. http://www.numdam.org/item/AST_1979__61__95_0/

[Ne]H. Neunhöffer, Über die analytische Fortsetzung von Poincaréreihen, Sitz. Heidelberger Akad. Wiss., 2. Abhandlung (1973), pp. 33-90 | Zbl

[Ni] D. Niebur, A class of nonanalytic automorphic functions, Nagoya Math J., Vol. 52 (1973), pp. 133-145 | DOI | Zbl

[R] R. A. Rankin, Contributions to the theory of Ramanujan's function τ(n) and similar arithmetic functions, Proc.Cambridge Philos. Soc. 35 (1939), pp. 357-372 | DOI | Zbl

[Sl] A. Selberg, Bemerkungen uber eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe Verbunden ist, Arch. Math. Naturrid, 43 (1940) , pp. 47-50 | JFM

[S2] A. Selberg, On the estimation of Fourier coefficients of modular forms, Proc. Symp. Pure Math, AMS, Vol. VIII, Theory of Numbers (1965), pp. 1-15 | Zbl