@incollection{AST_1976__31__15_0, author = {Newhouse, S. and Peixoto, Mauricio Matos}, title = {There is a simple arc joining any two {Morse-Smale} flows}, booktitle = {Trois \'etudes en dynamique qualitative}, series = {Ast\'erisque}, pages = {15--41}, publisher = {Soci\'et\'e math\'ematique de France}, number = {31}, year = {1976}, mrnumber = {516405}, zbl = {0324.58012}, language = {en}, url = {http://www.numdam.org/item/AST_1976__31__15_0/} }
TY - CHAP AU - Newhouse, S. AU - Peixoto, Mauricio Matos TI - There is a simple arc joining any two Morse-Smale flows BT - Trois études en dynamique qualitative AU - Collectif T3 - Astérisque PY - 1976 SP - 15 EP - 41 IS - 31 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_1976__31__15_0/ LA - en ID - AST_1976__31__15_0 ER -
%0 Book Section %A Newhouse, S. %A Peixoto, Mauricio Matos %T There is a simple arc joining any two Morse-Smale flows %B Trois études en dynamique qualitative %A Collectif %S Astérisque %D 1976 %P 15-41 %N 31 %I Société mathématique de France %U http://www.numdam.org/item/AST_1976__31__15_0/ %G en %F AST_1976__31__15_0
Newhouse, S.; Peixoto, Mauricio Matos. There is a simple arc joining any two Morse-Smale flows, dans Trois études en dynamique qualitative, Astérisque, no. 31 (1976), pp. 15-41. http://www.numdam.org/item/AST_1976__31__15_0/
[1] Transversal Mappings and Flows, Benjamin, New York, 1967. | MR | Zbl
and ,[2] Sur les diffeomorphismes de la sphère de dimension trois, Springer Lecture notes in Math., 53, 1968. | DOI | MR | Zbl
,[3] La stratification naturelle des espaces de fonctions differentiables réelles et le théorème de la pseudo-isotopie, Publ. IHES, n° 39, 1970. | EuDML | Numdam | MR | Zbl
,[4] On the classification of flows and manifolds in dimension two and three. Thesis, IMPA, Rio de Janeiro, Brazil, 1972.
,[5] Stable manifolds and hyperbolic sets, Proc. Symp. in Pure Math. XIV, Global Analysis, AMS, Providence, R.I. 1970. | DOI | MR | Zbl
and ,[6] Invariant manifolds, to appear. | MR | Zbl
, , and ,[7] On the stable manifold theorem, Bull. London Math. Soc. 2 (1970), pp. 196-198. | DOI | MR | Zbl
,[8] Energy functions for Morse-Smale systems, Amer. J. of Math. 90, 1968, p. 1031. | DOI | MR | Zbl
,[9] Lectures on the -cobordism theorem, Princeton Math. Notes, Princeton, N.J., 1965. | MR | Zbl
,[10] Hyperbolic limit sets, Trans. AMS, Vol. 167 (May, 1972), p. 125. | DOI | MR | Zbl
,[11] Bifurcations of Morse-Smale dynamical systems, Proc. Symp. on Dyn. Sys., Salvador, Brazil, 1971. | Zbl
, and ,[12] On the Morse-Smale dynamical systems, Topology 8, 1969, p. 385. | DOI | MR | Zbl
,[13] Structural Stability theorems, Proc. AMS symp. in Pure Math. Vol. XIV, Global Analysis, Providence, RI, 1970, p. 223. | DOI | Zbl
and ,[14] On the classification of flows on two manifolds. Proc. Symp. on Dyn. Sys., Salvador, Brazil, 1971. | Zbl
,[15] Three dimensional manifolds and their Heegaard diagrams. Trans. Am. Math. Soc. 35 (1933), 88. | DOI | MR | Zbl
,[16] Morse inequalities for a dynamical system, Bull. AMS 66 (1960) p. 43. | DOI | MR | Zbl
,[17] On gradient dynamical systems, Ann. of Math. 74 (1961), p. 199. | DOI | MR | Zbl
,[18] The Ω-stability theorem, Proc. AMS Symp. in Pure Math. Vol. XIV, Global Analysis, Providence, R.I., 1970, p. 289. | DOI | MR | Zbl
,[19] Estabilidade estructural de primeira ordern e variedades de Banach. Thesis, IMPA, Rio de Janeiro, Brazil, 1964.
,[20] Generic one parameter families of vector fields on two dimensional manifolds. Publ. Math. I.H.E.S., to appear. | EuDML | Numdam | MR | Zbl
,[21] Generic bifurcations of dynamical systems, Proc. of Symp. on Dyn. Sys., Salvador, Brazil, 1971. | MR | Zbl
,[22] Structural Stability and bifurcation theory. Proc. of Symp. on Dyn. Syst. Salvador, Brazil, 1971. | Zbl
,[23] Quelques propriétés globales des variétés differentiables. Commun. Math. Helv. 28 (1954), 17-86. | DOI | EuDML | MR | Zbl
,[24] Stabilite Structurelle et morphogénèse. W.A. Benjamin. New York, 1972. | MR
,