We consider nonlinear Neumann problems driven by the
@article{ASNSP_2012_5_11_4_729_0, author = {Mugnai, Dimitri and Papageorgiou, Nikolaos S.}, title = {Resonant nonlinear {Neumann} problems with indefinite weight}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {729--788}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 11}, number = {4}, year = {2012}, mrnumber = {3060699}, zbl = {1270.35215}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2012_5_11_4_729_0/} }
TY - JOUR AU - Mugnai, Dimitri AU - Papageorgiou, Nikolaos S. TI - Resonant nonlinear Neumann problems with indefinite weight JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2012 SP - 729 EP - 788 VL - 11 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2012_5_11_4_729_0/ LA - en ID - ASNSP_2012_5_11_4_729_0 ER -
%0 Journal Article %A Mugnai, Dimitri %A Papageorgiou, Nikolaos S. %T Resonant nonlinear Neumann problems with indefinite weight %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2012 %P 729-788 %V 11 %N 4 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2012_5_11_4_729_0/ %G en %F ASNSP_2012_5_11_4_729_0
Mugnai, Dimitri; Papageorgiou, Nikolaos S. Resonant nonlinear Neumann problems with indefinite weight. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 11 (2012) no. 4, pp. 729-788. http://www.numdam.org/item/ASNSP_2012_5_11_4_729_0/
[1] S. Aizicovici, N. Papageorgiou and V. Staicu, Existence of multiple solutions with precise sign information for superlinear Neumann problems, Ann. Mat. Pura Appl. (4) 188 (2009), 679–719. | MR | Zbl
[2] W. Allegretto and Y.X. Huang, A Picone’s identity for the
[3] P. Bartolo, V. Benci and D. Fortunato, Abstract critical point theorems and applications to some nonlinear problems with “strong” resonance at infinity, Nonlinear Anal. 7 (1983), 981–1012. | MR | Zbl
[4] T. Bartsch, Critical point theory on partially ordered Hilbert spaces, J. Funct. Anal. 186 (2001), 117–152. | MR | Zbl
[5] T. Bartsch and S. Li, Critical point theory for asymptotically quadratic functionals and applications to problems with resonance, Nonlinear Anal. 28 (1997), 419–441. | MR | Zbl
[6] P. A. Binding and B. P. Rynne, Variational and non-variational eigenvalues of the
[7] I. Birindelli and F. Demengel, Existence of solutions for semi-linear equations involving the
[8] H. Brezis and L. Nirenberg,
[9] K.-C. Chang, “Infinite-dimensional Morse Theory and Multiple Solution Problems”, In: Progress in Nonlinear Differential Equations and their Applications 6, Birkhäuser Boston, MA, 1993. | MR | Zbl
[10] K.-C. Chang, “Methods in Nonlinear Analysis”, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2005. | MR | Zbl
[11] M. Cuesta, Eigenvalue problems for the
[12] M. Cuesta and H. Ramos Quoirin, A weighted eigenvalue problem for the
[13] M. Cuesta, D. de Figueiredo and J. P. Gossez, The beginning of the Fučik spectrum for the
[14] L. Damascelli, Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (1998), 493–516. | EuDML | Numdam | MR | Zbl
[15] L. M Del Pezzo, J. Fernández Bonder and J. D. Rossi, An optimization problem for the first weighted eigenvalue problem plus a potential, Proc. Amer. Math. Soc. 138 (2010), 3551–3567. | MR | Zbl
[16] J. Fernández Bonder and L. M. Del Pezzo, An optimization problem for the first eigenvalue of the
[17] J. P. García Azorero, I. Peral Alonso and J. J. Manfredi, Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations, Commun. Contemp. Math. 2 (2000), 385–404. | MR | Zbl
[18] L. Gasinski and N. S. Papageorgiou, “Nonlinear analysis”, Series in Mathematical Analysis and Applications 9, Chapman & Hall/CRC, Boca Raton, FL, 2006. | MR | Zbl
[19] N. Ghoussoub, “Duality and Perturbation Methods in Critical Point Theory”, Cambridge Tracts in Mathematics 107, Cambridge University Press, Cambridge, 1993. | MR | Zbl
[20] S. Goldberg, “Unbounded Linear Operators. Theory and Applications”, McGraw-Hill Book Co., New York, 1966. | MR | Zbl
[21] A. Granas and J. Dugundji, “Fixed Point Theory”, Springer Monographs in Mathematics, Springer-Verlag, New York, 2003. | MR | Zbl
[22] Z. Guo and Z. Zhang,
[23] S. Hu and N. S. Papageorgiou, Nonlinear Neumann equations driven by a nonhomogeneous differential operator, Commun. Pure Appl. Anal. in press. | MR | Zbl
[24] Q. Jiu and J. Su, Existence and multiplicity results for perturbations of the
[25] A. Lê, Eigenvalue problems for the
[26] L. Leadi and A. Yechoui, Principal eigenvalue in an unbounded domain with indefinite potential, NoDEA Nonlinear Differential Equations Appl. 17 (2010), 391–409. | MR | Zbl
[27] C. Li, The existence of infinitely many solutions of a class of nonlinear elliptic equations with Neumann boundary condition for both resonance and oscillation problems, Nonlinear Anal. 54 (2003), 431–443. | MR | Zbl
[28] Z. Liang and J. Su, Multiple solutions for semilinear elliptic boundary value problems with double resonance, J. Math. Anal. Appl. 354 (2009), 147–158. | MR | Zbl
[29] G. M. Lieberman, Boundary regularity for solutions of degenerate elliptic equations, Nonlinear Anal. 12 (1988), 1203–1219. | MR | Zbl
[30] S. Liu and S. Li, Existence of solutions for asymptotically ‘linear’
[31] J. Liu and S. Wu, Calculating critical groups of solutions for elliptic problem with jumping nonlinearity, Nonlinear Anal. 49 (2002), 779–797. | MR | Zbl
[32] J. López-Gómez, The maximum principle and the existence of principal eigenvalues for some linear weighted boundary value problems, J. Differential Equations 127 (1996), 263–294. | MR | Zbl
[33] E. Medeiros and K. Perera, Multiplicity of solutions for a quasilinear elliptic problem via the cohomological index, Nonlinear Anal. 71 (2009), 3654–3660. | MR | Zbl
[34] D. Motreanu, V. Motreanu and N.S. Papageorgiou, Nonlinear Neumann problems near resonance, Indiana Univ. Math. J. 58 (2009), 1257–1279. | MR | Zbl
[35] D. Mugnai, Addendum to: Multiplicity of critical points in presence of a linking: application to a superlinear boundary value problem, NoDEA Nonlinear Differential Equations Appl. 11 (2004), 379–391, and a comment on the generalized Ambrosetti-Rabinowitz condition, NoDEA Nonlinear Differential Equations Appl. 19 (2004), 299–301. | MR | Zbl
[36] N. S. Papageorgiou and S. T. Kyritsi, “Handbook of Applied Analysis”, Advances in Mechanics and Mathematics 19, Springer, New York, 2009. | MR | Zbl
[37] P. Pucci and J. Serrin, “The Maximum Principle”, Progress in Nonlinear Differential Equations and their Applications 73, Birkhäuser Verlag, Basel, 2007. | MR | Zbl
[38] A. Qian, Existence of infinitely many nodal solutions for a superlinear Neumann boundary value problem, Bound. Value Probl. 2005, 329–335. | EuDML | MR | Zbl
[39] R. E. Showalter, “ Hilbert Space Methods for Partial Differential Equations”, Monographs and Studies in Mathematics 1, Pitman, London, 1977. | MR | Zbl
[40] M. Struwe, “Variational Methods. Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems”, Fourth edition, Springer-Verlag, Berlin, 2008. | MR | Zbl
[41] N. S. Trudinger, On Harnack type inequalities and their application to quasilinear elliptic equations, Comm. Pure Appl. Math. 20 (1967), 721–747. | MR | Zbl
[42] J. Vazquez, A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim. 12 (1984), 191–202. | MR | Zbl
[43] M. Zhang, The rotation number approach to eigenvalues of the one-dimensional