Let be a strictly pseudoconvex domain in with -smooth boundary . Let be a 2-dimensional sphere embedded into . Denote by the set of all complex points on . We study how the structure of the set depends on the smoothness of .
@article{ASNSP_2009_5_8_1_73_0, author = {Shcherbina, Nikolay}, title = {On the set of complex points of a 2-sphere}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {73--87}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 8}, number = {1}, year = {2009}, mrnumber = {2512201}, zbl = {1194.32028}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2009_5_8_1_73_0/} }
TY - JOUR AU - Shcherbina, Nikolay TI - On the set of complex points of a 2-sphere JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2009 SP - 73 EP - 87 VL - 8 IS - 1 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2009_5_8_1_73_0/ LA - en ID - ASNSP_2009_5_8_1_73_0 ER -
%0 Journal Article %A Shcherbina, Nikolay %T On the set of complex points of a 2-sphere %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2009 %P 73-87 %V 8 %N 1 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2009_5_8_1_73_0/ %G en %F ASNSP_2009_5_8_1_73_0
Shcherbina, Nikolay. On the set of complex points of a 2-sphere. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 8 (2009) no. 1, pp. 73-87. http://www.numdam.org/item/ASNSP_2009_5_8_1_73_0/
[1] Entrelacements et équations de Pfaff, Astérisque 107-108 (1983), 87–161. | Numdam | MR
,[2] Differentiable manifolds in complex Euclidean space, Duke Math. J. 32 (1965), 1–21. | MR | Zbl
,[3] On the envelope of holomorphy of a 2-sphere in , J. Amer. Math. Soc. 4 (1991), 623–643. | MR | Zbl
and ,[4] Regularity of the boundaries of analytic sets, Mat. Sb. 117 (1982), 291–336; English transl. in Sb. Math. 45 (1983), 291–335. | MR
,[5] Filling by holomorphic discs and its applications, Geometry of low-dimensional manifolds, 2 (Durham, 1989), London Math. Soc. Lecture Note Ser., Vol. 151, Cambridge Univ. Press, Cambridge, 1990, 45–67. | MR
,[6] On a topological property of the boundary of an analytic subset of a strictly pseudoconvex domain in , Mat. Zametki 49 (1991), 149–151; English transl. in Math. Notes 49 (1991), 546–547. | MR
,[7] Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307–347. | EuDML | MR | Zbl
,[8] “Differential Topology”, Grad. Texts in Math., Vol. 33, Springer-Verlag, New York, 1976. | MR | Zbl
,[9] Local polynomial hulls of discs near isolated parabolic points, Indiana Univ. Math. J. 46 (1997), 789–826. | MR | Zbl
,[10] Two-dimensional spheres on the boundaries of pseudoconvex domains in , Izv. Akad. Nauk SSSR Ser. Mat. 55 (1991), 1194–1237; English transl. in Math. USSR Izv. 39 (1992), 1151–1187. | MR
,[11] Characteristic classes of real manifolds immersed in complex manifolds, Trans. Amer. Math. Soc. 172 (1972), 1–33. | MR | Zbl
,[12] Complex analysis and differential topology on complex surfaces, Uspekhi Mat. Nauk 54 (1999), 47–74; English transl. in Russian Math. Surveys 54 (1999), 729–752. | MR
,[13] “Singular Integrals and Differentiability Properties of Functions”, Princeton Univ. Press, Princeton, 1970. | MR | Zbl
,[14] A function not constant on a connected set of critical points, Duke Math. J. 1 (1935), 514–517. | JFM | MR
,[15] Local polynomially convex hulls at degenerated singularities of surfaces in , Indiana Univ. Math. J. 44 (1995), 897–915. | MR | Zbl
,