In the present paper we establish the type estimates for the weak solutions of a class of degenerate elliptic equations. The optimal estimates are obtained by introducing the intrinsic metric that is associated with the geometry of the operator and then using the compactness method.
@article{ASNSP_2011_5_10_3_645_0, author = {Song, Qiaozhen and Lu, Ying and Shen, Jianzhong and Wang, Lihe}, title = {Regularity of a class of degenerate elliptic equations}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {645--667}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 10}, number = {3}, year = {2011}, mrnumber = {2905381}, zbl = {1250.35115}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2011_5_10_3_645_0/} }
TY - JOUR AU - Song, Qiaozhen AU - Lu, Ying AU - Shen, Jianzhong AU - Wang, Lihe TI - Regularity of a class of degenerate elliptic equations JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2011 SP - 645 EP - 667 VL - 10 IS - 3 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2011_5_10_3_645_0/ LA - en ID - ASNSP_2011_5_10_3_645_0 ER -
%0 Journal Article %A Song, Qiaozhen %A Lu, Ying %A Shen, Jianzhong %A Wang, Lihe %T Regularity of a class of degenerate elliptic equations %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2011 %P 645-667 %V 10 %N 3 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2011_5_10_3_645_0/ %G en %F ASNSP_2011_5_10_3_645_0
Song, Qiaozhen; Lu, Ying; Shen, Jianzhong; Wang, Lihe. Regularity of a class of degenerate elliptic equations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 3, pp. 645-667. http://www.numdam.org/item/ASNSP_2011_5_10_3_645_0/
[1] S. S. Byun and L. Wang, Elliptic equations with BMO coefficents in reifenberg domains, Comm. Pure Appl. Math. 57 (2004), 1283–1310. | MR | Zbl
[2] L. Capogna, D. Danielli and N. Garofalo, Subelliptic mollifiers and a basic pointwise estimate of Poincaré type, Math. Z. 226 (1997), 147–154. | MR | Zbl
[3] B. Franchi, Weighted Sobolev-Poincaré inequalities and pointwise estimates for a class of degenerate elliptic equations, Trans. Amer. Math. Soc. 327 (1991), 125–158. | MR | Zbl
[4] B. Franchi and E. Lanconelli, Hölder regularity theorem for a class of linear nonuniformly elliptic operator with measurable coefficients, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 10 (1983), 523–541. | EuDML | Numdam | MR | Zbl
[5] B. Franchi and R. Serapioni, Pointwise estimates for a class of strongly degenerate elliptic operators: a geometrical approach, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 14 (1987), 527–568. | EuDML | Numdam | MR | Zbl
[6] N. Garofalo and D. M. Nhieu, Isoperimetric and the Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math. 49 (1996), 1081–1144. | MR | Zbl
[7] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171. | MR | Zbl
[8] D. Jerison, The Poincaré inequality for vector fields satisfying Hörmander’s condition, Duke. Math. J. 53 (1986), 503–523. | MR | Zbl
[9] J. J. Kohn, Pseudo differential operators and Hypoellipticity, Proc. Symp. Pure Math. Amer. Math. Soc. 23 (1973), 61–69. | MR | Zbl
[10] E. Lanconelli and D. Morbidelli, On the Poincaré inequality for the vector fields, Ark. Mat. 38 (2000), 327–342. | MR | Zbl
[11] A. Loiudice, Sobolev inequalities with remainder terms for sublaplacians and other subelliptic operators, NoDEA Nonlinear Differential Equations Appl. 13 (2006), 119–136. | MR | Zbl
[12] L. P. Rothschild and E. M. Stein, Hypoelliptic differential operator and nilpotent groups, Acta Math. 137 (1977), 247–320. | MR | Zbl
[13] E. M. Stein, “Singular Integrals and Differentiability Properties of Functions", Princeton, 1970. | MR | Zbl
[14] L. Wang, Hölder estimates for subelliptic opertors, J. Funct. Anal. 199 (2003), 228–242. | MR | Zbl
[15] L. Wang, A geometric approach to the Calderón-Zygmund estimates, Acta Math. Sin. (Engl. Ser.) 19 (2003), 381–396. | MR | Zbl