We consider the quasilinear parabolic equation in a cylindrical domain, together with initial-boundary conditions, where the quasilinearity operates on the diffusion coefficient of the Laplacian. Under suitable conditions we prove global existence of a solution in the energy space. Our proof depends on maximal regularity of a nonautonomous linear parabolic equation which we use to provide us with compactness in order to apply Schaefer’s fixed point theorem.
@article{ASNSP_2010_5_9_3_523_0, author = {Arendt, Wolfgang and Chill, Ralph}, title = {Global existence for quasilinear diffusion equations in isotropic nondivergence form}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {523--539}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 9}, number = {3}, year = {2010}, mrnumber = {2722654}, zbl = {1223.35202}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2010_5_9_3_523_0/} }
TY - JOUR AU - Arendt, Wolfgang AU - Chill, Ralph TI - Global existence for quasilinear diffusion equations in isotropic nondivergence form JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2010 SP - 523 EP - 539 VL - 9 IS - 3 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2010_5_9_3_523_0/ LA - en ID - ASNSP_2010_5_9_3_523_0 ER -
%0 Journal Article %A Arendt, Wolfgang %A Chill, Ralph %T Global existence for quasilinear diffusion equations in isotropic nondivergence form %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2010 %P 523-539 %V 9 %N 3 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2010_5_9_3_523_0/ %G en %F ASNSP_2010_5_9_3_523_0
Arendt, Wolfgang; Chill, Ralph. Global existence for quasilinear diffusion equations in isotropic nondivergence form. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 9 (2010) no. 3, pp. 523-539. http://www.numdam.org/item/ASNSP_2010_5_9_3_523_0/
[1] Maximal regularity and quasilinear parabolic boundary value problems, In: “Recent Advances in Elliptic and Parabolic Problems”, World Sci. Publ., Hackensack, NJ, 2005, 1–17. | MR | Zbl
,[2] Quasilinear parabolic problems via maximal regularity, Adv. Differential Equations 10 (2005), 1081–1110. | MR | Zbl
,[3] The principal eigenvalue and maximum principle for second-order elliptic operators in general domains, Comm. Pure Appl. Math. 47 (1994), 47–92. | Zbl
, , and ,[4] “An Introduction to Semilinear Evolution Equations”, Oxford Lecture Series in Mathematics and its Applications, Vol. 13, Oxford University Press, New York, 1998. | MR | Zbl
and ,[5] Abstract parabolic quasilinear problems and application to a groundwater flow problem, Adv. Math. Sci. Appl. 3 (1994), 17–32. | MR | Zbl
and ,[6] “Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques”, Vol. II, INSTN: Collection Enseignement, Masson, Paris, 1985. | MR | Zbl
and ,[7] “Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques”, Vol. VIII, INSTN: Collection Enseignement, Masson, Paris, 1987. | MR | Zbl
and ,[8] “Partial Differential Equations”, Graduate Studies in Mathematics, Vol. 19, American Mathematical Society, Providence, RI, 1998. | MR
,[9] “Elliptic Partial Differential Equations of Second Order”, Springer Verlag, Berlin, Heidelberg, New York, 2001. | MR | Zbl
and ,[10] O. A. Ladyženskaja, V. A. Solonnikov, and N. N. Ural^{\prime }ceva, “Linear and Quasilinear Equations of Parabolic Type”, Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23, American Mathematical Society, Providence, R.I., 1967. | MR
[11] “Second Order Parabolic Differential Equations”, World Scientific Publishing Co. Inc., River Edge, NJ, 1996. | MR | Zbl
,[12] “Analytic Semigroups and Optimal Regularity in Parabolic Problems”, Progress in Nonlinear Differential Equations and Their Applications, Vol. 16, Birkhäuser, Basel, 1995. | MR | Zbl
,[13] Maximal regularity for evolution equations in -spaces, Conf. Semin. Mat. Univ. Bari 285 (2002), 1–39. | MR
,[14] Über die Methode der a priori-Schranken, Math. Ann. 129 (1955), 415–416. | EuDML | MR | Zbl
,[15] “Monotone Operators in Banach Space and Nonlinear Partial Differential Equations”, Mathematical Surveys and Monographs, vol. 49, American Mathematical Society, Providence, RI, 1997. | MR | Zbl
,[16] Math. Ann. 111 (1935), 767–776. | EuDML | MR
, ,[17] Maximum principles for second-order parabolic equations, J. Partial Differential Equations, (4) 17 (2004), 289–302. | MR | Zbl
,