L p -Boundedness of Bergman projections in tube domains over homogeneous cones
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 2, pp. 477-511.

In this paper, we generalize to all tube domains over homogeneous cones L p -continuity properties of the Bergman projection.

Publié le :
Classification : 32A20, 32A10, 32A25, 32A36
Nana, Cyrille 1 ; Trojan, Bartosz 2

1 University of Buea Faculty of Science Department of Mathematics P.O. Box 63 Buea, Cameroon
2 Institute of Mathematics Wroclaw University Plac Grunwaldzki 2/4 50-384 Wroclaw, Poland
@article{ASNSP_2011_5_10_2_477_0,
     author = {Nana, Cyrille and Trojan, Bartosz},
     title = {$L^p${-Boundedness} of {Bergman} projections in tube domains over homogeneous cones},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {477--511},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 10},
     number = {2},
     year = {2011},
     mrnumber = {2856156},
     zbl = {1232.32001},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2011_5_10_2_477_0/}
}
TY  - JOUR
AU  - Nana, Cyrille
AU  - Trojan, Bartosz
TI  - $L^p$-Boundedness of Bergman projections in tube domains over homogeneous cones
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2011
SP  - 477
EP  - 511
VL  - 10
IS  - 2
PB  - Scuola Normale Superiore, Pisa
UR  - http://www.numdam.org/item/ASNSP_2011_5_10_2_477_0/
LA  - en
ID  - ASNSP_2011_5_10_2_477_0
ER  - 
%0 Journal Article
%A Nana, Cyrille
%A Trojan, Bartosz
%T $L^p$-Boundedness of Bergman projections in tube domains over homogeneous cones
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2011
%P 477-511
%V 10
%N 2
%I Scuola Normale Superiore, Pisa
%U http://www.numdam.org/item/ASNSP_2011_5_10_2_477_0/
%G en
%F ASNSP_2011_5_10_2_477_0
Nana, Cyrille; Trojan, Bartosz. $L^p$-Boundedness of Bergman projections in tube domains over homogeneous cones. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 2, pp. 477-511. http://www.numdam.org/item/ASNSP_2011_5_10_2_477_0/

[1] D. Békollé and A. Bonami, Estimates for the Bergman and Szegö projections in two symmetric domains of n , Colloq. Math. 68 (1995), 81–100. | EuDML | MR | Zbl

[2] D. Békollé, A. Bonami and G. Garrigós, Littlewood-Paley decomposition related to symmetric cones, IMHOTEP J. Afr. Math. Pures Appl. 3 (2000). | MR | Zbl

[3] D. Békollé, A. Bonami, G. Garrigós, C. Nana, M. M. Peloso and F. Ricci, Lecture notes on Bergman projectors in tube domains over cones: an analytic and geometric viewpoint, IMHOTEP J. Afr. Math. Pures Appl. 5 (2004). | MR | Zbl

[4] D. Békollé, A. Bonami, G. Garrigós and F. Ricci, Littlewood-Paley decomposition related to symmetric cones and Bergman projections in tube domains, Proc. London Math. Soc. (3) 89 (2004), 317–360. | MR | Zbl

[5] D. Békollé, A. Bonami, M. M. Peloso and F. Ricci, Boundedness of weighted Bergman projections on tube domains over light cones, Math. Z. 237 (2001), 31–59. | MR | Zbl

[6] D. Békollé and C. Nana, L p -boundedness of Bergman projections in the tube domain over Vinberg’s cone, J. Lie Theory 17 (2007), 115–144. | MR | Zbl

[7] D. Békollé D. and A. Temgoua, Reproducing properties and L p -estimates for Bergman projections in Siegel domains of type II, Studia Math. 3 (1995), 219–239. | EuDML | MR | Zbl

[8] C. B. Chua, Relating Homogeneous cones and positive definite cones via T-algebras, SIAM J. Optim 14, 5400–506. | MR | Zbl

[9] J. Dorfmeister and M. Koecher, Reguläre Kegel, Jahresber. Deutsch. Math.-Verein. 81 (1979), 109–151. | MR | Zbl

[10] D. Debertol, Besov spaces and the boundedness of weighted Bergman projections over symmetric tube domains, Publ. Math. 49 (2005), 21–72. | EuDML | MR | Zbl

[11] J. Faraut and A. Korányi, “Analysis on Symmetric Cones”, Clarendon Press, Oxford, 1994. | MR | Zbl

[12] F. Forelli and W. Rudin, Projections on spaces of holomorphic functions in balls, Indiana Univ. Math. J. 24 (1974), 593–602. | MR | Zbl

[13] S. G. Gindikin, Analysis on homogeneous domains, Russian Math. Surveys 19 (1964), 1–83. | MR | Zbl

[14] G. Garrigós and A. Seeger, Plate decompositions for cone multipliers, In: “Harmonic Analysis and its Applications at Sapporo 2005”, Miyachi & Tachizawa Ed. Hokkaido University Report Series, Vol. 103, 13–28. | Zbl

[15] H. Ishi, Basic relative invariants associated to homogeneous cones and applications, J. Lie Theory 11 (2001), 155–171. | EuDML | MR | Zbl

[16] H. Ishi, The gradient maps associated to certain non-homogeneous cones, Proc. Japan Acad. Ser. A Math. Sci. 81 (2005), 44–46. | MR | Zbl

[17] M. Spivak, “Differential Geometry”, Vol. I, Publish or Perish, Inc., 1970.

[18] A. Temgoua Kagou, “Domaines de Siegel de type II-Noyau de Bergman”, Thèse de 3e Cycle, Université de Yaoundé I, 1993.

[19] B. Trojan, Asymptotic expansions and Hua-harmonic functions on bounded homogeneous domains, Math. Ann. 336 (2006), 73–110. | MR | Zbl

[20] E. B. Vinberg, The theory of convex homogeneous cones, Trudy Moskov Mat. Obšč. 12 (1963), 359–388. | MR | Zbl

[21] J. Young Ho, Jordan algebras associated to T-algebras, Bull. Korean Math. Soc. 32 (1995), 179–189. | MR | Zbl