Characterizations of intrinsic rectifiability in Heisenberg groups
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 9 (2010) no. 4, pp. 687-723.

We define rectifiable sets in the Heisenberg groups as countable unions of Lipschitz images of subsets of a Euclidean space, in the case of low-dimensional sets, or as countable unions of subsets of intrinsic C 1 surfaces, in the case of low-codimensional sets. We characterize both low-dimensional rectifiable sets and low codimensional rectifiable sets with positive lower density, in terms of almost everywhere existence of approximate tangent subgroups or of tangent measures.

Classification : 28A75, 28C10
Mattila, Pertti 1 ; Serapioni, Raul 2 ; Serra Cassano, Francesco 2

1 Department of Mathematics and Statistics, University of Helsinki, FI-00014, Finland
2 Dipartimento di Matematica, Università di Trento, Via Sommarive, 14, 38050 Povo (Trento), Italia
@article{ASNSP_2010_5_9_4_687_0,
     author = {Mattila, Pertti and Serapioni, Raul and Serra Cassano, Francesco},
     title = {Characterizations of intrinsic rectifiability in {Heisenberg} groups},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {687--723},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 9},
     number = {4},
     year = {2010},
     mrnumber = {2789472},
     zbl = {1229.28004},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2010_5_9_4_687_0/}
}
TY  - JOUR
AU  - Mattila, Pertti
AU  - Serapioni, Raul
AU  - Serra Cassano, Francesco
TI  - Characterizations of intrinsic rectifiability in Heisenberg groups
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2010
SP  - 687
EP  - 723
VL  - 9
IS  - 4
PB  - Scuola Normale Superiore, Pisa
UR  - http://www.numdam.org/item/ASNSP_2010_5_9_4_687_0/
LA  - en
ID  - ASNSP_2010_5_9_4_687_0
ER  - 
%0 Journal Article
%A Mattila, Pertti
%A Serapioni, Raul
%A Serra Cassano, Francesco
%T Characterizations of intrinsic rectifiability in Heisenberg groups
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2010
%P 687-723
%V 9
%N 4
%I Scuola Normale Superiore, Pisa
%U http://www.numdam.org/item/ASNSP_2010_5_9_4_687_0/
%G en
%F ASNSP_2010_5_9_4_687_0
Mattila, Pertti; Serapioni, Raul; Serra Cassano, Francesco. Characterizations of intrinsic rectifiability in Heisenberg groups. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 9 (2010) no. 4, pp. 687-723. http://www.numdam.org/item/ASNSP_2010_5_9_4_687_0/

[1] L. Ambrosio, N. Fusco and D. Pallara, “Functions of Bounded Variation and Free Discontinuity Problems”, Oxford Mathematical Monographs, Oxford University Press, 2000. | MR | Zbl

[2] L. Ambrosio and B. Kirchheim, Rectifiable sets in metric and Banach spaces, Math. Ann. 318 (2000), 527–555. | MR | Zbl

[3] L. Ambrosio, B. Kleiner and E. Le Donne, Rectifiability of sets of finite perimeter in Carnot groups: existence of a tangent hyperplane, J. Geom. Anal. 19 (2009), 509–540. | MR | Zbl

[4] L. Ambrosio, F. Serra Cassano and D. Vittone, Intrinsic regular hypersurfaces in Heisenberg groups, J. Geom. Anal. 16 (2006), 187–232. | MR | Zbl

[5] G. Arena and R. Serapioni, Intrinsic regular submanifolds in Heisenberg groups are differentiable graphs, Calc. Var. Partial Differential Equations, 35 (2009), 17–49. | MR | Zbl

[6] Z. Balogh and K. S. Fässler, Rectifiability and Lipschitz extensions into the Heisenberg group, Math. Z. 263 (2009), 673–683. | MR | Zbl

[7] Z. Balogh, M. Rickly and F. Serra Cassano, Comparison of Hausdorff measures with respect to the Heisenberg metric, Publ. Mat. 47 (2003), 237–259. | EuDML | MR | Zbl

[8] A. Bonfiglioli, E. Lanconelli and F. Uguzzoni, “Stratified Lie Groups and Potential Theory for their Sub–Laplacians”, Springer Monographs in Mathematics, Springer-Verlag, 2007. | MR | Zbl

[9] L. Capogna, D. Danielli, S. D. Pauls and J. T. Tyson, “An Introduction to the Heisenberg Group and the sub-Riemannian Isoperimetric Problem”, Birkhäuser, 2007. | MR | Zbl

[10] J. Cheeger and B. Kleiner, Differentiating maps into L 1 and the geometry of BV functions, Ann. of Math. 171 (2010), 1347–1385. | MR | Zbl

[11] G. Citti and M. Manfredini, Implicit function theorem in Carnot Carathéodory spaces, Commun. Contemp. Math. 8, (2006), 253–293. | MR | Zbl

[12] H. Federer, “Geometric Measure Theory”, Springer-Verlag, 1969. | MR | Zbl

[13] G. B. Folland and E. M. Stein, “Hardy spaces in Homogeneous Groups”, Princeton University Press, 1982.

[14] B. Franchi, R. Serapioni and F. Serra Cassano, Rectifiability and perimeter in the Heisenberg group, Math. Ann. 321 (2001), 479–531. | MR | Zbl

[15] B. Franchi, R. Serapioni and F. Serra Cassano, On the structure of finite perimeter sets in step 2 Carnot groups, J. Geom. Anal. 13 (2003), 421–466. | MR | Zbl

[16] B. Franchi, R. Serapioni and F. Serra Cassano, Regular hypersurfaces, intrinsic perimeter and implicit function theorem, Comm. Anal. Geom. 11 (2003), 909–944. | MR | Zbl

[17] B. Franchi, R. Serapioni and F. Serra Cassano, Regular submanifolds, graphs and area formula in Heisenberg Groups, Adv. Math. 211 (2007), 152–203. | MR | Zbl

[18] B. Franchi, R. Serapioni and F. Serra Cassano, Differentiability of intrinsic Lipschitz functions within Heisenberg groups, J. Geom. Anal. DOI 10:1007/s12220-010-9178. | MR

[19] M. Gromov, Carnot-Carathéodory spaces seen from within, In: “Subriemannian Geometry”, Progress in Mathematics, Vol. 144, A. Bellaiche and J. Risler (eds.), Birkhäuser Verlag, Basel, 1996. | MR | Zbl

[20] B. Kirchheim and F. Serra Cassano, Rectifiability and parameterization of intrinsic regular surfaces in the Heisenberg group, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 3 (2004), 871–896. | EuDML | Numdam | MR | Zbl

[21] V. Magnani, “Elements of Geometric Measure Theory on Sub-Riemannion groups”, Edizioni della Normale, Pisa, 2002. | MR

[22] V. Magnani, Contact equations, Lipschitz extensions and isoperimetric inequalities, preprint http://cvgmt.sns.it/cgi/get.cgi/papers/maga/ (2009). | MR

[23] P. Mattila, “Geometry of Sets and Measures in Euclidean Spaces”, Cambridge University Press, 1995. | MR

[24] P. Mattila, Measures with unique tangent measures in metric groups, Math. Scand. 97 (2005), 298–308. | MR | Zbl

[25] J. Mitchell, On Carnot-Carathèodory metrics, J. Differential Geom. 21 (1985), 35–45. | MR | Zbl

[26] R. Montgomery, “A Tour of Sub-Riemannian Geometries, their Geodesics and Applications”, Mathematical Survey and Monographs, Vol. 91, American Mathematical Society, Providence RI, 2002. | MR

[27] P. Pansu, Métriques de Carnot-Carathéodory et quasiisométries des espaces symétriques de rang un, Ann. of Math. 129 (1989), 1–60. | MR | Zbl

[28] S. D. Pauls, A notion of rectifiability modelled on Carnot groups, Indiana Univ. Math. J. 53 (2004), 49–81. | MR | Zbl

[29] D. Preiss, Geometry of Measures in n : distribution, rectifiability and densities, Ann. of Math. 125 (1987), 537–643. | MR | Zbl

[30] S. Rigot, Counter example to the isodiametric inequality in H-type groups, preprint (2004).

[31] L. Simon, “Lectures on Geometric Measure Theory”, Proceedings of the Centre for Mathematical Analysis, Australian National University, Vol. 3, 1983. | MR | Zbl

[32] E. M. Stein, “Harmonic Analysis: Real Variable Methods, Orthogonality and Oscillatory Integrals”, Princeton University Press, Princeton, 1993. | MR | Zbl

[33] N. Th. Varopoulos, L. Saloff-Coste and T. Coulhon, “Analysis and Geometry on Groups”, Cambridge University Press, Cambridge, 1992. | MR | Zbl

[34] S. Wenger and R. Young, Lipschitz extensions into jet space Carnot group, Math. Res. Lett., to appear. | MR | Zbl