We study almost-Hermitian -manifolds with holonomy algebra, for the canonical Hermitian connection, of dimension at most one. We show how Riemannian -manifolds admitting five orthonormal symplectic forms fit in this picture and we classify them. In this set-up we also fully describe almost-Kähler -manifolds.
@article{ASNSP_2013_5_12_3_717_0, author = {Chiossi, Simon G. and Nagy, Paul-Andi}, title = {Systems of symplectic forms on four-manifolds}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {717--734}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 12}, number = {3}, year = {2013}, mrnumber = {3137461}, zbl = {1295.53083}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2013_5_12_3_717_0/} }
TY - JOUR AU - Chiossi, Simon G. AU - Nagy, Paul-Andi TI - Systems of symplectic forms on four-manifolds JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2013 SP - 717 EP - 734 VL - 12 IS - 3 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2013_5_12_3_717_0/ LA - en ID - ASNSP_2013_5_12_3_717_0 ER -
%0 Journal Article %A Chiossi, Simon G. %A Nagy, Paul-Andi %T Systems of symplectic forms on four-manifolds %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2013 %P 717-734 %V 12 %N 3 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2013_5_12_3_717_0/ %G en %F ASNSP_2013_5_12_3_717_0
Chiossi, Simon G.; Nagy, Paul-Andi. Systems of symplectic forms on four-manifolds. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 12 (2013) no. 3, pp. 717-734. http://www.numdam.org/item/ASNSP_2013_5_12_3_717_0/
[1] V. Apostolov, J. Armstrong and T. Drăghici, Local models and integrability of certain almost-Kähler 4-manifolds, Math. Ann. 323 (2002), 633–666. | MR | Zbl
[2] V. Apostolov, D. M. J. Calderbank and P. Gauduchon, The geometry of weakly self-dual Kähler surfaces, Compos. Math. 135 (2003), 279–322. | MR | Zbl
[3] V. Apostolov, J. Davidov and O. Muškarov, Compact self-dual Hermitian surfaces, Trans. Amer. Math. Soc. 348 (1996), 3051–3063. | MR | Zbl
[4] V. Apostolov and P. Gauduchon, The Riemannian Goldberg-Sachs theorem, Int. J. Math. 8 (1997), 421–439. | MR | Zbl
[5] V. Apostolov and P. Gauduchon, self-dual Einstein Hermitian four-manifolds, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1 (2002), 203–243. | EuDML | Numdam | MR | Zbl
[6] J. Armstrong, An ansatz for almost-Kähler, Einstein -manifolds, J. Reine Angew. Math. 542 (2002), 53–84. | MR | Zbl
[7] J. Armstrong, On four-dimensional almost Kähler manifolds, Quart. J. Math. Oxford Ser. (2), 48 (1997), 405–415. | MR | Zbl
[8] A. Balas and P. Gauduchon, Any Hermitian metric of constant nonpositive (Hermitian) holomorphic sectional curvature on a compact complex surface is Kähler, Math. Z. 190 (1985), 39–43. | EuDML | MR | Zbl
[9] A. Balas, Compact Hermitian manifolds of constant holomorphic sectional curvature, Math. Z. 189 (1985), 193–210. | EuDML | MR | Zbl
[10] G. Bande and D. Kotschick, The geometry of symplectic pairs, Trans. Amer. Math. Soc. 358 (2006), 1643–1655. | MR | Zbl
[11] A. Besse, “Einstein Manifolds”, reprint of the 1987 edition, classics in mathematics, Springer-Verlag, Berlin, 2008. | MR | Zbl
[12] R. Bielawski, Complete hyperkähler -manifolds with local tri-Hamiltonian -action, Math. Ann. 314 (1999), 505–528. | MR | Zbl
[13] C. P. Boyer, Conformal duality and compact complex surfaces, Math. Ann. 274 (1986), 517–526. | EuDML | MR | Zbl
[14] R. Cleyton and A. F. Swann, Einstein metrics via intrinsic or parallel torsion, Math. Z. 247 (2004), 513–528. | MR | Zbl
[15] S. G. Chiossi and P.-A. Nagy, Complex homothetic foliations on Kähler manifolds, Bull. Lond. Math. Soc. 44 (2012), 113–124. | MR | Zbl
[16] A. Derdziński, Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compos. Math. 49 (1983), 405–433. | EuDML | Numdam | MR | Zbl
[17] A. J. Di Scala and L. Vezzoni, Gray identities, canonical connection and integrability, Proc. Edinb. Math. Soc. (2) 53 (2010), 657–674. | MR | Zbl
[18] P. Gauduchon, La -forme de torsion d’une variété hermitienne compacte, Math. Ann. 267 (1984), 495–518. | EuDML | MR | Zbl
[19] P. Gauduchon, Hermitian connections and Dirac operators, Boll. Union. Mat. Ital. B (7) 11 (1997), 257–288. | MR | Zbl
[20] H. Geiges, Symplectic couples on -manifolds, Duke Math. J. 85 (1996), 701–711. | MR | Zbl
[21] H. Geiges and J. Gonzalo Pérez, Contact geometry and complex surfaces, Invent. Math. 121 (1995), 147–209. | EuDML | MR | Zbl
[22] G. W. Gibbons and S. W. Hawking, Gravitational multi-instantons, Phys. Lett. B 78 (1978), 430–432.
[23] P.-A. Nagy and C. Vernicos, The length of harmonic forms on a compact Riemannian manifold, Trans. Amer. Math. Soc. 356 (2004), 2501–2513. | MR | Zbl
[24] P.-A.Nagy, On length and product of harmonic forms in Kähler geometry, Math. Z. 254 (2006), 199–218. | MR | Zbl
[25] P. Nurowski, “Einstein Equations and Cauchy-Riemann Geometry”, D. Phil. Thesis, SISSA, Trieste, 1993.
[26] S. M. Salamon, Instantons on the -sphere, Rend. Sem. Mat. Univ. Pol. Torino 40 (1982), 1–20. | MR | Zbl
[27] S. M. Salamon, Special structures on four-manifolds, Riv. Mat. Univ. Parma, 17 (1991), 109–123. | MR | Zbl
[28] K. Sekigawa, On some compact Einstein almost Kähler manifolds, J. Math. Soc. Japan 39 (1987), 677–684. | MR | Zbl
[29] K. P. Tod, Cohomogeneity-one metrics with self-dual Weyl tensor, In: “Twistor Theory” (Plymouth), Lecture Notes in Pure and Appl. Math., Vol. 169, Dekker, New York, 1995, 171–184. | MR | Zbl
[30] R. S. Ward, A class of self-dual solutions of Einstein’s equations, Proc. R. Soc. Lond. Ser. A 363 (1978), 289–295. | MR | Zbl