We study the shape of stationary surfaces with prescribed mean curvature in the Euclidean 3-space near boundary points where Plateau boundaries meet free boundaries. In deriving asymptotic expansions at such points, we generalize known results about minimal surfaces due to G. Dziuk. The main difficulties arise from the fact that, contrary to minimal surfaces, surfaces with prescribed mean curvature do not meet the support manifold perpendicularly along their free boundary, in general.
@article{ASNSP_2007_5_6_4_529_0, author = {M\"uller, Frank}, title = {The asymptotic behaviour of surfaces with prescribed mean curvature near meeting points of fixed and free boundaries}, journal = {Annali della Scuola Normale Superiore di Pisa - Classe di Scienze}, pages = {529--559}, publisher = {Scuola Normale Superiore, Pisa}, volume = {Ser. 5, 6}, number = {4}, year = {2007}, mrnumber = {2394410}, zbl = {1171.53302}, language = {en}, url = {http://www.numdam.org/item/ASNSP_2007_5_6_4_529_0/} }
TY - JOUR AU - Müller, Frank TI - The asymptotic behaviour of surfaces with prescribed mean curvature near meeting points of fixed and free boundaries JO - Annali della Scuola Normale Superiore di Pisa - Classe di Scienze PY - 2007 SP - 529 EP - 559 VL - 6 IS - 4 PB - Scuola Normale Superiore, Pisa UR - http://www.numdam.org/item/ASNSP_2007_5_6_4_529_0/ LA - en ID - ASNSP_2007_5_6_4_529_0 ER -
%0 Journal Article %A Müller, Frank %T The asymptotic behaviour of surfaces with prescribed mean curvature near meeting points of fixed and free boundaries %J Annali della Scuola Normale Superiore di Pisa - Classe di Scienze %D 2007 %P 529-559 %V 6 %N 4 %I Scuola Normale Superiore, Pisa %U http://www.numdam.org/item/ASNSP_2007_5_6_4_529_0/ %G en %F ASNSP_2007_5_6_4_529_0
Müller, Frank. The asymptotic behaviour of surfaces with prescribed mean curvature near meeting points of fixed and free boundaries. Annali della Scuola Normale Superiore di Pisa - Classe di Scienze, Série 5, Tome 6 (2007) no. 4, pp. 529-559. http://www.numdam.org/item/ASNSP_2007_5_6_4_529_0/
[1] “Minimal Surfaces I, II", Grundlehren Math. Wiss. Vol. 295, 296. Springer, Berlin Heidelberg New York, 1992. | MR | Zbl
, , and ,[2] Über quasilineare elliptische Systeme mit isothermen Parametern an Ecken der Randkurve, Analysis 1 (1981), 63-81. | MR | Zbl
,[3] On the boundary behaviour of partially free minimal surfaces, Manuscripta Math. 35 (1981), 105-123. | EuDML | MR | Zbl
,[4] Zum Randverhalten der Lösungen gewisser zweidimensionaler Variationsprobleme mit freien Randbedingungen, Math. Z. 118 (1970), 241-253. | EuDML | MR | Zbl
and ,[5] On the local behavior of solutions of nonparabolic partial differential equations, Amer. J. Math. 75 (1953), 449-476. | MR | Zbl
and ,[6] Über das Randverhalten quasilinearer elliptischer Systeme mit isothermen Parametern, Math. Z. 113 (1970), 99-105. | EuDML | MR | Zbl
,[7] Über die analytische Abhängigkeit der Lösungen eines linearen elliptischen Randwertproblems von Parametern, Nachr. Akad. Wiss. Göttingen II, Math.-Phys. Kl. (1979), 1-20. | MR | Zbl
,[8] Einige Bemerkungen über Flächen beschränkter mittlerer Krümmung,- Math. Z. 115 (1970), 169-178. | EuDML | MR | Zbl
,[9] A priori bounds for -surfaces in a partially free configuration, Analysis 26 (2006), 471-489. | MR | Zbl
,[10] Investigations on the regularity of surfaces with prescribed mean curvature and partially free boundaries, Habilitationsschrift, BTU Cottbus (2006).
,[11] On the regularity of -surfaces with free boundaries on a smooth support manifold, BTU Cottbus (2007), preprint. | Zbl
,[12] Growth estimates for the gradient of an -surface near singular points of the boundary configuration, Z. Anal. Anwendungen, to appear. | MR | Zbl
,[13] Minimal surfaces with partially free boundary. Least area property and Hölder continuity for boundaries satisfying a chord-arc condition, Arch. Ration. Mech. Anal. 39 (1970), 131-145. | MR | Zbl
,[14] “Partial Differential Equations 1: Foundations and Integral Representations", Springer, Berlin Heidelberg, 2006. | MR | Zbl
,[15] “Partial Differential Equations 2: Functional Analytic Methods", Springer, Berlin Heidelberg, 2006. | MR | Zbl
,