Orders of CM elliptic curves modulo p with at most two primes
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 9 (2010) no. 4, pp. 815-832.

In this paper of 1988 N. Koblitz conjectured that given an elliptic curve E over the rationals, the order of the group of 𝔽 p points of its reduction modulo p, |E(𝔽 p )|, is a prime number for infinitely many primes p. Since then a wide number of research articles has been dedicated to understand and solve this conjecture. In this paper we give the best result known nowadays. We can prove quantitatively that for infinitely many primes p the reduction of the curve y 2 =x 3 -x modulo p has order which is eight times an almost prime number. The problem turns out to be the equivalent to the twin prime conjecture in the Gaussian domain. The result could be extended to any CM curve with certain considerations. We also point out the relation of the result with certain considerations. We also point out the relation of the result with the cyclicity of E(𝔽 p ), and the Lang Trotter conjecture.

Classification : 11N36, 11G07, 14G50
Iwaniec, Henryk 1 ; Urroz, Jorge Jiménez 2

1 Department of Mathematics, Rutgers University, Hill Center-Busch Campus, 110 Frelinghuysen Road, Piscataway, NJ 08854-8019, USA
2 Dept. Matemàtica Aplicada IV, Universitat Politècnica de Catalunya, Campus Nord, c/Jordi Girona 1-3, 08034 Barcelona, Spain
@article{ASNSP_2010_5_9_4_815_0,
     author = {Iwaniec, Henryk and Urroz, Jorge Jim\'enez},
     title = {Orders of {CM} elliptic curves modulo $p$ with at most two primes},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {815--832},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 9},
     number = {4},
     year = {2010},
     zbl = {1211.11106},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2010_5_9_4_815_0/}
}
TY  - JOUR
AU  - Iwaniec, Henryk
AU  - Urroz, Jorge Jiménez
TI  - Orders of CM elliptic curves modulo $p$ with at most two primes
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2010
SP  - 815
EP  - 832
VL  - 9
IS  - 4
PB  - Scuola Normale Superiore, Pisa
UR  - http://www.numdam.org/item/ASNSP_2010_5_9_4_815_0/
LA  - en
ID  - ASNSP_2010_5_9_4_815_0
ER  - 
%0 Journal Article
%A Iwaniec, Henryk
%A Urroz, Jorge Jiménez
%T Orders of CM elliptic curves modulo $p$ with at most two primes
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2010
%P 815-832
%V 9
%N 4
%I Scuola Normale Superiore, Pisa
%U http://www.numdam.org/item/ASNSP_2010_5_9_4_815_0/
%G en
%F ASNSP_2010_5_9_4_815_0
Iwaniec, Henryk; Urroz, Jorge Jiménez. Orders of CM elliptic curves modulo $p$ with at most two primes. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 9 (2010) no. 4, pp. 815-832. http://www.numdam.org/item/ASNSP_2010_5_9_4_815_0/

[1] I. Borosh, C. J. Moreno and H. Porta, Elliptic curves over finite fields. II, Math. Comp. 29 (1975), 951–964. | Zbl

[2] J. R. Chen, On the representation of a larger even integer as the sum of a prime and the product of at most two primes, Sci. Sinica 16 (1973), 157–176. | Zbl

[3] A. C. Cojocaru,Questions about the reductions modulo primes of an elliptic curve, In: “Number Theory”, CRM Proc. Lecture Notes, 36, Amer. Math. Soc., Providence, RI, 2004, 61–79. | Zbl

[4] A. C. Cojocaru, Reductions of an elliptic curve with almost prime orders, Acta Arith. 119 (2005), 265–289. | EuDML | Zbl

[5] G. Greaves, Sieves in number theory, In: “A Series of Modern Surveys in Mathematics”, Vol. 43, Springer-Berlin, 2001. | Zbl

[6] J. Friedlander and H. Iwaniec, The sieve, preprint. | Zbl

[7] R. Gupta and M. R. Murty, Primitive points on elliptic curves, Compositio Math. 58 (1986), 13–44. | EuDML | Numdam | Zbl

[8] R. Gupta and M. R. Murty, Cyclicity and generation of points modulo p on elliptic curves, Invent. Math. 101 (1990), 225–235. | EuDML | Zbl

[9] H. Halberstam and H. E. Richert, “Sieve Methods”, London Mathematical Society Monographs, No. 4. Academic Press, London-New York, 1974. | Zbl

[10] J. G. Hinz, A generalization of Bombieri’s prime number theorem to algebraic number fields, Acta Arith. 51 (1988), 173–193. | EuDML | Zbl

[11] H. Iwaniec, “Sieve Methods”, notes for a graduate course at Rutgers University, 1996.

[12] H. Iwaniec and E. Kowalski, “Analytic Number Theory”, Colloquium publications, Vol. 53, AMS, 2004. | Zbl

[13] J. Jiménez Urroz, Almost prime orders of CM elliptic curves modulo p, ANTS-VIII, 2008, In: Lecture Notes in Comput. Sci., Vol. 5011, Springer, 2008, 74–87. | Zbl

[14] D. Johnson, Mean values of Hecke L-functions, J. Reine Angew. Math. 305 (1979), 195–205. | EuDML | Zbl

[15] N. Koblitz, Primality of the number of points on an elliptic curve over a finite field, Pacific J. Math. 131 (1988), 157–165. | Zbl

[16] S. Lang and H. Trotter, “Frobenius Distributions in GL2-extensions”, Lecture Notes in Math., Vol. 504, Springer-Verlag, Berlin-New York, 1976.

[17] S. A. Miri and V. K. Murty, An application of sieve methods to elliptic curves, In: Lecture Notes in Comput. Sci., Vol. 2247, 2001, 91–98. | Zbl

[18] K. Rubin and A. Silverberger, Point counting on reductions of CM elliptic curves, http://arxiv.org/abs/0706.3711v1. | Zbl

[19] J.-P. Serre, Résumé des cours de 1977–1978, Ann. Collège France, Paris, 1978, 67–70.

[20] J. Steuding and A. Weng, On the number of prime divisors of the order of elliptic curves modulo p, Acta Arith. 117 (2005), 341–352. | EuDML | Zbl

[21] J. Steuding and A. Weng, Erratum: “On the number of prime divisors of the order of elliptic curves modulo p”, Acta Arith. 117 (2005), 341–352; Acta Arith. 119 (2005), 407–408. | EuDML