We prove a theorem providing a geometric characterization of continuous vector rate independent operators. We apply this theorem to rate independent evolution variational inequalities and deduce new continuity properties of their solution operator: the vectorial play operator.
@article{ASNSP_2011_5_10_2_269_0, author = {Recupero, Vincenzo}, title = {$\protect \mathbf{BV}$ solutions of rate independent variational inequalities}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {269--315}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 10}, number = {2}, year = {2011}, mrnumber = {2856149}, zbl = {1229.49012}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2011_5_10_2_269_0/} }
TY - JOUR AU - Recupero, Vincenzo TI - $\protect \mathbf{BV}$ solutions of rate independent variational inequalities JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2011 SP - 269 EP - 315 VL - 10 IS - 2 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2011_5_10_2_269_0/ LA - en ID - ASNSP_2011_5_10_2_269_0 ER -
%0 Journal Article %A Recupero, Vincenzo %T $\protect \mathbf{BV}$ solutions of rate independent variational inequalities %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2011 %P 269-315 %V 10 %N 2 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2011_5_10_2_269_0/ %G en %F ASNSP_2011_5_10_2_269_0
Recupero, Vincenzo. $\protect \mathbf{BV}$ solutions of rate independent variational inequalities. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 2, pp. 269-315. http://www.numdam.org/item/ASNSP_2011_5_10_2_269_0/
[1] C. D. Aliprantis and K. C. Border, “Infinite Dimensional Analysis” (Third Edition), Springer, Berlin, Heidelberg, 2006. | MR | Zbl
[2] L. Ambrosio, N. Fusco and D. Pallara, “Functions of Bounded Variation and Free Discontinuity Problems”, Oxford Mathematical Monographs, Clarendon Press, Oxford, 2000. | MR | Zbl
[3] N. Bourbaki, “Fonctions d’une variable rèelle”, Hermann, Paris, 1958. | MR
[4] H. Brezis, “Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert”, North-Holland Mathematical Studies, Vol. 5, North-Holland Publishing Company, Amsterdam, 1973. | MR | Zbl
[5] H. Brezis, “Analyse fonctionelle - Théorie et applications”, Masson, Paris, 1983. | MR | Zbl
[6] M. Brokate and J. Sprekels, “Hysteresis and Phase Transitions”, Applied Mathematical Sciences, Vol. 121, Springer-Verlag, New York, 1996. | MR | Zbl
[7] G. Dal Maso, P. Le Floch and F. Murat, Definition and weak stability of nonconservative products, J. Math. Pures Appl. 74 (1995), 483–548. | MR | Zbl
[8] N. Dinculeanu, “Vector Measures”, International Series of Monographs in Pure and Applied Mathematics, Vol. 95, Pergamon Press, Berlin, 1967. | MR | Zbl
[9] J. L. Doob, “Measure Theory”, Springer-Verlag, New York, 1994. | MR | Zbl
[10] N. Dunford and J. Schwartz, “Linear Operators, Part 1”, Wiley Interscience, New York, 1958. | MR | Zbl
[11] H. Federer, “Geometric Measure Theory”, Springer-Verlag, Berlin-Heidelberg, 1969. | MR | Zbl
[12] M. A. Krasnosel’skiǐ and A. V. Pokrovskiǐ, “Systems with Hysteresis”, Springer-Verlag, Berlin Heidelberg, 1989. | MR
[13] P. Krejčí, Vector hysteresis models, European J. Appl. Math. 2 (1991), 281–292. | MR | Zbl
[14] P. Krejčí, “Hysteresis, Convexity and Dissipation in Hyperbolic Equations”, Gakuto International Series Mathematical Sciences and Applications, Vol. 8, Gakkōtosho, Tokyo, 1996. | MR | Zbl
[15] P. Krejčí, Evolution variational inequalities and multidimensional hysteresis operators, In: “Nonlinear Differential Equations” (Chvalatice, 1998), Vol. 404, Chapman & Hall/CRC Res. Notes Math., 1999, 47–110. | MR | Zbl
[16] P. Krejčí and P. Laurençot, Generalized variational inequalities, J. Convex Anal. 9 (2002), 159–183. | MR | Zbl
[17] P. Krejčí and M. Liero, Rate independent Kurzweil processes, Appl. Math. 54 (2009), 117–145. | EuDML | MR | Zbl
[18] S. Lang, “Real and Functional Analysis” (Third Edition), Graduate Text in Mathematics, Vol. 142, Springer Verlag, New York, 1993. | MR | Zbl
[19] I. D. Mayergoyz, “Mathematical Models of Hysteresis”, Springer-Verlag, New York, 1991. | MR | Zbl
[20] A. Mielke, Evolution in rate-independent systems, In: “Handbook of Differential Equations, Evolutionary Equations”, Vol. 2, C. Dafermos and E. Fereisl (eds.), Elsevier, 2005, 461–559. | MR | Zbl
[21] V. Recupero, -extension of rate independent operators, Math. Nachr. 282 (2009), 86–98. | MR | Zbl
[22] V. Recupero, On locally isotone rate independent operators, Appl. Math. Letters. 20 (2007), 1156–1160. | MR | Zbl
[23] V. Recupero, The play operator on the rectifiable curves in a Hilbert space, Math. Methods Appl. Sci. 31 (2008), 1283–1295. | MR | Zbl
[24] V. Recupero, Sobolev and strict continuity of general hysteresis operators, Math. Methods Appl. Sci. 32 (2009), 2003–2018. | MR | Zbl
[25] V. Recupero, On a class of scalar variational inequalities with measure data, Appl. Anal. 88 (2009), 1739–1753. | MR | Zbl
[26] U. Stefanelli, A variational characterization of rate independent evolution, Math. Nachr. 282 (2009), 1492–1512. | MR | Zbl
[27] A. Visintin, “Differential Models of Hysteresis”, Applied Mathematical Sciences, Vol. 111, Springer-Verlag, Berlin Heidelberg, 1994. | MR | Zbl