To every morphism of differential graded Lie algebras we associate a functors of artin rings whose tangent and obstruction spaces are respectively the first and second cohomology group of the suspension of the mapping cone of . Such construction applies to Hilbert and Brill-Noether functors and allow to prove with ease that every higher obstruction to deforming a smooth submanifold of a Kähler manifold is annihilated by the semiregularity map.
@article{ASNSP_2007_5_6_4_631_0, author = {Manetti, Marco}, title = {Lie description of higher obstructions to deforming submanifolds}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {631--659}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 6}, number = {4}, year = {2007}, mrnumber = {2394413}, zbl = {1174.13021}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2007_5_6_4_631_0/} }
TY - JOUR AU - Manetti, Marco TI - Lie description of higher obstructions to deforming submanifolds JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2007 SP - 631 EP - 659 VL - 6 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2007_5_6_4_631_0/ LA - en ID - ASNSP_2007_5_6_4_631_0 ER -
%0 Journal Article %A Manetti, Marco %T Lie description of higher obstructions to deforming submanifolds %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2007 %P 631-659 %V 6 %N 4 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2007_5_6_4_631_0/ %G en %F ASNSP_2007_5_6_4_631_0
Manetti, Marco. Lie description of higher obstructions to deforming submanifolds. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 6 (2007) no. 4, pp. 631-659. http://www.numdam.org/item/ASNSP_2007_5_6_4_631_0/
[1] “Deformations of Singularities”, Tata Institute of Fundamental Research, Bombay, 1976.
,[2] The intrinsic normal cone, Invent. Math. 128 (1997), 45-88. | MR | Zbl
and ,[3] Semi-regularity and de Rham cohomology, Invent. Math. 17 (1972) 51-66. | MR | Zbl
,[4] A semiregularity map for modules and applications to deformations, Compositio Math. 137 (2003), 135-210. arXiv:math.AG/9912245 | MR | Zbl
and ,[5] Normal differential operators and deformation theory, In: “Recent progress in intersection theory” (Bologna, 1997), Birkhäuser Boston, 2000, 33-84. arXiv:math.AG/9811171 | MR | Zbl
and ,[6] Geometry of formal Kuranishi theory. Adv. Math. 198 (2005), 311-365. | MR | Zbl
,[7] Real homotopy theory of Kähler manifolds, Invent. Math. 29 (1975), 245-274. | MR | Zbl
, , and ,[8] “The Geometry of Four-Manifolds”, Oxford, University Press, 1990. | MR | Zbl
and ,[9] Obstruction primaire à la déformation, Sém. Cartan 13 (1960/61), Exp. 4. | Numdam | Zbl
,[10] Obstruction calculus for functors of Artin rings, I. J. Algebra 202 (1998), 541-576. | MR | Zbl
and ,[11] structures on mapping cones, Algebra Number Theory 1 (2007), 301-330. | MR | Zbl
and ,[12] Deformation theory, homological algebra and mirror symmetry, In: “Geometry and Physics of Branes” (Como, 2001), Ser. High Energy Phys. Cosmol. Gravit., IOP Bristol, 2003, 121-209. | MR
,[13] The deformation theory of representations of fundamental groups of compact Kähler manifolds, Inst. Hautes Études Sci. Publ. Math. 67 (1988), 43-96. | Numdam | MR | Zbl
and ,[14] The homotopy invariance of the Kuranishi space, Illinois J. Math. 34 (1990), 337-367. | MR | Zbl
and ,[15] Deformation theory, generic vanishing theorems, and some conjectures of Enriques, Catanese and Beauville, Invent. Math. 90 (1987), 389-407. | MR | Zbl
and ,[16] Higher obstructions to deforming cohomology groups of line bundles, J. Amer. Math. Soc. 4 (1991), 87-103. | MR | Zbl
and ,[17] “Residues and Duality”, Springer-Verlag, L.N.M., Vol. 20, 1966. | MR | Zbl
,[18] “Differential Graded Lie Algebras and Deformations of Holomorphic Maps”, PhD thesis, 2006, arXiv:math.AG/0701091 | Zbl
,[19] “Lie Algebras”, Wiley & Sons, 1962. | Zbl
,[20] Unobstructed deformations - a remark on a paper of Z. Ran, J. Algebraic Geom. 1 (1992), 183-190. | MR | Zbl
,[21] “Differential Geometry of Complex Vector Bundles”, Princeton, Univ. Press, 1987. | MR | Zbl
,[22] A theorem of completeness of characteristic systems of complete continuous systems, Amer. J. Math. 81 (1959), 477-500. | MR | Zbl
and ,[23] “Rational curves on algebraic varieties”, Springer-Verlag, Ergebnisse Vol. 32, 1996. | Zbl
,[24] Deformation quantization of Poisson manifolds, I, Lett. Math. Phys. 66 (2003), 157-216. arXiv:q-alg/9709040 | MR | Zbl
,[25] Deformation theory via differential graded Lie algebras, In: “Seminari di Geometria Algebrica 1998-1999”, Scuola Normale Superiore, 1999. arXiv:math.AG/0507284 | MR
,[26] Extended deformation functors, Int. Math. Res. Not. 14 (2002), 719-756. arXiv:math.AG/9910071 | MR | Zbl
,[27] Cohomological constraint to deformations of compact Kähler manifolds, Adv. Math. 186 (2004), 125-142. | MR | Zbl
,[28] Lectures on deformations on complex manifolds, Rend. Mat. Appl. 24 (2004), 1-183. arXiv:math.AG/0507286 | MR | Zbl
,[29] Deformations of complex spaces, Uspekhi Mat. Nauk. 31:3 (1976), 129-194. Transl. Russian Math. Surveys 31:3 (1976), 129-197. | MR | Zbl
,[30] Hodge theory and the Hilbert scheme, J. Differential Geom. 37 (1993), 191-198. | MR | Zbl
,[31] Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208-222. | MR | Zbl
,[32] Deformation Theory and Rational Homotopy Type, preprint, 1979.
and ,[33] Sul teorema fondamentale dei sistemi continui di curve sopra una superficie algebrica, Ann. Mat. Pura Appl. 23 (1944), 149-181. | MR | Zbl
,[34] “Homotopie Rationelle: Modèles de Chen, Quillen, Sullivan”, Springer-Verlag, Lecture Notes in Mathematics Vol. 1025, 1983. | MR | Zbl
,[35] Sur la stabilité de sous-variétés lagrangiennes des variétés symplectiques holomorphes, In: “Complex Projective Geometry” (Trieste, 1989/Bergen, 1989), London Math. Soc., Lecture Note Ser. Vol. 179, 1992, 294-303. | MR | Zbl
,