We introduce new definitions of convergence, based on adding stability criteria to -convergence, that are suitable in many cases for studying convergence of local minimizers.
@article{ASNSP_2011_5_10_1_193_0, author = {Braides, Andrea and Larsen, Christopher J.}, title = {$\Gamma $-convergence for stable states and local minimizers}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {193--206}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 10}, number = {1}, year = {2011}, mrnumber = {2829315}, zbl = {1233.49009}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2011_5_10_1_193_0/} }
TY - JOUR AU - Braides, Andrea AU - Larsen, Christopher J. TI - $\Gamma $-convergence for stable states and local minimizers JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2011 SP - 193 EP - 206 VL - 10 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2011_5_10_1_193_0/ LA - en ID - ASNSP_2011_5_10_1_193_0 ER -
%0 Journal Article %A Braides, Andrea %A Larsen, Christopher J. %T $\Gamma $-convergence for stable states and local minimizers %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2011 %P 193-206 %V 10 %N 1 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2011_5_10_1_193_0/ %G en %F ASNSP_2011_5_10_1_193_0
Braides, Andrea; Larsen, Christopher J. $\Gamma $-convergence for stable states and local minimizers. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 1, pp. 193-206. http://www.numdam.org/item/ASNSP_2011_5_10_1_193_0/
[1] E. Acerbi and G. Buttazzo, On the limits of periodic Riemannian metrics, J. Anal. Math. 43 (1983), 183–201. | MR | Zbl
[2] R. Alicandro, A. Braides and M. Cicalese, Phase and anti-phase boundaries in binary discrete systems: a variational viewpoint, Netw. Heterog. Media 1 (2006), 85–107. | MR | Zbl
[3] L. Ambrosio and A. Braides, Functionals defined on partitions of sets of finite perimeter, II: semicontinuity, relaxation and homogenization J. Math. Pures. Appl. 69 (1990), 307–333. | MR | Zbl
[4] A. Braides, “-convergence for Beginners”, Oxford University Press, Oxford, 2002. | MR | Zbl
[5] A. Braides, A handbook of -convergence, In: “Handbook of Differential Equations. Stationary Partial Differential Equations”, Vol. 3, M. Chipot and P. Quittner (eds.), Elsevier, 2006. | MR | Zbl
[6] A. Braides and A. Defranceschi, “Homogenization of Multiple Integrals”, Oxford University Press, Oxford, 1998. | MR | Zbl
[7] A. Braides and L. Truskinovsky, Asymptotic expansions by Gamma-convergence, Contin. Mech. Thermodyn. 20 (2008), 21–62. | MR | Zbl
[8] G. Dal Maso, “An Introduction to -convergence”, Birkhäuser, Boston, 1993. | MR | Zbl
[9] L. C. Evans and R. F. Gariepy, “Measure Theory and Fine Properties of Functions”, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. | MR
[10] R. L. Jerrard and P. Sternberg, Critical points via Gamma-convergence: general theory and applications, J. Eur. Math. Soc. 11 (2009), 705–753. | EuDML | MR | Zbl
[11] R. V. Kohn and P. Sternberg, Local minimizers and singular perturbations, Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), 69–84. | MR | Zbl
[12] C. J. Larsen, Epsilon-stable quasi-static brittle fracture evolution, Comm. Pure Appl. Math. 63 (2010), 630–654. | MR
[13] E. Sandier and S. Serfaty, Gamma-Convergence of Gradient Flows and Application to Ginzburg-Landau, Comm. Pure Appl. Math. 57 (2004), 1627–1672. | MR | Zbl
[14] S. Serfaty, Stability in 2D Ginzburg-Landau passes to the limit, Indiana Univ. Math. J. 54 (2005), 199–222 | MR | Zbl