It is shown that the Stiefel-Whitney classes of a smooth manifold can give obstructions to realizing this manifold as the set of real points of a nonsingular real algebraic subvariety of projective space of a given dimension, even when the manifold can be embedded as an algebraic subset of real projective space of that dimension (meaning that the corresponding real algebraic variety must have complex singularities outside the real points). This strengthens earlier results by Akbulut and King. The result is an application of more technical results concerning algebraic cycles on real varieties combined with the Barth-Larsen Theorem in complex geometry.
@article{ASNSP_2009_5_8_2_267_0, author = {Kucharz, Wojciech and van Hamel, Joost}, title = {Transcendental manifolds in real projective space and {Stiefel-Whitney} classes}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {267--277}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 8}, number = {2}, year = {2009}, mrnumber = {2548247}, zbl = {1174.14050}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2009_5_8_2_267_0/} }
TY - JOUR AU - Kucharz, Wojciech AU - van Hamel, Joost TI - Transcendental manifolds in real projective space and Stiefel-Whitney classes JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2009 SP - 267 EP - 277 VL - 8 IS - 2 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2009_5_8_2_267_0/ LA - en ID - ASNSP_2009_5_8_2_267_0 ER -
%0 Journal Article %A Kucharz, Wojciech %A van Hamel, Joost %T Transcendental manifolds in real projective space and Stiefel-Whitney classes %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2009 %P 267-277 %V 8 %N 2 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2009_5_8_2_267_0/ %G en %F ASNSP_2009_5_8_2_267_0
Kucharz, Wojciech; van Hamel, Joost. Transcendental manifolds in real projective space and Stiefel-Whitney classes. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 2, pp. 267-277. http://www.numdam.org/item/ASNSP_2009_5_8_2_267_0/
[1] Transcendental submanifolds of , Comment. Math. Helv. 68 (1993), 308–318. | EuDML | MR | Zbl
and ,[2] Transcendental submanifolds of , Comment. Math. Helv. 80 (2005), 427–432. | MR | Zbl
and ,[3] Vector bundles over real algebraic varieties, -Theory 3 (1989), 271–298. | MR | Zbl
, and ,[4] “Real Algebraic Geometry”, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 36, Springer-Verlag, Berlin, 1998. | MR | Zbl
, and ,[5] On homology classes represented by real algebraic varieties, In: “Singularities Symposium-Łojasiewicz 70” (Kraków, 1996; Warsaw, 1996), Banach Center Publ., Vol. 44, Polish Acad. Sci., Warsaw, 1998, 21–35. | EuDML | MR | Zbl
and ,[6] La classe d’homologie fondamentale d’un espace analytique, Bull. Soc. Math. France 89 (1961), 461–513. | EuDML | Numdam | MR | Zbl
and ,[7] “Real Enriques Surfaces”, Lecture Notes in Mathematics, Vol. 1746, Springer-Verlag, Berlin, 2000. | MR | Zbl
, and ,[8] Sur quelques points d’algèbre homologique, Tôhoku Math. J. 9 (1957), 119–221. | MR | Zbl
,[9] Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. 79 (1964), 109–203; ibid. 79 (1964), 205–326. | MR | Zbl
,[10] Harnack-Thom inequalities for mappings of real algebraic varieties, Izv. Akad. Nauk SSSR Ser. Mat. 47 (1983), 268–297 (Russian); English transl., Math. USSR-Izv. 22 (1984), 247–275. | MR
,[11] Characteristic classes of vector bundles on a real algebraic variety, Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991), 716–746 (Russian); English transl. Math. USSR-Izv. 39 (1992), 703–730. | MR | Zbl
,[12] On the equivariant Grothendieck cohomology of a real algebraic variety and its application, Izv. Ross. Akad. Nauk Ser. Mat. 58 (1994), 36–52 (Russian); English transl. Russian Acad. Sci. Izv. Math. 44 (1995), 461–477. | MR
,[13] Transcendental submanifolds of projective space, Comment. Math. Helv. 84 (2009), 127–133. | MR | Zbl
,[14] On the topology of complex projective manifolds, Invent. Math. 19 (1973), 251–260. | EuDML | MR | Zbl
,[15] “Positivity in Algebraic Geometry”, I, Ergebnisse der Mathematik und ihrer Grenzgebiete, 3, Folge, Vol. 48, Springer-Verlag, Berlin, 2004. | MR
,[16] Algebraic cycles and topology of real Enriques surfaces, Compositio Math. 110 (1998), 215–237. | MR | Zbl
and ,[17] “Characteristic Classes”, Annals of Mathematics Studies, Vol. 76, Princeton University Press, Princeton, N.J., 1974. | Zbl
and ,[18] Real algebraic manifolds, Ann. of Math. 56 (1952), 405–421. | MR | Zbl
,[19] On Brauer groups of real Enriques surfaces, J. Reine Angew. Math. 444 (1993), 115–154. | EuDML | MR | Zbl
and ,[20] “Real Algebraic Surfaces”, Lecture Notes in Mathematics, Vol. 1392, Springer-Verlag, Berlin, 1989. | MR | Zbl
,[21] Su una congettura di Nash, Ann. Scuola Norm. Sup. Pisa (3) 27 (1973), 167–185. | EuDML | Numdam | MR | Zbl
,[22] Une remarque sur les approximations en géométrie algébrique réelle, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 745–747. | MR | Zbl
,[23] “Algebraic Cycles and Topology of Real Algebraic Varieties”, CWI Tract, Vol. 129, Stichting Mathematisch Centrum, Amsterdam, 2000. | MR | Zbl
,[24] The self-intersections of a smooth -manifold in -space, Ann. of Math. 45 (1944), 220–246. | MR | Zbl
,