@incollection{AST_1978__51__415_0, author = {Sigmund, Karl}, title = {Affine transformations on the space of probability measures}, booktitle = {Syst\`emes dynamiques III - Varsovie}, series = {Ast\'erisque}, pages = {415--427}, publisher = {Soci\'et\'e math\'ematique de France}, number = {51}, year = {1978}, mrnumber = {480946}, zbl = {0385.28010}, language = {en}, url = {http://www.numdam.org/item/AST_1978__51__415_0/} }
TY - CHAP AU - Sigmund, Karl TI - Affine transformations on the space of probability measures BT - Systèmes dynamiques III - Varsovie AU - Collectif T3 - Astérisque PY - 1978 SP - 415 EP - 427 IS - 51 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_1978__51__415_0/ LA - en ID - AST_1978__51__415_0 ER -
Sigmund, Karl. Affine transformations on the space of probability measures, dans Systèmes dynamiques III - Varsovie, Astérisque, no. 51 (1978), pp. 415-427. http://www.numdam.org/item/AST_1978__51__415_0/
[1] Dynamical Systems : stability theory and applications. Springer, Berlin-Heidelberg-New York (1967) | DOI | MR
and :[2] Convergence of probability measures, Wiley, New York (1968) | MR | Zbl
:[3] -limit sets for Axiom A diffeomorphisms, J. Diff. Equs. 18 (1975) 333-339 | DOI | MR | Zbl
:[4] Ergodic theory on compact spaces, Springer Lecture Notes 527 | MR | Zbl
, and :[5] On limit sets in dynamical systems, Proc. London Math. Soc 4 (1954) 168-176 | DOI | MR | Zbl
and , :[6] Disjointness in ergodic theory, Math. Sys. Theory 1 (1967) 1-49 | MR | Zbl
:[7] On Poincare's recurrence theorem, Proc. 5th Berkeley Symp. on Math. Stat. and Probab., Vol II, 375-404 | MR | Zbl
:[8] Disjointness and weak mixing of minimal sets, Proc. AMS 24 (1970) 278-280 | DOI | MR | Zbl
:[9] On the connectedness of ergodic systems, to appear in Manuscripta Math. | EuDML | MR | Zbl
:[10] On minimal centers of attraction and generic points, to appear in J. reine angew. Math. | EuDML | MR | Zbl
:[11] Sur la répartition des orbites de certains systèmes dynamiques, Séminaires de théorie des nombres, Bordeaux, (1976). | EuDML | MR | Zbl
: