Ergodic problems in biology
Systèmes dynamiques II - Varsovie, Astérisque, no. 50 (1977), pp. 239-250.
@incollection{AST_1977__50__239_0,
     author = {Lasota, A.},
     title = {Ergodic problems in biology},
     booktitle = {Syst\`emes dynamiques II - Varsovie},
     series = {Ast\'erisque},
     pages = {239--250},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {50},
     year = {1977},
     mrnumber = {490015},
     zbl = {0388.92009},
     language = {en},
     url = {http://www.numdam.org/item/AST_1977__50__239_0/}
}
TY  - CHAP
AU  - Lasota, A.
TI  - Ergodic problems in biology
BT  - Systèmes dynamiques II - Varsovie
AU  - Collectif
T3  - Astérisque
PY  - 1977
SP  - 239
EP  - 250
IS  - 50
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_1977__50__239_0/
LA  - en
ID  - AST_1977__50__239_0
ER  - 
%0 Book Section
%A Lasota, A.
%T Ergodic problems in biology
%B Systèmes dynamiques II - Varsovie
%A Collectif
%S Astérisque
%D 1977
%P 239-250
%N 50
%I Société mathématique de France
%U http://www.numdam.org/item/AST_1977__50__239_0/
%G en
%F AST_1977__50__239_0
Lasota, A. Ergodic problems in biology, dans Systèmes dynamiques II - Varsovie, Astérisque, no. 50 (1977), pp. 239-250. http://www.numdam.org/item/AST_1977__50__239_0/

[1] S. N. Chow, Existence of periodic solutions of autonomous functional differential equations, J. Differential Equations 15 (1974), 350-378. | DOI | MR | Zbl

[2] S. N. Chow and J. Mallet-Paret, Integral averaging and Hopf's bifurcation, preprint, Lefschetz Center for Dynamical Systems. | MR | Zbl

[3] J. Guckenheimer, On the bifurcation of maps of the interval, Invent. Math. 39 (1977), 165-178. | DOI | EuDML | MR | Zbl

[4] J. Guckenheimer, G. Oster and A. Ipaktchi, The dynamics of density dependent population models, J. Math. Biology 4 (1977), 101-147. | DOI | MR | Zbl

[5] I. Gumowski and C. Mira, Accumulations de bifurcations dans une récurrence, C. R. Acad. Sci. Paris, Sér A-B 281 (1975), 45-48. | MR | Zbl

[6] J. Hale, Functional Differential Equations, Springer Verlag New York 1971. | MR | Zbl

[7] F. C. Hoppensteadt and J. M. Hyman, Periodic solutions of a logistic difference equation, SIAM, J. Appl. Math. 32 (1977), 73-81. | MR | Zbl

[8] M. V. Jacobson, On the properties of the one parameter family of dynamical systems xAxe -x , Uspehi Mat. Nauk 31 (1976), 239-240. | MR

[9] J. Kaplan and J. Yorke, On the nonlinear differential delay equation x'(t)=-f(t,x(t-1)), J. Differential Equations 23 (1977), 293-314. | DOI | MR | Zbl

[10] A. Lasota, On mappings isomorphic to r-adic transformations, Ann. Polon. Math. (to appear). | EuDML | MR | Zbl

[11] A. Lasota and G. Pianigiani, Invariant measures on topological spaces, Boll. Un. Mat. Ital. 18-B (1977). | MR | Zbl

[12] A. Lasota and J. Yorke, On the existence of invariant measures for transformations with strictly turbulent trajectories, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 25 (1977), 233-238. | MR | Zbl

[13] T. Y. Li and J. Yorke, Period three implies chaos, Amer. Math. Monthly 82 (1975), 985-992. | DOI | MR | Zbl

[14] R. May and G. Oster, Bifurcations and dynamic complexity in simple ecological models, Am. Naturalist 110 (1976) 573-599 | DOI

[15] P. J. Myrberg, Iteration der reellen Polynome zweiten Grades III, Ann. Acad. Sci. Fenn. Ser. A I, 366 (1963), 1-18. | MR | Zbl

[16] M. B. Nathanson, Permutations, periodicity and chaos, J. Combinatorial Theory Ser. A 22 (1977), 61-68 | DOI | MR | Zbl

[17] A. J. Nicholson, An outline of the dynamic of animal populations, Austr. J. Zool. 2 (1954), 9-65. | DOI

[18] J. S. Orr, J. Kirk, K. G. Gray and J. R. Anderson, A study of the interdependence of red cell and bone marrow stem cell populations, Brit. J. Haemat. 15 (1968), 23-34. | DOI

[19] V. A. Rohlin, Exact endomorphisms of Lebesgue spaces, Izv. Akad. Nauk SSSR Ser. Mat. 25 (1961), 499-530. | MR

[20] D. Ruelle and F. Takens, On the nature of turbulence, Comm. Math. Phys. 20 (1971), 167-192. | DOI | MR | Zbl

[21] A. N. Sharkovsky, Co-existence of the cycles of continuous mapping of the line into itself, Ukrain. Mat. Ż. 16 (1964), 61-71. | MR

[22] S. Smale and R. F. Williams, The qualitative analysis of a difference equation of population growth, J. Math. Biology 3 (1976), 1-5. | DOI | MR | Zbl

[23] M. Ważewska-Czyżewska and A. Lasota, Mathematical models of the red cell system (Polish), Matematyka Stosowana 6 (1976), 25-40. | Zbl

[24] G. H. Weiss and G. Zajicek, Kinetics of red blood cells following hemolysis, J. Theoret. Biol. 23 (1969), 475-491. | DOI

[25] T. E. Wheldon, Mathematical models of oscillatory blood cell production, Math. Biosciences 24 (1975), 289-305. | DOI | Zbl

[26] T. E. Wheldon, J. Kirk and H. M. Finlay, Cyclical granulopoiesis in chronic granulocytic leukemia: a simulation study, Blood 43 (1974), 379-387.