Stability of finite difference schemes for hyperbolic initial boundary value problems II
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 1, pp. 37-98.

We study the stability of finite difference schemes for hyperbolic initial boundary value problems in one space dimension. Assuming 2 -stability for the discretization of the hyperbolic operator as well as a geometric regularity condition, we show that the uniform Kreiss-Lopatinskii condition yields strong stability for the discretized initial boundary value problem. The present work extends the results of [4,7] to the widest possible class of finite difference schemes by dropping the technical assumptions of our former work [4]. We give some new examples of numerical schemes for which our results apply.

Publié le :
Classification : 65M12, 65M06, 35L50
Coulombel, Jean-François 1

1 CNRS & Université Lille 1 Laboratoire Paul Painlevé (UMR CNRS 8524) and Project Team SIMPAF of INRIA Lille Nord Europe Cité scientifique Bâtiment M2 59655 VILLENEUVE D’ASCQ Cedex, France
@article{ASNSP_2011_5_10_1_37_0,
     author = {Coulombel, Jean-Fran\c{c}ois},
     title = {Stability of finite difference schemes for hyperbolic initial boundary value problems {II}},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {37--98},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 10},
     number = {1},
     year = {2011},
     mrnumber = {2829318},
     zbl = {1225.65089},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2011_5_10_1_37_0/}
}
TY  - JOUR
AU  - Coulombel, Jean-François
TI  - Stability of finite difference schemes for hyperbolic initial boundary value problems II
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2011
SP  - 37
EP  - 98
VL  - 10
IS  - 1
PB  - Scuola Normale Superiore, Pisa
UR  - http://www.numdam.org/item/ASNSP_2011_5_10_1_37_0/
LA  - en
ID  - ASNSP_2011_5_10_1_37_0
ER  - 
%0 Journal Article
%A Coulombel, Jean-François
%T Stability of finite difference schemes for hyperbolic initial boundary value problems II
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2011
%P 37-98
%V 10
%N 1
%I Scuola Normale Superiore, Pisa
%U http://www.numdam.org/item/ASNSP_2011_5_10_1_37_0/
%G en
%F ASNSP_2011_5_10_1_37_0
Coulombel, Jean-François. Stability of finite difference schemes for hyperbolic initial boundary value problems II. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 1, pp. 37-98. http://www.numdam.org/item/ASNSP_2011_5_10_1_37_0/

[1] H. Baumgärtel, “Analytic Perturbation Theory for Matrices and Operators”, Birkhäuser Verlag, 1985. | MR | Zbl

[2] S. Benzoni-Gavage and D. Serre, “Multidimensional Hyperbolic Partial Differential Equations”, Oxford Mathematical Monographs, Oxford University Press, 2007. | MR | Zbl

[3] J. Chazarain and A. Piriou, “Introduction to the Theory of Linear Partial Differential Equations”, North-Holland, 1982. | MR | Zbl

[4] J.-F. Coulombel, Stability of finite difference schemes for hyperbolic initial boundary value problems, SIAM J. Numer. Anal. 47 (2009), 2844–2871. | MR | Zbl

[5] E. Godlewski and P.-A. Raviart, “Numerical Approximation of Hyperbolic Systems of Conservation Laws”, Springer-Verlag, 1996. | MR | Zbl

[6] B. Gustafsson, H.-O. Kreiss and J. Oliger, “Time Dependent Problems and Difference Methods”, John Wiley & Sons, 1995. | MR | Zbl

[7] B. Gustafsson, H.-O. Kreiss and A. Sundström, Stability theory of difference approximations for mixed initial boundary value problems II, Math. Comp. 26 (1972), 649–686. | MR | Zbl

[8] H.-O. Kreiss, Stability theory for difference approximations of mixed initial boundary value problems, I, Math. Comp. 22 (1968), 703–714. | MR | Zbl

[9] H.-O. Kreiss, Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math. 23 (1970), 277–298. | MR | Zbl

[10] G. Métivier and K. Zumbrun, Symmetrizers and continuity of stable subspaces for parabolic-hyperbolic boundary value problems, Discrete Contin. Dyn. Syst. 11 (2004), 205–220. | MR | Zbl

[11] G. Métivier and K. Zumbrun, Hyperbolic boundary value problems for symmetric systems with variable multiplicities, J. Differential Equations 211 (2005), 61–134. | MR | Zbl

[12] D. Michelson, Stability theory of difference approximations for multidimensional initial-boundary value problems, Math. Comp. 40 (1983), 1–45. | MR | Zbl

[13] R. Mneimné and F. Testard, “Introduction à la théorie des groupes de Lie classiques”, Hermann, 1986. | MR | Zbl

[14] J. Ralston, Note on a paper of Kreiss, Comm. Pure Appl. Math. 24 (1971), 759–762. | MR | Zbl

[15] R. Sakamoto, Mixed problems for hyperbolic equations, I, Energy inequalities, J. Math. Kyoto Univ. 10 (1970), 349–373. | MR | Zbl