Quantitative uniqueness estimates for the shallow shell system and their application to an inverse problem
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 12 (2013) no. 1, pp. 43-92.

In this paper we derive some quantitative uniqueness estimates for the shallow shell equations. Our proof relies on appropriate Carleman estimates. For applications, we consider the size estimate inverse problem.

Publié le :
Classification : 53J58, 35R30
Di Cristo, Michele 1 ; Lin, Ching-Lung 2 ; Wang, Jenn-Nan 3

1 Dipartimento di Matematica Politecnico di Milano Piazza Leonardo da Vinci, 32 20133 Milano, Italia
2 Department of Mathematics NCTS National Cheng Kung University Tainan 701, Taiwan
3 Department of Mathematics NCTS (Taipei) National Taiwan University Taipei 106, Taiwan
@article{ASNSP_2013_5_12_1_43_0,
     author = {Di Cristo, Michele and Lin, Ching-Lung and Wang, Jenn-Nan},
     title = {Quantitative uniqueness estimates for the shallow shell system and their application to an inverse problem},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {43--92},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 12},
     number = {1},
     year = {2013},
     mrnumber = {3088437},
     zbl = {1272.35091},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2013_5_12_1_43_0/}
}
TY  - JOUR
AU  - Di Cristo, Michele
AU  - Lin, Ching-Lung
AU  - Wang, Jenn-Nan
TI  - Quantitative uniqueness estimates for the shallow shell system and their application to an inverse problem
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2013
SP  - 43
EP  - 92
VL  - 12
IS  - 1
PB  - Scuola Normale Superiore, Pisa
UR  - http://www.numdam.org/item/ASNSP_2013_5_12_1_43_0/
LA  - en
ID  - ASNSP_2013_5_12_1_43_0
ER  - 
%0 Journal Article
%A Di Cristo, Michele
%A Lin, Ching-Lung
%A Wang, Jenn-Nan
%T Quantitative uniqueness estimates for the shallow shell system and their application to an inverse problem
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2013
%P 43-92
%V 12
%N 1
%I Scuola Normale Superiore, Pisa
%U http://www.numdam.org/item/ASNSP_2013_5_12_1_43_0/
%G en
%F ASNSP_2013_5_12_1_43_0
Di Cristo, Michele; Lin, Ching-Lung; Wang, Jenn-Nan. Quantitative uniqueness estimates for the shallow shell system and their application to an inverse problem. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 12 (2013) no. 1, pp. 43-92. http://www.numdam.org/item/ASNSP_2013_5_12_1_43_0/

[1] G. Alessandrini and A. Morassi, Strong unique continuation for the Lamé system of elasticity, Comm. Partial Differential Equations 26 (2001), 1787–1810. | MR | Zbl

[2] G. Alessandrini, A. Morassi and E. Rosset, Detecting an inclusion in an elastic body by boundary measurements, SIAM J. Math. Anal. 33 (2002), 1247–1268. | MR | Zbl

[3] G. Alessandrini, A. Morassi and E. Rosset, Size estimates, In: “Inverse Problems: Theory and Applications” (Cortona/Pisa, 2002), Contemp. Math., Vol. 333, Amer. Math. Soc., Providence, RI, 2003, 1–33. | MR | Zbl

[4] G. Alessandrini, A. Morassi, E. Rosset and S. Vessella, On doubling inequalities for elliptic systems, J. Math. Anal. Appl. 357 (2009), 349–355. | MR | Zbl

[5] G. Alessandrini, A. Morassi and E. Rosset, The linear constraints in Poincaré and Korn type inequalities, Forum Math. 20 (2008), 557–569. | MR | Zbl

[6] G. Alessandrini and E. Rosset, The inverse conductivity problem with one measurement: bounds on the size of the unknown object, SIAM J. Appl. Math. 58 (1998), 1060–1071. | MR | Zbl

[7] G. Alessandrini, E. Rosset and J. K. Seo, Optimal size estimates for the inverse conductivity problem with one measurement, Proc. Amer. Mat. Soc. 128 (2000), 53–64. | MR | Zbl

[8] J. Bourgain and C. Kenig, On localization in the continuous Anderson-Bernoulli model in higher dimension, Invent. Math. 161 (2005), 1389–426. | MR | Zbl

[9] H. Donnelly and C. Fefferman, Nodal sets of eigenfunctions on Riemannian manifolds, Invent. Math. 93 (1988), 161–183. | EuDML | MR | Zbl

[10] N. Garofalo and F. H. Lin, Monotonicity properties of variational integrals, A p weights and unique continuation, Indiana Univ. Math. J. 35 (1986), 245–267. | MR | Zbl

[11] N. Garofalo and F. H. Lin, Unique continuation for elliptic operators: a geometric-variational approach, Comm. Pure Appl. Math., 40 (1987), 347–366. | MR | Zbl

[12] L. Hörmander, “The Analysis of Linear Partial Differential Operators”, Vol. 3, Springer-Verlag, Berlin/New York, 1985. | MR | Zbl

[13] V. Isakov, “Inverse Problems for Partial Differential Equations”, Second Edition, Springer, New York, 2006. | MR | Zbl

[14] I. Kukavica, Quantitative uniqueness for second order elliptic operators, Duke Math. J. 91 (1998), 225–240. | MR | Zbl

[15] C.L. Lin, Strong unique continuation for m-th powers of a Laplaceian operator with singular coefficients, Proc. Amer. Math. Soc. 135 (2007), 569–578. | MR | Zbl

[16] F. H. Lin, A uniqueness theorem for parabolic equations, Comm. Pure Appl. Math. 43 (1990), 127–136. | MR | Zbl

[17] C. L. Lin, S. Nagayasu and J. N. Wang, Quantitative uniqueness for the power of the Laplacian with singular coefficients, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 10 (2011), 513–529 | Numdam | MR | Zbl

[18] C. L. Lin, G. Nakamura and J. N. Wang, Quantitative uniqueness for second order elliptic operators with strongly singular coefficients, preprint. | MR | Zbl

[19] C. L. Lin, G. Nakamura and J. N. Wang, Optimal three-ball inequalities and quantitative uniqueness for the Lamé system with Lipschitz coefficients, arXiv:0901.4638 [math.AP] | MR | Zbl

[20] A. Morassi, E. Rosset and S. Vessella, Size estimates for inclusions in an elastic plate by boundary measurements, Indiana Univ. Math. J. 56 (2007), 2325–2384. | MR | Zbl

[21] A. Morassi, E. Rosset and S. Vessella, Detecting general inclusions in elastic plates, Inverse Problems 25 (2009). | MR | Zbl