In this paper we study the questions of existence and uniqueness of solutions for equations of type , posed in an open bounded subset of , with nonlinear boundary conditions of the form . The nonlinear elliptic operator is modeled on the -Laplacian operator , with , and are maximal monotone graphs in such that and the data and are measures.
@article{ASNSP_2009_5_8_4_767_0, author = {Andreu, Fuensanta and Igbida, Noureddine and Maz\'on, Jos\'e M. and Toledo, Juli\'an}, title = {Degenerate elliptic equations with nonlinear boundary conditions and measures data}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {767--803}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 8}, number = {4}, year = {2009}, mrnumber = {2647911}, zbl = {1205.35120}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2009_5_8_4_767_0/} }
TY - JOUR AU - Andreu, Fuensanta AU - Igbida, Noureddine AU - Mazón, José M. AU - Toledo, Julián TI - Degenerate elliptic equations with nonlinear boundary conditions and measures data JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2009 SP - 767 EP - 803 VL - 8 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2009_5_8_4_767_0/ LA - en ID - ASNSP_2009_5_8_4_767_0 ER -
%0 Journal Article %A Andreu, Fuensanta %A Igbida, Noureddine %A Mazón, José M. %A Toledo, Julián %T Degenerate elliptic equations with nonlinear boundary conditions and measures data %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2009 %P 767-803 %V 8 %N 4 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2009_5_8_4_767_0/ %G en %F ASNSP_2009_5_8_4_767_0
Andreu, Fuensanta; Igbida, Noureddine; Mazón, José M.; Toledo, Julián. Degenerate elliptic equations with nonlinear boundary conditions and measures data. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 4, pp. 767-803. http://www.numdam.org/item/ASNSP_2009_5_8_4_767_0/
[1] Quasi-linear elliptic and parabolic equations in with nonlinear boundary conditions, Adv. Math. Sci. Appl. 7 (1997), 183–213. | MR | Zbl
, , and ,[2] existence and uniqueness results for quasi-linear elliptic equations with nonlinear boundary conditions, Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007), 61–89. | EuDML | Numdam | MR | Zbl
, , and ,[3] A degenerate elliptic-parabolic problem with nonlinear dynamical boundary conditions, Interfaces Free Bound. 8 (2006), 447–479. | MR | Zbl
, , and ,[4] Obstacle problems for degenerate elliptic equations with nonlinear boundary conditions, Math. Models Methods Appl. Sci. 18 (2008), 1869–1893. | MR | Zbl
, , and ,[5] Singularités éliminables pour des équations semi-linéaires, Ann. Inst. Fourier (Grenoble) 34 (1984), 185–206. | EuDML | Numdam | MR | Zbl
and ,[6] An -theory of existence and uniqueness of solutions of nonlinear elliptic equations, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 22 (1995), 241–273. | EuDML | Numdam | MR | Zbl
, , , , and ,[7] Nonlinear problems related to the Thomas-Fermi equation, dedicated to Philippe Bénilan, J. Evol. Equ. 3 (2003), 673–770. | MR | Zbl
and ,[8] A semilinear equation in , Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 2 (1975), 523–555. | EuDML | Numdam | MR | Zbl
, and ,[9] Some existence and dependence results for semilinear elliptic equations under nonlinear boundary conditions, Appl. Math. Optim. 17 (1986), 203–224. | MR | Zbl
, and ,[10] Semilinear equations with exponential nonlinearity and measure data, Ann. Inst. H. Poincaré Anal. Non Linéaire 22 (2005), 799–815. | EuDML | Numdam | MR | Zbl
, , and ,[11] Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal. 87 (1989), 149–169. | MR | Zbl
and ,[12] Nonlinear elliptic equations with right-hand side measures, Comm. Partial Differential Equations 17 (1992), 641–655. | MR | Zbl
and ,[13] Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), 539–551. | EuDML | Numdam | MR | Zbl
, and ,[14] Remarques sur l’homogénéisation de certains problèmes quasi-linéaires. Portugaliae Math. 41 (1982), 535–562. | EuDML | MR | Zbl
and ,[15] Problèmes unilatéraux, J. Math. Pures Appl. 51 (1972), 1-168. | MR | Zbl
,[16] “Opérateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert”, North-Holland, 1973. | MR | Zbl
,[17] “Analyse Fonctionnelle. Théorie et Applications”, Collection Mathématiques Appliquées pour la Maîtrise, Masson, Paris, 1983. | MR | Zbl
,[18] Nonlinear elliptic equations with measures revisited, In: “Mathematical Aspects of Nonlinear Dispersive Equations”, Ann. of Math. Stud., Vol. 163, Princeton Univ. Press, Princeton, NJ, 2007, 55–109. | MR | Zbl
, and ,[19] Reduced measures for obstacle problems, Adv. Differential Equations 10 (2005), 1201–1234. | MR | Zbl
and ,[20] Semi-linear second-order elliptic equations in , J. Math. Soc. Japan 25 (1973), 565-590. | MR | Zbl
and ,[21] “Free and Moving Boundary Problems”, North-Holland, Amsterdam, 1977. | Zbl
,[22] Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), 741–808. | EuDML | Numdam | MR | Zbl
, , and ,[23] The ill-posed Hele-Shaw model and the Stefan problem for supercooler water, Trans. Amer. Math. Soc. 282 (1984), 183–204. | MR | Zbl
and ,[24] Elliptic equations with vertical asymptotes in the nonlinear term, J. Anal. Math. 98 (2006), 349–396. | MR | Zbl
, and ,[25] “Inequalities in Mechanics and Physiscs”, Springer-Verlag, 1976. | MR
and ,[26] A variational inequality approach to the Hele-Shaw flow with a moving boundary, Proc. Roy. Soc. Edinburg Sect. A 88 (1981), 93–107. | MR
and ,[27] Boundary singularities of solutions of some nonlinear elliptic equations. Duke Math. J. 64 (1991), 271–324. | MR | Zbl
and ,[28] “Nonlinear Potential Theory of Degenerate Elliptic Equations”, Oxford Mathematical Monographs, Oxford University Press, New York, 1993. | MR | Zbl
, and ,[29] “Quelques Méthodes de Résolution de Problémes aux Limites non Linéaires”, Dunod-Gauthier-Vilars, Paris, 1968. | MR
,[30] Removable singularities and boundary traces, J. Math. Pures Appl. 80 (2001), 879–900. | MR | Zbl
and ,[31] The precise boundary trace of solutions of a class of supercritical nonlinear equations, C. R. Math. Acad. Sci. Paris 344 (2007), 181–186. | MR | Zbl
and ,[32] Le probléme de Dirichlet pour les équations elliptiques du second order à coefficients discontinus, Ann. Inst. Fourier (Grenoble) 15 (1965), 189–258. | EuDML | Numdam | MR | Zbl
,[33] On a semilinear equation in involving bounded measures, Proc. Roy. Soc. Edinburgh Sect. A 95 (1983), 181–202. | MR | Zbl
,[34] “Weakly Differentiable Functions”, GTM 120, Springer-Verlag, 1989. | MR | Zbl
,