We prove a result on removing singularities of almost complex structures pulled back by a non-diffeomorphic map. As an application we prove the existence of global -holomorphic discs with boundaries attached to real tori.
@article{ASNSP_2011_5_10_2_389_0, author = {Sukhov, Alexandre and Tumanov, Alexander}, title = {Regularization of almost complex structures and gluing holomorphic discs to tori}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {389--411}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 10}, number = {2}, year = {2011}, mrnumber = {2856153}, zbl = {1228.32016}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2011_5_10_2_389_0/} }
TY - JOUR AU - Sukhov, Alexandre AU - Tumanov, Alexander TI - Regularization of almost complex structures and gluing holomorphic discs to tori JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2011 SP - 389 EP - 411 VL - 10 IS - 2 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2011_5_10_2_389_0/ LA - en ID - ASNSP_2011_5_10_2_389_0 ER -
%0 Journal Article %A Sukhov, Alexandre %A Tumanov, Alexander %T Regularization of almost complex structures and gluing holomorphic discs to tori %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2011 %P 389-411 %V 10 %N 2 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2011_5_10_2_389_0/ %G en %F ASNSP_2011_5_10_2_389_0
Sukhov, Alexandre; Tumanov, Alexander. Regularization of almost complex structures and gluing holomorphic discs to tori. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 2, pp. 389-411. http://www.numdam.org/item/ASNSP_2011_5_10_2_389_0/
[1] H. Alexander, Discs with boundaries in totally real and Lagrangian manifolds, Duke Math. J. 100 (1999), 131–138. | MR | Zbl
[2] M. Cerne, Non-linear Riemann-Hilbert problem for bordered Riemann surfaces, Amer. J. Math. 126 (2004), 65–87. | MR | Zbl
[3] B. Coupet, A. Sukhov and A. Tumanov, Proper -holomorphic discs in Stein domains of dimension 2, Amer. J. Math. 131 (2009), 653–674. | MR | Zbl
[4] K. Diederich and A. Sukhov, Plurisubharmonic exhaustion functions and almost complex Stein structures, Michigan Math. J. 56 (2008), 331–355. | MR | Zbl
[5] B. Drinovec Drnovšek and F. Forstnerič, Holomorphic curves in complex spaces, Duke Math. J. 139 (2007), 203–253. | MR | Zbl
[6] J. Duval, Un théorème de Green presque complexe, Ann. Inst. Fourier (Grenoble) 54 (2004), 2357–2367. | EuDML | Numdam | MR | Zbl
[7] J. Duval, personal communication.
[8] F. Forstnerič, Polynomial hulls of sets fibered over the circle, Indiana Univ. Math. J. 37 (1988), 869–889. | MR | Zbl
[9] F. Forstnerič and J. Globevnik, Discs in pseudoconvex domains, Comment. Math. Helv. 67 (1992), 129–145. | EuDML | MR | Zbl
[10] M. Gromov, Pseudo-holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307–347. | EuDML | MR | Zbl
[11] S. Ivashkovich and J.-P. Rosay, Schwarz-type lemmas for solutions of -inequalities and complete hyperbolicity of almost complex structures, Ann. Inst. Fourier (Grenoble) 54 (2004), 2387–2435. | EuDML | Numdam | MR | Zbl
[12] S. Ivashkovich and V. Shevchishin, Reflection principle and -complex curves with boundary on totally real immersions, Commun. Contemp. Math. 4 (2002), 65–106. | MR | Zbl
[13] S. Ivashkovich and A. Sukhov, Schwarz reflection principle and boundary uniqueness for -complex curves, Ann. Inst. Fourier (Grenoble) 60 (2010), 1489–1513. | EuDML | Numdam | MR | Zbl
[14] L. Lempert, Analytic continuation in mapping spaces, Pure Appl. Math. Q. 6 (2010), 1051–1080. | MR | Zbl
[15] V. N. Monakhov, “Boundary Problems with Free Boundary for Elliptic Systems of Equations”, Translations of Mathematical Monographs, Vol. 57, Amer. Math. Soc., Providence, 1983. | MR | Zbl
[16] A. Nijenhuis and W. Woolf, Some integration problems in almost-complex and complex manifolds, Ann. of Math. (2) 77 (1963), 429–484. | MR | Zbl
[17] A. Sukhov and A. Tumanov, Filling hypersurfaces by discs in almost complex manifolds of dimension 2, Indiana Univ. Math. J. 57 (2008), 509–544. | MR | Zbl
[18] I. N. Vekua, “Generalized Analytic Functions”, Pergamon, 1962. | MR | Zbl