We construct sequences of sign-changing solutions for some conformally invariant semilinear elliptic equation which is defined , when . The solutions we obtain have large energy and concentrate along some special submanifolds of . For example, for we obtain sequences of solutions whose energy concentrates along one great circle or finitely many great circles which are linked to each other (and they correspond to Hopf links embedded in ). In dimension we obtain sequences of solutions whose energy concentrates along a two-dimensional torus (which corresponds to a Clifford torus embedded in ).
@article{ASNSP_2013_5_12_1_209_0, author = {del Pino, Manuel and Musso, Monica and Pacard, Frank and Pistoia, Angela}, title = {Torus action on $S^{n}$ and sign-changing solutions for conformally invariant equations}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {209--237}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 12}, number = {1}, year = {2013}, mrnumber = {3088442}, zbl = {1267.53040}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2013_5_12_1_209_0/} }
TY - JOUR AU - del Pino, Manuel AU - Musso, Monica AU - Pacard, Frank AU - Pistoia, Angela TI - Torus action on $S^{n}$ and sign-changing solutions for conformally invariant equations JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2013 SP - 209 EP - 237 VL - 12 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2013_5_12_1_209_0/ LA - en ID - ASNSP_2013_5_12_1_209_0 ER -
%0 Journal Article %A del Pino, Manuel %A Musso, Monica %A Pacard, Frank %A Pistoia, Angela %T Torus action on $S^{n}$ and sign-changing solutions for conformally invariant equations %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2013 %P 209-237 %V 12 %N 1 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2013_5_12_1_209_0/ %G en %F ASNSP_2013_5_12_1_209_0
del Pino, Manuel; Musso, Monica; Pacard, Frank; Pistoia, Angela. Torus action on $S^{n}$ and sign-changing solutions for conformally invariant equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 12 (2013) no. 1, pp. 209-237. http://www.numdam.org/item/ASNSP_2013_5_12_1_209_0/
[1] A. Bahri and S. Chanillo, The difference of topology at infinity in changing- sign Yamabe problems on (the case of two masses). Comm. Pure Appl. Math. 54 (2001), 450–478. | MR | Zbl
[2] A. Bahri and Y. Xu, “Recent Progress in Conformal Geometry”, ICP Advanced Texts in Mathematics, 1, Imperial College Press, London, 2007. | MR | Zbl
[3] T. Bartsch and M. Willem, Infinitely many nonradial solutions of a Euclidean scalar field equation, J. Funct. Anal. 117 (1993), 447–460. | MR | Zbl
[4] T. Bartsch and M. Willem, Infinitely many radial solutions of a semilinear elliptic problem on , Arch. Rational Mech. Anal. 124 (1993), 261–276. | MR | Zbl
[5] W. Ding, On a conformally invariant elliptic equation on , Comm. Math. Phys. 107 (1986), 331–335. | MR | Zbl
[6] E. Hebey, “Introduction à l’analyse non linéaire sur les variétées”, Diderot éditeur, 1997. | Zbl
[7] M. Obata, Conformal changes of Riemannian metrics on a Euclidean sphere, In: “Differential Geometry” (in honor of Kentaro Yano), Kinokuniya, Tokyo, 1972, 347–353. | MR | Zbl
[8] R. Schoen and S. T. Yau, “Lectures on Differential Geometry” Conference Proceedings and Lecture Notes in Geometry and Topology, I, International Press, Cambridge, MA, 1994. | MR | Zbl
[9] H.Y. Wang, The existence of nonminimal solutions to the Yang-Mills equation with group on and , J. Differential Geom. 34 (1991), 701–767. | MR | Zbl
[10] J. Wei and S. Yan, Infinitely many solutions for the prescribed scalar curvature problem on , J. Funct. Anal. 258 (2010), 3048–3081. | MR | Zbl