We investigate geometric curvature energies on closed curves involving integral versions of the Menger curvature. In particular, we prove geometric variants of Morrey-Sobolev and Morrey-space imbedding theorems, which may be viewed as counterparts to respective results on one-dimensional sets in the context of harmonic analysis.
@article{ASNSP_2010_5_9_1_145_0, author = {Strzelecki, Pawe{\l} and Szuma\'nska, Marta and von der Mosel, Heiko}, title = {Regularizing and self-avoidance effects of integral {Menger} curvature}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {145--187}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 9}, number = {1}, year = {2010}, mrnumber = {2668877}, zbl = {1193.28007}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2010_5_9_1_145_0/} }
TY - JOUR AU - Strzelecki, Paweł AU - Szumańska, Marta AU - von der Mosel, Heiko TI - Regularizing and self-avoidance effects of integral Menger curvature JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2010 SP - 145 EP - 187 VL - 9 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2010_5_9_1_145_0/ LA - en ID - ASNSP_2010_5_9_1_145_0 ER -
%0 Journal Article %A Strzelecki, Paweł %A Szumańska, Marta %A von der Mosel, Heiko %T Regularizing and self-avoidance effects of integral Menger curvature %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2010 %P 145-187 %V 9 %N 1 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2010_5_9_1_145_0/ %G en %F ASNSP_2010_5_9_1_145_0
Strzelecki, Paweł; Szumańska, Marta; von der Mosel, Heiko. Regularizing and self-avoidance effects of integral Menger curvature. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 9 (2010) no. 1, pp. 145-187. http://www.numdam.org/item/ASNSP_2010_5_9_1_145_0/
[1] Self-contact sets for 50 tightly knotted and linked tubes, arXiv:math.DG/0508248 v1 (2005).
, , and ,[2] Self-interactions of strands and sheets, J. Stat. Phys. 110 (2003), 35–50. | MR | Zbl
, , and ,[3] “Studies in Geometry”, Freeman and co., San Francisco, CA, 1970. | MR | Zbl
and ,[4] Criticality for the Gehring link problem, Geom. Topol. 10 (2006), 2055–2116. | MR | Zbl
, , , and ,[5] On the minimum ropelength of knots and links, Invent. Math. 150 (2002), 257–286. | MR | Zbl
, and ,[6] Visualizing the tightening of knots, In: “VIS’05: Proc. of the 16th IEEE Visualization 2005”, IEEE Computer Society, Washington, DC, 2005, 575–582.
, and ,[7] Biarcs, global radius of curvature, and the computation of ideal knot shapes, In: “Physical and Numerical Models in Knot Theory”, J. A. Calvo, K. C. Millett, E. J. Rawdon, A. Stasiak (eds.) Ser. on Knots and Everything 36, World Scientific, Singapore, 2005, 75–108. | MR | Zbl
, , and ,[8] “Introduction to Knot Theory”, Springer, New York, 1977. (Reprint of the 1963 original, Graduate Texts in Mathematics, Vol. 57.) | MR | Zbl
and ,[9] “Singular Integrals and Rectifiable Sets in : Au-delà des graphes lipschitziens”, Astériques 193, Soc. Mathématique France, Montrouge, 1991. | Numdam | Zbl
and ,[10] Möbius energy of knots and unknots, Ann. of Math. 139 (1994), 1–50. | MR | Zbl
, and ,[11] Existence of ideal knots in , in preparation.
and ,[12] What are the longest ropes on the unit sphere? Preprint Nr. 32, Institut für Mathematik, RWTH Aachen University (2009); see http://www.instmath.rwth-aachen.de/~heiko/veroeffentlichungen/longest_ropes.pdf. | MR | Zbl
and ,[13] Existence of ideal knots, J. Knot Theory Ramifications 12 (2003), 123–133. | MR | Zbl
and ,[14] Global curvature, thickness, and the ideal shape of knots, Proc. Natl. Acad. Sci. USA 96 (1999), 4769–4773. | MR | Zbl
and ,[15] Global curvature and self-contact of nonlinearly elastic curves and rods, Calc. Var. Partial Differential Equations 14 (2002), 29–68. | MR | Zbl
, , and ,[16] Menger curvature and Lipschitz parametrizations in metric spaces, Fund. Math. 185 (2005), 143–169. | EuDML | MR | Zbl
,[17] Curvature integral and Lipschitz parametrization in -regular metric spaces, Ann. Acad. Sci. Fenn. Math. 32 (2007), 99–123. | EuDML | MR | Zbl
,[18] Menger curvature and rectifiability, Ann. of Math. 149 (1999), 831–869. | EuDML | MR | Zbl
,[19] High-dimensional Menger-type curvatures – Part I: Geometric multipoles and multiscale inequalities, arXiv:0805.1425v1 (2008), to appear in Rev. Mat. Iberoamericana. | MR | Zbl
and ,[20] High-dimensional Menger-type curvatures – Part II: -Separation and a menagerie of curvatures, Constr. Approx. 30 (2009), 325–360. | MR | Zbl
and ,[21] Menger curvature and -regularity of fractals, Proc. Amer. Math. Soc. 129 (2000), 1755–1762. | MR | Zbl
and ,[22] Rectifiability, analytic capacity, and singular integrals, In: “Proc. ICM”, Vol. II, Berlin 1998, Doc. Math. 1998, Extra Vol. II, 657–664 (electronic). | EuDML | MR | Zbl
,[23] Search for geometric criteria for removable sets of bounded analytic functions, Cubo 6 (2004), 113–132. | MR | Zbl
,[24] Analytic capacity: discrete approach and curvature of measure, Sb. Mat. 186 (1995), 827–846. | Zbl
,[25] A geometric proof of the boundedness of the Cauchy integral on Lipschitz curves, Int. Math. Res. Not. 7 (1995), 325–331. | MR | Zbl
and ,[26] Untersuchungen über allgemeine Metrik. Vierte Untersuchung, Zur Metrik der Kurven, Math. Ann. 103 (1930), 466–501. | EuDML | JFM | MR
,[27] “Analytic Capacity, Rectifiability, Menger Curvature and the Cauchy Integral”, Springer Lecture Notes, Vol. 1799, Springer Berlin, Heidelberg, New York, 2002. | MR | Zbl
,[28] Ahlfors-regular curves in metric spaces, Ann. Acad. Sci. Fenn. Math. 32 (2007), 437–460. | MR | Zbl
,[29] Global curvature for rectifiable loops, Math. Z. 243 (2003), 37–77. | MR | Zbl
and ,[30] Euler-Lagrange equations for nonlinearly elastic rods with self-contact, Arch. Ration. Mech. Anal. 168 (2003), 35–82. | MR | Zbl
and ,[31] Characterization of ideal knots, Calc. Var. Partial Differential Equations 19 (2004), 281–305. | MR | Zbl
and ,[32] A geometric curvature double integral of Menger type for space curves Ann. Acad. Sci. Fenn. Math. 34 (2009), 195–214. | MR | Zbl
, and ,[33] On a mathematical model for thick surfaces, In: “Physical and Numerical Models in Knot Theory”, J. A. Calvo, K. C. Millett, E. J. Rawdon, A. Stasiak (eds.), Ser. on Knots and Everything 36, World Scientific, Singapore, 2005, 547–564. | MR | Zbl
and ,[34] Global curvature for surfaces and area minimization under a thickness constraint, Calc. Var. Partial Differential Equations 25 (2006), 431–467. | MR | Zbl
and ,[35] On rectifiable curves with -bounds on global curvature: Self-avoidance, regularity, and minimizing knots, Math. Z. 257 (2007), 107–130. | MR | Zbl
and ,[36] Integral Menger curvature for surfaces, arXiv:math.CA/0911.2095 v2 (2009). | MR | Zbl
and ,[37] The boundedness of the Cauchy integral and Menger curvature, In: “Harmonic Analysis and Boundary Value Problems”, Contemp. Math. 277, AMS, Providence, RI, 2001, 139–158. | MR | Zbl
,