Transcendental manifolds in real projective space and Stiefel-Whitney classes
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 2, pp. 267-277.

It is shown that the Stiefel-Whitney classes of a smooth manifold can give obstructions to realizing this manifold as the set of real points of a nonsingular real algebraic subvariety of projective space of a given dimension, even when the manifold can be embedded as an algebraic subset of real projective space of that dimension (meaning that the corresponding real algebraic variety must have complex singularities outside the real points). This strengthens earlier results by Akbulut and King. The result is an application of more technical results concerning algebraic cycles on real varieties combined with the Barth-Larsen Theorem in complex geometry.

Classification : 14P05, 14C25, 57R20
Kucharz, Wojciech 1 ; van Hamel, Joost 2

1 Department of Mathematics and Statistics, University of New Mexico, Albuquerque, NM 87131, USA
2 K.U. Leuven, Departement Wiskunde, Celestijnenlaan 200B, B-3001 Leuven (Heverlee), Belgium
@article{ASNSP_2009_5_8_2_267_0,
     author = {Kucharz, Wojciech and van Hamel, Joost},
     title = {Transcendental manifolds in real projective space and {Stiefel-Whitney} classes},
     journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze},
     pages = {267--277},
     publisher = {Scuola Normale Superiore, Pisa},
     volume = {Ser. 5, 8},
     number = {2},
     year = {2009},
     mrnumber = {2548247},
     zbl = {1174.14050},
     language = {en},
     url = {http://www.numdam.org/item/ASNSP_2009_5_8_2_267_0/}
}
TY  - JOUR
AU  - Kucharz, Wojciech
AU  - van Hamel, Joost
TI  - Transcendental manifolds in real projective space and Stiefel-Whitney classes
JO  - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
PY  - 2009
SP  - 267
EP  - 277
VL  - 8
IS  - 2
PB  - Scuola Normale Superiore, Pisa
UR  - http://www.numdam.org/item/ASNSP_2009_5_8_2_267_0/
LA  - en
ID  - ASNSP_2009_5_8_2_267_0
ER  - 
%0 Journal Article
%A Kucharz, Wojciech
%A van Hamel, Joost
%T Transcendental manifolds in real projective space and Stiefel-Whitney classes
%J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
%D 2009
%P 267-277
%V 8
%N 2
%I Scuola Normale Superiore, Pisa
%U http://www.numdam.org/item/ASNSP_2009_5_8_2_267_0/
%G en
%F ASNSP_2009_5_8_2_267_0
Kucharz, Wojciech; van Hamel, Joost. Transcendental manifolds in real projective space and Stiefel-Whitney classes. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 2, pp. 267-277. http://www.numdam.org/item/ASNSP_2009_5_8_2_267_0/

[1] S. Akbulut and H. King, Transcendental submanifolds of 𝐑 n , Comment. Math. Helv. 68 (1993), 308–318. | EuDML | MR | Zbl

[2] S. Akbulut and H. King, Transcendental submanifolds of ℝℙ n , Comment. Math. Helv. 80 (2005), 427–432. | MR | Zbl

[3] J. Bochnak, M. Buchner and W. Kucharz, Vector bundles over real algebraic varieties, K-Theory 3 (1989), 271–298. | MR | Zbl

[4] J. Bochnak, M. Coste and M.-F. Roy, “Real Algebraic Geometry”, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 36, Springer-Verlag, Berlin, 1998. | MR | Zbl

[5] J. Bochnak and W. Kucharz, On homology classes represented by real algebraic varieties, In: “Singularities Symposium-Łojasiewicz 70” (Kraków, 1996; Warsaw, 1996), Banach Center Publ., Vol. 44, Polish Acad. Sci., Warsaw, 1998, 21–35. | EuDML | MR | Zbl

[6] A. Borel and A. Haefliger, La classe d’homologie fondamentale d’un espace analytique, Bull. Soc. Math. France 89 (1961), 461–513. | EuDML | Numdam | MR | Zbl

[7] A. Degtyarev, I. Itenberg and V. Kharlamov, “Real Enriques Surfaces”, Lecture Notes in Mathematics, Vol. 1746, Springer-Verlag, Berlin, 2000. | MR | Zbl

[8] A. Grothendieck, Sur quelques points d’algèbre homologique, Tôhoku Math. J. 9 (1957), 119–221. | MR | Zbl

[9] H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. 79 (1964), 109–203; ibid. 79 (1964), 205–326. | MR | Zbl

[10] V. A. Krasnov, Harnack-Thom inequalities for mappings of real algebraic varieties, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), 268–297 (Russian); English transl., Math. USSR-Izv. 22 (1984), 247–275. | MR

[11] V. A. Krasnov, Characteristic classes of vector bundles on a real algebraic variety, Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991), 716–746 (Russian); English transl. Math. USSR-Izv. 39 (1992), 703–730. | MR | Zbl

[12] V. A. Krasnov, On the equivariant Grothendieck cohomology of a real algebraic variety and its application, Izv. Ross. Akad. Nauk Ser. Mat. 58 (1994), 36–52 (Russian); English transl. Russian Acad. Sci. Izv. Math. 44 (1995), 461–477. | MR

[13] W. Kucharz, Transcendental submanifolds of projective space, Comment. Math. Helv. 84 (2009), 127–133. | MR | Zbl

[14] M. E. Larsen, On the topology of complex projective manifolds, Invent. Math. 19 (1973), 251–260. | EuDML | MR | Zbl

[15] R. Lazarsfeld, “Positivity in Algebraic Geometry”, I, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3, Folge, Vol. 48, Springer-Verlag, Berlin, 2004. | MR

[16] F. Mangolte and J. Van Hamel, Algebraic cycles and topology of real Enriques surfaces, Compositio Math. 110 (1998), 215–237. | MR | Zbl

[17] J. W. Milnor and J. D. Stasheff, “Characteristic Classes”, Annals of Mathematics Studies, Vol. 76, Princeton University Press, Princeton, N.J., 1974. | Zbl

[18] J. Nash, Real algebraic manifolds, Ann. of Math. 56 (1952), 405–421. | MR | Zbl

[19] V. V. Nikulin and R. Sujatha, On Brauer groups of real Enriques surfaces, J. Reine Angew. Math. 444 (1993), 115–154. | EuDML | MR | Zbl

[20] R. Silhol, “Real Algebraic Surfaces”, Lecture Notes in Mathematics, Vol. 1392, Springer-Verlag, Berlin, 1989. | MR | Zbl

[21] A. Tognoli, Su una congettura di Nash, Ann. Scuola Norm. Sup. Pisa (3) 27 (1973), 167–185. | EuDML | Numdam | MR | Zbl

[22] A. Tognoli, Une remarque sur les approximations en géométrie algébrique réelle, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 745–747. | MR | Zbl

[23] J. Van Hamel, “Algebraic Cycles and Topology of Real Algebraic Varieties”, CWI Tract, Vol. 129, Stichting Mathematisch Centrum, Amsterdam, 2000. | MR | Zbl

[24] H. Whitney, The self-intersections of a smooth n-manifold in 2n-space, Ann. of Math. 45 (1944), 220–246. | MR | Zbl