On plane rational curves and the splitting of the tangent bundle
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 12 (2013) no. 3, pp. 587-621.

Given an immersion ϕ:P 1 P 2 , we give new approaches to determining the splitting of the pullback of the cotangent bundle. We also give new bounds on the splitting type for immersions which factor as ϕ:P 1 DXP 2 , where XP 2 is obtained by blowing up r distinct points p i P 2 . As applications in the case that the points p i are generic, we give a complete determination of the splitting types for such immersions when r7. The case that D 2 =-1 is of particular interest. For r8 generic points, it is known that there are only finitely many inequivalent ϕ with D 2 =-1, and all of them have balanced splitting. However, for r=9 generic points we show that there are infinitely many inequivalent ϕ with D 2 =-1 having unbalanced splitting (only two such examples were known previously). We show that these new examples are related to a semi-adjoint formula which we conjecture accounts for all occurrences of unbalanced splitting when D 2 =-1 in the case of r=9 generic points p i . In the last section we apply such results to the study of the resolution of fat point schemes.

Publié le :
Classification : 14C20, 13P10, 14J26, 14J60
@article{ASNSP_2013_5_12_3_587_0,
     author = {Gimigliano, Alessandro and Harbourne, Brian and Id\`a, Monica},
     title = {On plane rational curves and the splitting of the tangent bundle},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {587--621},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 12},
     number = {3},
     year = {2013},
     mrnumber = {3137457},
     zbl = {06232457},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2013_5_12_3_587_0/}
}
TY  - JOUR
AU  - Gimigliano, Alessandro
AU  - Harbourne, Brian
AU  - Idà, Monica
TI  - On plane rational curves and the splitting of the tangent bundle
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2013
SP  - 587
EP  - 621
VL  - 12
IS  - 3
PB  - Scuola Normale Superiore, Pisa
UR  - http://www.numdam.org/item/ASNSP_2013_5_12_3_587_0/
LA  - en
ID  - ASNSP_2013_5_12_3_587_0
ER  - 
%0 Journal Article
%A Gimigliano, Alessandro
%A Harbourne, Brian
%A Idà, Monica
%T On plane rational curves and the splitting of the tangent bundle
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2013
%P 587-621
%V 12
%N 3
%I Scuola Normale Superiore, Pisa
%U http://www.numdam.org/item/ASNSP_2013_5_12_3_587_0/
%G en
%F ASNSP_2013_5_12_3_587_0
Gimigliano, Alessandro; Harbourne, Brian; Idà, Monica. On plane rational curves and the splitting of the tangent bundle. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 12 (2013) no. 3, pp. 587-621. http://www.numdam.org/item/ASNSP_2013_5_12_3_587_0/

[1] M.-G. Ascenzi, The restricted tangent bundle of a rational curve in P 2 , Comm. Algebra 16 (1988), 2193–2208. | MR | Zbl

[2] M.-G. Ascenzi, The restricted tangent bundle of a rational curve on a quadric in P 3 , Proc. Amer. Math. Soc. 98 (1986), 561–566. | MR | Zbl

[3] G. Birkhoff, A theorem on matrices of analytic functions, Math. Ann. 74 (1913), 122–133. | EuDML | JFM | MR

[4] H. Clemens, On rational curves in n-space with given normal bundle, In: “Advances in Algebraic Geometry Motivated by Physics” (Lowell, MA, 2000), Contemp. Math., 276, Amer. Math. Soc., Providence, RI, 2001, 137–144. | MR | Zbl

[5] D. Cox, T. W. Sederburg and F. Chen, The moving line ideal basis of planar rational curves, Comput. Aided Geom. Design 15 (1998), 803–827. | MR | Zbl

[6] T. de Fernex, Negative curves on very general blow-ups of P 2 , In: “Projective Varieties with Unexpected Properties”, M. Beltrametti et al. (eds.), a volume in memory of Giuseppe Veronese, de Gruyter, Berlin, 2005, 199–207. | MR | Zbl

[7] T. de Fernex, On the Mori cone of blow-ups of the plane, preprint (arXiv:1001.5243).

[8] D. Eisenbud and A. Van de Ven, On the normal bundles of smooth rational space curves, Math. Ann. 256 (1981), 453–463. | EuDML | MR | Zbl

[9] D. Eisenbud and A. Van de Ven, On the variety of smooth rational space curves with given degree and normal bundle, Invent. Math. 67 (1982), 89–100. | EuDML | MR | Zbl

[10] S. Fitchett, On bounding the number of generators for fat point ideals on the projective plane, J. Algebra 236 (2001), 502–521. | MR | Zbl

[11] S. Fitchett, Corrigendum to: On bounding the number of generators for fat point ideals on the projective plane [J. Algebra 236 (2001), 502–521], J. Algebra 276 (2004), 417–419. | MR | Zbl

[12] S. Fitchett, B. Harbourne and S. Holay, Resolutions of fat point ideals involving eight general points of P 2 , J. Algebra 244 (2001), 684–705. | MR | Zbl

[13] F. Ghione and G. Sacchiero, Normal bundles of rational curves in P 3 , Manuscripta Math. 33 (1980), 111–128. | EuDML | MR | Zbl

[14] A. Gimigliano, “On Linear Systems of Plane Curves”, Thesis, Queen’s University, Kingston, 1987. | MR

[15] A. Gimigliano, B. Harbourne and M. Idà, Betti numbers for fat point ideals in the plane: a geometric approach, Trans. Amer. Math. Soc. 361 (2009), 1103–1127. | MR | Zbl

[16] A. Gimigliano, B. Harbourne and M. Idà, The role of the cotangent bundle in resolving ideals of fat points in the plane, J. Pure Appl. Algebra 213 (2009), 203–214. | MR | Zbl

[17] A. Gimigliano, B. Harbourne and M. Idà, Stable postulation and stable ideal generation: conjectures for fat points in the plane, Bull. Belg. Math . Soc. Simon Stevin 16 (2009), 853–860. | MR | Zbl

[18] A. Grothendieck, Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math. 79 (1957), 121–138. | MR | Zbl

[19] L. Gruson, R. Lazarsfeld and Ch. Peskine, On a theorem of Castelnuovo and the equations defining space curves, Invent. Math. 72 (1983), 491–506. | EuDML | MR | Zbl

[20] B. Harbourne, Complete linear systems on rational surfaces, Trans. Amer. Math. Soc. 289 (1985), 213–226. | MR | Zbl

[21] B. Harbourne, An Algorithm for fat points on P 2 , Canad. J. Math. 52 (2000), 123– 140. | MR | Zbl

[22] B. Harbourne, Global aspects of the geometry of surfaces, Ann. Univ. Paedagog. Crac. Stud. Math. 9 (2010), 5–41. | MR | Zbl

[23] B. Harbourne, Blowings-up of P 2 and their blowings-down, Duke Math. J. 52 (1985), 129–148. | MR | Zbl

[24] B. Harbourne, Very ample divisors on rational surfaces, Math. Ann. 272 (1985), 139–153. | EuDML | MR | Zbl

[25] A. Hirschowitz, Une conjecture pour la cohomologie des diviseurs sur les surfaces rationelles génériques, J. Reine Angew. Math. 397 (1989), 208–213. | EuDML | MR | Zbl

[26] K. Hulek, The normal bundle of a curve on a quadric, Math. Ann. 258 (1981), 201– 206. | EuDML | MR | Zbl

[27] G. Ilardi, P. Supino and J. Valles, Geometry of syzygies via Poncelet varieties, Boll. Unione Mat. Ital. (9) 2 (2009), 579–589. | EuDML | MR | Zbl

[28] V. Kac, “Infinite Dimensional Lie Algebras”, Cambridge University Press, New York, 1994. | MR | Zbl

[29] M. Lahyane and B. Harbourne, Irreducibility of (-1)-classes of anticanonical rational surfaces, Pac. J. Math. 218 (2005), 101–114. | MR | Zbl

[30] Y. I. Manin, “Cubic Forms”, Mathematical Library 4, North-Holland, 1986. | MR | Zbl

[31] M. Nagata, On rational surfaces, II, Mem. Coll. Sci. Univ. Kyoto, Ser. A Math. 33 (1960), 271–293. | MR | Zbl

[32] Z. Ran, Normal bundles of rational curves in projective spaces, Asian J. Math. 11 (2007), 567–608. | MR | Zbl

[33] L. Ramella, La stratification du schéma de Hilbert des courbes rationelles de P n par le fibré tangent restreint, C.R. Acad. Sci. Paris Sér. I, Moth. 311 (1990), 181–184. | MR | Zbl

[34] T. Sederburg, R. Goldman and H. Du, Implicitizing rational curves by the method of moving algebraic curves, J. Symb. Comput. 23 (1997), 153–175. | MR | Zbl

[35] T. Sederberg, T. Saito, D. Qi and K. Klimaszewski, Curve implicitization using moving lines, Comput. Aided Geom. Design 11 (1994), 687-706. | MR | Zbl

[36] B. Segre, Alcune questioni su insiemi finiti di punti in Geometria Algebrica, In: “Atti del Convegno Internaz. di Geom. Alg.”, Torino, 1961. | Zbl