Given an immersion , we give new approaches to determining the splitting of the pullback of the cotangent bundle. We also give new bounds on the splitting type for immersions which factor as , where is obtained by blowing up distinct points . As applications in the case that the points are generic, we give a complete determination of the splitting types for such immersions when . The case that is of particular interest. For generic points, it is known that there are only finitely many inequivalent with , and all of them have balanced splitting. However, for generic points we show that there are infinitely many inequivalent with having unbalanced splitting (only two such examples were known previously). We show that these new examples are related to a semi-adjoint formula which we conjecture accounts for all occurrences of unbalanced splitting when in the case of generic points . In the last section we apply such results to the study of the resolution of fat point schemes.
@article{ASNSP_2013_5_12_3_587_0, author = {Gimigliano, Alessandro and Harbourne, Brian and Id\`a, Monica}, title = {On plane rational curves and the splitting of the tangent bundle}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {587--621}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 12}, number = {3}, year = {2013}, mrnumber = {3137457}, zbl = {06232457}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2013_5_12_3_587_0/} }
TY - JOUR AU - Gimigliano, Alessandro AU - Harbourne, Brian AU - Idà, Monica TI - On plane rational curves and the splitting of the tangent bundle JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2013 SP - 587 EP - 621 VL - 12 IS - 3 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2013_5_12_3_587_0/ LA - en ID - ASNSP_2013_5_12_3_587_0 ER -
%0 Journal Article %A Gimigliano, Alessandro %A Harbourne, Brian %A Idà, Monica %T On plane rational curves and the splitting of the tangent bundle %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2013 %P 587-621 %V 12 %N 3 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2013_5_12_3_587_0/ %G en %F ASNSP_2013_5_12_3_587_0
Gimigliano, Alessandro; Harbourne, Brian; Idà, Monica. On plane rational curves and the splitting of the tangent bundle. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 12 (2013) no. 3, pp. 587-621. http://www.numdam.org/item/ASNSP_2013_5_12_3_587_0/
[1] M.-G. Ascenzi, The restricted tangent bundle of a rational curve in , Comm. Algebra 16 (1988), 2193–2208. | MR | Zbl
[2] M.-G. Ascenzi, The restricted tangent bundle of a rational curve on a quadric in , Proc. Amer. Math. Soc. 98 (1986), 561–566. | MR | Zbl
[3] G. Birkhoff, A theorem on matrices of analytic functions, Math. Ann. 74 (1913), 122–133. | EuDML | JFM | MR
[4] H. Clemens, On rational curves in -space with given normal bundle, In: “Advances in Algebraic Geometry Motivated by Physics” (Lowell, MA, 2000), Contemp. Math., 276, Amer. Math. Soc., Providence, RI, 2001, 137–144. | MR | Zbl
[5] D. Cox, T. W. Sederburg and F. Chen, The moving line ideal basis of planar rational curves, Comput. Aided Geom. Design 15 (1998), 803–827. | MR | Zbl
[6] T. de Fernex, Negative curves on very general blow-ups of , In: “Projective Varieties with Unexpected Properties”, M. Beltrametti et al. (eds.), a volume in memory of Giuseppe Veronese, de Gruyter, Berlin, 2005, 199–207. | MR | Zbl
[7] T. de Fernex, On the Mori cone of blow-ups of the plane, preprint (arXiv:1001.5243).
[8] D. Eisenbud and A. Van de Ven, On the normal bundles of smooth rational space curves, Math. Ann. 256 (1981), 453–463. | EuDML | MR | Zbl
[9] D. Eisenbud and A. Van de Ven, On the variety of smooth rational space curves with given degree and normal bundle, Invent. Math. 67 (1982), 89–100. | EuDML | MR | Zbl
[10] S. Fitchett, On bounding the number of generators for fat point ideals on the projective plane, J. Algebra 236 (2001), 502–521. | MR | Zbl
[11] S. Fitchett, Corrigendum to: On bounding the number of generators for fat point ideals on the projective plane [J. Algebra 236 (2001), 502–521], J. Algebra 276 (2004), 417–419. | MR | Zbl
[12] S. Fitchett, B. Harbourne and S. Holay, Resolutions of fat point ideals involving eight general points of , J. Algebra 244 (2001), 684–705. | MR | Zbl
[13] F. Ghione and G. Sacchiero, Normal bundles of rational curves in , Manuscripta Math. 33 (1980), 111–128. | EuDML | MR | Zbl
[14] A. Gimigliano, “On Linear Systems of Plane Curves”, Thesis, Queen’s University, Kingston, 1987. | MR
[15] A. Gimigliano, B. Harbourne and M. Idà, Betti numbers for fat point ideals in the plane: a geometric approach, Trans. Amer. Math. Soc. 361 (2009), 1103–1127. | MR | Zbl
[16] A. Gimigliano, B. Harbourne and M. Idà, The role of the cotangent bundle in resolving ideals of fat points in the plane, J. Pure Appl. Algebra 213 (2009), 203–214. | MR | Zbl
[17] A. Gimigliano, B. Harbourne and M. Idà, Stable postulation and stable ideal generation: conjectures for fat points in the plane, Bull. Belg. Math . Soc. Simon Stevin 16 (2009), 853–860. | MR | Zbl
[18] A. Grothendieck, Sur la classification des fibrés holomorphes sur la sphère de Riemann, Amer. J. Math. 79 (1957), 121–138. | MR | Zbl
[19] L. Gruson, R. Lazarsfeld and Ch. Peskine, On a theorem of Castelnuovo and the equations defining space curves, Invent. Math. 72 (1983), 491–506. | EuDML | MR | Zbl
[20] B. Harbourne, Complete linear systems on rational surfaces, Trans. Amer. Math. Soc. 289 (1985), 213–226. | MR | Zbl
[21] B. Harbourne, An Algorithm for fat points on , Canad. J. Math. 52 (2000), 123– 140. | MR | Zbl
[22] B. Harbourne, Global aspects of the geometry of surfaces, Ann. Univ. Paedagog. Crac. Stud. Math. 9 (2010), 5–41. | MR | Zbl
[23] B. Harbourne, Blowings-up of and their blowings-down, Duke Math. J. 52 (1985), 129–148. | MR | Zbl
[24] B. Harbourne, Very ample divisors on rational surfaces, Math. Ann. 272 (1985), 139–153. | EuDML | MR | Zbl
[25] A. Hirschowitz, Une conjecture pour la cohomologie des diviseurs sur les surfaces rationelles génériques, J. Reine Angew. Math. 397 (1989), 208–213. | EuDML | MR | Zbl
[26] K. Hulek, The normal bundle of a curve on a quadric, Math. Ann. 258 (1981), 201– 206. | EuDML | MR | Zbl
[27] G. Ilardi, P. Supino and J. Valles, Geometry of syzygies via Poncelet varieties, Boll. Unione Mat. Ital. (9) 2 (2009), 579–589. | EuDML | MR | Zbl
[28] V. Kac, “Infinite Dimensional Lie Algebras”, Cambridge University Press, New York, 1994. | MR | Zbl
[29] M. Lahyane and B. Harbourne, Irreducibility of ()-classes of anticanonical rational surfaces, Pac. J. Math. 218 (2005), 101–114. | MR | Zbl
[30] Y. I. Manin, “Cubic Forms”, Mathematical Library 4, North-Holland, 1986. | MR | Zbl
[31] M. Nagata, On rational surfaces, II, Mem. Coll. Sci. Univ. Kyoto, Ser. A Math. 33 (1960), 271–293. | MR | Zbl
[32] Z. Ran, Normal bundles of rational curves in projective spaces, Asian J. Math. 11 (2007), 567–608. | MR | Zbl
[33] L. Ramella, La stratification du schéma de Hilbert des courbes rationelles de par le fibré tangent restreint, C.R. Acad. Sci. Paris Sér. I, Moth. 311 (1990), 181–184. | MR | Zbl
[34] T. Sederburg, R. Goldman and H. Du, Implicitizing rational curves by the method of moving algebraic curves, J. Symb. Comput. 23 (1997), 153–175. | MR | Zbl
[35] T. Sederberg, T. Saito, D. Qi and K. Klimaszewski, Curve implicitization using moving lines, Comput. Aided Geom. Design 11 (1994), 687-706. | MR | Zbl
[36] B. Segre, Alcune questioni su insiemi finiti di punti in Geometria Algebrica, In: “Atti del Convegno Internaz. di Geom. Alg.”, Torino, 1961. | Zbl