We prove that on a Kähler manifold admitting an extremal metric and for any Kähler potential close to , the Calabi flow starting at exists for all time and the modified Calabi flow starting at will always be close to . Furthermore, when the initial data is invariant under the maximal compact subgroup of the identity component of the reduced automorphism group, the modified Calabi flow converges to an extremal metric near exponentially fast.
@article{ASNSP_2012_5_11_1_167_0, author = {Huang, Hongnian and Zheng, Kai}, title = {Stability of the {Calabi} flow near an extremal metric}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {167--175}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 11}, number = {1}, year = {2012}, mrnumber = {2953047}, zbl = {1246.53088}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2012_5_11_1_167_0/} }
TY - JOUR AU - Huang, Hongnian AU - Zheng, Kai TI - Stability of the Calabi flow near an extremal metric JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2012 SP - 167 EP - 175 VL - 11 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2012_5_11_1_167_0/ LA - en ID - ASNSP_2012_5_11_1_167_0 ER -
%0 Journal Article %A Huang, Hongnian %A Zheng, Kai %T Stability of the Calabi flow near an extremal metric %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2012 %P 167-175 %V 11 %N 1 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2012_5_11_1_167_0/ %G en %F ASNSP_2012_5_11_1_167_0
Huang, Hongnian; Zheng, Kai. Stability of the Calabi flow near an extremal metric. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 11 (2012) no. 1, pp. 167-175. http://www.numdam.org/item/ASNSP_2012_5_11_1_167_0/
[1] A. Futaki and T. Mabuchi, Bilinear forms and extremal Kähler vector fields associated with Kähler classes, Math. Ann. 301 (1995), 199–210. | EuDML | MR | Zbl
[2] E. Calabi, Extremal Kähler metrics, In: “Seminar on Differential Geometry”, Ann. of Math. Stud., Vol. 102, Princeton Univ. Press, Princeton, N.J., 1982, 259–290. | MR | Zbl
[3] E. Calabi, Extremal Kähler metrics. II, In: “Differential Geometry and Complex Analysis”, Springer, Berlin, 1982, 95–114. | MR | Zbl
[4] E. Calabi and X. X. Chen, The space of Kähler metrics. II, J. Differential Geom. 61 (2002), 173–193. | MR | Zbl
[5] X. X. Chen, The space of Kähler metrics, J. Differential Geom. 56 (2000), 189–234. | MR | Zbl
[6] X. X. Chen, Calabi flow in Riemann surfaces revisited: a new point of view, Internat. Math. Res. Notices 2001, 275–297. | MR | Zbl
[7] X. X. Chen, W. Y. Ding and K. Zheng, Pseudo-Calabi flow, Unpublished, 2009.
[8] X. X. Chen and W. Y. He, On the Calabi flow, Amer. J. Math. 130 (2008), 539–570. | MR | Zbl
[9] X. X. Chen and W. Y. He, The Calabi flow on Kähler surface with bounded Sobolev constant, (I), arXiv:0710.5159, 2007. | MR | Zbl
[10] X. X. Chen and W. Y. He, The Calabi flow on toric Fano surface, arXiv:0807.3984, 2008. | MR | Zbl
[11] X. X. Chen, H. Z. Li and B. Wang, Kähler-Ricci flow with small initial energy, Geom. Funct. Anal. 18 (2009), 1525–1563. | MR | Zbl
[12] X. X. Chen and G. Tian, Ricci flow on Kähler manifolds, C. R. Acad. Sci. Paris Sér. I Math. 332 (2001), 245–248. | MR | Zbl
[13] X. X. Chen and G. Tian, Ricci flow on Kähler-Einstein surfaces, Invent. Math. 147 (2002), 487–544. | MR | Zbl
[14] X. X. Chen and G. Tian, Uniqueness of extremal Kähler metrics, C. R. Math. Acad. Sci. Paris 340 (2005), 287–290. | MR | Zbl
[15] X. X. Chen and M. J. Zhu, Liouville energy on a topological two sphere, arXiv:0710.4320, 2007. | MR
[16] P. T. Chruściel, Semi-global existence and convergence of solutions of the Robinson-Trautman (-dimensional Calabi) equation, Comm. Math. Phys. 137 (1991), 289–313. | MR | Zbl
[17] S. K. Donaldson, Symmetric spaces, Kähler geometry and Hamiltonian dynamics, In: “Northern California Symplectic Geometry Seminar”, Amer. Math. Soc. Transl. Ser. 2, 196, Amer. Math. Soc., Providence, RI, 1999, 3–33. | MR | Zbl
[18] S. K. Donaldson, Conjectures in Kähler geometry, In: “Strings and Geometry”, Amer. Math. Soc., Providence, RI, 2004, 71–78. | MR | Zbl
[19] W. Y. He, Local solution and extension to the Calabi flow, arXiv:0904.0978, 2009. | MR | Zbl
[20] T. Mabuchi, Some symplectic geometry on compact Kähler manifolds. I, Osaka J. Math. 24 (1987), 227–252. | MR | Zbl
[21] S. Semmes, Complex Monge-Ampère and symplectic manifolds, Amer. J. Math. 114 (1992), 495–550. | MR | Zbl
[22] M. Struwe, Curvature flows on surfaces, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) (2002), 247–274. | EuDML | Numdam | MR | Zbl
[23] V. Tosatti and B. Weinkove, The Calabi flow with small initial energy, Math. Res. Lett. 14 (2007), 1033–1039. | MR | Zbl
[24] K. Zheng, Stability of the Kähler Ricci flow in the space of Kähler metrics, Pacific J. Math. 251 (2011), 469–497. | MR | Zbl