We study the stability of finite difference schemes for hyperbolic initial boundary value problems in one space dimension. Assuming -stability for the discretization of the hyperbolic operator as well as a geometric regularity condition, we show that the uniform Kreiss-Lopatinskii condition yields strong stability for the discretized initial boundary value problem. The present work extends the results of [4,7] to the widest possible class of finite difference schemes by dropping the technical assumptions of our former work [4]. We give some new examples of numerical schemes for which our results apply.
@article{ASNSP_2011_5_10_1_37_0, author = {Coulombel, Jean-Fran\c{c}ois}, title = {Stability of finite difference schemes for hyperbolic initial boundary value problems {II}}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {37--98}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 10}, number = {1}, year = {2011}, mrnumber = {2829318}, zbl = {1225.65089}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2011_5_10_1_37_0/} }
TY - JOUR AU - Coulombel, Jean-François TI - Stability of finite difference schemes for hyperbolic initial boundary value problems II JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2011 SP - 37 EP - 98 VL - 10 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2011_5_10_1_37_0/ LA - en ID - ASNSP_2011_5_10_1_37_0 ER -
%0 Journal Article %A Coulombel, Jean-François %T Stability of finite difference schemes for hyperbolic initial boundary value problems II %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2011 %P 37-98 %V 10 %N 1 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2011_5_10_1_37_0/ %G en %F ASNSP_2011_5_10_1_37_0
Coulombel, Jean-François. Stability of finite difference schemes for hyperbolic initial boundary value problems II. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 1, pp. 37-98. http://www.numdam.org/item/ASNSP_2011_5_10_1_37_0/
[1] H. Baumgärtel, “Analytic Perturbation Theory for Matrices and Operators”, Birkhäuser Verlag, 1985. | MR | Zbl
[2] S. Benzoni-Gavage and D. Serre, “Multidimensional Hyperbolic Partial Differential Equations”, Oxford Mathematical Monographs, Oxford University Press, 2007. | MR | Zbl
[3] J. Chazarain and A. Piriou, “Introduction to the Theory of Linear Partial Differential Equations”, North-Holland, 1982. | MR | Zbl
[4] J.-F. Coulombel, Stability of finite difference schemes for hyperbolic initial boundary value problems, SIAM J. Numer. Anal. 47 (2009), 2844–2871. | MR | Zbl
[5] E. Godlewski and P.-A. Raviart, “Numerical Approximation of Hyperbolic Systems of Conservation Laws”, Springer-Verlag, 1996. | MR | Zbl
[6] B. Gustafsson, H.-O. Kreiss and J. Oliger, “Time Dependent Problems and Difference Methods”, John Wiley & Sons, 1995. | MR | Zbl
[7] B. Gustafsson, H.-O. Kreiss and A. Sundström, Stability theory of difference approximations for mixed initial boundary value problems II, Math. Comp. 26 (1972), 649–686. | MR | Zbl
[8] H.-O. Kreiss, Stability theory for difference approximations of mixed initial boundary value problems, I, Math. Comp. 22 (1968), 703–714. | MR | Zbl
[9] H.-O. Kreiss, Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math. 23 (1970), 277–298. | MR | Zbl
[10] G. Métivier and K. Zumbrun, Symmetrizers and continuity of stable subspaces for parabolic-hyperbolic boundary value problems, Discrete Contin. Dyn. Syst. 11 (2004), 205–220. | MR | Zbl
[11] G. Métivier and K. Zumbrun, Hyperbolic boundary value problems for symmetric systems with variable multiplicities, J. Differential Equations 211 (2005), 61–134. | MR | Zbl
[12] D. Michelson, Stability theory of difference approximations for multidimensional initial-boundary value problems, Math. Comp. 40 (1983), 1–45. | MR | Zbl
[13] R. Mneimné and F. Testard, “Introduction à la théorie des groupes de Lie classiques”, Hermann, 1986. | MR | Zbl
[14] J. Ralston, Note on a paper of Kreiss, Comm. Pure Appl. Math. 24 (1971), 759–762. | MR | Zbl
[15] R. Sakamoto, Mixed problems for hyperbolic equations, I, Energy inequalities, J. Math. Kyoto Univ. 10 (1970), 349–373. | MR | Zbl