We examine the theory of metric currents of Ambrosio and Kirchheim in the setting of spaces admitting differentiable structures in the sense of Cheeger and Keith. We prove that metric forms which vanish in the sense of Cheeger on a set must also vanish when paired with currents concentrated along that set. From this we deduce a generalization of the chain rule, and show that currents of absolutely continuous mass are given by integration against measurable -vector fields. We further prove that if the underlying metric space is a Carnot group with its Carnot-Carathéodory distance, then every metric current satisfies and , whenever annihilates the horizontal bundle of . Moreover, this condition is necessary and sufficient for a metric current with respect to the Riemannian metric to extend to one with respect to the Carnot-Carathéodory metric, provided the current either is locally normal, or has absolutely continuous mass.
@article{ASNSP_2012_5_11_2_259_0, author = {Williams, Marshall}, title = {Metric currents, differentiable structures, and {Carnot} groups}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {259--302}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 11}, number = {2}, year = {2012}, mrnumber = {3011992}, zbl = {1258.30029}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2012_5_11_2_259_0/} }
TY - JOUR AU - Williams, Marshall TI - Metric currents, differentiable structures, and Carnot groups JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2012 SP - 259 EP - 302 VL - 11 IS - 2 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2012_5_11_2_259_0/ LA - en ID - ASNSP_2012_5_11_2_259_0 ER -
%0 Journal Article %A Williams, Marshall %T Metric currents, differentiable structures, and Carnot groups %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2012 %P 259-302 %V 11 %N 2 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2012_5_11_2_259_0/ %G en %F ASNSP_2012_5_11_2_259_0
Williams, Marshall. Metric currents, differentiable structures, and Carnot groups. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 11 (2012) no. 2, pp. 259-302. http://www.numdam.org/item/ASNSP_2012_5_11_2_259_0/
[1] L. Ambrosio and B. Kirchheim, Currents in metric spaces, Acta Math. 185 (2000), 1–80. | MR | Zbl
[2] L. Ambrosio and B. Kirchheim, Rectifiable sets in metric and Banach spaces, Math. Ann. 318 (2000), 527–555. | MR | Zbl
[3] P. Assouad, Plongments Lipschitziens dans , Bull. Soc. Math. France 111 (1983), 429–448. | EuDML | Numdam | MR | Zbl
[4] J. Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999), 428–517. | MR | Zbl
[5] J. Cheeger, and B. Kleiner, Generalized differentiation and bi-Lipschitz nonembedding in , C. R. Acad. Sci. Paris, Ser. I 343 (2006), 297–301. | MR | Zbl
[6] W. Chow, Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung, Math. Ann. 117 (1939), 98–105. | EuDML | JFM | MR
[7] E. De Giorgi, Problema di Plateau generale e funzionali geodetici, Atti Sem. Mat. Fis. Univ. Modena 43 (1995), 285–292. | MR | Zbl
[8] G. De Rham, “Variétés différentiables. Formes, courants, formes harmonique”, Actualités Sci. Ind., Vol. 1222, Hermann, Paris, 1955. | MR | Zbl
[9] H. Federer, “Geometric Measure Theory,” Springer, New York, 1969. | MR | Zbl
[10] H. Federer and W. Fleming, Normal and integral currents, Ann. Math. 72 (1960), 458–520. | MR | Zbl
[11] B. Franchi, R. Serapioni and F. Serra Cassano, Regular submanifolds, graphs and area formula in Heisenberg groups, Adv. Math. 211 (2007), 152–203. | MR | Zbl
[12] M. Gromov, Carnot-Carathéodory spaces seen from within, In: “Sub-Riemannian Geometry”, Progr. Math. 4, Birkhäuser, Basel, 1996, 79–323 | MR | Zbl
[13] B. Hall, “Lie groups, Lie algebras, and representations: An elementary introduction”, Springer, New York, 2003. | MR | Zbl
[14] J. Heinonen, Calculus on Carnot groups, In: “Fall School in Analysis” (Jyväskylä, 1994), Report, 68, Univ. Jyväskylä Math. Inst., Vol. 68, 1995, 1–31. | MR | Zbl
[15] J. Heinonen, “Lectures on analysis on metric spaces”, Springer, New York, 2001. | MR | Zbl
[16] J. Heinonen and P. Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998), 1–61. | MR | Zbl
[17] D. Jerison, The Poincaré inequality for vector fields satisfying Hörmander’s condition, Duke Math. J. 53 (1986), 503–523. | MR | Zbl
[18] S. Keith, A differentiable structure for metric measure spaces, Adv. Math. 183 (2004), 271–315. | MR | Zbl
[19] B. Kirchheim, Rectifiable metric spaces: local structure and regularity of the Hausdorff measure, Proc. Amer. Math. Soc. 121 (1994), 113–123. | MR | Zbl
[20] A. Knapp, “Advanced Real Analysis”, Birkhäuser, Boston, 2005. | MR | Zbl
[21] S. Lang, “Differential and Riemannian Manifolds”, Springer, New York, 1995. | MR | Zbl
[22] U. Lang, Local currents in metric spaces, J. Geom. Anal. 21 (2011), 683–742. | MR | Zbl
[23] V. Magnani, Unrectifiability and rigidity in stratified groups, Arch. Math. (Basel) 83 (2004), 568–576. | MR | Zbl
[24] P. Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. 129 (1989), 1–60. | MR | Zbl
[25] P. Rashevsky, Any two points of a totally nonholonomic space may be connected by an admissible line, Uch. Zap. Ped. Inst. im. Liebknechta, Ser. Phys. Math. 2 (1938) 83–94.
[26] H. Reiter and J. Stegeman, “Classical Harmonic Analysis and Locally Compact Groups”, Clarendon Press, Oxford, 1968. | MR | Zbl
[27] M. Rumin, Formes différentielles sur les variétés de contact, J. Differential Geom. 39 (1994), 281–330. | MR | Zbl
[28] N. Weaver, Lipschitz algebras and derivations II. Exterior differentiation, J. Funct. Anal. 178 (2000), 64–112. | MR | Zbl
[29] H. Whitney, “Geometric Integration Theory”, Princeton University Press, Princeton, 1957. | MR | Zbl
[30] M. Williams, “Metric Currents and Differentiable Structures”, Ph. D. Thesis, Department of Mathematics, University of Michigan, 2010. | MR