In this paper we establish a criterion for the boundedness of Hermite-Calderón -Zygmund operators on the space naturally associated to the Hermite operator . We apply this criterion in a systematic way to prove the boundedness on of certain harmonic analysis operators related to (Riesz transforms, maximal operators, Littlewood-Paley -functions and variation operators).
@article{ASNSP_2013_5_12_1_157_0, author = {Betancor, Jorge J. and Crescimbeni, Raquel and Fari\~na, Juan C. and Stinga, Pablo Ra\'ul and Torrea, Jos\'e L.}, title = {A $T1$ criterion for {Hermite-Calder\'on-Zygmund} operators on the $BMO_{H}(\protect \mathbb{R}^{n})$ space and applications}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {157--187}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 12}, number = {1}, year = {2013}, mrnumber = {3088440}, zbl = {1276.42014}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2013_5_12_1_157_0/} }
TY - JOUR AU - Betancor, Jorge J. AU - Crescimbeni, Raquel AU - Fariña, Juan C. AU - Stinga, Pablo Raúl AU - Torrea, José L. TI - A $T1$ criterion for Hermite-Calderón-Zygmund operators on the $BMO_{H}(\protect \mathbb{R}^{n})$ space and applications JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2013 SP - 157 EP - 187 VL - 12 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2013_5_12_1_157_0/ LA - en ID - ASNSP_2013_5_12_1_157_0 ER -
%0 Journal Article %A Betancor, Jorge J. %A Crescimbeni, Raquel %A Fariña, Juan C. %A Stinga, Pablo Raúl %A Torrea, José L. %T A $T1$ criterion for Hermite-Calderón-Zygmund operators on the $BMO_{H}(\protect \mathbb{R}^{n})$ space and applications %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2013 %P 157-187 %V 12 %N 1 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2013_5_12_1_157_0/ %G en %F ASNSP_2013_5_12_1_157_0
Betancor, Jorge J.; Crescimbeni, Raquel; Fariña, Juan C.; Stinga, Pablo Raúl ; Torrea, José L. A $T1$ criterion for Hermite-Calderón-Zygmund operators on the $BMO_{H}(\protect \mathbb{R}^{n})$ space and applications. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 12 (2013) no. 1, pp. 157-187. http://www.numdam.org/item/ASNSP_2013_5_12_1_157_0/
[1] I. Abu-Falahah, P. R. Stinga and J. L. Torrea, Square functions associated to Schrödinger operators, Studia Math. 203 (2011), 171–194. | EuDML | MR | Zbl
[2] B. Bongioanni, E. Harboure and O. Salinas, Riesz transforms related to Schrödinger operators acting on type spaces, J. Math. Anal. Appl. 357 (2009), 115–131. | MR | Zbl
[3] R. Crescimbeni, R. A. Macías, T. Menárguez, J. L. Torrea and B. Viviani, The -variation as an operator between maximal operators and singular integrals, J. Evol. Equ. 9 (2009), 81–102. | MR | Zbl
[4] R. Crescimbeni, F. J. Martín-Reyes, A. de la Torre and J. L. Torrea, The -variation of the Hermitian Riesz transform, Acta Math. Sin. (Engl. Ser.) 26 (2010), 1827–1838. | MR | Zbl
[5] G. David and J.-L. Journé, A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math. 120 (1984), 371–397. | MR | Zbl
[6] J. Dziubański, G. Garrigós, T. Martínez, J. L. Torrea and J. Zienkiewicz, spaces related to Schrödinger operators with potentials satisfying a reverse Hölder inequality, Math. Z. 249 (2005), 329–356. | MR | Zbl
[7] J. Dziubański and J. Zienkiewicz, Hardy space associated to Schrödinger operator with potential satisfying reverse Hölder inequality, Rev. Mat. Iberoamericana 15 (1999), 279–296. | EuDML | MR | Zbl
[8] T. A. Gillespie and J. L. Torrea, Dimension free estimates for the oscillation of Riesz transforms, Israel J. Math. 141 (2004), 125–144. | MR | Zbl
[9] L. Grafakos, “Classical and Modern Fourier Analysis”, Pearson Education, Inc., Upper Saddle River, NJ, 2004. | MR | Zbl
[10] T. Hytönen, An operator-valued theorem, J. Funct. Anal. 234 (2006), 420-463. | MR | Zbl
[11] T. Hytönen and L. Weis, A theorem for integral transformations with operator-valued kernel, J. Reine Angew. Math. 599 (2006), 155-200. | MR | Zbl
[12] S. Janson, On functions with conditions on the mean oscillation, Ark. Mat. 14 (1976), 189–196. | MR | Zbl
[13] E. Nakai and K. Yabuta, Pointwise multipliers for functions of bounded mean oscillation, J. Math. Soc. Japan 37 (1985), 207–218. | MR | Zbl
[14] Z. Shen, estimates for Schrödinger operators with certain potentials, Ann. Inst. Fourier (Grenoble) 45 (1995), 513–546. | EuDML | Numdam | MR | Zbl
[15] K. Stempak and J. L. Torrea, On -functions for Hermite function expansions, Acta Math. Hungar. 109 (2005), 99–125. | MR | Zbl
[16] K. Stempak and J. L. Torrea, Poisson integrals and Riesz transforms for Hermite function expansions with weights, J. Funct. Anal. 202 (2003), 443–472. | MR | Zbl
[17] P. R. Stinga and J. L. Torrea, Regularity theory for the fractional harmonic oscillator, J. Funct. Anal. 260 (2011), 3097–3131. | MR | Zbl
[18] S. Thangavelu, “Lectures on Hermite and Laguerre Expansions”, Mathematical Notes, Vol. 42, Princeton University Press, Princeton, NJ, 1993. | MR | Zbl
[19] A. Torchinsky, “Real-Variable Methods in Harmonic Analysis”, Pure and Applied Mathematics, Vol. 123, Academic Press, Inc., Orlando, FL, 1986. | MR | Zbl