A fully nonlinear problem with free boundary in the plane
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 9 (2010) no. 1, pp. 111-132.

We prove that bounded solutions to an overdetermined fully nonlinear free boundary problem in the plane are one dimensional. Our proof relies on maximum principle techniques and convexity arguments.

Classification : 35J60, 35N25, 35B06
De Silva, Daniela 1 ; Valdinoci, Enrico 2

1 Department of Mathematics, Barnard College, Columbia University, NY 10027, New York
2 Dipartimento di Matematica, II Università di Roma “Tor Vergata”, Via della Ricerca Scientifica, 00133 Roma, Italia
@article{ASNSP_2010_5_9_1_111_0,
     author = {De Silva, Daniela and Valdinoci, Enrico},
     title = {A fully nonlinear problem with free boundary in the plane},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {111--132},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 9},
     number = {1},
     year = {2010},
     mrnumber = {2668875},
     zbl = {1196.35232},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2010_5_9_1_111_0/}
}
TY  - JOUR
AU  - De Silva, Daniela
AU  - Valdinoci, Enrico
TI  - A fully nonlinear problem with free boundary in the plane
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2010
SP  - 111
EP  - 132
VL  - 9
IS  - 1
PB  - Scuola Normale Superiore, Pisa
UR  - http://www.numdam.org/item/ASNSP_2010_5_9_1_111_0/
LA  - en
ID  - ASNSP_2010_5_9_1_111_0
ER  - 
%0 Journal Article
%A De Silva, Daniela
%A Valdinoci, Enrico
%T A fully nonlinear problem with free boundary in the plane
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2010
%P 111-132
%V 9
%N 1
%I Scuola Normale Superiore, Pisa
%U http://www.numdam.org/item/ASNSP_2010_5_9_1_111_0/
%G en
%F ASNSP_2010_5_9_1_111_0
De Silva, Daniela; Valdinoci, Enrico. A fully nonlinear problem with free boundary in the plane. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 9 (2010) no. 1, pp. 111-132. http://www.numdam.org/item/ASNSP_2010_5_9_1_111_0/

[1] H. W. Alt and L. A. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math. 325 (1981), 105–144. | EuDML | MR | Zbl

[2] L. A. Caffarelli and X. Cabré, “Fully Nonlinear Elliptic Equations”, Vol. 43 of American Mathematical Society Colloquium Publications, American Mathematical Society, Providence, RI, 1995. | MR

[3] L. A. Caffarelli and S. Salsa, “A Geometric Approach to Free Boundary Problems”, GSM 68, American Mathematical Society, Providence, Rhode Island, 2005. | MR | Zbl

[4] D. De Silva and O. Savin, Symmetry of global solutions to a class of fully nonlinear elliptic equations in 2D, Indiana Univ. Math. J. 58 (2009), 301–315. | MR | Zbl

[5] J. Dolbeault and R. Monneau, On a Liouville type theorem for isotropic homogeneous fully nonlinear elliptic equations in dimension two, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 2 (2003), 181–197. | EuDML | Numdam | MR | Zbl

[6] A. Farina and E. Valdinoci, Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems, Arch. Ration. Mech. Anal. 195 (2010), 1025–1058. | MR | Zbl

[7] O. Savin, “Phase Transitions: Regularity of Flat Level Sets”, PhD thesis, University of Texas at Austin, 2003. | MR

[8] O. Savin, Entire solutions to a class of fully nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5) 3 (2008), 369–405. | EuDML | Numdam | MR | Zbl

[9] O. Savin, Regularity of flat sets in phase transitions, Ann. of Math. 169 (2009), 41–78. | MR | Zbl

[10] E. Valdinoci, Bernoulli jets and the zero mean curvature equation, J. Differential Equations 225 (2006), 710–736. | MR | Zbl

[11] E. Valdinoci, Flatness of Bernoulli jets, Math. Z. 254 (2006), 257–298. | MR | Zbl