We introduce a natural notion of quaternionic map between almost quaternionic manifolds and we prove the following, for maps of rank at least one: - A map between quaternionic manifolds endowed with the integrable almost twistorial structures is twistorial if and only if it is quaternionic. - A map between quaternionic manifolds endowed with the nonintegrable almost twistorial structures is twistorial if and only if it is quaternionic and totally-geodesic. As an application, we describe all the quaternionic maps between open sets of quaternionic projective spaces.
@article{ASNSP_2010_5_9_1_47_0, author = {Ianu\c{s}, Stere and Marchiafava, Stefano and Ornea, Liviu and Pantilie, Radu}, title = {Twistorial maps between quaternionic manifolds}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {47--67}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 9}, number = {1}, year = {2010}, mrnumber = {2668873}, zbl = {1193.53121}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2010_5_9_1_47_0/} }
TY - JOUR AU - Ianuş, Stere AU - Marchiafava, Stefano AU - Ornea, Liviu AU - Pantilie, Radu TI - Twistorial maps between quaternionic manifolds JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2010 SP - 47 EP - 67 VL - 9 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2010_5_9_1_47_0/ LA - en ID - ASNSP_2010_5_9_1_47_0 ER -
%0 Journal Article %A Ianuş, Stere %A Marchiafava, Stefano %A Ornea, Liviu %A Pantilie, Radu %T Twistorial maps between quaternionic manifolds %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2010 %P 47-67 %V 9 %N 1 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2010_5_9_1_47_0/ %G en %F ASNSP_2010_5_9_1_47_0
Ianuş, Stere; Marchiafava, Stefano; Ornea, Liviu; Pantilie, Radu. Twistorial maps between quaternionic manifolds. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 9 (2010) no. 1, pp. 47-67. http://www.numdam.org/item/ASNSP_2010_5_9_1_47_0/
[1] Quaternionic-like structures on a manifold: Note 2. Automorphism groups and their interrelations, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 4 (1993), 53–61. | EuDML | MR
and ,[2] A report on quaternionic-like structures on a manifold, In: “Proceedings of the International Workshop on Differential Geometry and its Applications” (Bucharest, 1993), Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 55 (1993), 9–34. | MR | Zbl
and ,[3] Quaternionic structures on a manifold and subordinated structures, Ann. Mat. Pura Appl. 171 (1996), 205–273. | MR | Zbl
and ,[4] Compatible complex structures on almost quaternionic manifolds, Trans. Amer. Math. Soc. 351 (1999), 997–1014. | MR | Zbl
, and ,[5] Sur les -structures de type quaternionien, Cahiers Topologie Géom. Différentielle 9 (1967), 389–461. | EuDML | Numdam | MR | Zbl
,[6] Quaternionic maps between hyperkähler manifolds, J. Differential Geom. 55 (2000), 355–384. | MR | Zbl
and ,[7] Twistorial construction of harmonic maps of surfaces into four-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 12 (1985), 589–640. | EuDML | Numdam | MR | Zbl
and ,[8] Die Funktionentheorie der Differentialgleichungen und mit vier reellen Variablen, Comment. Math. Helv. 7 (1935), 307–330. | EuDML | MR | Zbl
,[9] “Principles of Algebraic Geometry”, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1978. | MR | Zbl
and ,[10] Nonlinear Dirac operator and quaternionic analysis, Comm. Math. Phys. 281 (2008), 251–261. | MR | Zbl
,[11] Harmonic maps between quaternionic Kähler manifolds, J. Nonlinear Math. Phys. 15 (2008), 1–8. | MR | Zbl
, and ,[12] Hypercomplex algebraic geometry, Quart. J. Math. Oxford Ser. (2) 49 (1998), 129–162. | MR | Zbl
,[13] Quaternionic maps between quaternionic Kähler manifolds, Math. Z. 250 (2005), 523–537. | MR | Zbl
and ,[14] Harmonic morphisms between Weyl spaces and twistorial maps II, Ann. Inst. Fourier (Grenoble), to appear. | EuDML | Numdam | MR | Zbl
and ,[15] Sulle varietà a struttura quaternionale generalizzata, Rend. Mat. 3 (1970), 529–545. | MR | Zbl
,[16] Almost quaternal structures, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Mat. 23 (1977), 287–298. | MR | Zbl
,[17] Integrability of almost quaternal structures, An. Ştiinţ. Univ. Al. I. Cuza Iaşi Mat. 30 (1984), 75–84. | MR | Zbl
,[18] On a class of twistorial maps, Differential Geom. Appl. 26 (2008), 366–376. | MR | Zbl
,[19] Hypercomplex structures associated to quaternionic manifolds, Differential Geom. Appl. 9 (1998), 273–292. | MR | Zbl
, and ,[20] Quaternionic algebra and sheaves on the Riemann sphere, Quart. J. Math. Oxford Ser. (2) 49 (1998), 163–198. | MR | Zbl
,[21] Differential geometry of quaternionic manifolds, Ann. Sci. École Norm. Sup. 19 (1986), 31–55. | EuDML | Numdam | MR | Zbl
,[22] Special structures on four-manifolds, Riv. Mat. Univ. Parma 17* (1991), 109–123. | MR | Zbl
,[23] Quaternionic analysis, Math. Proc. Cambridge Philos. Soc. 85 (1979), 199–224. | MR | Zbl
,[24] HyperKähler and quaternionic Kähler geometry, Math. Ann. 289 (1991), 421–450. | EuDML | MR | Zbl
,[25] Quaternionic submanifolds in quaternionic symmetric spaces, Tohoku Math. J. 38 (1986), 513–538. | MR | Zbl
,