We prove that, for any fixed base
@article{ASNSP_2013_5_12_4_941_0, author = {Bennett, Michael A. and Bugeaud, Yann and Mignotte, Maurice}, title = {Perfect powers with few binary digits and related {Diophantine} problems}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {941--953}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 12}, number = {4}, year = {2013}, mrnumber = {3184574}, zbl = {1303.11084}, language = {en}, url = {https://www.numdam.org/item/ASNSP_2013_5_12_4_941_0/} }
TY - JOUR AU - Bennett, Michael A. AU - Bugeaud, Yann AU - Mignotte, Maurice TI - Perfect powers with few binary digits and related Diophantine problems JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2013 SP - 941 EP - 953 VL - 12 IS - 4 PB - Scuola Normale Superiore, Pisa UR - https://www.numdam.org/item/ASNSP_2013_5_12_4_941_0/ LA - en ID - ASNSP_2013_5_12_4_941_0 ER -
%0 Journal Article %A Bennett, Michael A. %A Bugeaud, Yann %A Mignotte, Maurice %T Perfect powers with few binary digits and related Diophantine problems %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2013 %P 941-953 %V 12 %N 4 %I Scuola Normale Superiore, Pisa %U https://www.numdam.org/item/ASNSP_2013_5_12_4_941_0/ %G en %F ASNSP_2013_5_12_4_941_0
Bennett, Michael A.; Bugeaud, Yann; Mignotte, Maurice. Perfect powers with few binary digits and related Diophantine problems. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 12 (2013) no. 4, pp. 941-953. https://www.numdam.org/item/ASNSP_2013_5_12_4_941_0/
[1] M. A. Bennett, Y. Bugeaud and M. Mignotte, Perfect powers with few binary digits and related Diophantine problems, II, Math. Proc. Cambridge Philos. Soc. 153 (2012), 525–540. | MR | Zbl
[2] Y. Bugeaud, Linear forms in
[3] Y. Bugeaud, Linear forms in two
[4] Y. Bugeaud, M. Cipu and M. Mignotte, On the representation of Fibonacci and Lucas numbers in an integer base, Ann. Math. Qué. 37 (2013), 31–43. | MR
[5] Y. Bugeaud and M. Laurent, Minoration effective de la distance
[6] Y. Bugeaud and M. Mignotte, Sur l’équation diophantienne
[7] Y. Bugeaud and M. Mignotte, L’équation de Nagell–Ljunggren
[8] Y. Bugeaud and M. Mignotte, On the Diophantine equation
[9] Y. Bugeaud, M. Mignotte and Y. Roy, On the Diophantine equation
[10] P. Corvaja and U. Zannier, On the Diophantine equation
[11] P. Corvaja and U. Zannier, Application of the subspace theorem to certain Diophantine problems, In: “Diophantine Approximation”, H. E. Schlickewei et al. (eds.), Springer-Verlag, 2008, 161–174. | MR | Zbl
[12] P. Corvaja and U. Zannier, Finiteness of odd perfect powers with four nonzero binary digits, preprint. | Numdam | MR | Zbl
[13] M. Hindry and J. Silverman, “Diophantine Geometry, An Introduction”, Springer Verlag GTM 201, 2001. | MR | Zbl
[14] J. Lagarias, Ternary expansions of powers of
[15] M. Laurent, Linear forms in two logarithms and interpolation determinants. II, Acta Arith. 133 (2008), 325–348. | EuDML | MR | Zbl
[16] F. Luca, The Diophantine equation
[17] M. Mignotte, Sur les entiers qui s’écrivent simplement en différentes bases, European J. Combin. 9 (1988), 307–316. | MR | Zbl
[18] P. Mihăilescu, Primary cyclotomic units and a proof of Catalan’s conjecture, J. Reine Angew. Math. 572 (2004), 167–195. | MR | Zbl
[19] R. Scott, Elementary treatment of
[20] H. G. Senge and E. G. Straus,
[21] C. L. Stewart, On the representation of an integer in two different bases, J. Reine Angew. Math. 319 (1980), 63–72. | EuDML | MR | Zbl
[22] L. Szalay, The equations
[23] T. Yamada, On the Diophantine equation