Γ-convergence for stable states and local minimizers
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 1, pp. 193-206.

We introduce new definitions of convergence, based on adding stability criteria to Γ-convergence, that are suitable in many cases for studying convergence of local minimizers.

Publié le :
Classification : 49J45, 49K40
Braides, Andrea 1 ; Larsen, Christopher J. 2

1 Dipatimento di Matematica Università di Roma “Tor Vergata” Via della Ricerca Scientifica 00133 Roma, Italia
2 Department of Mathematical Sciences Worcester Polytechnic Institute Worcester, MA 01609, USA
@article{ASNSP_2011_5_10_1_193_0,
     author = {Braides, Andrea and Larsen, Christopher J.},
     title = {$\Gamma $-convergence for stable states and local minimizers},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {193--206},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 10},
     number = {1},
     year = {2011},
     mrnumber = {2829315},
     zbl = {1233.49009},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2011_5_10_1_193_0/}
}
TY  - JOUR
AU  - Braides, Andrea
AU  - Larsen, Christopher J.
TI  - $\Gamma $-convergence for stable states and local minimizers
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2011
SP  - 193
EP  - 206
VL  - 10
IS  - 1
PB  - Scuola Normale Superiore, Pisa
UR  - http://www.numdam.org/item/ASNSP_2011_5_10_1_193_0/
LA  - en
ID  - ASNSP_2011_5_10_1_193_0
ER  - 
%0 Journal Article
%A Braides, Andrea
%A Larsen, Christopher J.
%T $\Gamma $-convergence for stable states and local minimizers
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2011
%P 193-206
%V 10
%N 1
%I Scuola Normale Superiore, Pisa
%U http://www.numdam.org/item/ASNSP_2011_5_10_1_193_0/
%G en
%F ASNSP_2011_5_10_1_193_0
Braides, Andrea; Larsen, Christopher J. $\Gamma $-convergence for stable states and local minimizers. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 10 (2011) no. 1, pp. 193-206. http://www.numdam.org/item/ASNSP_2011_5_10_1_193_0/

[1] E. Acerbi and G. Buttazzo, On the limits of periodic Riemannian metrics, J. Anal. Math. 43 (1983), 183–201. | MR | Zbl

[2] R. Alicandro, A. Braides and M. Cicalese, Phase and anti-phase boundaries in binary discrete systems: a variational viewpoint, Netw. Heterog. Media 1 (2006), 85–107. | MR | Zbl

[3] L. Ambrosio and A. Braides, Functionals defined on partitions of sets of finite perimeter, II: semicontinuity, relaxation and homogenization J. Math. Pures. Appl. 69 (1990), 307–333. | MR | Zbl

[4] A. Braides, “Γ-convergence for Beginners”, Oxford University Press, Oxford, 2002. | MR | Zbl

[5] A. Braides, A handbook of Γ-convergence, In: “Handbook of Differential Equations. Stationary Partial Differential Equations”, Vol. 3, M. Chipot and P. Quittner (eds.), Elsevier, 2006. | MR | Zbl

[6] A. Braides and A. Defranceschi, “Homogenization of Multiple Integrals”, Oxford University Press, Oxford, 1998. | MR | Zbl

[7] A. Braides and L. Truskinovsky, Asymptotic expansions by Gamma-convergence, Contin. Mech. Thermodyn. 20 (2008), 21–62. | MR | Zbl

[8] G. Dal Maso, “An Introduction to Γ-convergence”, Birkhäuser, Boston, 1993. | MR | Zbl

[9] L. C. Evans and R. F. Gariepy, “Measure Theory and Fine Properties of Functions”, Studies in Advanced Mathematics. CRC Press, Boca Raton, FL, 1992. | MR

[10] R. L. Jerrard and P. Sternberg, Critical points via Gamma-convergence: general theory and applications, J. Eur. Math. Soc. 11 (2009), 705–753. | EuDML | MR | Zbl

[11] R. V. Kohn and P. Sternberg, Local minimizers and singular perturbations, Proc. Roy. Soc. Edinburgh Sect. A 111 (1989), 69–84. | MR | Zbl

[12] C. J. Larsen, Epsilon-stable quasi-static brittle fracture evolution, Comm. Pure Appl. Math. 63 (2010), 630–654. | MR

[13] E. Sandier and S. Serfaty, Gamma-Convergence of Gradient Flows and Application to Ginzburg-Landau, Comm. Pure Appl. Math. 57 (2004), 1627–1672. | MR | Zbl

[14] S. Serfaty, Stability in 2D Ginzburg-Landau passes to the limit, Indiana Univ. Math. J. 54 (2005), 199–222 | MR | Zbl