We prove that, for any fixed base and sufficiently large prime , no perfect -th power can be written with or digits in base . This is a particular instance of rather more general results, whose proofs follow from a combination of refined lower bounds for linear forms in Archimedean and non-Archimedean logarithms.
@article{ASNSP_2013_5_12_4_941_0, author = {Bennett, Michael A. and Bugeaud, Yann and Mignotte, Maurice}, title = {Perfect powers with few binary digits and related {Diophantine} problems}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {941--953}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 12}, number = {4}, year = {2013}, mrnumber = {3184574}, zbl = {1303.11084}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2013_5_12_4_941_0/} }
TY - JOUR AU - Bennett, Michael A. AU - Bugeaud, Yann AU - Mignotte, Maurice TI - Perfect powers with few binary digits and related Diophantine problems JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2013 SP - 941 EP - 953 VL - 12 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2013_5_12_4_941_0/ LA - en ID - ASNSP_2013_5_12_4_941_0 ER -
%0 Journal Article %A Bennett, Michael A. %A Bugeaud, Yann %A Mignotte, Maurice %T Perfect powers with few binary digits and related Diophantine problems %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2013 %P 941-953 %V 12 %N 4 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2013_5_12_4_941_0/ %G en %F ASNSP_2013_5_12_4_941_0
Bennett, Michael A.; Bugeaud, Yann; Mignotte, Maurice. Perfect powers with few binary digits and related Diophantine problems. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 12 (2013) no. 4, pp. 941-953. http://www.numdam.org/item/ASNSP_2013_5_12_4_941_0/
[1] M. A. Bennett, Y. Bugeaud and M. Mignotte, Perfect powers with few binary digits and related Diophantine problems, II, Math. Proc. Cambridge Philos. Soc. 153 (2012), 525–540. | MR | Zbl
[2] Y. Bugeaud, Linear forms in -adic logarithms and the Diophantine equation , Math. Proc. Cambridge Philos. Soc. 127 (1999), 373–381. | MR | Zbl
[3] Y. Bugeaud, Linear forms in two -adic logarithms and applications to Diophantine problems, Compositio Math. 132 (2002), 137–158. | MR | Zbl
[4] Y. Bugeaud, M. Cipu and M. Mignotte, On the representation of Fibonacci and Lucas numbers in an integer base, Ann. Math. Qué. 37 (2013), 31–43. | MR
[5] Y. Bugeaud and M. Laurent, Minoration effective de la distance -adique entre puissances de nombres algébriques, J. Number Theory 61 (1996), 311–342. | MR | Zbl
[6] Y. Bugeaud and M. Mignotte, Sur l’équation diophantienne , , C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), 741–744. | MR | Zbl
[7] Y. Bugeaud and M. Mignotte, L’équation de Nagell–Ljunggren , Enseign. Math. (2) 48 (2002), 147–168. | MR | Zbl
[8] Y. Bugeaud and M. Mignotte, On the Diophantine equation with negative , In: “Number theory for the millennium”, I (Urbana, IL, 2000), 145–151, A K Peters, Natick, MA, 2002. | MR | Zbl
[9] Y. Bugeaud, M. Mignotte and Y. Roy, On the Diophantine equation , Pacific J. Math. 193 (2000), 257–268. | MR | Zbl
[10] P. Corvaja and U. Zannier, On the Diophantine equation , Acta Arith. 94 (2000), 25–40. | EuDML | MR | Zbl
[11] P. Corvaja and U. Zannier, Application of the subspace theorem to certain Diophantine problems, In: “Diophantine Approximation”, H. E. Schlickewei et al. (eds.), Springer-Verlag, 2008, 161–174. | MR | Zbl
[12] P. Corvaja and U. Zannier, Finiteness of odd perfect powers with four nonzero binary digits, preprint. | Numdam | MR | Zbl
[13] M. Hindry and J. Silverman, “Diophantine Geometry, An Introduction”, Springer Verlag GTM 201, 2001. | MR | Zbl
[14] J. Lagarias, Ternary expansions of powers of , J. London Math. Soc. 79 (2009), 562–588. | MR | Zbl
[15] M. Laurent, Linear forms in two logarithms and interpolation determinants. II, Acta Arith. 133 (2008), 325–348. | EuDML | MR | Zbl
[16] F. Luca, The Diophantine equation , Acta Arith. 112 (2004), 87–101. | EuDML | MR | Zbl
[17] M. Mignotte, Sur les entiers qui s’écrivent simplement en différentes bases, European J. Combin. 9 (1988), 307–316. | MR | Zbl
[18] P. Mihăilescu, Primary cyclotomic units and a proof of Catalan’s conjecture, J. Reine Angew. Math. 572 (2004), 167–195. | MR | Zbl
[19] R. Scott, Elementary treatment of , available online at the homepage of Robert Styer : http://www41.homepage.villanova.edu/robert.styer/ReeseScott/index.htm.
[20] H. G. Senge and E. G. Straus, -numbers and sets of multiplicity, Period. Math. Hungar. 3 (1973), 93–100. | MR | Zbl
[21] C. L. Stewart, On the representation of an integer in two different bases, J. Reine Angew. Math. 319 (1980), 63–72. | EuDML | MR | Zbl
[22] L. Szalay, The equations , Indag. Math. (N.S.) 13 (2002), 131–142. | MR | Zbl
[23] T. Yamada, On the Diophantine equation , Glasg. Math. J. 51 (2009), 143–148. | MR | Zbl