On the genus of curves in a Jacobian variety
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 12 (2013) no. 3, pp. 735-754.

We prove that the geometric genus p of a curve in a very generic Jacobian of dimension g>3 satisfies either p=g or p>2g-3. This gives a positive answer to a conjecture of Naranjo and Pirola. For small values of g the second inequality can be further improved to p>2g-2.

Publié le :
Classification : 14H40, 32G20
@article{ASNSP_2013_5_12_3_735_0,
     author = {Marcucci, Valeria Ornella},
     title = {On the genus of curves in a {Jacobian} variety},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {735--754},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 12},
     number = {3},
     year = {2013},
     mrnumber = {3137462},
     zbl = {1300.14033},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2013_5_12_3_735_0/}
}
TY  - JOUR
AU  - Marcucci, Valeria Ornella
TI  - On the genus of curves in a Jacobian variety
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2013
SP  - 735
EP  - 754
VL  - 12
IS  - 3
PB  - Scuola Normale Superiore, Pisa
UR  - http://www.numdam.org/item/ASNSP_2013_5_12_3_735_0/
LA  - en
ID  - ASNSP_2013_5_12_3_735_0
ER  - 
%0 Journal Article
%A Marcucci, Valeria Ornella
%T On the genus of curves in a Jacobian variety
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2013
%P 735-754
%V 12
%N 3
%I Scuola Normale Superiore, Pisa
%U http://www.numdam.org/item/ASNSP_2013_5_12_3_735_0/
%G en
%F ASNSP_2013_5_12_3_735_0
Marcucci, Valeria Ornella. On the genus of curves in a Jacobian variety. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 12 (2013) no. 3, pp. 735-754. http://www.numdam.org/item/ASNSP_2013_5_12_3_735_0/

[1] E. Arbarello and M. Cornalba, On a conjecture of Petri, Comment. Math. Helv. 56 (1981), 1–38. | EuDML | MR | Zbl

[2] V. Alexeev, Compactified Jacobians and Torelli map, Publ. Res. Inst. Math. Sci. 40 (2004), 1241–1265. | MR | Zbl

[3] A. Andreotti, On a theorem of Torelli, Amer. J. Math. 80 (1958), 801–828. | MR | Zbl

[4] F. Bardelli, C. Ciliberto and A. Verra, Curves of minimal genus on a general Abelian variety, Compos. Math. 96 (1995), 115–147. | EuDML | Numdam | MR | Zbl

[5] C. Birkenhake and H. Lange, “Complex Abelian Varieties”, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 302, Springer-Verlag, Berlin, second edition, 2004. | MR | Zbl

[6] S. Bosch, W. Lütkebohmert and M. Raynaud, “Néron Models”, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Vol. 21, Springer-Verlag, Berlin, 1990. | MR | Zbl

[7] F. Bardelli and G. P. Pirola, Curves of genus g lying on a g-dimensional Jacobian variety, Invent. Math. 95 (1989), 263–276. | EuDML | MR | Zbl

[8] C.-L. Chai, “Compactification of Siegel Moduli Schemes” London Mathematical Society Lecture Note Series, Vol. 107, Cambridge University Press, Cambridge, 1985. | MR | Zbl

[9] C. Ciliberto, G. van der Geer and M. Teixidor i Bigas, On the number of parameters of curves whose Jacobians possess nontrivial endomorphisms, J. Algebr. Geom. 1 (1992), 215–229. | MR | Zbl

[10] G. Faltings and C.-L. Chai, “Degeneration of Abelian Varieties”, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], Vol. 22, with an appendix by David Mumford, Springer-Verlag, Berlin, 1990. | MR | Zbl

[11] R. Hartshorne, “Algebraic Geometry”, Graduate Texts in Mathematics, No. 52, Springer-Verlag, New York, 1977. | MR | Zbl

[12] V. Marcucci and G. P. Pirola, Generic Torelli theorem for Prym varieties of ramified coverings, Compos. Math. 148 (2012), 1147–1170. | MR | Zbl

[13] J. C. Naranjo and G. P. Pirola, On the genus of curves in the generic Prym variety, Indag. Math. (N.S.) 5 (1994), 101–105. | MR | Zbl

[14] T. Oda and C. S. Seshadri, Compactifications of the generalized Jacobian variety, Trans. Amer. Math. Soc. 253 (1979), 1–90. | MR | Zbl

[15] G. P. Pirola, Base number theorem for Abelian varieties. An infinitesimal approach, Math. Ann. 282 (1988), 361–368. | EuDML | MR | Zbl

[16] G. P. Pirola, Curves on generic Kummer varieties, Duke Math. J. 59 (1989), 701–708. | MR | Zbl

[17] G. P. Pirola, On a conjecture of Xiao, J. Reine Angew. Math. 431 (1992), 75–89. | EuDML | MR | Zbl

[18] J.-P. Serre, “Algebraic Groups and Class Fields”, Graduate Texts in Mathematics, Vol. 117, translated from the French, Springer-Verlag, New York, 1988. | MR | Zbl

[19] C. Voisin, “Hodge Theory and Complex Algebraic Geometry. II”, Cambridge Studies in Advanced Mathematics, Vol. 77, translated from the French by Leila Schneps, Cambridge University Press, Cambridge, 2003. | MR | Zbl