Ricci almost solitons
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 4, pp. 757-799.

We introduce a natural extension of the concept of gradient Ricci soliton: the Ricci almost soliton. We provide existence and rigidity results, we deduce a-priori curvature estimates and isolation phenomena, and we investigate some topological properties. A number of differential identities involving the relevant geometric quantities are derived. Some basic tools from the weighted manifold theory such as general weighted volume comparisons and maximum principles at infinity for diffusion operators are discussed.

Publié le :
Classification : 53C21
Pigola, Stefano 1 ; Rigoli, Marco 2 ; Rimoldi, Michele 2 ; Setti, Alberto G. 1

1 Sezione di Matematica – DiSAT Università dell’Insubria - Como Via Valleggio, 11 I-22100 Como, Italia
2 Dipartimento di Matematica Università degli Studi di Milano Via Saldini, 50 I-20133 Milano, Italia
@article{ASNSP_2011_5_10_4_757_0,
     author = {Pigola, Stefano and Rigoli, Marco and Rimoldi, Michele and Setti, Alberto G.},
     title = {Ricci almost solitons},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {757--799},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 10},
     number = {4},
     year = {2011},
     mrnumber = {2932893},
     zbl = {1239.53057},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2011_5_10_4_757_0/}
}
TY  - JOUR
AU  - Pigola, Stefano
AU  - Rigoli, Marco
AU  - Rimoldi, Michele
AU  - Setti, Alberto G.
TI  - Ricci almost solitons
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2011
SP  - 757
EP  - 799
VL  - 10
IS  - 4
PB  - Scuola Normale Superiore, Pisa
UR  - http://www.numdam.org/item/ASNSP_2011_5_10_4_757_0/
LA  - en
ID  - ASNSP_2011_5_10_4_757_0
ER  - 
%0 Journal Article
%A Pigola, Stefano
%A Rigoli, Marco
%A Rimoldi, Michele
%A Setti, Alberto G.
%T Ricci almost solitons
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2011
%P 757-799
%V 10
%N 4
%I Scuola Normale Superiore, Pisa
%U http://www.numdam.org/item/ASNSP_2011_5_10_4_757_0/
%G en
%F ASNSP_2011_5_10_4_757_0
Pigola, Stefano; Rigoli, Marco; Rimoldi, Michele; Setti, Alberto G. Ricci almost solitons. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 4, pp. 757-799. http://www.numdam.org/item/ASNSP_2011_5_10_4_757_0/

[1] J. Case, Y.-J. Shu and G. Wei, Rigidity of quasi-Einstein metrics, Differential Geom. Appl. 29 (2011), 93–100. | MR | Zbl

[2] B. L. Chen, Strong uniqueness of the Ricci flow, J. Differential Geom. 82 (2009), 362–382. | MR | Zbl

[3] H. D. Cao, B. L. Chen and X. P. Zhu, “Recent Developments on Hamilton’s Ricci flow”, Surveys in Differential Geometry XII, 2008. | MR | Zbl

[4] M. Eminenti, G. La Nave and C. Mantegazza, Ricci Solitons: the equation point of view, Manuscripta Math. 127 (2008), 345–367. | MR | Zbl

[5] M. Fernández-López and E. García-Río, A remark on compact Ricci solitons, Math. Ann. 340 (2008), 893–896. | MR | Zbl

[6] M. Fernández-López and E. García Río, Maximum principles and gradient Ricci solitons, J. Differential Equations 251 (2011), 73–81. | MR | Zbl

[7] M. Fernández-López and E. García-Río, Rigidity of shrinking Ricci solitons, Math. Z. 269 (2011), 461–466. | MR | Zbl

[8] G. J. Galloway, A generalization of Myers’ theorem and an application to relativistic cosmology, J. Differential Geom. 14 (1979), 105–116. | MR | Zbl

[9] R. Greene and H. H. Wu, “Function Theory on Manifolds which posses a pole”, Lect. Notes in Math., Vol. 699, Springer-Verlag, Berlin, 1979. | MR | Zbl

[10] D. Gilbarg and N. Trudinger, “Elliptic Partial Differential Equations of Second Order”, second edition, Springer-Verlag, Berlin, 1983. | MR | Zbl

[11] R. S. Hamilton, The Ricci flow on surfaces, In: “Mathematics and general relativity” (Santa Cruz, CA, 1986), Contemp. Math., Vol. 71. American Mathematical Society, Providence, pp. 237–262 (1988) | MR | Zbl

[12] S. Ishihara and Y. Tashiro, On Riemannian manifolds admitting a concircular transformation, Math. J. Okayama Univ. 9 (1959/1960), 19–47. | MR | Zbl

[13] M. Kanai, On a differential equation characterizing a Riemannian structure of a manifold, Tokyo J. Math. 6 (1983), 143–151. | MR | Zbl

[14] L. Mari, M. Rigoli and A. G. Setti, Keller-Osserman conditions for diffusion-type operators on Riemannian manifolds, J. Funct. Anal. 258 (2010), 665–712. | MR | Zbl

[15] G. Maschler, Special Kähler-Ricci potentials and Ricci solitons, Ann. Global Anal. Geom. 34 (2008), 367–380. | MR | Zbl

[16] O. Munteanu and N. Sesum, On gradient Ricci solitons, J. Geom. Anal. DOI: 10.1007/s12220–011–9252–6. | MR | Zbl

[17] A. Naber, Noncompact shrinking 4-solitons with nonnegative curvature, J. Reine Angew. Math. 645 (2010), 125–153. | MR | Zbl

[18] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Japan 14 (1962), 333–340. | MR | Zbl

[19] M. Okumura, Hypersurfaces and a pinching problem on the second fundamental tensor, Amer. J. Math 96 (1974), 207–213. | MR | Zbl

[20] B. O’Neill, “Semi-Riemannian Geometry with Applications to Relativity”, Pure and Applied Mathematics, Vol. 103, Academic Press, San Diego, 1983. | MR | Zbl

[21] G. Perelman, Ricci flow with surgery on three manifolds, arXiv: math.DG/0303109. | Zbl

[22] P. Petersen and W. Wylie, On the classification of gradient Ricci solitons, Geom. Topol. 14 (2010), 2277–2300. | MR | Zbl

[23] P. Petersen and W. Wylie, Rigidity of gradient Ricci solitons, Pacific J. Math. 241 (2009), 329–345. | MR | Zbl

[24] S. Pigola, M. Rigoli and A. G. Setti, A remark on stochastic completeness and the maximum principle, Proc. Amer. Math. Soc.131 (2003), 1283–1288. | MR | Zbl

[25] S. Pigola, M. Rigoli and A. G. Setti, “Maximum Principles on Riemannian Manifolds and Applications”, Mem. Amer. Math Soc., Vol. 174, 2005, no. 822, x+99 pp. | MR | Zbl

[26] S. Pigola, M. Rigoli and A. G. Setti, “Vanishing and Finiteness Results in Geometric Analysis: a Generalization of the Bochner technique”, Progress in Mathematics, Vol. 266, 2008, Birkhäuser. | MR | Zbl

[27] S. Pigola, M. Rimoldi and A. G. Setti, Remarks on non-compact gradient Ricci solitons, Math. Z. 258 (2011), 347–362. | MR | Zbl

[28] M. Rigoli and A. G. Setti, Liouville type theorems for ϕ-subharmonic functions, Rev. Mat. Iberoamericana 17 (2001), 471–520. | EuDML | MR | Zbl

[29] A. G. Setti, Eigenvalue estimates for the weighted Laplacian on a Riemannian manifold, Rend. Sem. Mat. Univ. Padova 100 (1998), 27–55. | EuDML | Numdam | MR | Zbl

[30] Y. Tashiro, Complete Riemannian manifolds and some vector fields, Trans. Amer. Math. Soc. 117 (1965), 251–275. | MR | Zbl

[31] G. Wei and W. Wylie, Comparison geometry for the Bakry-Emery Ricci tensor, J. Differential Geom. 83 (2009), 377–405. | MR | Zbl

[32] W. Wylie, Complete shrinking Ricci solitons have finite fundamental group, Proc. Amer. Math Soc. 136 (2008), no. 5, 1803–1806 | MR | Zbl

[33] Z.-H. Zhang, Gradient shrinking solitons with vanishing Weyl tensor, Pacific J. Math. 242 (2009), 189–200. | MR | Zbl

[34] Z.-H. Zhang, On the completeness of gradient Ricci solitons, Proc. Amer. Math. Soc. 137 (2009), 2755–2759. | MR | Zbl

[35] S. Zhang, On a sharp volume estimate for gradient Ricci solitons with scalar curvature bounded below, Acta Math. Sin. (Engl. Ser.) 27 (2011), 871–882. | MR | Zbl