We explicitly describe the possible degenerations of a class of double Kodaira fibrations in the moduli space of stable surfaces. Using deformation theory we also show that under some assumptions we get a connected component of the moduli space of stable surfaces.
@article{ASNSP_2010_5_9_4_851_0, author = {Rollenske, S\"onke}, title = {Compact moduli for certain {Kodaira} fibrations}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {851--874}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 9}, number = {4}, year = {2010}, zbl = {1210.14041}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2010_5_9_4_851_0/} }
TY - JOUR AU - Rollenske, Sönke TI - Compact moduli for certain Kodaira fibrations JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2010 SP - 851 EP - 874 VL - 9 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2010_5_9_4_851_0/ LA - en ID - ASNSP_2010_5_9_4_851_0 ER -
%0 Journal Article %A Rollenske, Sönke %T Compact moduli for certain Kodaira fibrations %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2010 %P 851-874 %V 9 %N 4 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2010_5_9_4_851_0/ %G en %F ASNSP_2010_5_9_4_851_0
Rollenske, Sönke. Compact moduli for certain Kodaira fibrations. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 9 (2010) no. 4, pp. 851-874. http://www.numdam.org/item/ASNSP_2010_5_9_4_851_0/
[1] Stable varieties with a twist, arXiv:0904.2797 (2009).
and ,[2] Higher-dimensional analogues of stable curves, In: “International Congress of Mathematicians”, Vol. II, Zürich, 2006, Eur. Math. Soc, 515–536. | Zbl
,[3] Limits of stable pairs, Pure Appl. Math. Q. 4 (2008), 767–783. | Zbl
,[4] Explicit compactifications of moduli spaces of Campedelli and Burniat surfaces, arXiv:0901.4431 (2009).
and ,[5] Complete moduli for fibered surfaces, In: “Recent Progress in Intersection Theory”, Bologna, 1997, Trends Math., Birkhäuser Boston, Boston, MA, 2000, 1–31. | Zbl
and ,[6] “Compact Complex Surfaces”, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 4, Springer-Verlag, Berlin, second edition, 2004. | Zbl
, , and ,[7] Double Kodaira fibrations, J. Reine Angew. Math. 628 (2009), 205–233. | Zbl
and ,[8] Obstruction calculus for functors of Artin rings. I, J. Algebra 202 (1998), 541–576. | Zbl
and ,[9] Global moduli for surfaces of general type, Invent. Math. 43 (1977), 233–282. | EuDML | Zbl
,[10] “Algebraic Geometry”, Springer-Verlag, New York, 1977, Vol. 52, Graduate Texts in Mathematics. | Zbl
,[11] Stable log surfaces and limits of quartic plane curves, Manuscripta Math. 100 (1999), 469–487. | Zbl
,[12] Stable limits of log surfaces and Cohen-Macaulay singularities, J. Algebra 242 (2001), 225–235. | Zbl
,[13] “Moduli of Curves”, Graduate Texts in Mathematics, Vol. 87, Springer-Verlag, New York, 1998. | Zbl
and ,[14] “Birational Geometry of Algebraic Varieties”, Cambridge Tracts in Mathematics, Vol. 134, Cambridge University Press, Cambridge, 1998. With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original.
and ,[15] Young person’s guide to moduli of higher dimensional varieties, In: “Proceedings of the AMS Summer Research Institute held at the University of Washington”, Seattle, WA, July 25 - August 12, 2005, Proceedings of Symposia in Pure Mathematics. American Mathematical Society, 2005. | Zbl
,[16] A refinement of Stein factorization and deformations of surjective morphisms, Asian J. Math. 12 (2008), 365–389. | Zbl
and ,[17] Threefolds and deformations of surface singularities, Invent. Math. 91 (1988), 299–338. | EuDML | Zbl
and ,[18] Deformations of maps, In: “Algebraic Curves and Projective Geometry”, Trento, 1988, Vol. 1389, Lecture Notes in Math., Springer, Berlin, 1989, 246–253. | Zbl
,[19] Déformations de courbes avec action de groupe, Forum Math. 5 (1993), 243–259. | EuDML | Zbl
,[20] Moduli of products of curves, Arch. Math. (Basel) 84 (2005), 148–154. | Zbl
,[21] Stable degenerations of surfaces isogenous to a product of curves, Proc. Amer. Math. Soc. 134 (2006) 2801–2806 (electronic). | Zbl
,