Consider the stochastic Navier-Stokes-Coriolis equations in subject to Dirichlet boundary conditions as well as the Ekman spiral which is a stationary solution to the deterministic equations. It is proved that the stochastic Navier-Stokes-Coriolis equation admits a weak martingale solution. Moreover, as an stochastic analogue of the existing deterministic stability results for the Ekman spiral, stochastic stability of the Ekman spiral is proved by considering stationary martingale solutions.
@article{ASNSP_2013_5_12_1_189_0, author = {Hieber, Matthias and Stannat, Wilhelm}, title = {Stochastic stability of the {Ekman} spiral}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {189--208}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 12}, number = {1}, year = {2013}, mrnumber = {3088441}, zbl = {1264.35293}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2013_5_12_1_189_0/} }
TY - JOUR AU - Hieber, Matthias AU - Stannat, Wilhelm TI - Stochastic stability of the Ekman spiral JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2013 SP - 189 EP - 208 VL - 12 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2013_5_12_1_189_0/ LA - en ID - ASNSP_2013_5_12_1_189_0 ER -
%0 Journal Article %A Hieber, Matthias %A Stannat, Wilhelm %T Stochastic stability of the Ekman spiral %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2013 %P 189-208 %V 12 %N 1 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2013_5_12_1_189_0/ %G en %F ASNSP_2013_5_12_1_189_0
Hieber, Matthias; Stannat, Wilhelm. Stochastic stability of the Ekman spiral. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 12 (2013) no. 1, pp. 189-208. http://www.numdam.org/item/ASNSP_2013_5_12_1_189_0/
[1] T. Abe and Y. Shibata, On a resolvent estimate of the Stokes equation on an infinite layer, J. Math. Soc. Japan 55 (2003), 469–497. | MR | Zbl
[2] H. Abels and M. Wiegner, Resolvent estimates for the Stokes equation on an infinite layer, Differential Integral Equations 18 (2005), 1081–1110. | MR | Zbl
[3] A. Babin, A. Mahalov and B. Nicolaenko, 3D Navier-Stokes and Euler equations with initial data characterized by uniformly large vorticity, Indiana Univ. Math. J. 50 (2001), 1–35. | MR | Zbl
[4] A. Bensoussan and R. Temam, Équations stochastiques du type Navier-Stokes, J. Func. Anal. 13 (1973), 195-222. | MR | Zbl
[5] J. Bricmont, A. Kupiainen and R. Lefevere, Probabilistic estimates for the two-dimensionl stochatic Navier-Stokes equations, J. Statist. Phys. 100 (2000), 743-756. | MR | Zbl
[6] G. Da Prato and J. Zabczyk, “Stochastic Equations in Infinite Dimensions”, Cambridge University Press, 1992. | MR
[7] G. Da Prato and J. Zabczyk, “Ergodicity for Infinite Dimensional Systems”, Lectures Note Series of the LMS, Vol. 229, Cambridge University Press, 1996. | MR | Zbl
[8] B. Desjardins, E. Dormy and E. Grenier, Stability of mixed Ekman-Hartmann boundary layers, Nonlinearity 12 (1999), 181–199. | MR | Zbl
[9] V. W. Ekman, On the influence of the earth’s rotation on ocean currents, Arkiv Matem. Astr. Fysik (Stockholm) 11 (1905), 1–52. | JFM
[10] F. Flandoli and D. Gatarek, Martingale and stationary solutions for stochastic Navier-Stokes equations, Probab. Theory Rel. Fields 102 (1995), 367–391. | MR | Zbl
[11] G. Galdi, “An Introduction to the Mathematical Theory of the Navier-Stokes Equations”, Springer, Berlin, 1994. | MR | Zbl
[12] Th. Gallay and V. Roussier-Michon, Global existence and long-time asymptotics for rotating fluids in a 3D-layer, J. Math. Anal. Appl. 360 (2009), 14–34. | MR | Zbl
[13] Y. Giga, K. Inui, A. Mahalov, S. Matsui and J. Saal, Rotating Navier-Stokes equations in with initial data nondecreasing at infinity: the Ekman boundary layer problem, Arch. Ration. Mech. Anal. 186 (2007), 177–224. | MR | Zbl
[14] Y. Giga, K. Inui, A. Mahalov and J. Saal, Uniform global solvability of the rotating Navier-Stokes equations for nondecaying initial data, Indiana Univ. Math. J. 57 (2008), 2775–2792. | MR | Zbl
[15] H. Heck, H. Kim and H. Kozono, Stability of plane Couette flows with respect to small periodic perturbations, Nonlinear Anal. 71 (2009), 3739–3758. | MR | Zbl
[16] M. Heß, “Analysis of the Navier-Stokes Equations for Geophysical Boundary Layers”, PhD-Thesis, TU Darmstadt, 2009. | Zbl
[17] M. Heß, M. Hieber, A. Mahalov and J. Saal, Nonlinear stability of the Ekman spiral, Bull. London Math. Soc. 42 (2010), 691–706. | MR | Zbl
[18] M. Hieber and Y. Shibata, The Fujita-Kato approach to the equations of Navier-Stokes in the rotational setting, Math. Z. 265 (2010), 481–491. | MR | Zbl
[19] N. Ikeda and S. Watanabe, “Stochastic Differential Equations and Diffusion Processes”, North Holland, Amsterdam 1981. | MR | Zbl
[20] N. Masmoudi, Ekman layers for rotating fluids: the case of general data, Comm. Pure Appl. Math. 53 (2000), 432–483. | MR | Zbl
[21] N. V. Krylov, “Introduction to the Theory of Diffusion Processes”, AMS Mathematical Monographs, Vol. 142, AMS, Providence 1995. | MR | Zbl
[22] C. Odasso, Spatial smoothness of the stationary solutions ot the 3D Navier-Stokes equations, Electron. J. Probab. 11 (2006), 686–699. | EuDML | MR | Zbl
[23] F. Rousset, Stability of large Ekman boundary layers in rotating fluids, Arch. Ration. Mech. Anal. 172 (2004), 213–245. | MR | Zbl
[24] A. Shirikyan, Analyticity of solutions of randomly perturbed two-dimensional Navier-Stokes equations, Russian Math. Surveys 57 (2002), 785–799. | MR | Zbl
[25] R. Temam, “Navier-Stokes Equations: Theory and Numerical Analysis”, North-Holland, Amsterdam, 1984. | MR | Zbl
[26] M. Vishik and A. Fursikov, “Mathematical Problems of Statistical Hydromechanics”, Kluwer, Dordrecht, 1988. | MR | Zbl