H 1 and BMO for certain locally doubling metric measure spaces
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 3, pp. 543-582.

Suppose that (M,ρ,μ) is a metric measure space, which possesses two “geometric” properties, called “isoperimetric” property and approximate midpoint property, and that the measure μ is locally doubling. The isoperimetric property implies that the volume of balls grows at least exponentially with the radius. Hence the measure μ is not globally doubling. In this paper we define an atomic Hardy space H 1 (μ), where atoms are supported only on “small balls”, and a corresponding space BMO(μ) of functions of “bounded mean oscillation”, where the control is only on the oscillation over small balls. We prove that BMO(μ) is the dual of H 1 (μ) and that an inequality of John–Nirenberg type on small balls holds for functions in BMO(μ). Furthermore, we show that the L p (μ) spaces are intermediate spaces between H 1 (μ) and BMO(μ), and we develop a theory of singular integral operators acting on function spaces on M. Finally, we show that our theory is strong enough to give H 1 (μ)-L 1 (μ) and L (μ)-BMO(μ) estimates for various interesting operators on Riemannian manifolds and symmetric spaces which are unbounded on L 1 (μ) and on L (μ).

Classification : 42B20, 42B30, 46B70, 58C99
Carbonaro, Andrea 1 ; Mauceri, Giancarlo 1 ; Meda, Stefano 2

1 Dipartimento di Matematica, Università di Genova, via Dodecaneso 35, 16146 Genova, Italia
2 Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, via R. Cozzi 53, 20125 Milano, Italia
@article{ASNSP_2009_5_8_3_543_0,
     author = {Carbonaro, Andrea and Mauceri, Giancarlo and Meda, Stefano},
     title = {$H^{\bf 1}$ and $BMO$ for certain locally doubling metric measure spaces},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {543--582},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 8},
     number = {3},
     year = {2009},
     mrnumber = {2581426},
     zbl = {1180.42008},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2009_5_8_3_543_0/}
}
TY  - JOUR
AU  - Carbonaro, Andrea
AU  - Mauceri, Giancarlo
AU  - Meda, Stefano
TI  - $H^{\bf 1}$ and $BMO$ for certain locally doubling metric measure spaces
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2009
SP  - 543
EP  - 582
VL  - 8
IS  - 3
PB  - Scuola Normale Superiore, Pisa
UR  - http://www.numdam.org/item/ASNSP_2009_5_8_3_543_0/
LA  - en
ID  - ASNSP_2009_5_8_3_543_0
ER  - 
%0 Journal Article
%A Carbonaro, Andrea
%A Mauceri, Giancarlo
%A Meda, Stefano
%T $H^{\bf 1}$ and $BMO$ for certain locally doubling metric measure spaces
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2009
%P 543-582
%V 8
%N 3
%I Scuola Normale Superiore, Pisa
%U http://www.numdam.org/item/ASNSP_2009_5_8_3_543_0/
%G en
%F ASNSP_2009_5_8_3_543_0
Carbonaro, Andrea; Mauceri, Giancarlo; Meda, Stefano. $H^{\bf 1}$ and $BMO$ for certain locally doubling metric measure spaces. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 3, pp. 543-582. http://www.numdam.org/item/ASNSP_2009_5_8_3_543_0/

[1] J.-Ph. Anker, L p Fourier multipliers on Riemannian symmetric spaces of the noncompact type, Ann. of Math. 132 (1990), 597–628. | MR | Zbl

[2] P. Auscher, T. Coulhon, X.T. Duong and S. Hofmann, Riesz transforms on manifolds and heat kernel regularity, Ann. Sci. École Norm. Sup. 37 (2004), 911–957. | EuDML | Numdam | MR | Zbl

[3] J. Bergh and J. Löfström, “Interpolation Spaces. An Introduction”, Grundlehren der mathematischen Wissenschaften, Bd. 223, Springer–Verlag, Berlin Heidelberg New York, 1976. | MR | Zbl

[4] R. L. Bishop and R. Crittenden, “Geometry of Manifolds”, Academic Press, New York, 1964. | MR

[5] M. Bownik, Boundedness of operators on Hardy spaces via atomic decomposition, Proc. Amer. Math. Soc. 133 (2005), 3535–3542. | MR | Zbl

[6] S. M. Buckley, Inequalities of John-Nirenberg type in doubling spaces, J. Anal. Math. 79 (1999), 215–240. | MR | Zbl

[7] D. L. Burkholder, Distribution function inequalities for martingales, Ann. Probability 1 (1973), 19–42. | MR | Zbl

[8] D. L. Burkholder and R. F. Gundy, Extrapolation and interpolation of quasilinear operators on martingales, Acta Math. 124 (1970), 249–304. | MR | Zbl

[9] P. Buser, A note on the isoperimetric constant, Ann. Sci. École Norm. Sup. 15 (1982), 213–230. | EuDML | Numdam | MR | Zbl

[10] A. P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113–165. | EuDML | MR | Zbl

[11] A. Carbonaro, G. Mauceri and S. Meda, H 1 and BMO for certain locally doubling metric measure spaces of finite measure, to appear in Colloq. Math. | Zbl

[12] I. Chavel, “Isoperimetric Inequalities. Differential Geometric and Analytic Perspectives”, Cambridge Tracts in Mathematics, Vol. 145, Cambridge University Press, Cambridge, 2001. | MR | Zbl

[13] J. Cheeger, M. Gromov and M. Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom. 17 (1982), 15–53. | MR | Zbl

[14] M. Christ, A T(b) theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 61 (1990), 601–628. | EuDML | MR | Zbl

[15] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569–645. | MR | Zbl

[16] T. Coulhon and X. T. Duong, Riesz transforms for 1<p2, Trans. Amer. Math. Soc. 351 (1999), 1151–1169. | MR | Zbl

[17] M. Cwickel and S. Janson, Interpolation of analytic families of operators, Studia Math. 79 (1984), 61–71. | EuDML | MR | Zbl

[18] G. David, Morceaux de graphes lipschitziens et intégrales singuliéres sur une surface, Rev. Mat. Iberoamericana 4 (1989), 73–114. | EuDML | MR | Zbl

[19] X.T. Duong and L.X. Yan, New function spaces of BMO type, the John-Nirenberg inequality, interpolation, and applications, Comm. Pure Appl. Math. 58 (2005), 1375-1420. | MR | Zbl

[20] X.T. Duong and L.X. Yan, Duality of Hardy and BMO spaces associated inequality, interpolation, and applications th operators with heat kernel bounds, J. Amer. Math. Soc. 18 (2005), 943–973. | MR | Zbl

[21] L. C. Evans and R. F. Gariepy, “Measure Theory and Fine Properties of Functions”, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. | MR | Zbl

[22] C. Fefferman, Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc. 77 (1971), 587–588. | MR | Zbl

[23] C. Fefferman and E.M. Stein, H p spaces of several variables, Acta Math. 87 (1972), 137–193. | MR | Zbl

[24] D. Goldberg, A local version of real Hardy spaces, Duke Math. J. 46 (1979), 27–42. | MR | Zbl

[25] M. Gromov, Curvature, diameter and Betti numbers, Comment. Math Helv. 56 (1981), 179–195. | EuDML | MR | Zbl

[26] R. F. Gundy, Sur les transformations de Riesz pour le semigroupe d’Ornstein–Uhlenbeck, C. R. Acad. Sci. Paris Sci. Sér. I Math. 303 (1986), 967–970. | MR | Zbl

[27] E. Hebey, “Sobolev Spaces on Riemannian Manifolds”, Lecture Notes in Mathematics, Vol. 1635, Springer-Verlag, Berlin, 1996. | MR | Zbl

[28] L. Hörmander, Estimates for translation invariant operators in L p spaces, Acta Math. 104 (1960), 93–140. | MR | Zbl

[29] A. D. Ionescu, Fourier integral operators on noncompact symmetric spaces of real rank one, J. Funct. Anal. 174 (2000), 274–300. | MR | Zbl

[30] F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. | MR | Zbl

[31] M. Ledoux, A simple analytic proof of an inequality of P. Buser, Proc. Amer. Math. Soc. 121 (1994), 951–959. | MR | Zbl

[32] P. Macmanus and C. Pérez, Trudinger inequalities without derivatives, Trans. Amer. Math. Soc. 354 (2002), 1997–2002. | MR | Zbl

[33] R. Macías, “Interpolation Theorems on Generalized Hardy Spaces”, Ph. D. thesis, Washington University, 1974. | MR

[34] J. Mateu, P. Mattila, A. Nicolau and J. Orobitg, BMO for nondoubling measures, Duke Math. J. 102 (2000), 533–565. | MR | Zbl

[35] G. Mauceri and S. Meda, H 1 and BMO for the Ornstein–Uhlenbeck operator, J. Funct. Anal. 252 (2007), 278–313. | MR | Zbl

[36] S. Meda, P. Sjögren and M. Vallarino, On the H 1 -L 1 boundedness of operators, Proc. Amer. Math. Soc. 136 (2008), 2921–2931. | MR | Zbl

[37] M. Miranda Jr., D. Pallara, F. Paronetto and M. Preunkert, Heat Semigroup and Functions of Bounded Variation on Riemannian Manifolds, J. Reine Angew. Math. 613 (2007), 99–120. | MR | Zbl

[38] Nazarov, Treil and Volberg, The Tb-theorem on non-homogeneous spaces, Acta Math. 190 (2003), 151–239. | MR

[39] E. Russ, H 1 L 1 boundedness of Riesz transforms on Riemannian manifolds and on graphs, Potential Anal. 14 (2001), 301–330. | MR | Zbl

[40] L. Saloff-Coste, “Aspects of Sobolev-type Inequalities”, London Math. Soc. Lecture Note Series, Vol. 289, Cambridge University Press, 2002. | MR | Zbl

[41] E. M. Stein, “Topics in Harmonic Analysis Related to the Littlewood–Paley Theory”, Annals of Math. Studies, Vol. 63, Princeton N.J., 1970. | MR | Zbl

[42] E. M. Stein, “Harmonic Analysis. Real variable Methods, Orthogonality and Oscillatory Integrals”, Princeton Math. Series, Vol. 43, Princeton N.J., 1993. | Zbl

[43] M. E. Taylor, L p -estimates on functions of the Laplace operator, Duke Math. J. 58 (1989), 773–793. | MR | Zbl

[44] X. Tolsa, BMO, H 1 , and Calderón-Zygmund operators for non doubling measures, Math. Ann. 319 (2001), 89–149. | MR | Zbl

[45] A. Torchinsky, “Real Variable Methods in Harmonic Analysis”, Pure and Applied Mathematics, Vol. 123, Academic Press, 1986. | MR | Zbl

[46] J. Verdera, On the T(1)-theorem for the Cauchy integral, Ark. Mat. 38 (2000), 183–199. | MR | Zbl

[47] D. Yang and Y. Zhou, A boundedness criterion via atoms for linear operators in Hardy spaces, Constr. Approx. (2008), DOI 10.1007/s00365-008-9015-1 | MR