We consider a Sturm-Liouville operator of the kind on and the related eigenfunction expansion. We prove that, under suitable assumptions on , the partial sums of the Fourier integral associated to such expansion behave like the partial sums of the classical Fourier-Bessel transform. This implies an almost everywhere convergence result for functions. Our methods rely on asymptotic expansions for the eigenfunctions and the Harish-Chandra function that we prove under very weak hypotheses.
@article{ASNSP_2009_5_8_2_211_0, author = {Brandolini, Luca and Gigante, Giacomo}, title = {Equiconvergence theorems for {Ch\'ebli-Trim\`eche} hypergroups}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {211--265}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 8}, number = {2}, year = {2009}, mrnumber = {2548246}, zbl = {1171.43005}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2009_5_8_2_211_0/} }
TY - JOUR AU - Brandolini, Luca AU - Gigante, Giacomo TI - Equiconvergence theorems for Chébli-Trimèche hypergroups JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2009 SP - 211 EP - 265 VL - 8 IS - 2 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2009_5_8_2_211_0/ LA - en ID - ASNSP_2009_5_8_2_211_0 ER -
%0 Journal Article %A Brandolini, Luca %A Gigante, Giacomo %T Equiconvergence theorems for Chébli-Trimèche hypergroups %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2009 %P 211-265 %V 8 %N 2 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2009_5_8_2_211_0/ %G en %F ASNSP_2009_5_8_2_211_0
Brandolini, Luca; Gigante, Giacomo. Equiconvergence theorems for Chébli-Trimèche hypergroups. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 2, pp. 211-265. http://www.numdam.org/item/ASNSP_2009_5_8_2_211_0/
[1] “Harmonic Analysis of Probability Measures on Hypergroups”, de Gruyter Studies in Mathematics, Vol. 20, 1994. | MR
and ,[2] The Hardy-Littlewood maximal function for Chébli-Trimèche hypergroups, Contemp. Math. 183 (1995), 45–70. | MR | Zbl
and ,[3] On regular singular points of linear differential equations of the second order whose coefficients are not necessarily analytic, Trans. Amer. Math. Soc. 1 (1990), 40–52. | JFM
,[4] “Fonction Maximale Associée à des Opérateurs de Sturm-Liouville Singuliers”, Thèse, Université Louis Pasteur, Strasbourg, 1999. | MR
,[5] Sur un Théorème de Paley-Wiener Associé à la Décomposition Spectrale d’un Opérateur de Sturm-Liouville sur , J. Funct. Anal. 17 (1974), 447–461. | MR | Zbl
,[6] Equiconvergence theorems for Fourier-Bessel expansions with applications to the harmonic analysis of radial functions in Euclidean and non-Euclidean spaces, Trans. Amer. Math. Soc. 338 (1993), 43–55. | MR | Zbl
, , and ,[7] A uniform expansion for the eigenfunction of a singular second-order differential operator, SIAM J. Math Anal. 21 (1990), 1619–1632. | MR | Zbl
and ,[8] The convolution structure for Jacobi function expansions, Ark. Mat. 11 (1973), 245–262. | MR | Zbl
and ,[9] Renewal theorems for Singular Differential Operators, J. Theoret. Probab. 15 (2002), 161–205. | MR | Zbl
and ,[10] “Special Functions and their Applications”, Dover Publications, 1972. | MR
,[11] “Asymptotic and Special function”, AKP Classics, 1997. | MR
,[12] Almost everywhere convergence of inverse spherical transforms on noncompact symmetric spaces, J. Funct. Anal. 149 (1997), 277–304. | MR | Zbl
and ,[13] On almost-everywhere convergence of inverse spherical transforms, Pacific J. Math. 170 (1995), 203–215. | MR | Zbl
and ,[14] Expansions for spherical functions on noncompact symmetric spaces, Acta Math. 140 (1978), 251–276. | MR | Zbl
and ,[15] “A treatise on the Theory of Bessel Functions”, 2nd edition, Cambridge, University Press, 1996. | MR
,[16] One dimensional hypergroup, Adv. Math. 76 (1989), 1–18. | MR | Zbl
,