In this paper we derive some quantitative uniqueness estimates for the shallow shell equations. Our proof relies on appropriate Carleman estimates. For applications, we consider the size estimate inverse problem.
@article{ASNSP_2013_5_12_1_43_0, author = {Di Cristo, Michele and Lin, Ching-Lung and Wang, Jenn-Nan}, title = {Quantitative uniqueness estimates for the shallow shell system and their application to an inverse problem}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {43--92}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 12}, number = {1}, year = {2013}, mrnumber = {3088437}, zbl = {1272.35091}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2013_5_12_1_43_0/} }
TY - JOUR AU - Di Cristo, Michele AU - Lin, Ching-Lung AU - Wang, Jenn-Nan TI - Quantitative uniqueness estimates for the shallow shell system and their application to an inverse problem JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2013 SP - 43 EP - 92 VL - 12 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2013_5_12_1_43_0/ LA - en ID - ASNSP_2013_5_12_1_43_0 ER -
%0 Journal Article %A Di Cristo, Michele %A Lin, Ching-Lung %A Wang, Jenn-Nan %T Quantitative uniqueness estimates for the shallow shell system and their application to an inverse problem %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2013 %P 43-92 %V 12 %N 1 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2013_5_12_1_43_0/ %G en %F ASNSP_2013_5_12_1_43_0
Di Cristo, Michele; Lin, Ching-Lung; Wang, Jenn-Nan. Quantitative uniqueness estimates for the shallow shell system and their application to an inverse problem. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 12 (2013) no. 1, pp. 43-92. http://www.numdam.org/item/ASNSP_2013_5_12_1_43_0/
[1] G. Alessandrini and A. Morassi, Strong unique continuation for the Lamé system of elasticity, Comm. Partial Differential Equations 26 (2001), 1787–1810. | MR | Zbl
[2] G. Alessandrini, A. Morassi and E. Rosset, Detecting an inclusion in an elastic body by boundary measurements, SIAM J. Math. Anal. 33 (2002), 1247–1268. | MR | Zbl
[3] G. Alessandrini, A. Morassi and E. Rosset, Size estimates, In: “Inverse Problems: Theory and Applications” (Cortona/Pisa, 2002), Contemp. Math., Vol. 333, Amer. Math. Soc., Providence, RI, 2003, 1–33. | MR | Zbl
[4] G. Alessandrini, A. Morassi, E. Rosset and S. Vessella, On doubling inequalities for elliptic systems, J. Math. Anal. Appl. 357 (2009), 349–355. | MR | Zbl
[5] G. Alessandrini, A. Morassi and E. Rosset, The linear constraints in Poincaré and Korn type inequalities, Forum Math. 20 (2008), 557–569. | MR | Zbl
[6] G. Alessandrini and E. Rosset, The inverse conductivity problem with one measurement: bounds on the size of the unknown object, SIAM J. Appl. Math. 58 (1998), 1060–1071. | MR | Zbl
[7] G. Alessandrini, E. Rosset and J. K. Seo, Optimal size estimates for the inverse conductivity problem with one measurement, Proc. Amer. Mat. Soc. 128 (2000), 53–64. | MR | Zbl
[8] J. Bourgain and C. Kenig, On localization in the continuous Anderson-Bernoulli model in higher dimension, Invent. Math. 161 (2005), 1389–426. | MR | Zbl
[9] H. Donnelly and C. Fefferman, Nodal sets of eigenfunctions on Riemannian manifolds, Invent. Math. 93 (1988), 161–183. | EuDML | MR | Zbl
[10] N. Garofalo and F. H. Lin, Monotonicity properties of variational integrals, weights and unique continuation, Indiana Univ. Math. J. 35 (1986), 245–267. | MR | Zbl
[11] N. Garofalo and F. H. Lin, Unique continuation for elliptic operators: a geometric-variational approach, Comm. Pure Appl. Math., 40 (1987), 347–366. | MR | Zbl
[12] L. Hörmander, “The Analysis of Linear Partial Differential Operators”, Vol. 3, Springer-Verlag, Berlin/New York, 1985. | MR | Zbl
[13] V. Isakov, “Inverse Problems for Partial Differential Equations”, Second Edition, Springer, New York, 2006. | MR | Zbl
[14] I. Kukavica, Quantitative uniqueness for second order elliptic operators, Duke Math. J. 91 (1998), 225–240. | MR | Zbl
[15] C.L. Lin, Strong unique continuation for -th powers of a Laplaceian operator with singular coefficients, Proc. Amer. Math. Soc. 135 (2007), 569–578. | MR | Zbl
[16] F. H. Lin, A uniqueness theorem for parabolic equations, Comm. Pure Appl. Math. 43 (1990), 127–136. | MR | Zbl
[17] C. L. Lin, S. Nagayasu and J. N. Wang, Quantitative uniqueness for the power of the Laplacian with singular coefficients, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 10 (2011), 513–529 | Numdam | MR | Zbl
[18] C. L. Lin, G. Nakamura and J. N. Wang, Quantitative uniqueness for second order elliptic operators with strongly singular coefficients, preprint. | MR | Zbl
[19] C. L. Lin, G. Nakamura and J. N. Wang, Optimal three-ball inequalities and quantitative uniqueness for the Lamé system with Lipschitz coefficients, arXiv:0901.4638 [math.AP] | MR | Zbl
[20] A. Morassi, E. Rosset and S. Vessella, Size estimates for inclusions in an elastic plate by boundary measurements, Indiana Univ. Math. J. 56 (2007), 2325–2384. | MR | Zbl
[21] A. Morassi, E. Rosset and S. Vessella, Detecting general inclusions in elastic plates, Inverse Problems 25 (2009). | MR | Zbl